七年级数学(上册)有理数概念及加减混合运算单元测试题
- 格式:doc
- 大小:86.50 KB
- 文档页数:4
人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案【解题技巧】主要是要注意混合运算的运算顺序。
一级运算:加减法;二级运算:乘除法;三级运算:乘方运算。
规定:先算高级运算再算低级运算同级运算从左到右依次进行。
(1)有括号先算括号里面的运算按小括号、中括号、大括号依次进行;(2)先乘方、再乘除、最后加减;(3)同级运算按从左往右依次进行。
当然在准守上述计算原则的前提下也需要灵活使用运算律以简化运算。
1.(2022·广西崇左·七年级期末)计算:(1)3312424⎛⎫⎛⎫-⨯÷-⎪ ⎪⎝⎭⎝⎭;(2)2014281|5|(4)(8)5⎛⎫-+-⨯---÷-⎪⎝⎭.【答案】(1)12(2)-7【分析】(1)原式从左到右依次计算即可求出值;(2)原式先算乘方及绝对值再算乘除最后算加减即可求出值.(1)原式9489⎛⎫⎛⎫=-⨯-⎪ ⎪⎝⎭⎝⎭12 =;(2)原式=﹣1+5×(85-)﹣16÷(﹣8)=﹣1﹣8+2=﹣7.【点睛】本题考查了有理数的混合运算熟练掌握运算法则是解本题的关键.2.(2022·内蒙古·七年级期末)计算:(1)31125(25)25424⎛⎫⨯--⨯+⨯-⎪⎝⎭(2)4211(1)3[2(3)]2---÷⨯--【答案】(1)25(2)1 6【分析】(1)根据乘法分配律、有理数乘法法则、减法法则和加法法则计算即可;(2)根据有理数的运算顺序和各个运算法则计算即可.(1)解:原式311252525424⎛⎫=⨯+⨯++- ⎪⎝⎭31125424⎛⎫=⨯+- ⎪⎝⎭251=⨯25=;(2)解:原式111(29)23=--⨯⨯- 11(7)6=--⨯- 761=-+ 16=. 【点睛】此题考查了有理数的混合运算.解题的关键是掌握有理数的混合运算的运算顺序和每一步的运算法则.3.(2022·山东东营·期末)计算: (1)11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭; (2)42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 【答案】(1)34- (2)5 【分析】(1)原式先算括号内的 再算乘除;(2)原式先乘方 再中计算括号内及绝对值内的减法 再计算乘法 最后计算加减即可求出值.(1)解:11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭ 433328⎛⎫=⨯-⨯ ⎪⎝⎭ 34=- (2)解:42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 111436623=-++-⨯+⨯ 14332=-++-+5=【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.4.(2022·安徽阜阳·七年级期末)计算:(1)()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭. (2)2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 【答案】(1)16(2)-2312 【分析】先计算乘方及小括号内的运算 再计算乘法 最后计算加减法.【详解】(1)解:()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭=()111723--⨯⨯- =716-+ =16. (2)解:2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 19(924)34=-⨯-+⨯- 19(1)34=-⨯-- 1934=- =-2312. 【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数的运算法则及运算顺序是解题的关键. 5.(2022·湖南娄底·七年级期末)计算:(1)()()220211110.5233⎡⎤---⨯⨯--⎣⎦; (2)()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦【答案】(1)16(2)6 【分析】(1)原式先计算乘方运算 再计算乘除运算 最后算加减运算即可得到结果.(2)先算乘方 再算乘除 最后算减法;同级运算 应按从左到右的顺序进行计算.【详解】(1)解:原式()117112912366⎛⎫=--⨯⨯-=---= ⎪⎝⎭ (2)解:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦ ()2116512434⎛⎫=-÷-+-⨯ ⎪⎝⎭ 21164242434⎛⎫=-÷+⨯-⨯ ⎪⎝⎭410=-+6=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键 运算顺序为:先乘方 再乘除 最后算加减 有括号先计算括号内的运算.6.(2022·天津北辰·七年级期末)(1)24(3)5(2)6⨯--⨯-+;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭. 【答案】(1)52;(2)-52. 【分析】(1)先算乘方 然后计算乘除 最后算加减即可;(2)先算乘方 然后计算乘除 最后算加减即可.【详解】解:(1)24(3)5(2)6⨯--⨯-+=4×9+10+6=52;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭=-16÷8-12=-2-12=-52. 【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算.7.(2022·广西百色·七年级期末)计算:(1)()()22241322⎡⎤---⨯÷⎣⎦.(2)33(2)30(5)34⎛⎫-⨯-+÷--- ⎪⎝⎭. 【答案】(1)8(2)-2【分析】根据有理数的混合运算法则计算即可;含乘方的有理数混合运算法则:1、先乘方 再乘除 最后加减;2、同级运算 从左往右进行;3、如果有括号 先做括号内的运算 按小括号、中括号、大括号依次进行.【详解】(2)解:原式()161924=--⨯÷⎡⎤⎣⎦()16824=--⨯÷⎡⎤⎣⎦8=.解:原式()()51411=÷--+⨯-()551=÷--11=--2=-.【点睛】本题考查了有理数的混合运算 熟练掌握运算法则是解题的关键.8.(2022·河南周口·七年级期末)计算: (1)2022211(1)(1)(32)23-+-⨯+-+ (2)23220213(4)(2)(2)(1)-⨯-+-÷--- 【答案】(1)556- (2)35 【分析】(1)原式先计算乘方运算及括号内的运算 再计算乘除运算 最后计算加减运算即可求出值;(2)先计算乘方运算 再计算乘除运算 最后计算加减运算即可求出值.(1)解:原式=111(92)23+⨯+-+ =1176+- =556-; (2)解:原式=9(4)(8)4(1)-⨯-+-÷--=3621-+=35【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.9.(2022·江苏扬州·七年级期末)计算: (1)3(6)( 1.55) 3.25(15.45)4---+++-; (2)()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 【答案】(1)-7 (2)98- 【分析】(1)先算同分母分数 再算加减法即可求解;(2)先算乘方 再算乘除 最后算加法;同级运算 应按从左到右的顺序进行计算.(1)解:3(6)( 1.55) 3.25(15.45)4---+++-(6.75 3.25)( 1.5515.45)=++--1017=-7=-;(2)解:()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 254(8)1425=÷-⨯- 2514()14825=⨯-⨯- 118=-- 98=-. 【点睛】本题考查了有理数的混合运算 解题的关键是掌握有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算.进行有理数的混合运算时 注意各个运算律的运用 使运算过程得到简化.19.(2022·河南南阳·七年级期末)计算(1)243(6)()94-⨯-+; (2)33116(2)()(4) 3.52÷---⨯-+.【答案】(1)11 (2)1【分析】(1)先计算乘方 再利用乘法分配律计算即可;(2)先计算乘方 再计算乘除 最后计算加减即可.(1)解:原式4336()94=⨯-+4336()3694=⨯-+⨯ 1627=-+11=;(2)解:原式116(8)()(4) 3.58=÷---⨯-+20.5 3.5=--+ 1=.【点睛】本题主要考查有理数的混合运算 解题的关键是掌握有理数的混合运算顺序和运算法则.11.(2022·河北邯郸·七年级期末)计算:()()20212132311234⎛⎫-+⨯---⨯- ⎪⎝⎭. 【答案】12-【详解】解:原式()44311213123=-⨯-++⨯⨯- 434912=--+-=-.【点睛】本题考查了有理数的混合运算 熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方 再算乘除 最后算加减;同级运算 按从左到右的顺序计算.如果有括号 先算括号里面的 并按小括号、中括号、大括号的顺序进行.有时也可以根据运算定律改变运算的顺序.12.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= ==; (3) = 71(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭= = =; (4) = = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.13.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= 14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭12489459-⨯⨯+⨯445-+16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭==; (3) = = = =; (4) = =12489459-⨯⨯+⨯ =445-+ =165 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.14.(2022·浙江七年级期末)计算:(1). (2). (3). (4). 【答案】(1)3;(2)1;(3)927;(4)1【分析】(1)先化简符号和括号 再计算加减法;(2)将除法转化为乘法 再约分计算;(3)先算括号内的 再算乘除 最后算加减;(4)先算乘方和括号 再算乘除 最后算加减. ()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦94(81)(16)49-÷⨯÷-11304(3)1556⎛⎫÷--⨯-+ ⎪⎝⎭422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭【详解】解:(1) = = ==3;(2) = =1;(3) = ==927;(4) = ==1 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序. 28.(2021·湖北恩施·七年级期末)计算下列各题:(1)2(35)(3)(13)--+-⨯-; (2)32422()93-÷⨯-. 【答案】(1)-16 (2)-8【分析】(1)先算括号中的减法 再算乘方 乘法 以及加减即可得到结果; (2)先算乘方 再算乘除即可得到结果.