General concept of earthquake design
- 格式:pdf
- 大小:365.91 KB
- 文档页数:10
外文翻译--抗震设计的发展附录一:抗震设计的发展摘要: 1 抗震设计思路发展历程;2 现代抗震设计思路;3 保证结构延性能力的抗震措施; 4 常用抗震分析方法关键词:结构设计抗震1.抗震设计思路发展历程随着建筑结构抗震相关理论研究的不断发展,结构抗震设计思路也经历了一系列的变化。
最初,在未考虑结构弹性动力特征,也无详细的地震作用记录统计资料的条件下,经验性的取一个地震水平作用(0.1 倍自重)用于结构设计。
随着地面运动记录的不断丰富,人们通过单自由度体系的弹性反应谱,第一次从宏观上看到地震对弹性结构引起的反应随结构周期和阻尼比变化的总体趋势,揭示了结构在地震地面运动的随机激励下的强迫振动动力特征。
但同时也发现一个无法解释的矛盾,当时规范所取的设计用地面运动加速度明显小于按弹性反应谱得出的作用于结构上的地面运动加速度,这些结构大多数却并未出现严重损坏和倒塌。
后来随着对结构非线性性能的不断研究,人们发现设计结构时取的地震作用只是赋予结构一个基本屈服承载力,当发生更大地震时,结构将在一系列控制部位进入屈服后非弹性变形状态,并靠其屈服后的非弹性变形能力来经受地震作用。
由此,也逐渐形成了使结构在一定水平的地震作用下进入屈服,并达到足够的屈服后非弹性变形状态来耗散能量的现代抗震设计理论。
由以上可以看出,结构抗震设计思路经历了从弹性到非线性,从基于经验到基于非线性理论,从单纯保证结构承载能力到允许结构屈服,并赋予结构一定的非弹性变形性能力的一系列转变。
2.现代抗震设计思路在当前抗震理论下形成的现代抗震设计思路,其主要内容是:(1)合理选择确定结构屈服水准的地震作用。
一般先以具有统计意义的地面峰值加速度作为该地区地震强弱标志值(即中震的),再以不同的R(地震力降低系数)得到不同的设计用地面运动加速度(即小震的)来进行结构的强度设计,从而确定了结构的屈服水准。
(2)制定有效的抗震措施使结构确实具备设计时采用的R所对应的延性能力。
英文翻译英文原文Comparative Application of Capacity Models for Seismic Vulnerability Evaluation of Existing RC Structures Abstract. Seismic vulnerability assessment of existing buildings is one of the most common tasks in which Structural Engineers are currently engaged. Since, its is often a preliminary step to approach the issue of how to retrofit non-seismic designed and detailed structures, it plays a key role in the successful choice of the most suitable strengthening technique. In this framework, the basic information for both seismic assessment and retrofitting is related to the formulation of capacity models for structural members. Plenty of proposals, often contradictory under the quantitative standpoint, are currently available within the technical and scientific literature for defining the structural capacity in terms of force and displacements, possibly with reference to different parameters representing the seismic response. The present paper shortly reviews some of the models for capacity of RC members and compare them with reference to two case studies assumed as representative of a wide class of existing buildings.Keywords: Assessment, Vulnerability, Capacity, Existing Structures, Reinforced Concrete.INTRODUCTIONSeismic assessment of existing RC structures is a cutting-edge issue for structural engineers. The increased levels of safety required to new structures by the last generation of codes of standards indirectly emphasizes the lack in seismic performance usually affecting the existing ones. Seismic vulnerability evaluation can be carried out according to various code provisions about capacity of members of existing structures under earthquake actions. Different damage measures can be adopted for quantifying seismic capacity even depending on the type of structure considered. Three different parameters, besides other less common quantities, have been proposed for measuring seismic performance of reinforced concrete structures.Indeed, plastic rotations are considered in the U.S. code [6] for quantifying seismic capacity of beams and columns, while the total chord rotation is assumed as capacity measures for RC members in both the European [2] [3] and Italian [4] [5] seismic codes. Other proposals can be found within the scientific literature and the technical practice. For instance, the interstorey-drift angle is a parameter commonly used for quantifying seismic capacity and demand on structures [1]; furthermore, on the basis of particular assumptions about the mechanism most likely to occur, interstorey drift values can be somehow converted into global displacements [7]. According to the general Performance-Level framework of the current codes, variouslevels of damage can be tolerated for every relevant Performance Level of the structures. Consequently,they assume different threshold values, in terms of the various measures mentioned above, for stating whether a given structure attains or not the Limit States of interest in seismic design and assessment. The present paper, after a critical review of the various proposals for all the relevant Limit States, compares the various definitions of structural capacity of members for two existing RC structures, designed for gravitational loads, assumed as case-studies.OUTLINE OF CAPACITY MODELS FOR RC MEMBERS Several parameters and indices can be considered for measuring structural performance under horizontal actions induced by earthquake shaking. As a matter of principle, those parameters should look after the cyclic nature of the seismic response. Park&Ang Damage Index, Low-Cycle Fatigue Index [8] and other similar measures follow the cyclic evolution of the structural response defining suitable threshold values of the corresponding indices for defining the achievement of the relevant Limit States.Although those parameters explicitly consider the actual evolution of the structural response, they are not so easy to evaluate at both local and global level. Consequently, capacity is more often defined in terms of displacement parameters whose maximum value attained during the seismic response is considered. Figure 1 shows the threedifferent displacement measures which are more commonly considered within the scientific and technical literature:θ, which can be evaluated as ratio - the interstorey drift angle IDbetween the intestorey relative displacement ijδ a the storey height h;- the plastic rotation plθwhich is defined as the concentrated rotation which is equivalent to the plastic curvatures arising around the column end throughout a length pl l which is the length of the so-called plastic hinge;- the total chord rotation θwhich is defined as the ratio between the relative displacement of the point of zero curvature and the distance between that point and the column end, namely the shear length V L.FIGURE 1. Displacement parameters for quantifying seismic capacity of beams-columns.Alternative definitions can be derived for the relevant seismic performance levels (PL) or Limit States (LS) utilizing the three measures listed and briefly defined above. Indeed, three possible PLs are usually considered within the structural codes:- Damage Limitation (DL), if no structural repair is needed after the event;- Life Safety (LS) or Severe Damage (SD), if huge structural damage occurs, but life safety is guaranteed;- Near Collapse (NC), if in the aftermath of the event the structure is only able to carry the gravitational loads.The following sections summarizes the basic assumption of various seismic codes and other proposals available within the scientific literature for defining threshold values of the above displacement measures for the three defined limit states.Eurocode 8 and Italian Code provisionsBoth Eurocode 8 [2] [3] and the new Italian Seismic Code [4] [5] define displacement capacity and demand of frames in terms of total chord rotation. Two basic reference values are considered for defining that rotation at yielding and ultimate. In particular, the Italian Code provide the following relationship:while a slightly different one is reported within Eurocode 8:as a function of almost the same parameters, such as shear length V L cross section depth h, longitudinal bar diameter b d and yielding stress y f, and concrete compressive strength c f. Eq. 2 also involves the section lever arm z and the boolean factor V a which possibly takes into account the effect of the bending moment shift due to the shear force. Besides the slight differences between the two Eqq. 1 and 2, a similar structure, based on the sum of three terms related to flexural and shear deformation of the member and the possible small fixed-end rotation due to bar slip, can be easily recognized. Chord rotation at ultimate uθis also defined and two possible formulations are proposed in both the European and the Italian Seismic codes:- an "empirical formula"- a "theoretical formula"involving the cross section curvatures yφand uφ… at yielding and ultimate, respectively, and the plastic hinge length pl L.。
中华人民共和国行业标准(CJJ-XXXX)城市桥梁抗震设计规范(征求意见稿)主编单位:同济大学参编单位:上海市政工程设计研究院、上海市城市建设设计研究院,天津市政工程设计研究院、北京市政工程设计研究院二○○九年三月1目次1 总则 (4)2 术语和符号 (6)2.1术语 (6)2.2符号(略) (8)3 抗震设计的基本要求 (9)3.1抗震设防分类和设防水准 (9)3.2地震影响 (10)3.3抗震设计方法分类 (11)3.4桥梁抗震体系 (11)3.5 抗震概念设计 (13)3.6抗震设计流程图 (15)4 场地、地基与基础 (19)4.1场地 (19)4.2液化土 (22)4.3地基的承载力 (26)5地震作用 (27)5.1一般规定 (27)5.2设计加速度反应谱 (27)5.3 设计地震动时程 (29)5.4地震主动土压力和动水压力 (30)5.5荷载组合 (32)6抗震分析 (33)6.1一般规定 (33)6.2建模原则 (35)6.3反应谱法 (38)6.4时程分析方法 (39)6.5规则桥梁抗震分析 (39)6.6能力保护构件计算 (44)26.7桥台 (47)7 抗震验算 (48)7.1 一般规定 (48)7.2 E1地震下抗震验算 (48)7.3E2地震下抗震验算 (49)7.4支座验算 (53)7.5 能力保护构件验算 (54)8 抗震构造细节设计 (56)8.1墩柱结构构造措施 (56)8.2结点构造措施 (58)9桥梁减隔震设计 (61)9.1一般规定 (61)9.2减隔震装置 (61)9.3减隔震桥梁地震反应分析 (62)9.4减隔震桥梁抗震验算 (66)10大跨度桥梁抗震设计 (67)10.1一般规定 (67)10.2抗震概念设计 (67)10.3建模与分析原则 (67)10.4性能要求与抗震验算 (69)11抗震措施 (70)11.1一般规定 (70)11.2 6度区 (70)11.3 7度区 (71)11.4 8度区 (72)11.5 9度区 (74)31 总则1.0.1根据《中华人民共和国防震减灾法》,贯彻预防为主的方针,使城市桥梁经设防后减轻结构的地震破坏,避免人员伤亡,减少工程直接经济损失和因交通运输中断或阻滞导致间接经济损失,特制定本规范。
The frame structure anti- earthquake concept design The disaster has an earthquake dashing forward sending out nature, may forecast nature very low so far, bring about loss for human society is that the natural disaster of all kinds is hit by one of the gravest disaster gravely. In the light of now available our country science level and economy condition, correct the target building seismic resistance having brought forward "three standards " fortification, be that generally, the what be spoken "small earthquake shocks does not but constructs in the dirty trick, big earthquakes do not fall ". That generally, what be talked small shocks in the earthquake, big earthquakes refer to respectively is intensity exceed probability in 50 fortifying for 3%'s 63% , 10% , 2 ~ being more is caught in an earthquake, earthquake , rare Yu earthquake.Since building the astigmatic design complexity, in actual project, anti-knock conceptual design appears especially important right away. It includes the following content mainly: Architectural design should pay attention to the architectural systematic ness; Choose rational building structure system; the tensile resisting inclining force structure and the component is designed.That the ability designs law is the main content that the structure denasality designs includes standard our country internal force adjustment and structure two aspect. It is twenty centuries seventies later stage , reinforced concrete structure brought forward by famous New Zealand scholar and Park has sufficient tonsillitis method under the force designing an earthquake chooses value is prejudiced low core thought is: "The beam cuts organization " or "the beam column cuts organization " by the fact that "the strongweak post beam " guides structure to take form; Avoid structure by "strong weak scissors turn " before reach estimate that shearing happened in the denasality in the ability front destroy; Turn an ability and consume an ability by the fact that necessary structure measure makes the location may form the plasticity hinge have the necessary plasticity. Make structure have the necessary tonsillitis from all above three aspect guarantee. That framed structure is the common structure form, whose senility certainly designs that, is to embody from about this three aspect also mainly.1, Strong pillar weak beamDriving force reaction analysis indicates structure; architectural deformability is connected with to destroying mechanism. Common have three kinds model’s consume energy organization ", beam hinge organization ““, post hinge organization ““, beam column hinge organization "."Beam hinge organization " and "beam column hinge organization " Lang Xian knuckle under , may let the entire frame have distribution