2010-1中 高数试卷(a类)
- 格式:pdf
- 大小:177.60 KB
- 文档页数:2
2009—2010学年第一学期《高等数学I(一)》课程考试试卷(A 卷)参考答案及评分标准注意:1、本试卷共 3 页; 2、考试时间120分钟3、姓名、学号必须写在指定地方 阅卷负责人签名:一、填空题(共5个小题,每小题2分,共10分).1.设,则 .()lim 1tt x f x t →+∞⎛⎫=+⎪⎝⎭()0x ≠=)3(ln f 2.设是的一个原函数,则= .x e xsin +()f x ()f 'x 3.曲线的拐点坐标是 .16623-+=x x y 4.若,则 .2121A dx x -∞=+⎰A =5. .21lim(2)cos2x x x →-=-二、单项选择题(共10个小题,每小题2分,共20分).将每题的正确答案的代号A 、B 、C 或D 填入下表中.1.已知函数的定义域为,则函数的定义域为( ).()f x []12,-()()()22F x f x f x =++A .;B .;C .;D ..[]30,-[]31,-112,⎡⎤-⎢⎥⎣⎦102,⎡⎤-⎢⎥⎣⎦2.是函数的( ).3x =1()arctan 3f x x=-A .连续点;B .可去间断点;C .跳跃间断点;D .第二类间断点.3.当时,与等价,则( ).0→x 1ax e -x 2sin a = A .1 ;B .2 ;C . ;D ..2-214.函数 在处().()21sin,00,0x x f x xx ⎧≠⎪=⎨⎪=⎩0=x A .有定义但不连续; B .连续但不可导; C .连续且可导;D .不连续且不可导.5.下列等式中正确的是( ).A .; B .;()()ba d f x dx f x dx =⎰()()()x ad f x dx f x f a dx=-⎰C .;D . .()()df x dx f x dx=⎰()()f x dx f x '=⎰6.函数( ).()21xf x x =+ A .在内单调增加;B .在内单调减少;(),-∞+∞(),-∞+∞C .在内单调增加;D .在内单调减少.()11,-()11,-7.若可导,且,则().()f u ()x y f e = A .;B .;()x dy f e dx '=()x x dy f e e dx '= C .;D ..()xxdy f e e dx =()xxdy f e e dx '⎡⎤=⎣⎦8.( ).20|1|x dx -=⎰A .0 ;B .2 ;C .1 ;D ..1-9.方程的通解是( ).sin y x '''=A .; B .;21231cos 2y x C x C x C =+++21231sin 2y x C x C x C =+++C .; D ..1cos y x C =+2sin 2y x =10.曲线与该曲线过原点的切线及轴围成的图形的面积为( ).xe y =y A . ;B .;10()xe ex dx -⎰1(ln ln )ey y y dy -⎰C .; D ..1()ex x e xe dx -⎰10(ln ln )y y y dy -⎰题号一二三四五六七八总分得分阅卷人得分阅卷人得分三峡大学 试卷纸 教学班号序号学号姓名………………….………….……答 题 不 要 超 过 密 封 线………….………………………………三、解下列各题(每小题6分,共12分).1.计算.)lim x xx →+∞-2.计算.xx x x 1022lim ⎪⎭⎫⎝⎛-+→四、解下列各题(每小题6分,共12分).1.已知,求.076333=--++y xy x y 2=x dxdy2. 设函数由参数方程所确定,求和.)(x y y =⎩⎨⎧+==tt t y t x sin cos sin ln dx dy22dx y d五、解下列各题(每小题6分,共18分).1. 计算.⎰++dx xx x 221)(arctan 2.计算.204ln(1)limx x t dt x→-⎰3. 计算.220cos x e xdx π⎰阅卷人阅卷人阅卷人得分阅卷人得分三峡大学 试卷纸 教学班号序号学号 姓名………………….………….……答 题 不 要 超 过 密 封 线………….………………………………六、(本题10分).设曲线上任意一点处的切线斜率为,且该曲线经过点,)(x f y =),(y x 2x x y +11,2⎛⎫⎪⎝⎭(1)求函数;)(x f y =(2)求曲线,,所围成的图形绕轴旋转所形成的旋转体的体积.)(x f y =0y =1x =x七、(本题10分).由半径为的圆上,割去一个扇形,把剩下的部分围成一个圆锥,试求割去扇形的中R 心角,使圆锥的容积为最大.S阅卷人得分三峡大学 试卷纸 教学班号 序号 学号姓名……………….………….……答 题 不 要 超 过 密 封 线………….………………………………参考答案一、填空题1.3;2.sin x e x -3.()2,0-4.1π5. 0二、单项选择题题号12345678910答案DCBCCCBCAA三、解下列各题1. 解:)lim x xx →+∞3分limx =. 6分12=2.. 解:3分xx x x 1022lim ⎪⎭⎫⎝⎛-+→()222202lim 12x xx x x x x x -⋅-→⎛⎫=+ ⎪-⎝⎭.6分()02lim2x xx x e→-=1e e ==四、解下列各题1. 解:两边分别对求导,得x ,3分22333360dy dy dyy x y x dx dx dx+++-= 当时,,代入上式,得2x =1y =-. 6分23x dy dx==- 2..解: 3分dx dy dydt dx dt=sin sin cos cos sin t t t tt t-++=sin t t = . 6分22dxy d dy dtdx dt'=sin cos cos sin t t t t t +=2sin sin cos cos t t t tt+=五、解下列各题1..