(1)解:原式=359(2)-++⨯-11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦11552 4.84566⎛⎫--+ ⎪⎝⎭145154425566+--107-94(81)(16)49-÷⨯÷-441819916⨯⨯⨯11304(3)1556⎛⎫÷--⨯-+⎪⎝⎭301215301÷++9001215++422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭()23168(15)(15)35-÷-+⨯--⨯-2109-+218=- =16-;(2)解:原式=94849-⨯⨯=8-.【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键. 15.(2022·河南驻马店·七年级期末)计算:(1)()22112 2.25554⎛⎫---+-- ⎪⎝⎭; (2)2220212111132322⎛⎫--⨯--+÷⨯ ⎪⎝⎭.【答案】(1)1-;(2)54-【分析】(1)先化简绝对值、去括号 再计算加减法即可得;(2)先计算乘方、除法 再化简绝对值、乘法 然后计算加减法即可得. 【详解】 解:(1)原式2 2.2275.2555--+=- 7255=- 1=-;(2)原式4143111322=--⨯-+⨯3134344=--⨯+-4331344=--⨯+3114=--+ 54=-.【点睛】本题考查了含乘方的有理数混合运算 熟练掌握运算法则是解题关键. 16.(2022·山东青岛·七年级期末)计算: (1)123()3035--+; (2)431116(2)()48-+÷---⨯. 【答案】(1)110; (2)52-【分析】(1)原式利用减法法则变形 计算即可得到结果; (2)原式先算乘方 再算乘除 最后算加减即可得到结果. (1) 原式=1233035+- =12018303030+- =1201830+- =330=110; (2)原式=()1116848⎛⎫-+÷---⨯ ⎪⎝⎭=1122--+=52-.【点睛】本题考查了有理数的加、减、乘、除、乘方的混合运算 正确理解运算顺序并细心计算是解决本题的关键;运算顺序:先乘方、再乘除、后加减 有括号的先算括号里面的. 17.(2022·福建福州·七年级期末)计算: (1)()()()()2356---++-+; (2)()2202241235⎛⎫-+-÷--- ⎪⎝⎭.【答案】(1)0 (2)9-【分析】(1)根据有理数加减混合运算法则进行计算即可; (2)根据有理数的混合运算法则进行计算即可. (1)解:()()()()2356---++-+2356=-++-88=-+0=(2)解:()2202241235⎛⎫-+-÷--- ⎪⎝⎭51434⎛⎫=-+⨯-- ⎪⎝⎭153=--- 9=-【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则 有乘方的先算乘方 再算乘除 最后算加减 有括号的先算小括号里面的 是解题的关键. 18.(2022·湖北孝感·七年级期末)计算:(1)(-5)×(-6)-40+2. (2)(-3)2-|-8|-(1-2×35)÷25.【答案】(1)8- (2)32【分析】(1)先计算有理数的乘法 然后计算加减即可;(2)先计算乘方及绝对值及小括号内的运算 然后计算除法 最后计算加减即可. (1)原式=30-40+2 =-8; (2)原式=9-8-65152⎛⎫-⨯ ⎪⎝⎭=9-8-1552⎛⎫-⨯ ⎪⎝⎭=9-8+12=32. 【点睛】题目主要考查含乘方的有理数的混合运算 绝对值化简 熟练掌握运算法则是解题关键. 19.(2022·山东枣庄·七年级期末)计算(1)22(2)31(0.2)4-+-⨯-÷-+- (2)222172(3)(6)()3-+⨯---÷-【答案】(1)-1 (2)23【分析】(1)先计算乘方 再计算乘除 最后算加减 可得答案;(2)先计算乘方 再计算乘除 最后计算加减 即可得到答案. (1)解:22(2)31(0.2)4-+-⨯-÷-+-4(6)54=-+-++1=-(2)222172(3)(6)()3-+⨯---÷-4929(6)9=-+⨯--⨯491854=-++ 23=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键.20.(2022·湖北荆州·七年级期末)计算:(1)﹣14﹣5+30﹣2 (2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4| 【答案】(1)9 (2)-3【分析】(1)根据有理数的加减法运算法则计算即可求解; (2)先算乘方 再算乘除 最后算加法求解即可. (1)解:-14-5+30-2 =(-14-5-2)+30 =-21+30 =9; (2)-32÷(-3)2+3×(-2)+|-4| =-9÷9-6+4 =-1-6+4 =-3.【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算. 21.(2022·河南驻马店·七年级期末)计算:(1)1|2|4--(34-)+11|1|2--; (2)16+(﹣2)319-⨯(﹣3)2﹣(﹣4)4.【答案】(1)312 (2)-249【分析】(1)先求绝对值 再按有理数加减法法则计算即可; (2)先计算乘方 再计算乘法 最后计算加减即可. (1)解:原式=13121442++-=312; (2)解:原式=16-8-19×9-256=16-8-1-256 =-249.【点睛】本题考查有理数混合运算 求绝对值 熟练掌握有理数运算法则是解题的关键. 22.(2022·四川广元·七年级期末)计算:220221256(4)(1)2⎛⎫---+÷-+-⨯- ⎪⎝⎭.【答案】-6 【详解】解:原式()()41241=--⨯-+-⨯ =()()424---+- =()424-++-6=-.【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数混合运算法则是解题的关键. 23.(2022·广西崇左·七年级期末)计算(1)2312130.25343-+-- (2)()22122332⎡⎤-+⨯--÷⎢⎥⎣⎦【答案】(1)-1812 (2)2 (1)解∶原式=-2123-13+334-14= -22+312 =-1812 (2)解:原式=()42932-+⨯-⨯ = -4+2×(9-6) =-4+6 =2【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则是解题的关键. 24.(2022·陕西·西安七年级期中)计算: (1)()()2132----+- (2)22212(32)243⎡⎤⨯+-÷⎣⎦ (3)152(18)369⎛⎫-+⨯- ⎪⎝⎭ (4)3202141(1)(13)82⎛⎫-+-÷⨯ ⎪⎝⎭【答案】(1)6-(2)0(3)5(4)34-【分析】(1)利用有理数加法和减法法则按照从左到右的顺序依次计算;(2)先算乘方 并把带分数化成假分数 再计算乘除 最后计算加减 同时按照先算小括号再算中括号的运算顺序计算即可;(3)利用乘法分配律进行计算即可;(4)先计算乘方 再计算乘除 最后计算加法即可.(1)原式=21326-+--=-; (2)原式=()2934294⎡⎤⨯+-÷⎣⎦ =1122⎛⎫+- ⎪⎝⎭=0;(3)原式=()121829⎛⎫-+⨯- ⎪⎝⎭=()()12181829⎛⎫-⨯-+⨯- ⎪⎝⎭=94- =5;(4)原式=()411288-+-÷⨯=111688-+÷⨯=1128-+⨯=114-+=34-. 【点睛】本题考查有理数的加减乘除及乘方的混合运算 解题关键是牢记运算法则 掌握运算顺序. 25.(2022· 绵阳市·九年级专项)计算:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭;(5)111532⎛⎫÷-- ⎪⎝⎭; (6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.【答案】(1)218-;(2)9-;(3)712-;(4)177;(5)18-;(6)22-;(7)307;(8)16. 【分析】(1)先计算除法 再计算加法 两个有理数相除 同号得正;(2)乘除法 同级运算 从左到右 依次将除法转化为乘法 先确定符号 再将数值相乘; (3)先将除法转化为乘法 再利用乘法分配律解题 注意符号;(4)先算乘除 再算减法 结合加法结合律解题;(5)先算小括号 再算除法;(6)先算小括号 再算中括号;(7)先将除法转化为乘法 再利用乘法分配律的逆运算解题; (8)先算小括号 再算中括号 结合乘法交换律解题. 【详解】解:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1477833⎛⎫⎛⎫⎛⎫=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2414493=-+24218=-; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭()1=(3)3(3)3⨯-⨯-⨯- =9;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭5165101566⎛⎫⎛⎫=--⨯- ⎪ ⎪⎝⎭⎝⎭111123=-++ 712=-; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭617324()762874⎛⎫⎛⎫=--⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭1437=++177=; (5)111532⎛⎫÷-- ⎪⎝⎭6155⎛⎫=÷- ⎪⎝⎭5156⎛⎫=⨯- ⎪⎝⎭18=-;(6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦2378261323998⎡⎤⎛⎫=-⨯⨯-÷ ⎪⎢⎥⎝⎭⎣⎦2782241399⎡⎤⎛⎫=--÷ ⎪⎢⎥⎝⎭⎣⎦282223992⎡⎤⎛⎫=-÷ ⎪⎢⎥⎝⎭⎣⎦ 982094⎛⎫=-+⨯ ⎪⎝⎭22442-=22=-;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2115128103337⎡⎤⎛⎫⎛⎫⎛⎫=---++⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2115128103337⎡⎤=-++⨯⎢⎥⎣⎦567=⨯307=; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦162113171713388⎡⎤⎛⎫⎛⎫⎛⎫=⨯⨯-⨯-+÷ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2113(16)33881⎡⎤⎛⎫⎛⎫=⨯-⨯-+⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()332286⎛⎫=-⨯ ⎪⎝⎭863=⨯16=.【点睛】本题考查有理数的四则混合运算 涉及加法结合律、乘法分配律等知识 是重要考点 掌握相关知识是解题关键.26.(2022·娄底市第二中学七年级期中)请你先认真阅读材料: 计算 解:原式的倒数是=12112()()3031065-÷-+-21121-+()3106530⎛⎫-÷- ⎪⎝⎭2112()(30)31065-+-⨯-=×(﹣30)﹣×(﹣30)+×(﹣30)﹣×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12) =﹣20+3﹣5+12 =﹣10 故原式等于﹣再根据你对所提供材料的理解 选择合适的方法计算:. 【答案】. 【分析】根据题意 先计算出的倒数的结果 再算出原式结果即可.【详解】解:原式的倒数是:故原式. 【点睛】本题主要考查了有理数的除法 读懂题意 并能根据题意解答题目是解决问题的关键. 27.