and energy consumption heavierthan big internal forces ability, limit tier displacement is big , plasticity hinge quantity is many , the hinge does not lose efficacy but the structure entirety does not lose efficacy because of individual plasticity. The as a result anti-knock function is easy to be that the armored concrete is ideal consume energy organization. Being that our country norm adopts allows a pillar , the shearing force wall puts up the hinge beam column hinge scheme, taking place adopting "strong relative weak post beam " measure , postponing a pillar cuts time. Weak tier of post hinge organization possibility appear on unable complete trouble shooting but , require that the axis pressure restricting a pillar compares as a result, architectural weakness prevents necessary timefrom appearing tier by the fact that Cheng analysis law judges now and then, post hinge organization.Are that V. I. P. is to enhance the pillar bending resistance , guidance holds in the beam appear first, the plasticity cuts our "strong common weak post beam " adjustment measure. Before plasticity hinge appearing on structure, structure component Yin La District concrete dehiscence and pressure area concrete mistake elasticity character, every component stiffness reduces a reinforced bar will do with the cementation degeneration between the concrete. That stiffness reduces a beam is relatively graver than accepting the pillar pressing on , structure enhances from initial shearing type deformation to curved scissors shape deformation transition , curved post inner regulation proportion really more curved than beam; The at the same time architectural period is lengthened, size affecting the participation modulus shaking a type respectively to structure's; Change happened in the earthquake force modulus , lead to the part pillar bend regulation enhancing, feasible beam reality knuckles under intensity rise , the post inner bends regulation when plasticity hinge appearing on thereby feasible beam enhancing since structure cause and the people who designs the middle reinforced bar's are to enhance.. And after plasticity hinge appearing on structure, same existence having above-mentioned cause, structure knuckles under mistake elasticity in the day after tomorrow process being that process , post that the earthquake enhances strenuously further bend regulation enhancing with earthquake force but enhance. The force arouses an earthquake overturn force moment having changed the actual post inner axis force. We knuckle under the ability lessening than axis pressure in standardizing being limitedto be able to ensure that the pillar also can lead to a pillar in big the bias voltage range inner , axis force diminution like value. The anti-knock norm is stipulated: Except that the frame top storey and post axis pressure are compared to the strut beam and frame pillar being smaller than person and frame, post holds curved regulation designing that value should accord with difference being,that first order takes , the two stage takes , grade-three takes 1.1. 9 degree and one step of framed structure still responds to coincidence, ,intensity standard value ascertains that according to matching reinforced bar area and material really. The bottom post axis is strenuously big, the ability that the plasticity rotates dispatches, be that pressure collapses after avoiding a foot stall producing a hinge, one, two, three steps of framed structure bottom, post holds cross section constituting curved regulation designing that value takes advantage of that , compose in reply 1.15 in order to enhancing a modulus respectively. Combination of the corner post adjustment queen bends regulation still should take advantage of that not to be smaller than 's modular. Curved regulation designs that value carries out adjustment to one-level anti-knock grade shearing force wall limb cross section combination , force the plasticity hinge to appear to reinforce location in the wall limb bottom, the bottom reinforces location and all above layer of curved regulation designing that value takes wall limb bottom cross section constituting curved regulation designing value , other location multiplies 's by to enhance a modulus. Prop up anti-knock wall structure to part frame, bottom-end , whose curved combination regulation design value respond to one, two steps of frame pillars post upper end and bottom post take advantage of that composes in reply 1.25 in orderto enhancing a modulus respectively. All above "strong weak post beam” adjustment measure, reaction analysis indicates , big satisfied fundamental earthquakes demand no upside down course nonlinearity driving force. Reinforced bar spending area, the beam in 7 is controlled from gravity load, the post reinforced bar matches’ tendon rates basically from the minimum under the control of. Have enhanced post Liana Xiang all round resisting the curved ability. At the same time, 7 degree of area exactly curved regulation plasticity hinge appears on disaster very much, plays arrive at advantageous role to fighting against big earthquakes. In 9 degree of area, adopt reality to match reinforced bar area and material bending regulation within intensity standard value calculation post, structural beam reinforced bar enhancing same lead to enhancing bending regulation within post designing value, under importing in many waves, the beam holds the plasticity hinge rotating developing greatly, more sufficient, post holds the plasticity hinge developing insufficiency, rotate less. Design demand with the beam. Reaction and 9 degree are about the same to 8 degree of area , whose big earthquake displacement , that post holds the plasticity hinge is bigger than rotating 9 degree much but, the beam holds the plasticity hinge appearing sufficient but rotate small, as a result "strong weak post beam " effect is not obvious , curved regulation enhances a modulus ought to take , this waits for improving and perfecting going a step further when the grade suggesting that 8 degree of two stage is anti-knock in connection with the expert.2, Strong shear weak curved"Strong weak scissors turn” is that the plasticity cuts cross section for guarantee on reach anticipate that shearing happened in the mistake elastic-deformation prior todestroy. As far as common structure be concerned, main behaviors holds in the beam, post holds, the shearing force wall bottom reinforces area , shearing force wall entrance to a cave company beam tools , beam column node core area. Show mainly with being not that seismic resistance is compared with each other, strengthening measure in improving the effect shearing force; Aspect adjusting a shear bearing the weight of two forces.1)effect shearing forceOne, two, three-level frame beam and anti-knock wall middle stride over high ratio greater than company beam, shearing force design value among them, first order choose , two stage choose , three-level choose , first order framed structure and 9 Due Shan respond to coincidence. Coincidence one, two, three steps of frame post and frame pillar , shearing force being designed being worth taking among them, one step , taking , three steps of take , one-level framed structure and 9 Due Shank two steps responding to. One, two, three steps of anti-knock walls bottom reinforces location the shearing force designs that value is among them, first order takes , the two stage takes , grade-three takes , 9 Dud Shank respond to coincidence. The node core area seismic resistance the beam column node , one, two steps of anti-knock grades are carried out is born the weight of force checking calculation by the scissors , should accord with anti-knock structure measure about 3 step, correct 9 degree of fortify and one-level anti-knock grade framed structure, think to the beam end the plasticity hinge already appears , the node shearing force holds reality completely from the beam knuckling under curved regulation decision , hold reality according to the beam matching reinforced bar covering an area of the growing modulus that intensity standard value calculation, takes advantage of that at the same time with with material. Other first order holds curved regulation according to the beamdesigning that value secretly schemes against , the shearing force enhances a modulus being , the two stage is .2) Shear formulaThe continuous beam of armored concrete and the cantilever beam are born theweight of at home and abroad under low repeated cycle load effect by the scissors the force experiment indicates the main cause pooling efforts and reducing even if tendon dowel force lessening is that the beam is born the weight of a force by the scissors, concrete scissors pressure area lessening shearing an intensity, tilted rift room aggregate bite. Scissors bear the weight of a norm to the concrete accepting descending strenuously being 60% be not anti-knock, the reinforced bar item does not reduce. By the same token, the experiment indicates to insisting to intimidate post with that the force is born the weight of by the scissors, loading makes post the force be born the weight of by the scissors reducing 10% ~ again and again 30%, the item arouses , adopts practice identical with the beam mainly from the concrete. The experiment is indicated to shearing force wall, whose repeated loading breaks the subtraction modulus up than monotony increases be loaded with force lessening is born the weight of by the scissors 15% ~ 20%, adopts to be not that seismic resistance is born the weight of by the scissors energy times 's. Two parts accept the pressure pole strenuously tilted from the concrete is born the weight of by the scissors and horizontal stirrup of beam column node seismic resistance cutting the expert who bears the weight of force composition , is connected with have given a relevance out formula.Tilted for preventing the beam , post , company beam , shearing force wall , node from happening pressure is destroyed, we have stipulated upper limits force upper limit to be born the weight of by the scissors , have stipulated to match hoop rate’s namely to accepting scissors cross section.Reaction analysis indicates strong weak curved scissors requests; all above measure satisfies basically by mistake elasticity driving force. The plasticity rotates because of anti-knock grade of two stage beam column under big earthquakes still very big , suggest that the shearing force enhances a modulus is bigger than having there is difference between one step unsuitably in connection with the expert, to the beam choose is fairly good , ought to take ~ to post . It's the rationality taking value remains to be improved and perfected in going a step further.Require that explanatory being , the beam column node accept a force very complicated , need to ensure that beam column reinforced bar reliability in the node is anchoring , hold occurrence bending resistance at the same time in the beam column destroying front, shearing happened in the node destroy, whose essence should belong to "strong weak curved scissors" categories. The node carries out adjustment on one, two steps of anti-knock grades shearing force and, only, the person enhances a modulus be are minor than post, ratio post also holds structure measure a little weak. As a result ", more strong node “statement, is not worth it encourage.3) Structure measureStructure measure is a beam, post, the shearing force wall plasticity cuts the guarantee that area asks to reach the plasticity that reality needs turning ability and consuming ability. Its "strong with "strong weak scissors turn ", weak post beam " correlates, a arc hitectural denasality of guarantee.”Strong weak scissors turn " is a prerequisite for ensuring that the plasticity hinge turns an ability and consumes an ability; Strict "strong weak post beam " degree, the measure affecting corresponding structure, if put strict "strong weak post beam " into practice, ensure that the pillardoes not appear than the plasticity hinge, corresponding axis pressure waiting for structure measure to should be a little loose right away except the bottom. Our country adopts "the st rong relative weak post beam”, delays a pillar going beyond the hinge time, therefore needing to adopt stricter structure measure.