解:⎰++dx x x x 221)(arctan ()222arctan 11x xdx dx x x =+++⎰⎰ 3分()()()22211arctan arctan 21d x x d x x +=++⎰⎰. 6分()()3211ln 1arctan 23x x C =+++2..解: 3分204ln(1)limx x t dtx→-⎰()232ln 1lim4x x x x→-= .6分220lim 2x x x →-=12=-3..解:2分220cos xe xdx π⎰()22sin xe d x π=⎰222200sin 2sin xx e x e xdx ππ⎡⎤=-⎣⎦⎰()2202cos xe e d x ππ=+⎰2222002cos 4cos xx e e x e xdx πππ⎡⎤=+-⎣⎦⎰5分22024cos x e e xdx ππ=--⎰.6分∴22cos xe xdx π⎰()125e π=-三峡大学 试卷纸 教学班号序号学号姓名………………….………….……答 题 不 要 超 过 密 封 线………….………………………………六、解:(1),即,且当时,, 2分2y y x x '=+2y y x x '-=1x =12y =与之对应的齐次线性微分方程的通解为,y Cx = 令,将其代入非齐次线性方程得,所以,()y u x x =u x '=212u x C =+所以非齐次线性微分方程的通解为,代入初始条件得,312y Cx x =+0C =故所求函数为. 6分312y x =(2) .10分23102x V dx π⎛⎫= ⎪⎝⎭⎰28π=七、解:设留下的扇形的中心角为,圆锥的高为,底面半径为,则其容积为ϕh r V ,又,213V r h π=2rR πϕ=h =故 4分V =()02ϕπ<<6分3224RV π'=令 得,0V '=ϕ=当时,时,,0ϕ<<0V '>2ϕπ<<0V'<因此为极大值点,又驻点唯一,从而也是最大值点. 8分ϕ=ϕ=即当割去扇形的中心角为时,圆锥的容积最大,2π. 10分3R 八、证明:方程在区间内有唯一实根.4013101xx dt t --=+⎰)1,0( 证明:令,()401311x f x x dt t =--+⎰则,()010f =-< ,()1401121f dt t =-+⎰0>由零点定理知,至少存在一点,使. 4分()0,1ξ∈()0f ξ=由,,()41301f x x'=->+()0,1x ∈知在内单调增加,()f x )1,0(所以方程在区间内有唯一实根. 8分4013101xx dt t --=+⎰)1,0(。
2010全国高中数学联赛a卷加试试题及答案一、选择题(每题5分,共20分)1. 已知函数\( f(x) = ax^2 + bx + c \),其中\( a, b, c \)为常数,若\( f(1) = 0 \),则下列哪个选项是正确的?A. \( a + b + c = 0 \)B. \( a - b + c = 0 \)C. \( a + b - c = 0 \)D. \( a - b - c = 0 \)答案:A2. 一个圆的直径为10,那么它的面积是多少?A. 25πB. 50πC. 100πD. 25答案:B3. 一个等差数列的前三项分别为2,5,8,那么它的第五项是多少?A. 11B. 14C. 17D. 20答案:B4. 一个等比数列的前三项分别为2,6,18,那么它的第四项是多少?A. 54B. 42C. 36D. 54答案:A二、填空题(每题5分,共20分)5. 已知函数\( g(x) = 2x - 1 \),求\( g(3) \)的值。
答案:56. 一个三角形的三个内角分别为30°,60°,90°,那么这个三角形的类型是_______。
答案:直角三角形7. 一个数列的前四项为1,3,6,10,那么这个数列的通项公式是_______。
答案:\( n(n+1)/2 \)8. 已知一个矩形的长为10,宽为5,求它的周长。
答案:30三、解答题(每题10分,共60分)9. 已知等差数列\( \{a_n\} \)的前三项分别为1,4,7,求它的通项公式。
答案:\( a_n = 3n - 2 \)10. 已知等比数列\( \{b_n\} \)的前三项分别为2,8,32,求它的通项公式。
答案:\( b_n = 2^n \)11. 求函数\( h(x) = x^3 - 3x^2 + 2 \)的极值点。
答案:极小值点为\( x = 1 \),极大值点为\( x = 2 \)12. 已知一个圆的方程为\( (x - 2)^2 + (y - 3)^2 = 9 \),求通过原点且与该圆相切的直线方程。
一、 填空题(每小题3分,共15分)1. 1x =2. 2009!-3.24. ]2,0()0,1( -5. 2K =二、 选择题(每小题3分,共15分) 1. A 2. D 3. C 4. C 5. B三、计算题(每小题5分,共20分)1. 解:原式=211112limlimlim 12222x x x x x x→→→===⋅(1分) (2分) (4分) (5分)2. 解:222203322(1)d 111lim(1)d limlimlim333x txx tx x x x etex et xxxx---→→→→----====-⎰⎰(2分) (3分) (5分)3. 解:2()x x xe xe ef x x x '⎛⎫-== ⎪⎝⎭,2()d d ()()()d x xxe exf x x x f x xf x f x x c x-'==-=+⎰⎰⎰(2分) (4分) (5分)4. 解1: (1) 2,x t t =-21t x t '=-, 方程10yte y ++=两边对t 求导, 得0y y t t e te y y ''+⋅+=从而, 1y yt yeey tey'=-=+ (3分) 所以,d d (21)yt t y y exx y t '=='-.当0=t 时, 0,1x y ==-, 因而, 00d 1d d d d d (21)yt t t y ey x x x xy t e======- (5分)解2: 方程组(1)0,10 y x t t te y +-=⎧⎨++=⎩两边对x 求导得d d 120d d d d d 0d d d yy t t t x xt y y e te xx x ⎧+-=⎪⎪⎨⎪++=⎪⎩, (2分)将00,1t t y ===-代入得d d 11,,d d t t t y xxe===-=(4分) 故01d d t yx e==. (5分)四、(10分)解:(00),(00)0,(0),f c f f c -=+==因()f x 在0x =处连续,所以0c =。