(2022·黑龙江绥化·期中)计算:(1)()()()6.5 3.3 2.5 4.7-+----+; (2)()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭; (3)22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)()2449525⨯- (5)41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭【答案】(1)12- (2)63 (3)9- (4)24954-(5)99900【分析】根据有理数的加减乘除运算法则求解即可. (1)解:()()()6.5 3.3 2.5 4.7-+----+23110162511011322()()4261437-÷-+-114-113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭()132********⎛⎫=-+-⨯- ⎪⎝⎭13224242424261437⎛⎫=-⨯-⨯+⨯-⨯ ⎪⎝⎭()792812=--+-14=-114=-6.5 3.3 2.5 4.7=--+-()6.5 3.3 4.7 2.5=-+++14.5 2.5=-+12=-;(2)解:()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭ 3761246=⨯⨯⨯ 63=;(3)解:22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ()9244=-+⨯-9=-;(4)解:()2449525⨯- ()2449525⎛⎫=+⨯- ⎪⎝⎭ 24495525=-⨯-⨯ 242455=-- 42495=-; (5)解:41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭ 41399911818555⎛⎫=⨯+--- ⎪⎝⎭ 999100=⨯99900=.【点睛】本题考查有理数的加减乘除混合运算 熟练掌握相关运算法则及运算顺序是解决问题的关键. 28.(2022·河北邯郸·七年级期中)能简算的要简算(1)122 6.6 2.5325⨯+⨯ (2)44444999999999955555++++ (3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦ (4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦【答案】(1)25;(2)11110;(3)16;(4)10 【分析】(1)先把小数化为分数 然后根据乘法的结合律进行计算求解即可;(2)先把分数部分和整数部分分别相加然后得到()()()()19199199919999+++++++由此求解即可;(3)直接根据分数的混合计算法则进行求解即可;(4)先把小数化为分数 然后根据分数的混合计算法则进行求解即可.【详解】解:(1)131226232525⨯+⨯132=263255⎛⎫⨯+ ⎪⎝⎭1=2102⨯=25;(2)44444999999999955555++++()44444=999999999955555⎛⎫++++++++ ⎪⎝⎭=49999999999++++()()()()=19199199919999+++++++=10100100010000+++=11110;(3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦1633=977⎡⎤÷+⎢⎥⎣⎦1696=77÷167=796⨯1=6;(4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦1631825=58512⎛⎫⨯+⨯ ⎪⎝⎭61825=5512⎛⎫+⨯ ⎪⎝⎭2425=512⨯ =10.【点睛】本题主要考查了分数与小数的混合计算 分数的混合计算 解题的关键在于能够熟练掌握相关计算法则.29.(2022·浙江七年级期中)计算(1) (2) (3) (4) (5) (6) (7) (8) 【答案】(1);(2);(3)-8;(4);(5)8;(6);(7)161;(8) 【分析】根据有理数的混合运算法则分别计算.【详解】解:(1) = = =; (2) = = 3233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭()22012201121(0.25)4522--⨯+-÷-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦22222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦111112123123100+++++++++++13-174-49613-2001013233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭3112123124451034⎛⎫⎛⎫⎛⎫⨯-⨯-÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭110441015153-⨯⨯⨯13-()22012201121(0.25)4522--⨯+-÷-()2012220111422554⎛⎫--⨯+-÷- ⎪⎝⎭2012201151424254⎛⎫-⨯-⨯⎪⎝⎭= =; (3) = = ==-8;(4) = = ==; (5) = = = =8;(6) 2011411444⎛⎫-⨯⨯- ⎪⎝⎭174-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭111866412⎛⎫⨯--⨯ ⎪⎝⎭1114848486412⨯-⨯-⨯8124--()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()91116(32)349⎡⎤-÷--⨯--⎢⎥⎣⎦111423⎛⎫--- ⎪⎝⎭12323+49622222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭44411.35 1.057.7999⨯-⨯+⨯()411.35 1.057.79-+⨯4189⨯2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭= = = =; (7) = = = =160+1=161;(8) == = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序 以及一些常用的简便运算方法.30.(2022·河北邯郸·二模)淇淇在计算:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭时 步骤如下: 解:原式()11=202266623---+÷-÷①=202261218-++-① ()5112246274-+⨯+-⨯14125625-+⨯⨯213-+13-222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦3531345254⎛⎫⨯⨯+⨯+ ⎪⎝⎭35141254⎛⎫⨯++⎪⎝⎭511284⨯+111112123123100+++++++++++()()()11111221331100100222+++++⨯+⨯+⨯2222122334100101++++⨯⨯⨯⨯11112122334100101⎛⎫⨯++++ ⎪⨯⨯⨯⨯⎝⎭11111112122334100101⎛⎫⨯-+-+-++- ⎪⎝⎭200101=2048-①(1)淇淇的计算过程中开始出现错误的步骤是________;(填序号)(2)请给出正确的解题过程.【答案】(1)①; (2)见解析.【分析】(1)根据有理数的运算法则可知从①计算错误;(2)根据有理数的运算法则计算即可.(1)解:由题意可知:()20223111(1)(2)6=186236⎛⎫---+÷---+÷ ⎪⎝⎭; 故开始出现错误的步骤是①(2)解:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭()1=1866--+÷ =1836++=45.【点睛】本题考查含乘方的有理数的运算 解题的关键是掌握运算法则并能够正确计算.。
人教版七年级数学测试卷(考试题)第一章 有理数 1.3 有理数的加减法 1.3. 2 有理数的减法第2课时 有理数的加减混合运算1.⎪⎭⎫ ⎝⎛+121与⎪⎭⎫⎝⎛-41的和的符号是________,和是________,和的绝对值是________,差的符号是________,差是________,差的绝对值是________.2.把(-8)-(-1)+(+3)-(-2)转化为只含有加法的算式:____________________. 3.把(+3)-(-2)+(-4)-(+5)写成省略括号的代数和的形式为:_________________. 4.-3,+4,-7的代数和比它们的绝对值的和小( ) A .-8 B .-14 C .20 D .-205.7-3-4+18-11=(7+18)+(-3-4-11)是应用了( )A .加法交换律B .加法结合律C .分配律D .加法的交换律与结合律 6.若0<b ,则b a -,a ,b a +的大小关系是( ) A .b a a b a +<<- B .b a b a a +<-< C .a b a b a <-<+ D .b a a b a -<<+ 7.41-的相反数与绝对值等于41的数的和应等于( )A .21B .0C .21-D .21或0.8.计算: (1)()()3.3463.3416+-+---;(2)()()227103-+---+----; (3)21416132-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛---; (4)4-3.8-[(-2.5-1.2+4)-6.9]. (5)326543210-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛---; (6)()212115.2212--+---; (7) 13-[26-(-21)+(-18)]; (8)[1.4-(-3.6+5.2)-4.3]-(-1.5);(9)()()⎪⎭⎫ ⎝⎛-+-+--⎪⎭⎫ ⎝⎛++-54512549; (10)⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+-43573.875.141343125.2.9.用计算器计算:(1)-24+3.2-16-3.5+0.3; (2)(-2.4)-(-4.7)-(+O.5)+(-3.2);(3)3250-(-2563)+560-(+7820);(4)(-73.45)+23.36-(-86.32)-98.31.10.一种零件,标明直径的要求是04.003.050+-φ,这种零件的合格品最大的直径是多少?最少的直径是多少?如果直径是49.8,合格吗?11.七名学生的体重,以48.0 kg 为标准,把超过标准体重的千克数记为正数,不足的千(1)最接近标准体重的学生体重是多少? (2)最高体重与最低体重相差多少? (3)求七名学生的平均体重;(4)按体重的轻重排列时,恰好居中的是哪个学生?附赠材料:怎样提高做题效率一读二画三抠怎样“快而不乱”做好阅读题阅读是一个获取信息的过程,阅读质量的高低取决于捕捉信息的多少。
初一数学上册第一单元有理数知识点归纳一.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类:①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:绝对值的问题经常分类讨论;(3)(4)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.二.有理数法则及运算规律。