①the beam structure measure beam plasticity hinge cross section senility and many factors match tendon rates and the rise knuckling under an intensity but reduce in connection with cross section tensile, with the reinforced bar being pulled; The reinforced bar matches tendon rates and concrete intensity rise but improve with being pressed on, width enhances but enhances with cross section; Plasticity hinge area stirrup can guard against the pressure injustice releasing a tendon , improve concrete limit pressure strain , arrest tilted rift carrying out , fight against a shearing force , plasticity hinge deformation and consume an ability bring into full play, That deck-molding is stridden over is smaller than exceeding , shearing deformation proportion is increasingly big, the gentility destroying , using the tilted rift easy to happen reduces. The beam has led low even if the tendon matches hoop, the reinforced bar may knuckle under after Lang Kai cracks break up by pulling even. As a result, the norm matches tendon rates to the beam even if the tendon maximum matches tendon rates and minimum , the stirrup encryption District length , maximal spacing , minimal diameter , maximal limb lead all have strict regulations from when, volume matches hoop. Being bending regulation , the guarantee cross section denasality , holding to the beam possibly for the end fighting against a beam to pull the pressure reinforced bar area ratio make restrict. Stride over height at the same time, to minimal beam width, than, aspect ratio has done regulation.② the post structure measureFor post bending a type accepting the force component, axis pressure than to the denasality and consuming to be able to, nature effect is bigger. Destroy axis pressure than big bias voltages happened in the pillar hour, component deformation is big , gentility energy nature easy to only consume, reduces; Nature is growing with axis pressure than enhancing , consuming an energy, but the gentility sudden drop, moreover the stirrup diminishes to the gentility help. Readjust oneself to a certain extent to adopt the pillar, main guarantee it's tonsillitis that the low earthquake designs strenuously, but consuming energy sex to second. The pressure ratio has made a norm to the axis restricting, can ensure that within big bias voltages range in general. Stirrup same get the strain arriving at big roles, restraining the longitudinal tendon, improving concrete pressure, deter the tilted rift from developing also to the denasality. Be to match tendon symmetrically like post, the person leads feeling bigger , as big , becoming deformed when the pillar knuckles under more even if the tendon matches tendon , the tensile finishes exceeding. As a result, the tendon minimum matches tendon rates, the stirrup encryption District length, maximal spacing, minimal diameter, maximal limb lead having made strict regulations out from when, and volume matches hoop to the pillar jumping. At the same time, aspect ratio , scissors to the pillar have stridden over a ratio , minimal altitude of cross section , width have done out regulation, to improve the anti-knock function.③ Node structure measureThe node is anchoring beam column reinforced bar area, effect is very big tostructure function. Be under swear to act on earthquake and the vertical stroke to load, area provides necessary constraint to node core when node core area cuts pressure low than slanting, keep the node fundamental shear ability under disadvantageous condition, make a beam column anchoring even if the tendon is reliable, match hoop rates to node core area maximal spacing of stirrup, minimal diameter, volume having done out regulation. The beam column is main node structure measure content even if tendon reliability in the node is anchoring. Have standardized to beam tendon being hit by the node diameter; Release the anchoring length of tendon to the beam column; anchoring way all has detailed regulation.To sum up ,; Framed structure is to pass "the design plan calculating and coming realize structure measure the ability running after beam hinge organization" mainly thereby, realize "the small earth—quake shocks does not but constructs in the dirty trick, big earthquakes do not fall " three standards to-en fortifying target's. References.框架结构抗震设计地震灾害具有突发性,至今可预报性很低,给人类造成的损失严峻,是各类灾中最严峻的灾害之一。
23卷2期2007年6月世 界 地 震 工 程W ORLD EARTHQUAKE ENG I N EER I NG V o.l 23,N o .2Jun .,2007收稿日期:2007-01-15; 修订日期:2007-04-13基金项目:国家自然科学基金重大国际(地区)合作项目(50420120133);黑龙江省自然科学基金重点项目(Z G J 03-03)作者简介:徐龙军(1976-),男,讲师,主要从事地震工程和工程力学研究.文章编号:1007-6069(2007)02-0046-12抗震设计谱的发展及相关问题综述徐龙军1,2 谢礼立1,3 胡进军3(1.哈尔滨工业大学土木工程学院,黑龙江哈尔滨150090; 2.中国海洋大学工程学院,山东青岛266100;3.中国地震局工程力学研究所黑龙江哈尔滨150080)摘要:抗震设计谱是地震荷载的表征和工程抗震设计的基础。
首先对国内外抗震设计反应谱的发展、演变进行了阐述,指出现今反应谱理论以及在此基础上建立的抗震设计谱所取得的进展;总结了被广泛使用的各种抗震设计谱所存在的问题,指出了解决问题的可能途径,简要介绍了双规准反应谱的概念和统一设计谱的思想;探讨了抗震设计谱的发展趋势以及所涉及的新课题。
关键词:地震动;反应谱;抗震设计谱;双规准反应谱中图分类号:P315.9 文献标识码:AThe review of develop m ent and certai n proble m s i n seis m ic desi gn spectraXU Long -j u n 1,2 X I E L-i li 1,3 HU Jin -j u n 3(1.School of C i v ilEng i neeri ng ,H arb i n Instit u t e of Technol ogy ,H arb i n 150090,C h i na ;2.C oll ege of Eng i neeri ng ,O cean Un i versityofC h i na ,Q i ngd ao 266071,Ch i n a ; 3.Instit u te ofEng i neeri ng M echan ics ,Ch i na Eart hquake A d m i n istrati on ,H arb i n 150080,Ch i na)Abst ract :Seis m ic desi g n spectra ,wh ic h can represent the ground m o ti o n load ,are t h e basis of eng ineeri n g aseis -m atic design o f str uctures .Firstly ,the evolution o f the seis m ic design spectra at ho m e and abroad is rev ie w ed ,a -ch i e ve m ents i n t h e theory of response spectrum and the seis m i c design o f structures are pointed ou.t Secondly ,questi o ns i n vo l v ed i n desi g n spectra o f earthquake acti o n prov isions in m a i n countries and reg ions are analyzed ,concept of binor m alized response spectrum and the theory o f un ifor m design spectr um are i n tr oduced .Lastl y ,sug -gesti o ns of deve l o pm ent gu i d eli n es and of fut u re research ,as w e ll as li m itations for the seis m i c desi g n spectra are put fo r w ard .K ey w ords :ground m o tion ;response spectr um;se is m ic desi g n spectra ;b-i nor m a lized response spectr um1 引言抗震设计谱是地震荷载的表征和工程抗震设计的基础,涉及地震工程中的一些传统和前沿性问题,影响到工程抗震设计的安全性和经济性。
Residential Earthquake-Resistant Design:A Critical Aspect of Safe HousingEarthquakes, a natural disaster that strikes without warning, pose a significant threat to the safety of residential buildings and their occupants. Therefore, earthquake-resistant design has become a crucial aspect of contemporary residential construction. This article explores the importance of earthquake-resistant design in residential buildings, discusses the principles and techniques involved, and highlights the role of innovation and technology in enhancing the seismic resilience of houses.**The Need for Earthquake-Resistant Design**Earthquakes can cause extensive damage to buildings, resulting in loss of life and property. Residential buildings, in particular, are vulnerable to seismic activity due to their widespread presence and the density of occupancy. Therefore, it is imperative to incorporate earthquake-resistant design features into the planning and construction of these buildings.Earthquake-resistant design aims to ensure the structural integrity of buildings during seismic events, minimizing damage and protecting the safety of residents.**Principles of Earthquake-Resistant Design**Earthquake-resistant design is based on several principles that aim to make buildings more resilient to seismic activity. These principles include:1. **Structural Continuity and Rigidity**: Buildings are designed with strong, continuous structural elements that resist seismic forces and prevent collapse. This involves the use of reinforced concrete, steel frames, and other materials that can withstand the shaking and movement caused by earthquakes.2. **Flexibility**: Buildings are designed to have some flexibility, allowing them to move and absorb seismic energy without suffering excessive damage. This is achieved through the use of joints, diaphragms, and other features that allow the structure to deform elastically during an earthquake.3. **Isolation Techniques**: Isolation techniques, such as rubber bearings orsliding isolation systems, are used to decouple the building from the ground and reduce the transmission of seismic forces to the structure. This helps protect the building from damage caused by ground shaking. 4. **Non-Structural Elements**: Non-structural elements, such as walls, partitions, and finishes, are also considered in earthquake-resistant design. These elements are designed to be resilient and to minimize the potential for collapse or damage during an earthquake.**Role of Innovation and Technology in Earthquake-Resistant Design**Innovations and advancements in technology have played a significant role in enhancing the seismic resilience of residential buildings. For instance, the use of high-performance materials, such as fiber-reinforced concrete and advanced composites, has allowed for the creation of lighter, stronger, and more durable structures. Additionally, the integration of smart sensors and monitoring systems into buildings enables real-time monitoring of structural performance and the detection of potential damage. This information can be used to trigger early warning systems orto inform evacuation decisions, further enhancing the safety of residents.**Conclusion**In conclusion, earthquake-resistant design is a crucial aspect of contemporary residential construction. By incorporating principles of structural continuity, flexibility, isolation techniques, and non-structural element resilience, buildings can be made safer and more resilient to seismic events. Innovations in materials, technology, and monitoring systems further enhance the seismic resilience of houses, protecting the lives and property of residents. As the focus on sustainable and resilient construction continues to grow, earthquake-resistant design will remain a critical component of safe housing.**住宅抗震设计:安全住房的关键方面**地震是一种突如其来的自然灾害,对住宅建筑及其居民的安全构成严重威胁。
建筑抗震设计规范1总则1.0.1为贯彻执行国家有关建筑工程、防震减灾的法律法规并实行以预防为主的方针,使建筑经抗震设防后,减轻建筑的地震破坏,避免人员伤亡,减少经济损失,制定本规范。
按本规范进行抗震设计的建筑,其基本的抗震设防目标是:当遭受低于本地区抗震设防烈度的多遇地震影响时,主体结构不受损坏或不需修理可继续使用;当遭受相当于本地区抗震设防烈度的设防地震影响时,可能发生损坏,但经一般性修理仍可继续使用;当遭受高于本地区抗震设防烈度的罕遇地震影响时,不致倒塌或发生危及生命的严重破坏。
使用功能或其他方面有专门要求的建筑,当采用抗震性能化设计时,具有更具体或更高的抗震设防目标。
1.0.2抗震设防烈度为6度及以上地区的建筑,必须进行抗震设计。
1.0.3本规范适用于抗震设防烈度为6、7、8和9度地区建筑工程的抗震设计以及隔震、消能减震设计。
建筑的抗震性能化设计,可采用本规范规定的基本方法。
抗震设防烈度大于9度地区的建筑及行业有特殊要求的工业建筑,其抗震设计应按有关专门规定执行。
注:本规范“6度、7度、8度、9度”即“抗震设防烈度为6度、7度、8度、9度”的简称。
1.0.4抗震设防烈度必须按国家规定的权限审批、颁发的文件(图件)确定。
1.0.5一般情况下,建筑的抗震设防烈度应采用根据中国地震动参数区划图确定的地震基本烈度(本规范设计基本地震加速度值所对应的烈度值)。
1.0.6建筑的抗震设计,除应符合本规范要求外,尚应符合国家现行有关标准的规定。
2术语和符号2.1术语2.1.1抗震设防烈度seismic precautionary intensity按国家规定的权限批准作为一个地区抗震设防依据的地震烈度。
一般情况,取50年内超越概率10%的地震烈度。