2010高等代数1(A 卷)参考答案一、填空题 1.n <; 2. 0; 3. 1627-; 4. 0λ≠且3λ≠-; 5. 6,16a b =-= 二、判断题 6.⨯7.⨯8.√9.⨯ 10. √三、单项选择11. (D) 12. (B) 13. (A) 14. (B) 15 (B)四、解答题 16. 解: x+1∴ (f(x),g(x))=x-3 (7分)17. 解:(4分)2131415143r r r r r r r r ---+−−−→3242523r r r r r r +-+−−−→1234511231111133542563157A ααααα⎛⎫⎪- ⎪⎪= ⎪- ⎪⎪----⎝⎭1213141511123021202120636402123ααααααααα⎛⎫ ⎪---- ⎪ ⎪- ⎪---- ⎪ ⎪+⎝⎭12132142152111230212000020000300002αααααααααααα⎛⎫⎪---- ⎪⎪+- ⎪-- ⎪ ⎪++⎝⎭∴12345()2,r α,α,α,α,α=12α,α是它的一个极大无关组, (6分) 且3124125123α=2α-α,α=α+α,α=-2α-α (7分) 18.解:方程组的系数行列式为 (1分)(1) 当2k ≠-且1k ≠ 时,方程组有唯一解; (2分)(2)2k =-时,(3)()3()2R A R A =≠=,此时,方程组无解; (4分)(3)1k =,此时方程组有无穷多解, (6分)通解为 :1212111010,,001k k k k k R --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=++∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭。
(7分)19.解:因为A = , 所以A 可逆, (2分)则(3分) 21111(2)(1)11k k k k k=+-111111111111A ⎛⎫ ⎪= ⎪⎪⎝⎭111100000000⎛⎫⎪ ⎪ ⎪⎝⎭2131r r r r --−−−→()()13R A R A n ==<=015153522321≠=1123123x x A x -⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭211112121124A -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭13112412122111r r ↔-⎛⎫ ⎪→-- ⎪ ⎪-⎝⎭21212112403360339r r r r -+-⎛⎫ ⎪→-- ⎪ ⎪-⎝⎭2132112403360003r r r r -+-⎛⎫ ⎪→-- ⎪⎪⎝⎭()123100123100123100123100225010021210018301018301351001018301021210001541211221201005551381010151515412001151515A ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪∣E =→---→---→--- ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫--⎪⎪ ⎪→---→ ⎪⎪ ⎪-⎪⎝⎭31341515151381010151515412001151515⎛⎫⎪⎪ ⎪-⎪⎪ ⎪- ⎪⎝⎭即 1231341515151381151515412151515A -⎛⎫- ⎪⎪ ⎪=- ⎪⎪ ⎪- ⎪⎝⎭(6分) 则(7分)20.解: 二次型的矩阵为 (1分)()21311212213113111221122400110110100221100112240211002110042211011201010201010010022110001210001200001r r r r r r c c c c c c r r c A -+++-+←−→←→--⎛⎫- ⎪⎛⎫---⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪⎪∣E =-−−−→-−−−→-−−−→ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭3111110011001222211110100010022220041111001022c −----⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪−−−−→→⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭123231341515151113812015151530412151515x x x ⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎪=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪- ⎪⎝⎭021201110A -⎛⎫ ⎪=- ⎪⎪⎝⎭则非退化线性变换X CY == (6分) 把二次型()123,,f x x x 化222123x x x +- 。