(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.2.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).4.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.5.有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.6.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.7.有理数乘方的法则:(1)正数的任何次幂都是正数;三.乘方的定义。
有理数的加减混合运算测试题时间:60分钟总分: 100题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.计算的结果是A. 2B.C. 4D.2.下列说法中,正确的个数有一定是负数;一定是正数;倒数等它本身的数是;绝对值等于它本身的数是1;两个有理数的和一定大于其中每一个加数;如果两个数的和为零,那么这两个数一定是一正一负.A. 1个B. 2个C. 3个D. 4个3.如果两个有理数的积小于零,和大于零,那么这两个有理数A. 符号相反B. 符号相反且绝对值相等C. 符号相反且负数的绝对值大D. 符号相反且正数的绝对值大4.下列各计算题中,结果是零的是A. B. C.D.5.给出20个数:89,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,则它们的和是A. 1789B. 1799C. 1879D. 18016.两个正数与一个负数相加,和为A. 正数B. 负数C. 零D. 以上都有可能7.已知12与a的积为,则a比4小A. 1B. 2C. 4D. 88.两个数的差是负数,则这两个数一定是A. 被减数是正数,减数是负数B. 被减数是负数,减数是正数C. 被减数是负数,减数也是负数D. 被减数比减数小9.下列式子成立的是A. B. C. D.10.一天,昆明的最高气温为,最低气温为,那么这天的最高气温比最低气温高A. B. C. D.二、填空题(本大题共10小题,共30.0分)11.已知,,,则ab______ 0, ______ 填“、或”12.若a,b,c均为有理数,满足,其中,,请你写出一个满足条件的算式______.13.比3大的数是______.14.计算的结果是______ .15.若,,则,则的值为______ .16.纽约与北京的时差是小时,如果现在是北京时间9月11日15时,那么现在的纽约时间是______ .17.计算的结果是______.18. ______ .19.A,B,C三地的海拔高度分别是米,米,20米,则最高点比最低点高______米20.在图中,对任意相邻的上下或左右两格中的数字同时加1或减2,这算作一次操作,经过若干次操作后,图能变为图,则图中A格内的数是______三、计算题(本大题共4小题,共24.0分)21.计算.22.计算:.23.计算:.24.计算:四、解答题(本大题共2小题,共16.0分)25.某检修小组乘一辆汽车沿东西向公路检修线路,约定向东为正,某天从A地出发到收工时,行走记录为长度单位:千米:每小题10分,共30分,,,,,,,,,,,,,收工时,检修小组在A地的哪一边?距A地多远?26.已知,,且,求的值.答案和解析【答案】1. D2. A3. D4. A5. D6. D7. D8. D9. A10. A11. ;12. 答案不唯一13.14. 415.16. 9月11日2时17. 218.19. 9020. 421. 解:原式;原式.22. 解:原式.23. 解:原式.24. 解:25. 解:由题意得:向东路程记为“”,向西路程记为“”,则检修小组离A点的距离为:千米答:小花猫最后在出发点的东边;离开出发点A相距36千米.26. 解:由,得,因为,所以所以.【解析】1. 解:,故选:D.根据同号两数相加的法则进行计算即可.本题主要考查了有理数的加法法则,解决本题的关键是熟记同号两数相加,取相同的符号,并把绝对值相加.2. 解:如果为负数时,则为正数,一定是负数是错的.当时,,一定是正数是错的.倒数等于它本身的数只有,对.绝对值都等于它本身的数是非负数,不只是1,绝对值等于它本身的数是1的说法是错误的.两个负有理数的和小于其中每一个加数,错误.如果两个数的和为零,那么这两个数可能为0,错误.所以正确的说法共有1个.故选A.本题须根据负数、正数、倒数、绝对值、相反数的有关定义以及表示方法逐个分析每个说法,得出正确的个数.本题考查了负数、正数、倒数、绝对值、相反数的有关定义以及表示方法,难度一般.3. 解:两个有理数的积小于零,和大于零,那么这两个有理数符号相反且正数的绝对值大.故选D.根据积小于0,可得两有理数异号,根据和大于零,可得正数的绝对值大,结合选项可得出答案.本题考查了有理数的乘法及有理数的加法法则,属于基础题,掌握各部分的运算法则是关键.4. 解:因为,故选项A的结果是零;因为,故选项B的结果不是零;因为,故选项C的结果不是零;因为,故选项D的结果不是零.故选A.根据四个选项,可以分别计算出它们的结果,进行观察,即可解答本题.本题考查有理数的加法、有理数的减法、去绝对值,解题的关键是正确的运用加法和减法法则进行计算.5. 解:每个数都减去90得,,1,4,,3,1,,,2,,0,2,,0,1,,,2,5,,求和得1,则它们的和为,,故选D.观察这组数的特点,这些数在90上下波动,要这些数都减去90,得出一组新数,把这组新数相加,再加上,即得结果,这样算简便.本题考查了有理数的加法法则,还考查了有理数加法的简便运算.6. 解:,和为正数;,和为0;,和为负数.故选:D.根据有理数的加法,举出例子即可求解.此题考查了有理数加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有从而确定用那一条法则在应用过程中,要牢记“先符号,后绝对值”.7. 解:由题意,得,解得,,故选:D.根据有理数的乘法,有理数的减法,可得答案.本题考查了有理数的乘法,利用有理数的乘法、有理数的减法是解题关键8. 解:如果两个数的差是负数,则这两个数一定是被减数比减数小.故选D.两个数的差是负数,说明是较小的数减较大的数的结果,应该是被减数比减数小.考查有理数的运算方法有理数减法法则:减去一个数等于加上这个数的相反数.9. 解:A、原式,正确;B、原式,错误;C 、原式,错误;D 、原式,错误,故选A原式各项计算得到结果,即可作出判断.此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.10. 解:,故选:A.利用最高气温减去最低气温即可.此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.11. 解:,,;,,,.故答案为,.由,,根据有理数乘法法则得出;由,,,根据有理数加法法则得出.本题考查了有理数的加法与乘法法则用到的知识点:绝对值不相等的异号加减,取绝对值较大的加数符号;两数相乘,异号得负.12. 解:,,、b均为负数.令,则..故答案为:答案不唯一.由,可知a、b均为负数,然后任意给出符合条件的a、b在进行计算即可.本题主要考查的是有理数的加法法则的应用,根据题意判断出a、b均为负数是解题的关键.13. 解:根据题意得:.故答案为:.根据题意列出算式,利用加法法则计算即可得到结果.此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.14. 解:故答案为:4.先求与2的和,再计算和的绝对值.本题考查了有理数的加法和绝对值的意义理清运算顺序是解决本题的关键.15. 解:,,且,,;,,则.故答案为:.根据题意,利用绝对值的代数意义求出x与y的值,即可求出的值.此题考查了有理数的乘法,绝对值,以及有理数的加法,熟练掌握运算法则是解本题的关键.16. 解:由题意,得,现在的纽约时间是9月11日2时,故答案为:9月11日2时.根据有理数的减法,可得答案.本题考查了有理数的减法,利用有理数的减法是解题关键.17. 解:.故答案为:2.依据有理数的减法法则进行计算即可本题主要考查的是有理数的减法,熟练掌握有理数的减法法则是解题的关键.18. 解:,,.故答案为:.根据绝对值的性质和有理数的减法运算法则进行计算即可得解.本题考查了有理数的减法运算法则和绝对值的性质,是基础题,熟记运算法则是解题的关键.19. 解:根据题意得:,则最高点比最低点高90米,故答案为:90根据题意列出算式,计算即可求出值.此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.20. 解:如图,将相邻两格用阴影区分出来.由于每次变换都是一个阴影格和相邻的无阴影格中的数据同时加1或减2,所以变换过程中,所有阴影格中的数字之和与所有无阴影格中的数字之和的差不变.图中对应的阴影格的数字之和为:,图中对应的无阴影格的数字之和为:,图中对应的阴影格的数字之和为:,图中对应的无阴影格的数字之和为:,由上述分析可知:,则可得.故答案为:4.每次变换都是在相邻的两格,则将相邻的两格区分出来,如解答中图的有阴影和无阴影由题可知,每次变换都是阴影格中的一个数据和无阴影格中的一个数据同时加1或减2,所以无论变换多少次,所有阴影格中的数字之和与所有无阴影格中的数字之和的差不变.解答此题的关键是将相邻两格区分出来,然后根据两部分之和的差求解.21. 原式结合后,相加即可得到结果;原式结合后,相加即可得到结果.此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.22. 原式结合后,利用加法法则计算即可得到结果.此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.23. 本题主要考查有理数的加减混合运算掌握法则是解题的关键先把减法转化为加法,然后再根据有理数加法的法则计算即可.24. 根据有理数的减法的运算方法,应用加法交换律和加法结合律,求出算式的值是多少即可.此题主要考查了有理数的减法,要熟练掌握,注意加法交换律和加法结合律的应用.25. 首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26. 先由、、确定a的值,再计算的值.本题考查了有理数的乘法、绝对值及有理数的减法,根据,确定a的值,是解决本题的关键.。