2.1.2抗震设防标准seismic precautionary criterion衡量抗震设防要求高低的尺度,由抗震设防烈度或设计地震动参数及建筑抗震设防类别确定。
美国标准中的地震动参数概念(中英文对照)Design earthquakes. The design earthquakes for hydraulic structures are the OBE and the MDE.设计地震:水工结构的设计地震有OBE和MDE,即运行基准地震和最大设计地震。
The actual levels of ground motions for these earthquakes depend on the type of hydraulic structure under consideration, and are specified in the seismic design guidance provided for a particular structure in conjunction with ER 1110-2-1806.地震动参数的实际取值跟水工建筑物的类型有关,具体可参照ER 1110-2-1806。
(1) Operating basis earthquake (OBE). The OBE is an earthquake that can reasonably be expected to occur within the service life of the project, that is, with a 50 percent probability of exceedance during the service life. The associated performance requirement is that the project function with little or no damage, and without interruption of function.运行基准地震(OBE):OBE是指在工程的服务生命周期中可能合理预期发生的地震,即在工程生命周期中超过50%的发生概率,在该地震作用下,工程的相关性能要求几乎没有或没有破坏,工程的相关功能没有中断。
文献信息:文献标题:Frame Structure Anti-earthquake Design Way of Thinking (框架结构的抗震设计思路)国外作者:Theodore V.Galambos文献出处:《Journal of Constructional Concrete Research》,2000, 55:289-303 字数统计:英文4451单词,22990字符;中文5601汉字外文文献:Frame Structure Anti-earthquake Design Way of ThinkingAbstract Currently, the anti-earthquake norms all round the world almost adopt to a kind of way of thinking: The adoption presses the earthquake strong or weak of possible situation to divide the line earthquake cent area; According to everyplace the history occurrence of the area earthquake of covariance result or to geology structure of the history investigate to have to explicit statistics the meaning establish the sport peak in waterproof and quasi-ground value acceleration; Make use of again the reaction acceleration that the acceleration reaction composes different period; Get a design to use acceleration level through earthquake dint adjust met coefficient R. In the meantime, most nations all approve such point,establishing to defend the earthquake intensity level can take to use a different value, choosing to use to establish to defend the earthquake intensity level more and highly, the ductility request of the structure also more low, choose to use to establish to defend earthquake intensity level more and lowly, structure of ductility request more high. The structure ductility guarantee of precondition is the ductility of the member, pass again an effectively reasonable conjunction in adopting a series of measure guarantee member the foundation of the ductility, the structure system choice is reasonable in the meantime, the degree just distributes reasonable of under condition ability basic assurance structure of ductility.Keywords: frame structure; anti-earthquake design; design way of thinking1.Simple Review of Anti-earthquake Design Way of ThinkingThe development that constructs the structure anti- earthquake is along with people all the earthquake move with the structure characteristic of the understanding is continuously thorough but develop gradually, however, from is born up to now the history of a hundred years, have mostly several to develop a stage as follows:(1) Quiet dint stage: It first from a Japanese professor passed to harm to prognosticate the anti- earthquake design theories that put forward with the theories understanding at that time to the limited earthquake, being applicable to only just rigid body structure. It didn't think characteristic and the place difference to consider structure to the influence that constructs structure.(2) Respond the table stage: Along with vibrate to record of obtain and the development of the structure dynamics theories, the Biota professor of the United States put forward flexibility to respond the concept of the table in 1940, respond the table is list the freely flexible system, it was obtain of numerous earthquakes record of encourage, the structure period or respond of the relation, include the acceleration reaction table, the speed responded a table, moved to respond a table. It consider the motive characteristic of the structure, it still is the foundation that all countries norm design earthquake dint takes a value up to now. The calculation of the earthquake function dint usually use shears with the bottom and flaps a decomposition to respond a table a method, flapping a decomposition to respond a table a method of basic define: Suppose the building structure is the line flexibility more freedom degree system, making use principle of flap a decomposition and flap a type, it will solve a freedom degree the earthquake of the flexible system to respond to resolve for solve an independence of etc. the effect single freedom degree flexible system most the heavy earthquake respond. Then begging should in each function affect that flaps a type. At this time, according to consider the way dissimilarity of the earthquake function, adopt a different array, group method, order flexible system to many qualities of the flat surface vibration, it can use a SRSS method, it is according tosuppose the importation earthquake as steady random process, each of a flap reaction is independent mutually but deduce to get; For consider even-twists many qualities that the lotus connect to order flexible system, the adoption CQC method, it lies in with the main differentiation of the SRSS method: Suppose when flat surface vibrate each flap a type independent mutually, and each contribution that flap a type increased along with the frequency high but lower;But even-twist lotus connect hour each flap a frequency span very small, close together and higher flap the frequency of the type and may near to this relativity that will consider a dissimilarity to flap a very much, also have influence of turn round the weight and not necessarily increase along with the frequency high but lower, sometimes higher flap the influence possibility of the type big in lower flap the influence of the type, it will consider more influences that flap a type while comparing SRSS. The bottom shears the dint method in consideration of the special of the structure system to the simplification that flaps a decomposition to respond to compose a method, be the building height not big, took shearing to slice to transform as the lord and the quality to follow height to distribute more even structure with degree just, the structure vibration moved to respond usually with the first flapped a type for lord, and when the first flapped a type to near to in the straight line, can flap a decomposition method simplification to shear the dint method calculation formula for the basic bottom. The level earthquake function that each quality that this basic formula calculation get order can better reflection just degree bigger structure, but when structure the basic period was long, the place characteristic period to compare with hour, the calculation income coping earthquake function be partial to small. of course , the Anti-earthquake Norm provision, be the structure basic period more than 1.4 place characteristic period, at coping additional level earthquake function.(3)the motive theories stage: Along with move understanding and comprehend to the earthquake of deepen continuously, know to some shortage of the reaction table, such as to the earthquake move hold of influence consideration not week, and the exaltation of the calculator function, make the motive method develop gradually, its essence solves a square distance of motive directly, but because of earthquake theground sport acceleration is very irregular, it can't beg for differential calculus square distance, it shuts to match a solution, so adopt number integral calculus method more. Usual way of doing is carry on a continuous cent a segment a processing towards having already record of the earthquake wave, each data all see do the constant, then the function get to structure up, pass an equilibrium and square distance of motive to beg at the moment of the acceleration, speed, move reaction, moving with ex- the acceleration, speed, the segment to carry on folding to add immediately after folding the result for add as the beginning that descends at that time a segment to start a data, pushing according to this kind, end beg structure at the give for low week again and again the earthquake wave under of the acceleration, speed and move the dint reaction variety process.(4) At American Northridge earthquake in 1994 and Japanese Kobe earthquake in 1995 after, the beautiful day scholar put forward again according to the anti- earthquake design method of behavior, it was during the period of usage to make the building structure satisfy various requests that used function according to the basic thought of behavior. Tradition according to the design method dissimilarity of the dint, adjudicate to the structure function mainly is according to move standard, move index sign to come with the different to the structure function to carry on a different control. But descend structure because of the big earthquake of not- flexible transform hard and accurate estimate of, make to can stay around according to the design method of behavior theoretically. But put forward its aggressive meaning to have 2:00 at least:a. Emphasize the system and the society of the earthquake engineering;b. The part that knows an original anti- earthquake to design norm is unsuited to reasonableness.Conduct and actions according to the foundation of the function anti- earthquake design, should to the particular level earthquake function of a certain covariance meaning under of the structure move, the speed and acceleration carry on accurate valuation, should also have a reasonable of valuation method with available valuation tool. It is exactly because of this purpose, put forward and developed the Pushover method and ability to compose a method. The basic way of thinking of the Pushovermethod is an adoption the quiet dint add to carry, supposing the side of the some penny cloth form toward lotus to carry a function on the structure, adding to carry gradually until attain the structure control point target to move or the structure break, getting the level side of the control point to move to shear the dint relation curve with substrate thus, evaluating in order to the anti-vibration ability of the structure. The Pushover method depends on to distribute a form and play the plasticity reaction table target to move to really settle in the side force.2.Basic Way of Thinking of Frame Structure Anti-earthquake Design—ductility StandardAfter the flexibility respond table put forward, the people's detection computes to gain from here of the structure respond with the actual earthquake the breakage phenomenon of the structure contain certain antinomy, mainly is press the flexibility reaction table to calculate of the structure responded the acceleration as habitual to design the earthquake dint to take to be worth big quite a few at that time doubly, and took to settle according to the habitual of the function of the design earthquake dint descends the house structure of design, the harm of the structure system wasn't serious in the earthquake.60's last century, the New mark passed to start to the beginning of different period just degree homology of the single freedom degree the system carried on analysis under the situation that many waves input, put forward etc. moved the principle and etc. energy principle, and put forward the concept of the structure ductility. Studied single and free system to accept defeat the level and flexibility thoroughly again from the relation of flapped the biggest not- flexible motive in the period and structure to respond afterward, this be customarily say of the theories of the R-μ -T effect. Passing these researches, announcing to public the ductility ability and plasticity to consume an ability is a structure Be taking to use to accept defeat level under not high circumstance, at big earthquake under the structure doesn't take place severity to break and doesn't don't tumble down of assurance. Arrive here, concerning the design earthquake dint's taking the basic problem of the value size have to arrive understanding definitely, be the anti- earthquake the earthquake dinttake a value of the size isn't a number of assurance, but with the structure ductility function and consume the ability mechanism related quantity value. Here what to need to be explain BE, designed the earthquake dint to take a value to resolve a problem only, but to the structure ductility function guarantee of the measure have to can also promise, this will at underneath a section discuss.Currently, the anti- earthquake norms all round the world almost adopts so a kind of way of thinking: The adoption presses the earthquake strong or weak of possible situation to divide the line earthquake cent area; According to everyplace the history occurrence of the area earthquake of covariance result or to geology structure of the history investigate to have to explicit statistics the meaning establish the sport peak value in waterproof and quasi- ground value acceleration; Make use of again the reaction acceleration that the acceleration reaction composes different period to descend structure to; get a design to use acceleration level through the earthquake dint adjustment coefficient R. In the meantime, most nations all approve such standpoint, establishing to defend the earthquake intensity level can take to use a different value, choosing to use to establish to defend the earthquake intensity level more and highly, the ductility request of the structure also more low, choose to use to establish to defend the earthquake intensity level more and lowly, structure of ductility request more high. The structure ductility guarantee of precondition is the ductility of the member, pass again an effectively reasonable conjunction in adopting a series of measure guarantee member the foundation of the ductility, the structure system choice is reasonable in the meantime, the degree just distributes reasonable of under condition ability basic assurance structure of ductility.Underneath this kind of discusses the our country anti- earthquake norm mostly way of thinking, the current Chinese norm didn't adopt a variety to establish to defend the earthquake intensity level to take to use, but don’ Ted add a distinction of unify an adoption of the earthquake dint adjustment coefficient R=1/0.35;In the meantime, mostly according to establish a dissimilarity of defend the earthquake intensity, divide the line the different anti- earthquake grade, fix attention on in establish to defend earthquake intensity differently, adopt the anti- earthquake measure of the differentassurance ductility. Very obvious here exist a misunderstanding of concept, also be according to the theories of the R-μ-T effect, the little more than earthquake dint adjustment coefficient R=1/0.35, should give the same ductility guarantee measure to the structure, but the Chinese norm adopt the different ductility guarantee measure, along with anti- earthquake the exaltation of the grade, ductility guarantee the ability correspond to strengthen. This kind of usefulness of the way of doing under way and not the line motive respond of verification, can describe so as a result mostly: For the district of 8 degrees 0.3 g and 9 degrees 0.4 g, because of correspond of the anti- earthquake grade is higher, the measure of the guarantee ductility is also stronger, so generally and more safe; And for the district of 6 degrees 0.05 g and 7 degrees 0.1 g, gain from here to of the level earthquake effect be partial to small, the general lotus carries an array, group is carried the control function by the gravity lotus, although to should of the measure of the guarantee ductility isn't very strong, can also guarantee structure generally under the big earthquake of not- flexible transform of function; But to the district of 7 degrees 0.15 g and 8 degrees 0.2 g, circumstance another the person worry, because of at the lotus carry an array, group, the earthquake function can have generally control function, but correspond measure of guarantee the ductility and be partial to weak, so difficult don't need to exist certain potential safety hazard to suffer from. See again other national earthquake dint adjustment coefficient R to choose to use, in order to have kept concrete understanding of view:The earthquake dint adjustment coefficient of all countries norm provision3.Ability Design MethodTop a part emphasized to discuss the design earthquake dint to take the problem of the value, but wanted to promise structure under the big earthquake of function, also need to establish the valid anti- earthquake measure, make the structure really have need of keep vertical loading under the dint condition not- flexible transform an ability, this be the so-called ability design method.Ability design method from New Zealand the reinforced concrete anti- earthquake expert scholars such as the T. Parlay and the R. Park etc. development with initiate, main way of thinking is to the member occasionally member dissimilarity inside the piece is subjected to the dint form of the loading ability differ of control, promise the reinforced concrete structure formation the beam swing joint organization and ductility bigger is cut noodles to be subjected to the dint breakage appearance, make the structure have to play plasticity to transform function enough, promise big earthquake hour have an enough ability to consume to spread function, avoid creation brittleness to break and appear disadvantageous of organization form. The key of the ability design method is the anti- earthquake design that leads the control concept into structure, there is the leading formation of the purpose to the beneficial breakage mechanism is to the structure and break mode, avoid not reasonable of the structure break appearance, and try assurance to anticipate to break part to play plasticity to transform an ability.The ability design method mainly passes the following three kinds of measure to give assurance:1. Enlarge pillar opposite in the anti- of the beam-curved ability, artificial of leading of the structure swing joint part.2. Raise opposite in is cut the noodles loading dint of the anti- shear ability, avoiding appearing non- ductility to shear to slice breakage.3. To the part that appears the plasticity swing probably, the adoption corresponds of structure measure, assurance necessity of not- flexible transform function.First, the reasonable part of the swing joint carry on a discussion, all countriesmostly of the way of thinking inclines toward to make the project that the beam carries first to carry to appear in the pillar about and all. This kind of swing joint project has a following advantage: The ductility of the beam is easy to a control, and under general circumstance compare pillar of the ductility is big; The whole plasticity of the beam swing joint ratio pillar swing joint formation transform small; The plasticity of the beam swing joint organization formation transform more stable. There are also two kinds of different design methods while admit the premise of have the initiative the formation beam swing joint, a kind of from is a representative New Zealand of, incline toward the formation ideal beam swing joint organization, be promise the beam carries to appear the plasticity swing, but in addition to first floor, the post all doesn't appear the plasticity swing, at this time to in addition to the first floor pillar give post opposite compare bigger and super and strong coefficient(probably 2.0) in the beam, the advantage is a post(in addition to first floor) and doesn't need to be carry on to go together with hoop complicatedly at this time, because of adopt such coefficient can promise a swing joint very explicit. But is exactly because this kind of design method pursues the ideal beam swing joint organization to cause the first floor post compare weaker, the possibility for throng will be a swing joint, the plasticity that correspond and then have to adopt the structure measure to promise this part transforms function. In the meantime, such as if the first floor the influence of the swing joint upon the structure will compare greatly, once pressing and mating because structural whole tumble down, this has to be given guarantee up from the structure, increasing a structure of difficulty. Another project includes total body, Chinese etc. in the United States, Europe, this kind of project leading structure pillar swing joint the night appears in the beam swing joint, unlimited make the emergence of the swing joint in the meantime, but request structure and do not become the layer side to move structure, at this time to post of super go together with coefficient to compare with to request New Zealand of want to be small, goes together with the project that the stirrup takes in to control to the post adoption in the meantime. BE super to go together with coefficient to really settle problem comparison complications to the post adoption in fact: The beam carries thesuper influence for go together with for construct; The beam carries the plasticity swing to appear inside the dint is heavy to distribute of influence; Before accept defeat of the not- flexible characteristic may make the post bending moment physically big get in the flexibility analysis of bending moment ;The indetermination factor that the material difference bring; Growth of the structure not- flexible characteristic cause the influence etc. that the structure motive characteristic variety bring. According to the request of the ability design, the plastic hinge that shears the dint wall appears generally in the bottom of the wall limb. The joining beam shear the loading dint and ductility that the loading dint and ductility and entrance to cave of the dint wall connect beam contain very great relation, designing generally and possibly weak connect beam, the leading that has intention to know connects beam at earthquake accept defeat first, then is the bottom wall to accept defeat, also be anticipate the area of plastic hinge to accept defeat.Avoided appearing to shear reason of slice the breakage early easy, be because of shearing to slice to break to belong to the brittleness breakage, disadvantage in promise the ductility of the structure, promise of way be according to the dissimilarity of the anti- earthquake grade to all beams, pillars, wall etc. the adoption is opposite to bend in the anti- of different super go together with coefficient.The basic request that the anti- earthquake anti- shear is before the beam carry plastic hinge that big epicenter need turn to move and don't take place to shear to slice breakage, this sheared concept difference with the non- anti- earthquake anti-.For various different processing methods that the structure anti- of the member shears mechanism and the our country norm, there is the necessity elucidation here once. Beam: When anti- shake because of low week again and again the function made the beam appear to cross an inclined fracture, fissure, the inclined fracture, fissure distributed an anti- of come to a decision the anti- earthquake to shear the ability ratio not an anti- earthquake to have