有理数加减法及加减混合运算题型一:有理数的加法1.同号两数相加,取相同的符号.并把绝对值相加.同号抱团,符号不变,绝对值相加.先定号,后定值.2.异号两数相加,取绝对值较大加数符号,并用较大绝对值减较小绝对值.异号厮杀,符号取大.绝对值大减小.先定号,后定值.1)整数加法(+3) + (+2)= (+7)+(+ 4 )=(-6) + (-13)= (-15) + (-9)=(- 6 )+(-8)= (-4)+(-5) =- 3 + 2 = (- 7 )+(+ 7 )=(-7)+(+ 4 )= (-12) + 6=0+(- 2 )= 0+(+9)=2)小数加法(-10.5)+ (-1.3)= -0.78+(-2.2)=-3.24+(-5.66)= -1999.56+(-3.21)= -3.45 + (-1.7)= -0.78+(- 0.28 )= - 0.8+ 0.35 = -19.66 + 55.88 = 0.35+(-2.88)= (-0.3)+0.7 =-0.1 + 0.34 = -5 + 6.66 =(-5.556)+3.2 = 0.3 + (-1.25)= -3.4+2020 = -0.1 + 3.14 = (-55)+2.23 = -0.12 + 2.022 = (-0.82)+1.735 = (-2.46)+3.56 = 3)分数加法( + 316 )+( - 53)= ( 56)+( - 35)=( - 45 )+ 34=(-412)+(+ 314)=4)小数分数加法混合题型二有理数的减法减法法则:减去一个数等于加上这个数的相反数.1)整数的减法2-7=- 7- 4=16-(-9)= -15-8=54 -(-29)= 0-(-9)=(-60)-(+30)=(-212)-(+414)=0-(-101)=(-87)-(-107)=(+1765)-(-30181)=(-643)-(+2483)=(+12103)-(+1553)=0-(+37513728)=(-20511311)-0=(-1332)-(-3132)=2)小数的减法(+2541)-(-0.25)=(-65.3)-0=(+8.312)-(-11.688)=(-25.75)-(+74.25)=4.2-5.7 = 1.3-(-2.7)=6.38-(-2.62)= -2.5-4.5=(-8.37)-(-2.43) (+18.5)-(-18.5)(-1.8)-(+4.5)= (-6.25)-3(+8.312)-(-11.688) (-65.3)-0(-25.75)-(+74.25); (+25.63)-(-0.25);3)分数的减法( - 14 )-( - 35) ( -313)-( - 215)(-25)-(-35) (-1)-(+112);(- 12)-(- 12). 0-(- 47)(-78)-(-710) (+1756)-(-30118)(6)(-364)-(+24 38) (+12310)-(+15 35)0-(+37528137); (-132 3)-(-3123).题型三 有理数加减法混合运算 1.整数加减法混合7+(-13)-|-2| -3+8-7-15()()()()19--11-4-3-++ 11﹣18﹣12+198+(-5)-(-2)-15 12-(-18)+(-7)-1515-[1-(-20-4)] (-8)-(-15)+(-9)-(-12)(-8)+(+11)+(-12)+(+39) (+5)+(-9)+(-91)+(+45) -32-(-17)- |- 23| -32 - (-17) - |-23| + (-15) -3-5+7 (+5)-(-3)+(-8)-(+3)+(-4)-(+5) 4+5-11;24-(-16)+(-25)-15-26+43-34+17-48 (-40)-(+28)-(-19)+(-24)(-83)+(+26)+(-41)+(+15) 12-(-18)+(-7)-152.小数加减法混合-7.2+3.9-8.4+12 91.26-293+8.74+191(-1.8)+(+0.7)+(-0.9)+1.3+(-0.2) 0.35 + (-0.6) + 0.25 - (-5.4) (-0.6) +1.7 + (+0.6) + (-1.7) + (-9) (+4.7)-(-8.9)-(+7.5)+(-6)-6-8-2+3.54-4.72+16.46-5.28 (-8.3)+25.8+(-13.8)+8.3-7.2-0.9-5.64-1.7 = (-6.55)+441-(-6.55)+(-8.1)-(-8.1) (-5.4)+(+0.3)+(-0.6)+(+0.7) (-0.67)-(-0.01)-(-1.99)+(+0.67) (-3.1)-(-4.5)+(+4.4)-(+1.3) 2.3+(-1.7)+6.2+(-2.2)-1.1(-6.82)+3.78+(-3.18)-3.78 (-0.67)-(-0.01)-(-1.99)+(+0.67);3.分数加减法混合-10+ 815 + (-13 15)23- 18- (- 13)+ (- 38)(+ 15)+(-213)-(-245)-(+323)11 4.小数分数加减混合8+(-1)-6-(-1.25) 114-(+6)-358+(-1.25)-⎝ ⎛⎭⎪⎫-358;219)6.3(4.15.1)1(---+-(-3.75)+ 513 -217 + (-413)+334 - 1671918+⎝ ⎛⎭⎪⎫-534+⎝ ⎛⎭⎪⎫-918-1.25.(-1.6)+(-3 15)+ |-1.8|41。
1.5.2有理数混合运算---加减乘除乘方【夯实基础】1.下列说法中正确的是( )A .23表示2×3的积B .任何一个有理数的偶次幂是正数C .﹣32与(﹣3)2互为相反数D .一个数的平方是49,这个数一定是232.在﹣2□3的“□”中填入一个运算符号使运算结果最小( )A .+B .﹣C .×D .÷3.下列各数(﹣2)2、﹣24、0、﹣|﹣2|、﹣(﹣2)、(﹣2)3中,负数的个数是( )A .1个B .2个C .3个D .4个4.用“※”定义新的运算:对于任意有理数a 和b ,规定a ※b =b 2﹣ab ,如1※3=32﹣1×3=6,则(﹣2)※(﹣3)的值为( )A .3B .﹣3C .6D .﹣65.下列各组数中,相等的是( )A .﹣(﹣2)2和﹣(﹣22)B .﹣(﹣2)2和﹣(+2)2C .﹣(﹣2)和﹣|﹣2|D .﹣(﹣2)和﹣(+2)6.若a 、b 互为相反数,且都不为零,则(a ﹣1+b )(1−a b )的值为( )A .0B .﹣1C .1D .﹣27.在某一段时间里,计算机按如图所示程序工作,如果输入的数是2,那么输出的数是( )A .﹣54B .54C .﹣558D .5588.在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题: 甲:9﹣32÷8=0÷8=0乙:24÷(4+3)=6+8=14丙:(36﹣12)÷32=36×23−12×23=16丁:(﹣3)2÷13×3=9×3×3=81你认为做对的同学是( )A .甲乙B .乙丙C .丙丁D .乙丁9.5的相反数是 ,平方等于49的数是 .10.计算:(−23)2×(﹣9)+|π﹣4|= .11.计算:(﹣1)1+(﹣1)2+(﹣1)3+…+(﹣1)2030= .12.数轴上A 点表示的数是(﹣3)2,将点A 向左平移2个单位得到点B ,则B 点表示的数是 .13.计算:(直接写出结果)(1)﹣8﹣(+2)= ; (2)10+(﹣10)= ;(3)−23−12= ; (4)(−35)3= ;(5)(﹣25)×(﹣4)÷(﹣10)= ; (6)﹣(﹣3)2= ;(7)﹣22×(﹣2)3= ; (8)﹣15÷(−37)= ; (9)(﹣2.4)÷(−43)×(−14)= ; (10)﹣6÷(−15)×10= .14.计算(1)(﹣1.5)+(−12)﹣(−34)﹣(+134); (2)(+34)﹣(−54)﹣|﹣3|;(3)﹣999899×99(用简便方法计算); (4)−136÷(12−59+712);(5)﹣54×214÷(﹣412)×29; (6)26﹣(79−1112+16)×(﹣6)2;(7)﹣5×(﹣347)+(﹣9)×(+347)+17×(﹣347);(8)﹣32×13×[(﹣5)2×(−35)﹣240÷(﹣4)×14](9)﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2].(10)﹣7.5×(﹣42)﹣(﹣3)3÷(﹣1)2017;15.已知a是平方等于本身的正数,b是立方等于本身的负数,c是相反数等于本身的数,d是绝对值等于本身的数.求(a÷b)2020﹣3ab+2(cd)2121的值.16.有个写运算符号的游戏:在“3□(2□3)□43□2“中的每个□内.填入+,﹣,x,÷中的某一个(可重复使用),然后计算结果(1)请计算琪琪填入符号后得到的算式:3×(2÷3)−43÷22;(2)嘉嘉填入符号后得到的算式是3÷(2×3)×43□22,一不小心擦掉了□里的运算符号,但她知道结果是−103,请推算□内的符号.【能力提升】17.观察下列各式,回答问题1−122=12×32,1−132=23×43,1−142=34×54⋯.按上述规律填空:(1)1−11002= × .(2)计算:(1−122)×(1−132)×…×(1−120042)×(1−120052)= .【思维挑战】18.在有理数范围内,我们定义三个数之间的新运算法则“⊕”; a ⊕b ⊕c =12(|a ﹣b ﹣c |+a +b +c ).如:1⊕(﹣2)⊕3=12[|1﹣(﹣2)﹣3|+1+(﹣2)+3]=1.解答下列问题:(1)计算:23⊕(﹣3)⊕(−12)的值;(2)在−45,−35,−25,0,17,27,37,47,57,67这11个数中,任意取三个数作为a ,b ,c 的值,进行“a ⊕b ⊕c ”运算,求在所有计算的结果中的最大值.。
七年级数学(上册)有理数概念及加减混合运算单元测试题七年级数学(上册)有理数概念及加减混合运算单元测试题一、判断题1、正数和负数统称有理数。
(√)2、有理数的绝对值一定比零大。
(√)3、-5的相反数是-5.(×)4、如果a>0,那么-a<0.(√)5、若两个数的绝对值相等,则这两个数可能相等,也可能互为相反数。
(√)6、若a>0,b<0,那么a-b>0.(√)7、如果a+b=0,那么a=-b。
(√)8、比-6大1的数是-5.(√)9、如果a-3=1,那么a只能等于4.(×)10、如果a=b=0,那么a=b=0.(√)二、填空题1、向东走10米记为+10米,往西走30米记为-30米;球队得3分记为+3分,则失了2分记为-2分。
2、两个负数,绝对值的差反而大;符号相反、绝对值的两个数互为相反数。
3、绝对值大于2且小于5的整数是-4,最大的负整数是-1;绝对值最小的数是0.4、一个数的绝对值是6,则这个数是6或-6;大于-5且不大于2的整数是-4,-3,-2,-1,0,1,2.5、判断满足下列条件的数是否存在,存在的话请写出来,不存在的话在横线上说明:(1)最小的有理数:不存在;(2)最大的负整数:不存在;(3)绝对值最小的数:0;(4)最小的正数:1.6、相反数是其本身的数是0,绝对值是其本身的数是0或1.7、比较大小(用“>”、“<”或“=”号连接)(1)-(-3)>-4(2)-7<-(-7)8、-5-(-3)=-2;-3-(-3)=0.9、-1+2-3+4=2;7-8+5-(-6)=20.10、(-7)+(+5)=-2;(+2)-(-3)+(-1)=0.11、(-2)+(-3)=-5;(-5.7)-(-2.7)=-3.12、-5.1-3.2=-8.3;-5比5小。
13、写成省略加号的形式:-13-9-(-7)+(-4)=-15.14、按要求把下列各数归类:-0.4,3/17,2,-4,-3,0.16,181)整数集合:{-4,2,-3,18}(2)分数集合:{3/17}(3)负数集合:{-0.4,-4,-3}(4)负分数集合:{无}15、a,b,c三个数在数轴上的位置如图1所示,比较下列各对数的大小。