to descend, reason: The anti- shake of shear to slice to break occurrence after the end long tendon accept defeat, the fracture, fissure compare at this time greatly; The harm that crosses the emergence of the fracture, fissure to the concrete is more serious; The enlargement beam carried the number of the negativebending moment when anti- shake, cause bigger sheared the dint value to appear under the beam to carry, sprinkle plank now because of descending to carry to have no, break more easily. But at this time the function and function for non- anti- to shake of the stirrup differ only a few, in the norm to the consideration of this disadvantageous function is to adopt to resist to shear formula in to the concrete item 0.6 of fold to reduce, in the meantime, in order not to non- ductility of inclined break bad, while adopting to shake than the non- anti- more scathing restriction measure, cut noodles to shear the dint design value ratio non- anti- earthquake multiply 0.8 of fold and reduce coefficient. Pillar: It resist earthquake in the norm the anti- of the pillar shear the processing principle of the formula similar, also is adopt to the concrete item 0.6 of fold and reduce coefficient, adopt more scathing measure to prevent from equally inclined break bad, cut noodles to shear the dint design value ratio non- anti- earthquake multiply 0.8 of fold and reduce coefficient. But because of under general circumstance, the stalk pressure comparison of the pillar is big, this kind of pressure shears function to be partial to the anti- of the member after appearing the plastic hinge to the pillar emollient, according to this kind of way of thinking, pillar the adoption fold to reduce with beam similarly to seem to be not greatly reasonable. Wall: When the anti- shake, there is almost no related on trial data in domestic, is an adoption only the earthquake is to the non- anti- of the anti- sheared formula to adopt to the concrete item and the reinforcing bar items 0.8 of fold and reduce coefficient, in the meantime, in bar of and inclined break bad, adoption the restriction shear a way of press the ratio, cut noodles to shear the dint design value ratio non- anti- earthquake multiply 0.8 of fold and reduce coefficient. What to need to be explaining BE, under general circumstance, the part that shears the dint wall anti- to shear a problem probably is a lower part are a few floors. Node: The main acceptance shears the dint member, the node shears dint mainly is depend on the truss organization, inclined press pole organization, the stirrup of the stipulation effect three organizations or path to bear. The truss organization mainly is resist the reinforcing bar lord to pull should dint, inclined press the pole organization mainly is the lord that resists the concrete and the reinforcing bar creation to press should dint, the stipulation effect of thestirrup then strengthens the anti- of the concrete to shear ability. Along with the node concrete inside the area not- line development, the truss the function of the structure lets up continuously, and then both of function but be strengthening continuously. Therefore, the main target of the node anti- earthquake is under the situation that be subjected to dint again and again, pass to strengthen inclined press the pole organization and the stirrup to control an effect to avoid the core area concrete inclined to press thus a diplomatic corps to order at attain to anticipate of the big earthquake respond before do not take place to shear to slice breakage.After shearing the discussion of mechanism to the above anti-earthquake, can be do with the function of the beam stirrup to tally up as follows: The first obvious function is to used for an anti- to shear; The second function controls concrete, this to guarantee the structure ductility contain count for much function, can also say literally here the obstacle that once high and strong concrete meet when used for anti- earthquake, this is related with the material of the high and strong concrete first, strength more high concrete more frailty, its should attain in the dint contingency relation biggest press should the contingency of the dint is smaller, this makes the design become the ductility member a difficulty with very great formation, is more high because of the strength of the concrete in the meantime, the stirrup rises the effect of the stipulation more bad, also can't the extreme limit of the enough valid exaltation concrete press a contingency, so cause to adopt the ductility of the structure member of the high and strong concrete hard get a guarantee; The third function is the stipulation function that carries to the beam lengthways reinforcing bar, prevent forming lengthways reinforcing bar lose steady, this has something to do with the special material of the reinforcing bar.中文译文:框架结构的抗震设计思路摘要目前,世界各国的抗震规范都采用这种思路:按可遇地震的强弱划分地震分区;根据各地区的历史发生地震的统计或对地质构造的考察得出设防水准地面的运动峰值加速度;再利用加速度反应谱给出不同周期下结构的反应加速度;通过地震力调整系数R得到设计加速度水准。
第31卷第5期2011年10月地震工程与工程振动JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol.31No.5Oct.2011收稿日期:2011-06-14;修订日期:2011-08-15基金项目:中国地震局工程力学研究所基本科研业务费专项资助项目(2009B04);国家科技支撑计划课题(2009BAK55B01)作者简介:赵真(1982-),女,博士研究生,主要从事地震工程与结构抗震设计方面的研究.E-mail :zhaozhen@iem.cn 文章编号:1000-1301(2011)05-0190-06从欧洲抗震设计规范的一般规定浅谈结构抗震概念设计的重要性赵真,谢礼立(中国地震局工程力学研究所,黑龙江哈尔滨150080)摘要:由于地震的作用以及在这种作用下的结构与构件的受力状况的复杂性和不确定性,结构抗震设计的计算假定与实际情况存在各种差异,甚至有时还根本无法计算。
因此在这种情况下,为确保抗震结构性能,就不得不依赖结构抗震的概念设计。
结构抗震概念设计是指工程师们根据结构地震破坏的形态和长期积累的实际工程经验等总结形成的符合工程师专业知识的基本设计原则和设计思想。
本文简述了欧洲抗震设计规范EC8中关于结构抗震概念设计的基本原则和一般规定,探讨了结构抗震概念设计的目的及其在工程应用中的重要性,指出目前我国还没有一套全面系统的结构抗震概念设计理论。
为切实地做好结构抗震设计工作,确保结构的安全耐久性,结构抗震概念设计理论的研究将是一项非常重要而有意义的工作。
关键词:结构抗震概念设计;欧洲抗震设计规范;建筑抗震设计规范中图分类号:P315.69文献标志码:AA brief discussion on importance of seismic concept designof structures based on general rules of Eurocode 8ZHAO Zhen ,XIE Lili(Institute of Engineering Mechanics ,China Earthquake Administration ,Harbin 150080,China )Abstract :Due to the complexity &uncertainty of the load bearing of structure elements under the seismic action ,various differences exist between the assumptions of seismic design and actual conditions ,sometimes even unable to compute.To ensure the seismic reliability of structures ,the key point is to perform the seismic concept design.The seismic concept design of structures is the basic principle and design idea in accordance with the professional knowledge of engineers acquired from the seismic structural damage and engineering practice experience.In thispaper ,the basic principle and general guiding rules on seismic concept design of Eurocode 8are briefly introduced ,and the purpose of seismic concept design and the importance of its application to engineering practice are dis-cussed.Finally ,it is indicated that a series of comprehensive and systematic theories on seismic concept design of structures does not exist in China presently.To carefully perform the seismic design of structures and ensure their safety and durability ,the research on seismic concept design of structures will be more and more important.Key words :seismic concept design of structures ;Eurocode 8;code for seismic design of buildings引言地震是一种可能引发严重危及人们生命财产安全的具有突发性和破坏性的自然现象。
中华人民共和国交通行业标准《公路桥梁抗震设计规范》条文框架1 总 则1.0.1 为了贯彻执行中华人民共和国防震减灾法并实行以预防为主的方针,减轻公路桥梁的地震破坏,保障人民生命财产的安全和减少经济损失,更好地发挥公路运输及其在抗震救灾中的作用,特制定本规范。
按本规范进行抗震设计的桥梁,其设防目标是:当遭受桥梁设计基准期内发生概率较高的多遇地震影响时,一般不受损坏或不需修理可继续使用,当遭受桥梁设计基准期内发生概率较低的罕遇地震影响时,应保证不致倒塌或产生严重结构损伤,经加固修复后仍可继续使用。
1.0.2 抗震设防烈度为6度及以上地区的公路桥梁,必须进行抗震设计。
各类桥梁必须进行多遇地震E1作用下的抗震设计,除6度地区以外,A、B、C类桥梁还必须进行罕遇地震E2作用下的抗震设计。
1.0.3 本规范适用于抗震设防烈度为6、7、8和9度地区的常用公路桥梁的抗震设计。
抗震设防烈度大于9度地区的桥梁和行业有特殊要求的大跨度或特殊桥梁,其抗震设计应作专门研究,并按有关专门规定执行。
1.0.4 抗震设防烈度必须按国家规定的权限审批、颁发的文件(图件)确定。
一般情况下,抗震设防烈度可采用中国地震动参数区划图GB18306-2001的地震基本烈度。
对已作过专门地震安全性评价的桥址,可按批准的抗震设防烈度或设计地震动参数进行抗震设防。
1.0.5 公路桥梁的抗震设计,除应符合本规范的要求外,尚应符合国家现行的有关强制性标准的规定。
1.0.6 按本规范进行抗震设计的桥梁结构类型为:(1)主跨径不超过200米的混凝土梁桥(2)主跨径不超过200米的圬工或混凝土拱桥(3)主跨径不超过200米的混凝土斜拉桥和悬索桥主跨径超过200米的大跨径桥梁,本规范只给出抗震设计原则。
2术 语、符 号2.1术语2.1.1 抗震设防烈度 seismic fortification intensity按国家规定的权限批准作为一个地区抗震设防依据的地震烈度。
中英文对照外文翻译The frame structure anti- earthquake concept design The disaster has an earthquake dashing forward sending out nature, may forecast nature very low so far, bring about loss for human society is that the natural disaster of all kinds is hit by one of the gravest disaster gravely. In the light of now available our country science level and economy condition, correct the target building seismic resistance having brought forward "three standards " fortification, be that generally, the what be spoken "small earthquake shocks does not but constructs in the dirty trick, big earthquakes do not fall ". That generally, what be talked small shocks in the earthquake, big earthquakes refer to respectively is intensity exceed probability in 50 fortifying for 3%'s 63% , 10% , 2 ~ being more is caught in an earthquake, earthquake , rare Yu earthquake.Since building the astigmatic design complexity, in actual project, anti-knock conceptual design appears especially important right away. It includes the following content mainly: Architectural design should pay attention to the architectural systematic ness; Choose rational building structure system; the tensile resisting inclining force structure and the component is designed.That the ability designs law is the main content that the structure denasality designs includes standard our country internal force adjustment and structure two aspect. It is twenty centuries seventies later stage , reinforced concrete structure brought forward by famous New Zealand scholar T.Paulay and Park has sufficient tonsillitis method under the force designing an earthquake chooses value is prejudiced low situationW.hose core thought is: "The beam cuts organization " or "the beam column cuts organization " by the fact that "the strong weak post beam " guidesstructure to take form; Avoid structure by "strong weak scissors turn " before reach estimate that shearing happened in the denasality in the ability front destroy; Turn an ability and consume an ability by the fact that necessary structure measure makes the location may form the plasticity hinge have the necessary plasticity. Make structure have the necessary tonsillitis from all above three aspect guarantee. That framed structure is the common structure form, whose senility certainly designs that, is to embody from about this three aspect also mainly.1, Strong pillar weak beamDriving force reaction analysis indicates structure; architectural deformability is connected with to destroying mechanism. Common have three kinds model’s c onsume energy organization ", beam hinge organization ““, post hinge organization ““, beam column hinge organization "."Beam hinge organization " and "beam column hinge organization " Lang Xian knuckle under , may let the entire frame have distribution and energy consumption heavierthan big internal forces ability, limit tier displacement is big , plasticity hinge quantity is many , the hinge does not lose efficacy but the structure entirety does not lose efficacy because of individual plasticity. The as a result anti-knock function is easy to be that the armored concrete is ideal consume energy organization. Being that our country norm adopts allows a pillar , the shearing force wall puts up the hinge beam column hinge scheme, taking place adopting "strong relative weak post beam " measure , postponing a pillar cuts time. Weak tier of post hinge organization possibility appear on unable complete trouble shooting but , require that the axis pressure restricting a pillar compares as a result, architectural weakness prevents necessary time from appearing tier by the fact that Cheng analysis law judges now and then, post hinge organization.Are that V. I. P. is to enhance the pillar bending resistance , guidance holds in the beam appear first, the plasticity cuts our "strong common weak post beam " adjustment measure. Before plasticity hinge appearing on structure, structure component Yin La District concrete dehiscence and pressure area concrete mistake elasticity character, every component stiffness reduces a reinforced bar will do with the cementation degeneration between the concrete. That stiffness reduces a beam isrelatively graver than accepting the pillar pressing on , structure enhances from initial shearing type deformation to curved scissors shape deformation transition , curved post inner regulation proportion really more curved than beam; The at the same time architectural period is lengthened, size affecting the participation modulus shaking a type respectively to structure's; Change happened in the earthquake force modulus , lead to the part pillar bend regulation enhancing, feasible beam reality knuckles under intensity rise , the post inner bends regulation when plasticity hinge appearing on thereby feasible beam enhancing since structure cause and the people who designs the middle reinforced bar's are to enhance.. And after plasticity hinge appearing on structure, same existence having above-mentioned cause, structure knuckles under mistake elasticity in the day after tomorrow process being that process , post that the earthquake enhances strenuously further bend regulation enhancing with earthquake force but enhance. The force arouses an earthquake overturn force moment having changed the actual post inner axis force. We knuckle under the ability lessening than axis pressure in standardizing being limited to be able to ensure that the pillar also can lead to a pillar in big the bias voltage range inner , axis force diminution like value. The anti-knock norm is stipulated: Except that the frame top storey and post axis pressure are compared to the strut beam and frame pillar being smaller than 0.15 person and frame, post holds curved regulation designing that value should accord with difference being,that first order takes 1.4 , the two stage takes 1.2 , grade-three takes 1.1. 9 degree and one step of framed structure stillresponds to coincidence, ,intensity standard value ascertains that according to matching reinforced bar area and material really. The bottom post axis is strenuously big, the ability that the plasticity rotates dispatches, be that pressure collapses after avoiding a foot stall producing a hinge, one, two, three steps of framed structure bottom, post holds cross section constituting curved regulation designing that value takes advantage of that 1.5, 1.25 compose in reply 1.15 in order to enhancing a modulus respectively. Combination of the corner post adjustment queen bends regulation still should take advantage of that not to be smallerthan 1.10's modular. Curved regulation designs that value carries out adjustment to one-level anti-knock grade shearing force wall limb cross section combination , force the plasticity hinge to appear to reinforce location in the wall limb bottom, the bottom reinforces location and all above layer of curved regulation designing that value takes wall limb bottom cross section constituting curved regulation designing value , other location multiplies 1.2's by to enhance a modulus. Prop up anti-knock wall structure to part frame, bottom-end , whose curved combination regulation design value respond to one, two steps of frame pillars post upper end and bottom post take advantage of that 1.5 composes in reply 1.25 in order to enhancing a modulus respectively. All above "strong weak post beam” adjustment measure, reaction analysis indicates , big satisfied fundamental earthquakes demand no upside down course nonlinearity driving force. Reinforced bar spending area, the beam in 7 is controlled from gravity load, the post reinforced ba r matches’ tendon rates basically from the minimum under the control of. Have enhanced post Liana Xiang all round resisting the curved ability. At the same time, 7 degree of area exactly curved regulation plasticity hinge appears on disaster very much, plays arrive at advantageous role to fighting against big earthquakes. In 9 degree of area, adopt reality to match reinforced bar area and material bending regulation within intensity standard value calculation post, structural beam reinforced bar enhancing same lead to enhancing bending regulation within post designing value, under importing in many waves, the beam holds the plasticity hinge rotating developing greatly, more sufficient, post holds the plasticity hinge developing insufficiency, rotate less. Design demand with the beam. Reaction and 9 degree are about the same to 8 degree of area , whose big earthquake displacement , that post holds the plasticity hinge is bigger than rotating 9 degree much but, the beam holds the plasticity hinge appearing sufficient but rotate small, as a result "strong weak post beam " effect is not obvious , curved regulation enhances a modulus ought to take 1.35 , this waits for improving and perfecting going a step further when the grade suggesting that 8 degree of two stage is anti-knock in connection with the expert.2, Strong shear weak curved"Strong weak scissors turn” is that the plasticity cuts cross section for guarantee on reach anticipate that shearing happened in the mistake elastic-deformation prior to destroy. As far as common structure be concerned, main behaviors holds in the beam, post holds, the shearing force wall bottom reinforces area , shearing force wall entrance to a cave company beam tools , beam column node core area. Show mainly with being not that seismic resistance is compared with each other, strengthening measure in improving the effect shearing force; Aspect adjusting a shear bearing the weight of two forces.1)effect shearing forceOne, two, three-level frame beam and anti-knock wall middle stride over high ratio greater than 2.5 company beam, shearing force design value among them, first order choose 1.3, two stage choose 1.2, three-level choose 1.1, first order framed structure and 9 Due Shan respond to coincidence. Coincidence one, two, three steps of frame post and frame pillar , shearing force being designed being worth taking 1.4 among them, one step , taking 1.2, three steps of take 1.1 , one-level framed structure and 9 Due Shank two steps responding to. One, two, three steps of anti-knock walls bottom reinforces location the shearing force designs that value is among them, first order takes 1.6 , the two stage takes 1.4 , grade-three takes 1.2, 9 Dud Shank respond to coincidence. The node core area seismic resistance the beam column node , one, two steps of anti-knock grades are carried out is born the weight of force checking calculation by the scissors , should accord with anti-knock structure measure about 3 step, correct 9 degree of fortify and one-level anti-knock grade framed structure, think to the beam end the plasticity hinge already appears , the node shearing force holds reality completely from the beam knuckling under curved regulation decision , hold reality according to the beam matching reinforced bar covering an area of the growing modulus that intensity standard value calculation,takes advantage of that at the same time with 1.15 with material. Other first order holds curved regulation according to the beamdesigning that value secretly schemes against , the shearing force enhances a modulus being 1.35 , the two stage is 1.2.2) Shear formulaThe continuous beam of armored concrete and the cantilever beam are born the weight of at home and abroad under low repeated cycle load effect by the scissors the force experiment indicates the main cause pooling efforts and reducing even if tendon dowel force lessening is that the beam is born the weight of a force by the scissors, concrete scissors pressure area lessening shearing an intensity, tilted rift room aggregate bite. Scissors bear the weight of a norm to the concrete accepting descending strenuously being 60% be not anti-knock, the reinforced bar item does not reduce. By the same token, the experiment indicates to insisting to intimidate post with that the force is born the weight of by the scissors, loading makes post the force be born the weight of by the scissors reducing 10% ~ again and again 30%, the item arouses , adopts practice identical with the beam mainly from the concrete. The experiment is indicated to shearing force wall, whose repeated loading breaks the subtraction modulus up than monotony increases be loaded with force lessening is born the weight of by the scissors 15% ~ 20%, adopts to be not that seismic resistance is born the weight of by the scissors energy times 0.8's. Two parts accept the pressure pole strenuously tilted from the concrete is born the weight of by the scissors and horizontal stirrup of beam column node seismic resistance cutting the expert who bears the weight of force composition , is connected with have given a relevance out formula.Tilted for preventing the beam , post , company beam , shearing force wall , node from happening pressure is destroyed, we have stipulated upper limits force upper limit to be born the weight of by the scissors , have stipulated to match hoop rate’s namely to accepting scissors cross section.Reaction analysis indicates strong weak curved scissors requests; all above measure satisfies basically by mistake elasticity driving force. The plasticity rotates because ofanti-knock grade of two stage beam column under big earthquakes still very big , suggest that the shearing force enhances a modulus is bigger than having there is difference between one step unsuitably in connection with the expert, to the beam choose 1.25 is fairly good , ought to take 1.3 ~ to post 1.35. It's the rationality taking value remains to be improved and perfected in going a step further.Require that explanatory being , the beam column node accept a force very complicated , need to ensure that beam column reinforced bar reliability in the node is anchoring , hold occurrence bending resistance at the same time in the beam column destroying front, shearing happened in the node destroy, whose essence should belong to "strong weak curved scissors" categories. The node carries out adjustment on one, two steps of anti-knock grades shearing force and, only, the person enhances a modulus be are minor than post, ratio post also holds structure measure a little weak. As a result ", more strong node “statement, is not worth it encourage.3) Structure measureStructure measure is a beam, post, the shearing force wall plasticity cuts the guarantee that area asks to reach the plasticity that reality needs turning ability and consuming ability. Its "strong with "strong weak scissors turn ", weak post beam " correlates, a architectural denasality of guarantee.”Strong weak scissors turn " is a prerequisite for ensuring that the plasticity hinge turns an ability and consumes an ability; Strict "strong weak post beam " degree, the measure affecting corresponding structure, if put strict "strong weak post beam " into practice, ensure that the pillar does not appear than the plasticity hinge, corresponding axis pressure waiting for structure measure to should be a little loose right away except the bottom. Our country adopts "the strong relative weak post beam”, delays a pillar going beyond the hinge time, therefore needing to adopt stricter structure measure.