七年级上册数学有理数加减混合运算练习题及答案篇一1.选择题:(1)把-2-(+3)-(-5)+(-4)+(+3)写成省略括号和的形式,正确的是()A.-2-3-5-4+3B.- 2+3+5-4+3C.-2-3+5-4+3D.-2-3-5+4+3(2)计算(-5)-(+3)+(-9)-(-7)+ 所得结果正确的是()A.-10B.-9C.8D.-23(3)-7,-12,+2的代数和比它们的绝对值的和小()A.-38B.-4C.4D.38(4)若 +(b+3) 2=0,则b-a- 的值是()A.-4B.-2C.-1D.1(5)下列说法正确的是()A.两个负数相减,等于绝对值相减B.两个负数的差一定大于零C.正数减去负数,实际是两个正数的代数和D.负数减去正数,等于负数加上正数的绝对值(6)算式-3-5不能读作()A.-3与5的差B.-3与-5的和C.-3与-5的差D.-3减去52.填空题:(4′×4=16′)(1)-4+7-9=- - + ;(2)6-11+4+2=- + - + ;(3)(-5)+(+8)-(+2)- (-3)= + - + ;(4)5-(-3 )-(+7)-2 =5+ - - + - .3.把下列各式写成省略括号的和的形式,并说出它们的两种读法:(8′×2=16′)(1)(-21)+(+16)-(-13)-(+7)+(-6);(2)-2 -(- )+(-0.5)+(+2)-(+ )-2.4.计算题(6′×4=24′)(1)-1+2-3+4-5+6-7;(2)-50-28+(-24)-(-22);(3)-19.8-(-20.3)-(+20.2)-10.8;(4)0.25- +(-1 )-(+3 ).5.当x=-3.7,y=-1.8,z=-1.5时,求下列代数式的值(5′×4=20′) (1)x+y-z; (2)-x-y+z; (3)-x+y+z; (4)x-y-z.【素质优化训练】(1) (-7)-(+5)+(+3)-(-9)=-7 5 3 9;(2)-(+2 )-(-1 )- (+3 )+(- )=( 2 )+( 1 )+( 3 )+( );(3)-14 5 (-3)=-12;(4)-12 (-7) (-5) (-6)=-16;(5)b-a-(+c)+(-d)= a b c d;2.当x= ,y=- ,z=- 时, 分别求出下列代数式的值;(1)x-(-y)+(-z);(2)x+(-y)-(+z);(3)-(-x)-y+z;(4)-x- (-y)+z.3.就下列给的三组数,验证等式:a-(b-c+d)=a-b+c-d是否成立.(1)a=-2,b=-1,c=3,d=5;(2)a= ,b=- ,c=-1 ,d=1 .4.计算题(1)-1 ;(2)1- ;(3)(-6-24.3)-(-12+9.1)+(0-2.1);(4)-1 + - - - +【生活实际运用】某水利勘察队,第一天向上游走5 千米,第二天又向上游走5 ,第三天向下游走4 千米,第四天又向下游走4.5千米,这时勘察队在出发点的哪里?相距多少千米?参考答案【同步达纲练习】1.(1)C;(2)B;(3)D;(4)A;(5)C;(6 )C2.(1)4,(-7),(-9) (2)(-6),(-11),(-4),2; (3)-5,8,2,3; (4)3,7,2;3.略4.(1)-4; (2)-80; (3)-30.5 (4)-55.(1)-4; (2)4; (3)0.4;(4)-0.4.【素质优化训练】1.(1)-,+,+; (2)-,+,-,-; (3)+,+; (4)-, +,+; (5)-,+,-,-.2.(1) (2) (3) (4)-3.(1) (2)都成立.4.(1)- (2) (3)-29.5(4)-1第(4)题注意同号的数、互为相反数先分别结合.【生活实际运用】1.上游1 千米原创展开全部。
人教版七年级数学上册第一章 1.3.2.2有理数的加减混合运算 同步测试题一、选择题(每小题3分,共24分) 1.式子-4+10+6-5的正确读法是( )A .负4、正10、正6、减去5的和B .负4加10加6减负5C .4加10加6减5D .负4、正10、正6、负5的和 2.下列运算正确的是( )A .(-4)-(+2)+(-6)-(-4)=-4B .(-4)-(+2)+(-6)-(-4)=-12C .(-4)-(+2)+(-6)-(-4)=-8D .(-4)-(+2)+(-6)-(-4)=-10 3.将式子3-10-7写成和的形式正确的是( )A .3+10+7B .-3+(-10)+(-7)C .3-(+10)-(+7)D .3+(-10)+(-7) 4.请指出下面计算错在哪一步( ) 1+45-(+23)-(-15)-(+113) =145-23+15-113 ① =(145+15)-(23-113) ②=2-(-23) ③=2+23=223④A .①B .②C .③D .④ 5.下列各式的运算结果中,不正确的是( )A.38-98+(-38)=-98B .-2.3-(-2.6)+(-0.9)=0.6C .39.2-(+22.9)-(-10.1)=26.4D .15-(-4)+(-9)=106.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是( )A .19.7千克B .19.9千克C .20.1千克D .20.3千克 7.-7,-12,+2的和比它们的绝对值的和小( ) A .-38 B .-4 C .4 D .388.数学活动中,王老师给同学们出了一道题:规定一种新运算“★”,对于任意有理数a 和b ,有a ★b =a -b +1,请你根据新运算,计算(2★3)★2的值是( ) A .0 B .-1 C .-2 D .1 二、填空题(每小题4分,共16分)9.式子“-3+5-7+4”读作_____________________________. 10.把(-478)-(-512)-(+318)写成省略括号和加号的形式是___________.11.某地某天早晨的气温是-2 ℃,到中午升高了6 ℃,晚上又降低了7 ℃.那么晚上的温度是___________..12.某天股票甲开盘价为18元,上午11:30时跌了1.2元,下午收盘时又涨了0.8元,则股票甲这天收盘时价格为___________元. 三、解答题(共63分) 13.按运算顺序直接计算: (1)14-(-12)+(-25)-17;(2)(-23)+(-16)-(-14)-(+12).14.运用加法的运算律计算下列各题: (1)-41+28-59+72;(2)-212+56-0.5-(-116).15.已知某银行办理了7笔业务:取款8.5万元,存款6万元,取款7万元,存款10万元,存款16万元,取款9.5万元,取款3万元,则这个银行的现金是增加了还是减少了?增加或减少了多少元?16.计算:(1)213+635+(-213)+(-525);(2)(-913)-|-456|+|0-516|-23;(3)635+24-18+425-16+18-6.8-3.2.(4)(-112)+(-571320)-(-112)+42720.17.检查一商店某水果罐头10瓶的质量,超出记为“+”,不足记为“-”,情况如下:-3克、+2克、-1克、-5克、-2克、+3克、-2克、+3克、+1克、-1克. (1)总的情况是超出还是不足? (2)最多与最少相差多少?18.一场游戏规则如下:(1)每人每次抽4张卡片,如果抽到形如的卡片,那么加上卡片上的数字,如果抽到形如的卡片,那么减去卡片上的数字;(2)比较两人所抽到的4张卡片的计算结果,结果大的为胜者. 请你通过计算(要求有计算过程)回答本次游戏获胜的是谁? 小亮抽到的卡片如图所示:小丽抽到的卡片如图所示:参考答案一、选择题1.式子-4+10+6-5的正确读法是(D)A.负4、正10、正6、减去5的和B.负4加10加6减负5C.4加10加6减5 D.负4、正10、正6、负5的和2.下列运算正确的是(C)A.(-4)-(+2)+(-6)-(-4)=-4 B.(-4)-(+2)+(-6)-(-4)=-12 C.(-4)-(+2)+(-6)-(-4)=-8 D.(-4)-(+2)+(-6)-(-4)=-10 3.将式子3-10-7写成和的形式正确的是(D)A .3+10+7B .-3+(-10)+(-7)C .3-(+10)-(+7)D .3+(-10)+(-7) 4.请指出下面计算错在哪一步(B) 1+45-(+23)-(-15)-(+113) =145-23+15-113 ① =(145+15)-(23-113) ②=2-(-23) ③=2+23=223④A .①B .②C .③D .④ 5.下列各式的运算结果中,不正确的是(B)A.38-98+(-38)=-98 B .-2.3-(-2.6)+(-0.9)=0.6 C .39.2-(+22.9)-(-10.1)=26.4 D .15-(-4)+(-9)=106.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是(C )A .19.7千克B .19.9千克C .20.1千克D .20.3千克 7.-7,-12,+2的和比它们的绝对值的和小(D ) A .-38 B .-4 C .4 D .388.数学活动中,王老师给同学们出了一道题:规定一种新运算“★”,对于任意有理数a 和b ,有a ★b =a -b +1,请你根据新运算,计算(2★3)★2的值是(B )A .0B .-1C .-2D .1 二、填空题9.式子“-3+5-7+4”读作负3加5减7加4或负3、正5、负7、正4的和. 10.把(-478)-(-512)-(+318)写成省略括号和加号的形式是-478+512-318.11.某地某天早晨的气温是-2 ℃,到中午升高了6 ℃,晚上又降低了7 ℃.那么晚上的温度是-3℃.12.某天股票甲开盘价为18元,上午11:30时跌了1.2元,下午收盘时又涨了0.8元,则股票甲这天收盘时价格为17.6元. 三、解答题13.按运算顺序直接计算: (1)14-(-12)+(-25)-17; 解:原式=14+12-25-17 =26-25-17 =1-17 =-16.(2)(-23)+(-16)-(-14)-(+12).解:原式=-23-16+14-12=-56+14-12=-712-12=-1312.14.运用加法的运算律计算下列各题: (1)-41+28-59+72;解:原式=(-41-59)+(28+72) =-100+100 =0.(2)-212+56-0.5-(-116).解:原式=(-212-0.5)+(56+116)=-3+2 =-1.15.已知某银行办理了7笔业务:取款8.5万元,存款6万元,取款7万元,存款10万元,存款16万元,取款9.5万元,取款3万元,则这个银行的现金是增加了还是减少了?增加或减少了多少元?解:规定取出为负,存进为正,由题意可得 -8.5+6-7+10+16-9.5-3=4(万元). 答:这个银行的现金增加了,增加了4万元.16.计算:(1)213+635+(-213)+(-525);解:原式=[213+(-213)]+[635+(-525)]=0+115=115.(2)(-913)-|-456|+|0-516|-23;解:原式=-913-456+516-23=-913-23-456+516=(-913-23)+(-456+516)=-10+13=-923.(3)635+24-18+425-16+18-6.8-3.2.解:原式=(635+425)+(-18+18)-(6.8+3.2)+24-16=11+0-10+24-16 =9.(4)(-112)+(-571320)-(-112)+42720.解:原式=-112-571320+112+42720=(-112+112)+[(-571320)+42720]=0+(-15310)=-15310.17.检查一商店某水果罐头10瓶的质量,超出记为“+”,不足记为“-”,情况如下:-3克、+2克、-1克、-5克、-2克、+3克、-2克、+3克、+1克、-1克. (1)总的情况是超出还是不足? (2)最多与最少相差多少?解:(1)-3+2-1-5-2+3-2+3+1-1=-5(克). 答:总的情况是不足5克. (2)3-(-5)=8(克). 答:最多与最少相差8克.18.一场游戏规则如下:(1)每人每次抽4张卡片,如果抽到形如的卡片,那么加上卡片上的数字,如果抽到形如的卡片,那么减去卡片上的数字;(2)比较两人所抽到的4张卡片的计算结果,结果大的为胜者.精品 Word 可修改 欢迎下载 请你通过计算(要求有计算过程)回答本次游戏获胜的是谁?小亮抽到的卡片如图所示:小丽抽到的卡片如图所示:解:小亮所抽卡片上的数的和为:12-(-32)+(-5)-4=-7; 小丽所抽卡片上的数的和为:-2-(-13)+(-4)-(-14)=-5512. 因为-7<-5512, 所以本次游戏获胜的是小丽.1、在最软入的时候,你会想起谁。
人教版七年级数学上册第一章有理数单元测试题一、选择题1.我国古代《九章算术》中注有“今两算得失相反,要令正负以名之”.是今有两数若其意义相反,则分别叫做正数与负数,如果向北走步记作步,那么向南走步记作( )A .步B .步C .D .步2.在数–8,+4.3,–|–2|,0,50,–中,整数有( ) A .3个B .4个C .5个D .6个3.在数轴上与表示数-3的点的距离等于2的点表示的数是( )A .1B .-5C .-1或-5D .-1或54.互为相反数是指( )A .意义相反的两个量B .一个数前面添上“-”所得的数C .数轴上原点两旁的两个点所表示的两个数D .只有符号不同的两个数(零的相反数是零)5.数-6,5,0,中最大的是( )A .-6B .5C .0D .6.某地一天中午12时的气温是,14时的气温升高了,到晚上22时气温又降低了,则22时的气温为( )A .B .C .D .7.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结论正确的是( )A .B .C .D .8.下列四个式子中,计算结果最大的是( )55+1010+10-12+步2-1272724℃2℃7℃6℃3-℃1-℃13℃0a b +>0a b ->a b a->->0a b ⋅>A .-23+(-1)2B .-23-(-1)2C .-23×(-1)2D .-23÷(-1)29. 1千克汽油完全燃烧放出的热量为46000000焦.数据46000000用科学记数法表示为( )A .B .C .D .10.已知a 是一个三位小数,用四舍五入法得到a 的近似数是3.80,则a 的取值范围是( )A .B .C .D .二、填空题11.比较大小: (填“>”,“<”或“=”).12.若与3互为相反数,则等于 .13.计算: .14.已知整数a ,b ,c ,且,满足,则的最小值为 .三、计算题15.计算:(1)(2)(3)(4)四、解答题16.出租车司机小王某天下午营运全是在东西走向的汶河大道上进行的,如果规定向东为正,向西为负,这天上午他的行车里程(单位:千米)如下表所示:第一次第二次第三次第四次第五次第六次第七次第八次第九次第十次第十一次+15﹣2+5﹣1+10﹣3﹣2+12+4﹣5+6(1)将最后一名乘客送到目的地时,小王距下午出车时的出发点多远?70.4610⨯64.610⨯74.610⨯546.010⨯3.750 3.854a << 3.750 3.854a ≤<3.795 3.805a << 3.795 3.805a ≤<23-35-x 4x +()13633-÷⨯=0c <23101002023a b c +-=a b c ++()151318+-+()10.254-⨯-1243-÷⨯()232323-⨯+⨯-(2)若汽车耗油量为0.1升/千米,这天上午小王共耗油多少升?17.计算:已知,.若,求的值.18.在数轴上把下列各数表示出来,并用“<”连接各数.0,﹣|﹣1|,﹣3, ,﹣(﹣4)19.已知|m|=4,|n|=3,且mn <0,求m+n 的值.五、综合题20.如图,点A ,B ,C 为数轴上三点,点A 表示-2,点B 表示4,点C 表示8.(1)A 、C 两点间的距离是 .(2)当点P 以每秒1个单位的速度从点C 出发向CA 方向运动时,是否存在某一时刻,使得PA=3PB ?若存在,请求出运动时间;若不存在,请说明理由.21.(1)已知|m|=5,|n|=2,且m<n ,求m−n 值.(2)已知|x+1|=4,(y+2)2=4,若x+y≥−5,求x−y 的值.22.根据实际规律我们知道:海拔高度每升高100米,气温将下降0.6℃.甲、乙两名登山运动员在攀登同一座高峰,途中甲发信息说他所在地的气温为5℃,海拔为1200米,同一时刻乙发回信息说他所在地气温为-4℃.(设地面海拔为0米)(1)求此刻地面的气温为多少℃;(2)求乙所在地的海拔高度.5x =3y =0xy <||x y -112答案解析部分1.【答案】B【解析】【解答】解:向北走步记作步,那么向南走步记作步,故答案为:B.【分析】正数与负数可以表示一对具有相反意义的量,若规定向北走为正,则向南走为负,据此解答.2.【答案】B【解析】【解答】解:–8是整数,+4.3是小数,–|–2|是整数,0是整数,50是整数,–是分数. 可知有四个整数.故答案为:B.【分析】本题考查整数的定义,根据整数的定义即可求出答案.3.【答案】C【解析】【解答】解:当这个点在表示数−3的点的左边,则这个点表示的数为−3−2=−5;当这个点在表示数−3的点的右边,则这个点表示的数为−3+2=−1.故答案为:C.【分析】分类讨论:①当这个点在表示数−3的点的左边;②当这个点在表示数−3的点的右边,然后根据数轴上的点表示数的方法即可得到答案.4.【答案】D【解析】【分析】本题主要考查相反数的意义,根据相反数的定义:只有符号相反的两个数互为相反数,0的相反数是0,即得结果。
人教版数学七年级上册第一章有理数加减混合计算题100道【含答案】.doc有理数运算练习(一) 【加减混合运算】一、有理数加法.1、【基础题】计算:(1) 2+(-3); (2)(-5)+(-8); (3)6+(-4); (4)5+(-5);(5)0+(-2); (6)(-10)+(-1); (7)180+(-10); (8)(-23)+9;(9)(-25)+(-7); (10)(-13)+5; (11)(-23)+0; (12)45+(-45).2、【基础题】计算:(1)(-8)+(-9); (2)(-17)+21; (3)(-12)+25; (4)45+(-23);(5)(-45)+23; (6)(-29)+(-31); (7)(-39)+(-45); (8)(-28)+37.3、【基础题】计算,能简便的要用简便算法:(1)(-25)+34+156+(-65); (2)(-64)+17+(-23)+68;(3)(-42)+57+(-84)+(-23); (4)63+72+(-96)+(-37);(5)(-301)+125+301+(-75); (6)(-52)+24+(-74)+12;(7)41+(-23)+(-31)+0; (8)(-26)+52+16+(-72).4、【综合Ⅰ】计算:(1))43(31−+; (2)⎪⎭⎫ ⎝⎛−+⎪⎭⎫ ⎝⎛−3121; (3)()⎪⎭⎫ ⎝⎛++−5112.1; (4))432()413(−+−; (5))752()723(−+; (6)(—152)+8.0; (7)(—561)+0; (8)314+(—561).5、【综合Ⅰ】计算: (1))127()65()411()310(−++−+; (2)75.9)219()29()5.0(+−++−;(3))539()518()23()52()21(++++−+−; (4))37(75.0)27()43()34()5.3(−++++−+−+−二、有理数减法.6、【基础题】计算:(1)9-(-5); (2)(-3)-1; (3)0-8; (4)(-5)-0; (5)3-5; (6)3-(-5);(7)(-3)-5 (8)(-3)-(-5); (9)(-6)-(-6); (10)(-6)-6.6.1、【综合Ⅰ】计算:(1)(-52)-(-53); (2)(-1)-211; (3)(-32)-52; (4)521-(-7.2); (5)0-(-74); (6)(-21)-(-21); (7)525413- ; (8)-64-丨-64丨7、【基础题】填空:(1)(-7)+( )=21; (2)31+( )=-85;(3)( )-(-21)=37; (4)( )-56=-408、【基础题】计算:(1)(-72)-(-37)-(-22)-17; (2)(-16)-(-12)-24-(-18);(3)23-(-76)-36-(-105); (4)(-32)-(-27)-(-72)-87.(5)(-32)-21-(-65)-(-31); (6)(-2112)-[ -6.5-(-6.3)-516 ] .三、有理数加减混合运算9、【综合Ⅰ】计算 (1)-7+13-6+20; (2)-4.2+5.7-8.4+10; (3)(-53)+51-54; (4)(-5)-(-21)+7-37; (5)31+(-65)-(-21)-32; (6)-41+65+32-21;10、【综合Ⅰ】计算,能简便的要用简便算法:(1)4.7-3.4+(-8.3); (2)(-2.5)-21+(-51); (3)21-(-0.25)-61; (4)(-31)-15+(-32); (5)32+(-51)-1+31; (6)(-12)-(-56)+(-8)-10711、【综合Ⅰ】计算:(1)33.1-(-22.9)+(-10.5); (2)(-8)-(-15)+(-9)-(-12);(3)0.5+(-41)-(-2.75)+21; (4)(-32)+(-61)-(-41)-21; (5)21+(-32)-(-54)+(-21); (6)310+(-411)-(-65)+(-127)12、【综合Ⅰ】计算:(1)7+(-2)-3.4; (2)(-21.6)+3-7.4+(-52); (3)31+(-45)+0.25; (4)7-(-21)+1.5; (5)49-(-20.6)-53; (6)(-56)-7-(-3.2)+(-1); (7)11512+丨-11611丨-(-53)+丨212丨; (8)(- 9.9)+ 1098 + 9.9 +(- 1098)13、【综合Ⅰ】计算:(1)()()()()−+−+++−+−++12345678; (2)-0.5+1.75+3.25+(-7.5)(3)−⎛⎝ ⎫⎭⎪−−⎛⎝ ⎫⎭⎪++−⎛⎝ ⎫⎭⎪13123423; (4)5146162341456+−⎛⎝ ⎫⎭⎪++−⎛⎝ ⎫⎭⎪; (5)-0.5-(-413)+2.75-(+217); (6)3745124139257526+−+有理数运算练习(一) 答案1、【答案】 (1)-1; (2)-13; (3)2; (4)0; (5)-2; (6)-11; (7)170;(8)-14; (9)-32; (10)-8; (11)-23; (12)0.2、【答案】 (1)-17; (2)4; (3)13; (4)22; (5)-22;(6)-60; (7)-84; (8)9.3、【答案】(1)100; (2)-2; (3)-92; (4)2; (5)50; (6)-90; (7)-13; (8)-30.4、【答案】(1)125-; (2)65−; (3)0; (4)-6; (5)74; (6)32; (7)615−; (8)65−. 5、【答案】 (1)65 (2)4.25 (3)12 (4)311−6、【答案】 (1)14; (2)-4; (3)-8; (4)-5; (5)-2; (6)8; (7)-8;(8)2; (9)0; (10)-126.1、【答案】 (1)51; (2)-25; (3)-1516; (4)4.1; (5)74; (6)0; (7)-2043(8)-1287、【答案】 (1)28; (2)-116; (3)16; (4)168、【答案】 (1)-30; (2)-10; (3)168; (4)-20; (5)0; (6)-6.1或-10169、【答案】 (1)20; (2)3.1; (3)-56; (4)61; (5)-32; (6)4310、【答案】 (1)-7; (2)-3.2; (3)127; (4)-16; (5)-51; (6)-23911、【答案】 (1)45.5; (2)10; (3)27; (4)-1213; (5)152; (6)65;12、【答案】 (1)1.6; (2)-26.4; (3)30; (4)9; (5)69; (6)-6;(7)27.1; (8)013、【答案】 (1)8; (2)-3; (3)41; (4)-13; (5)-2; (6)902313。
人教版七年级数学上册《有理数的加减混合运算》专题训练-附带答案一.选择题(共10小题 满分20分 每小题2分)1.(2分)(2022·台湾)算式91123722182218⎛⎫+-- ⎪⎝⎭之值为何?( ) A .411 B .910 C .19 D .54【答案】A【完整解答】解:91123722182218⎛⎫+-- ⎪⎝⎭ 91123722182218=+-+ 92311722221818⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭ 7111=-+ 411=. 故答案为:A.【思路引导】首先根据去括号法则“括号前面是负号 去掉括号和负号 括号内各项都要变号”先去括号 再利用加法的交换律和结合律 将分母相同的加数结合在一起 进而根据有理数的加法法则算出答案.2.(2分)(2021六下·哈尔滨期中)一天早晨的气温为-3℃ 中午上升了7°C 半夜又下降了8℃ 则半夜的气温是( )A .-5°CB .-4°C C .4°CD .-16°C 【答案】B【完整解答】根据题意可得:-3+7-8=-4故答案为:B【思路引导】根据题意可得算式:-3+7-8 计算即可。
3.(2分)(2022·雄县模拟)下面算式与11152234-+的值相等的是( ) A .111324234⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭ B .11133234⎛⎫--+ ⎪⎝⎭C.111227234⎛⎫+-+⎪⎝⎭D.11143234⎛⎫--+⎪⎝⎭【答案】C【完整解答】解:1111115 52527 23423412 -+=+-++=A1111111117 3243243241 23423423412⎛⎫⎛⎫--+-=++-=+++--=⎪ ⎪⎝⎭⎝⎭B 1111111111 3333337 23423423412⎛⎫--+=++=++++=⎪⎝⎭C1111115 2272277 23423412⎛⎫+-+=+--++=⎪⎝⎭D1111111 43438 23423412⎛⎫--+=++++=⎪⎝⎭故答案为:C【思路引导】利用有理数的加减法的运算方法求解即可。
七年级数学上册《第一章 有理数加减混合运算》练习题附答案-人教版一、选择题1.计算(﹣3)+9的结果等于( )A.6B.12C.﹣12D.﹣62.如图为我县十二月份某一天的天气预报,该天最高气温比最低气温高( )A.﹣3℃B.7℃C.3℃D.﹣7℃3.在算式﹣1+7﹣( )=﹣3中,括号里应填( )A.+2B.﹣2C.+9D.﹣94.﹣6的相反数与比5的相反数小1的数的和为( )A.1B.0C.2D.115.如果两个数的和为负数,那么这两个数一定是( )A.正数B.负数C.一正一负D.至少一个为负数6.计算﹣(+1)+|﹣1|,结果为( )A.﹣2B.2C.1D.07.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的数,则a ﹣b +c 的值为() A.﹣1 B.0 C.1 D.2 8.把﹣2+(+3)﹣(﹣5)+(﹣4)﹣(+3)写成省略括号和的形式,正确的是( )A.﹣2+3﹣5﹣4﹣3B.﹣2+3+5﹣4+3C.﹣2+3+5+4﹣3D.﹣2+3+5﹣4﹣39.若四个有理数之和的14是3,其中三个数是﹣10,+8,﹣6,则第四个数是( )A.+8B.﹣8C.+20D.+1110.若|m|=3,|n|=5且m ﹣n >0,则m +n 的值是( )A.﹣2B.﹣8或 ﹣2C.﹣8或 8D.8或﹣211.已知a,b,c 在数轴上的位置如图,化简∣a+c ∣﹣∣a ﹣2b ∣﹣∣c ﹣2b ∣的结果是()A.0B.4bC.﹣2a﹣2cD.2a﹣4b;12.计算+++++……+的值为( )A. B. C. D.二、填空题13.把(+5)﹣(﹣7)+(﹣23)﹣(+6)写成省略括号的和的形式为________.14.某冷库的室温为﹣4 ℃,一批食品需要在﹣28 ℃冷藏,如果每小时降温3 ℃,经过小时后能降到所要求的温度.15.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,则a+b+c= .16.若∣x+y∣+∣y﹣3∣=0,则x﹣y的值为 .17.已知a、b、c是三个非负实数,且a+b=7, c ﹣ a =﹣5, s=a+b+c,则s的最大值与它最小值为的差为________.18.已知有理数a, b, c在数轴上的位置如图所示,则化简代数式∣b﹣c∣﹣∣c﹣a∣+∣b ﹣a∣= .三、解答题19.计算:13+(﹣15)﹣(﹣23).20.计算:﹣17+(﹣33)﹣10﹣(﹣16).21.计算:(﹣34)﹣(﹣12)+(+34)+(+8.5)﹣13;22.计算:434﹣(+3.85)﹣(﹣314)+(﹣3.15).23.一辆货车从货场A出发,向东行驶了2km到达批发部B,继续向东行驶了1.5km到达商场C,又向西行驶了5.5km到达超市D,最后回到货场.(1)用一个单位长度表示1km,以东为正方向,以货场为原点,画出数轴并在数轴上标明货场A,批发部B,商场C,超市D的位置;(2)超市D距货场A多远?(3)货车一共行驶了多少千米?24.某辆出租车一天下午以公园为出发地在东西方向行驶,向东走为正,向西走为负,行车里程(单位:千米),依先后次序记录如下:+9,﹣3,﹣5,+6,﹣7,+10,﹣6,﹣4,+4,﹣3,+7.(1)将最后一名乘客送到目的地时,出租车离公园多远?在公园的什么方向?(2)若出租车每千米耗油量为0.1升,则这辆出租车这天下午耗油多少升?25.检查一商店某水果罐头10瓶的质量,超出记为“+”号,不足记为“﹣”号,情况如下:﹣3克,+2克,﹣1克,﹣5克,﹣2克,+3克,﹣2克,+3克,+1克,﹣1克.(1)总的情况是超出还是不足?(2)这些罐头平均超出或不足为多少?(3)最多与最少相差是多少?26.某摩托车厂家本周计划每天生产250辆摩托车,由于工厂实行轮休,每天上班人数不一定相等,实际每天生产与计划相比情况如下表:(1)本周六生产了多少辆摩托车?(2)本周总产量与计划相比是增加了还是减少了?具体数量是多少?产量最多的一天比产量最少的一天多生产了多少27.某冷库一天的冷冻食品进出记录如下表(运进用正数表示,运出用负数表示):(1)这天冷库的冷冻食品比原来增加了还是减少了?增加或减少了多少吨?(2)根据实际情况,现有两种方案:方案一:运进每吨冷冻食品费用是500元,运出每吨冷冻食品费用是800元;方案二:不管是运进还是运出,每吨冷冻食品费用都是600元.从节约运费的角度考虑,选用哪一种方案比较合适?参考答案1.【答案】A2.【答案】B3.【答案】C4.【答案】B5.【答案】D6.【答案】D.7.【答案】C8.【答案】D9.【答案】C10.【答案】D11.【答案】B12.【答案】B13.【答案】5+7﹣23﹣614.【答案】815.【答案】016.【答案】﹣517.【答案】2.18.【答案】0.19.【答案】解:原式=13﹣15+23=21.20.【答案】解:原式=﹣17﹣33﹣10+16=﹣60+16=﹣44.21.【答案】解:原式=(﹣34+34)+(12+8.5)﹣13=0+9﹣13=823.22.【答案】解:原式=4.75﹣3.85+3.25﹣3.15=123.【答案】解:(1)如图.(2)由数轴可知超市D距货场A有2km.(3)货车一共行驶了2+1.5+5.5+2=11(km).24.【答案】解:(1)出租车离公园8千米,在公园的东方;(2)这辆出租车这天下午耗油6.4升.25.解:(1)﹣3+2﹣1﹣5﹣2+3﹣2+3+1﹣1=﹣5(克),即总的情况是不足5克.(2)5÷10=0.5(克),即平均不足0.5克.(3)3﹣(﹣5)=8(克),即最多与最少相差8克. 26.【答案】解:(1)250﹣9=241(辆).故本周六生产了241辆摩托车.(2)﹣5+7﹣3+4+10﹣9﹣25=﹣21<0所以本周总产量与计划相比减少了21辆.产量最多的一天为周五,产量最少的一天多生产了35辆.与计划相比减少了21辆.27.【答案】解:(1)﹣3×2+4×1+(﹣1)×3+2×3+(﹣5)×2=﹣9.故这天冷库的冷冻食品比原来减少了,减少了9吨.(2)方案一:费用为4×500+2×3×500+3×2×800+3×1×800+5×2×800=20200(元)方案二:费用为(6+4+3+6+10)×600=17400(元)由于17400<20200,所以从节约运费的角度考虑,选用方案二比较合适.。
七年级数学(上册)有理数概念及加减混合运算单元测试题
一、判断题(每小题1分,共10分)
1、正数和负数统称有理数。
( )
2、有理数的绝对值一定比零大。
( )
3、5-的相反数是5-。
( ) 4、如果0>a ,那么0>a 。
( )
5、若两个数的绝对值相等,则这两个数可能相等,也可能互为相反数。
( )
6、若0,0<>b a ,那么0>-b a 。
( )
7、如果0=+b a ,那么b a =。
( )
8、比6-大1的数是7-。
( ) 9、如果13=-a ,那么a 只能等于4。
( )
10、如果0==b a ,那么0,0==b a 。
( )
二、填空题(每题2分,共30分)
1、向东走10米记为10+米,往西走30米记为 ;球队得3分记为3+分,则失了2分记为 分。
2、两个负数,绝对值 的,反而大;符号相反、绝对值 的两个数互为相反数。
3、绝对值大于2且小于5的整数是 ;最大的负整数是 ;绝对值最小的数是 。
4、一个数的绝对值是6,则这个数是 ;大于5-且不大于2的整数是 。
5、判断满足下列条件的数是否存在,存在的话请写出来,不存在的话在横线上说明: (1)最小的有理数: ;(2)最大的负整数: ; (3)绝对值最小的数: ;(4)最小的正数: 。
6、相反数是其本身的数是: ,绝对值是其本身的数是: 。
7、比较大小(用“>”、“<”或“=”号连接) (1)) 43
(-- ) 5
3(-- (2))7(-- 7--
8、)3()5(---= ; )2
13()213(---= 。
9、43210+-+-= ; )6(587--+-= 。
10、)722()722(++-= ; )7
4
1()1273()732(-+--+= 。
11、( )+2
1
5)213(-=-; --)7.5(( )=7.2-。
12、=-+-2.31.5 ; 5-比5小 。
13、写成省略加号的形式:()()()()=-+--+---47913 。
14、按要求把下列各数归类:4.0-,0,2,31,4-,17
5
3-,. .16.0,18
(1)整数集合:{ ···} (2)分数集合{ ···}
(3)负数集合:{ ···} (4)负分数集合:{ ···} 15、c b a ,,三个数在数轴上的位置如图1所示,比较下列各对数的大小。
图1
(1)a - 0 (2)a - a (3)a - b - (4)a - c
三、选择题(每题2分,共20分)
1、下列结论中,不正确的是( )
A 、零是非负数
B 、零是最小的有理数
C 、零是整数
D 、零是最小的自然数
a b 0 c
2、一个数的绝对值是
53
,那么这个数的相反数的绝对值是( ) A 、53- B 、53 C 、35 D 、3
5
-
3、下列说法中正确的是( )
A 、a -一定是负数
B 、a -一定不是负数
C 、a -一定是正数
D 、a -一定不是正数
4、)43
32(--的相反数是( )
A 、4332--
B 、4332-
C 、4332+-
D 、4
332+
5、A 地海拔高度为53-米,B 地比A 地高30米,B 地的海拔高度是( ) A 、83-米 B 、23-米 C 、30米 D 、23米
6、下列说法正确的是( )
A 、两个有理数相加,就是把它们的绝对值相加。
B 、绝对值相同的两个有理数相加,得这个数的两倍。
C 、两个有理数相减,就是把绝对值相减。
D 、数轴上右边的点所表示的数减去左边的点所表示的数的差是正数。
7、绝对值小于101的所有整数的和是( )
A 、100
B 、5050
C 、5050-
D 、0 8、下列等式正确的是( )
A 、356)3()5()6(+--=++---
B 、)157()1()5()7(-+-=-+-+-
C 、465)4()6()5(+-=---++
D 、)3()4()8(348++---=+-- 9、一个数是10-,另一个数比10-的相反数大2,则这两个数的和是( ) A 、2 B 、2- C 、18 D 、18- 10、12,2,7-+-的和比它们的绝对值的和小( ) A 、4- B 、4 C 、38- D 、38
四、解答题。
(每小题5分,共分)
1、 计算:93106-+-+-
2、计算:7.5)5.2()2.3()3.5(-----+-
3、计算:3
125.45131)515()21(+-+--+-
4、计算:()()()()14141828)30(+-++--+--
5、计算:()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝
⎛
---+-6548.4612515
6、计算:+-++-+)4(3)2(1…)2002(2001-++
7、在数轴上表示下列各数,并按照从小到大的顺序用“<”号连接起来。
7-,3+,10-,215,0,2-,2
1
3-,5.0-
8、某厂检验工统计20个工人一天生产的零件的合格数是:153,150,148,146,154,152,159,143,151,147,156,149,144,157,143,151,144,149,153,150。
请用适当的方法计算合格零件的个数?
附加题:(答对此题可获得20分的加分)
如果2=a ,3=b ,求b a +的值(要分类讨论)。