①the beam structure measure beam plasticity hinge cross section senility and many factors match tendon rates and the rise knuckling under an intensity but reduce in connection with cross section tensile, with the reinforced bar being pulled; The reinforced bar matches tendon rates and concrete intensity rise but improve with being pressed on, width enhances but enhances with cross section; Plasticity hinge areastirrup can guard against the pressure injustice releasing a tendon , improve concrete limit pressure strain , arrest tilted rift carrying out , fight against a shearing force , plasticity hinge deformation and consume an ability bring into full play, That deck-molding is stridden over is smaller than exceeding , shearing deformation proportion is increasingly big, the gentility destroying , using the tilted rift easy to happen reduces. The beam has led low even if the tendon matches hoop, the reinforced bar may knuckle under after Lang Kai cracks break up by pulling even. As a result, the norm matches tendon rates to the beam even if the tendon maximum matches tendon rates and minimum , the stirrup encryption District length , maximal spacing , minimal diameter , maximal limb lead all have strict regulations from when, volume matches hoop. Being bending regulation , the guarantee cross section denasality , holding to the beam possibly for the end fighting against a beam to pull the pressure reinforced bar area ratio make restrict. Stride over height at the same time, to minimal beam width, than, aspect ratio has done regulation.② the post structure measureFor post bending a type accepting the force component, axis pressure than to the denasality and consuming to be able to, nature effect is bigger. Destroy axis pressure than big bias voltages happened in the pillar hour, component deformation is big , gentility energy nature easy to only consume, reduces; Nature is growing with axis pressure than enhancing , consuming an energy, but the gentility sudden drop, moreover the stirrup diminishes to the gentility help. Readjust oneself to a certain extent to adopt the pillar, main guarantee it's tonsillitis that the low earthquake designs strenuously, but consuming energy sex to second. The pressure ratio has made a norm to the axis restricting, can ensure that within big bias voltages range in general. Stirrup same get the strain arriving at big roles, restraining the longitudinal tendon, improving concrete pressure, deter the tilted rift from developing also to the denasality. Be to match tendon symmetrically like post, the person leads feeling bigger , as big , becoming deformed when the pillar knuckles under more even if the tendon matches tendon , the tensile finishes exceeding. As a result, the tendon minimum matches tendon rates, the stirrup encryption District length, maximalspacing, minimal diameter, maximal limb lead having made strict regulations out from when, and volume matches hoop to the pillar jumping. At the same time, aspect ratio , scissors to the pillar have stridden over a ratio , minimal altitude of cross section , width have done out regulation, to improve the anti-knock function.③ Node structure measureThe node is anchoring beam column reinforced bar area, effect is very big to structure function. Be under swear to act on earthquake and the vertical stroke to load, area provides necessary constraint to node core when node core area cuts pressure low than slanting, keep the node fundamental shear ability under disadvantageous condition, make a beam column anchoring even if the tendon is reliable, match hoop rates to node core area maximal spacing of stirrup, minimal diameter, volume having done out regulation. The beam column is main node structure measure content even if tendon reliability in the node is anchoring. Have standardized to beam tendon being hit by the node diameter; Release the anchoring length of tendon to the beam column; anchoring way all has detailed regulation.To sum up ,; Framed structure is to pass "the design plan calculating and coming realize structure measure the ability running after beam hinge organization" mainly thereby, realize "the small earth—quake shocks does not but constructs in the dirty trick, big earthquakes do not fall " three standards to-en fortifying target's. References.框架结构抗震设计地震灾害具有突发性,至今可预报性很低,给人类社会造成的损失严重,是各类自然灾中最严重的灾害之一。
常用术语中英对照一、建筑结构永久荷载:permanent load可变荷载:variable load偶然荷载:accidental load荷载代表值:representative values of a load 设计基准期:design reference period标准值:characteristic value/nominal value组合值:combination value频遇值:frequent value准永久值:quasi-permanent value荷载设计值:design value of a load荷载效应:load effect荷载组合:load combination基本组合:fundamental combination偶然组合:accidental combination标准组合:characteristic/nominal combination 频遇组合:frequent combinations准永久组合:quasi-permanent combination等效均布荷载:equivalent uniform live load 从属面积:tributary area动力系数:dynamic coefficient基本雪压:reference snow pressure基本风压:reference wind pressure地面粗糙度:terrain roughness混凝土结构:concrete structure现浇结构:cast-in-situ concrete structure装配式结构:prefabricated concrete structure缺陷:defect严重缺陷:serious defect一般缺陷:common defect施工缝:construction joint结构性能检验:inspection of structural performance锚具:anchorage夹具:grip连接器:coupler预应力钢材:prestressing steel预应力筋:prestressing tendon预应力筋-锚具组装件:prestressing tendon-anchorage assembly预应力筋-夹具组装件:prestressing tendon-grip assembly预应力筋-连接器具组装件:prestressing tendon-coupler assembly内缩:draw-in预应力筋-锚具组装件的实测极限拉力:ultimate tensile force of tendon-anchorage assembly预应力筋-夹具组装件的实测极限拉力:ultimate tensile force of tendon-grip assembly受力长度:tension length预应力筋的效率系数:efficiency factor og prestressing tendon 二、钢结构零件:part部件:component构件:element小拼单元:the smallest assembled rigid unit中拼单元:intermediate assembled structure高强度螺栓连接副:set of high strength bolt抗滑移系数:slip coefficent of faying surface预拼装:test assembling空间刚度单元:space rigid unit焊钉(栓钉)焊接:stud welding环境温度:ambient temperature钢结构防火涂料:fire resistive coating for steel struture 三、抗震地震震级:earthquake magnitude地震面波:surface wave质点运动:particle motion地动位移:displacement of ground motion质点运动速度:velocity of particle motion震中距:epicentral distance量规函数:calibration function地震烈度:seismic intensity抗震设防烈度:seismic fortification intensity抗震设防标准:seismic fortification criterion地震作用:earthquake action设计地震动参数:design parameters of ground motion设计基本地震加速度:design basic acceleration of ground motion 设计特征周期:design characteristic perild of guound motion场地:site建筑抗震概念设计:seismic concept design of buildings抗震措施:seismic fortification measures抗震构造措施:details of seismic design工程抗震:earthquake engineering工程抗震决策:earthquake engineering decision抗震对策:earthquake protective counter-measure抗震措施:earthquake protective counter抗震设防:earthquake fortification搞震设防标准:earthquake fortification level抗震设防区: earthquake fortification zone抗震设防区划:earthquake fortification zoning基本烈度:basic intensity多遇地震烈度:intensity of frequently occurred earthquake 罕遇地震烈度:intensity of seldomly occurred设计地震震动:design ground motion人工地震震动:artificial ground motion极限安全地震震动:ultimate-safe guound motion运动安全地震震动:operation-safe ground环境振动:ambient vibration;microtremer卓越周期:predominant period结构抗震性能:earthquake resistant behavior of structure 结构延性:ductility of structure抗震鉴定:seismic evaluation for engineering抗震加固:seismic strengthening for engineer-ing结构体系加固:structural system strengthening构件加固:structural member strengthening生命线工程:lifeling engineering工程地震学:engineering seismology地震:earthquake板内地震:intraplate earthquake板间地震:interplate earthquake人工诱发地震:artificially induced earthquake爆破诱发地震:explosion induced earthquake水库诱发地震:reservoir induced earthquake矿山陷落地震:mine depression earthquake 地震波:seismic wave地震震级:earthquake magnitude里氏震级:Richter’s magnitude活断裂:active fracture断裂活动段:fracturing segment地表断裂:surface fuacture断裂距:fracture distance震源:earthquake focus;hypocenter震源深度:focal depth浅源地震:shallow-focus earthquake深源地震:deep-focus earthquake震中:earthquake epicenter仪器震中:instrumental epicenter现场震中:field epicenter震中距:epicentral distance地震烈度:earthquake intensity烈度分布:intensity distribution烈度异常:abnormal intensity烈度异常区:intensity abnormal rigion等震线:isoseismal;isoseism等震线图:isoseismal map极震区:meizoseismal srea有感面积:felt area;area of perceptivity地震烈度表:earthquake intensity scale地震预报:earthquake prediction地震危险性:seismic hazard潜在震源:potential source点源:point source线源:linear source面源:areal source本底地震:background earthquake地震发生概率:earthquake occurrence probability 地震活动性:seismicity地震重现期:earthquake return period年平均发生率:amerage annual occurrence rate超越概率:exceedance probability地震震动参数:ground motion parameter地震震动衰减规律:attenuation law of ground motion烈度衰减规律:intensity attenuation地震能量耗散:seismic energy dissipation地震能量吸收:seismic energy absorption地震区划:seismic zonation中国地震烈度区划图:Chinese seismic intensity zoning map 地震小区划:seismic microzoning结构动态特性:dynamic properties of structure自由振动:free vibration自振周期:matural perild of vibration基本周期:fundamental period振型:vibration mode基本振型:fundamental mode高阶振型:high order mode共振:resonance振幅:amplitude of vibration阻尼振动:damping vibration阻尼:damping临界阻尼:critical damping阻尼比:damping ratio耗能系数:energy dissipation coefficient自由度:degree of freedom单自由度体系:single-degree of freedom system多自由度体系:multi-degree of freedom system集中质量:lumped mass地震反应:earthquake response随机地震反应:random earthquake response结构—液体耦联振动:structure-liquid coupling vibration强震观测:strong motion observation强震观测台网:strong motion observation metwork强震观测台阵:strong motion observation array强震仪:strong motion instrument三分量地震计仪:three-component seismometer(seismoscope) 加速度仪:accelerograph 光学记录加速度仪:optically recording accelerograph磁带记录加速度仪:magnetic-tape recording accelerograph 数字加速度仪:digital accelerograph加速度仪启动器:starter of accelerograph启动时间:starting time触发阈值:triggering threshold value加速度仪放大倍数:magnification of accelerograph时标:time marking强震记录:strong motion record加速度图:accelerogram数据处理:data proccessing基线校正:base-line correction地震震动:ground motion强地震震动:strong ground motion自由场地震震动:free field ground motion地震震动持续时间:ground motion duration地震震动强度:ground motion intensity谱烈度:spectral intensity峰值加速度:peak acceleration峰值速度:peak velocity峰值位移:peak displacement抗震试验:earthquake resistant test现场试验:in-sitr test天然地震试验:natural earthquake test人工地震试验:artificial earthquake test模拟地震震动试验:simulated ground motion tes t伪动力试验:pseudo dynamic test振动台试验:shaking table test结构动态特性测量:dynamic properties measurement of structure 自由振动试验:free vibration test初位移试验:initial displacement test初速度试验:initial vibuation test强迫振动试验:forced vibration test偏心块起振试验:rotation eccentric mass excitation test液压激振试验:hydraulic excitation test人激振动试验:man-escitation test环境振动试验:ambient(environmental) excitation test动态参数识别:dynamic parameter identification伪静力试验:pseudo static test偱环加载试验:cyclic loading test滞回曲线:hysteretic curve骨架曲线:skeleton curve恢复力模型:restoring mod el土动态特性试验:dynamic property test for soil共振柱试验:resonant column test动力三轴试验:dynamic triaxial test剪切波速测试:shear wave velocity measurement单孔法:single hold method跨孔法:cross hole method场地:site危险条件site condition:有利地段:favoruable area不利地段:unfavourable area危险地段:dangerous area场地类别:site classification计算基岩面:nominal bedrock场地土:site soil场地土类型:type of site soil土层平均剪切波速:average velocity of shear wave of soil layer 土体抗震稳定性:seismic stability of soil地裂缝:ground crack构造性地裂缝:tectonic ground crack非构造性地裂缝:non-tectonic ground crack震陷:subsidence due to earthquake矿坑震陷:mining subsidence due to earthquake4.2、地基抗震术语地震地基失效:ground failure due to earthquake液化:liquefaction液化势:liquefaction potintial喷水冒砂:sandboil and waterspouts液化初步判别:preliminary discrimination of liquefaction标准贯入锤击数临界值:critical blow count in standard penetration test 液化指数:liquefaction index液化等级:class of soil liquefaction液化安全系数:liquefaction safety coefficient液化强度:liquefaction safety coefficient抗液化措施:liquefaction defence measures地基承载力抗震调整系数:modified coefficient of seismic bearing capacity of subgrade5、工程抗震设计术语5.1、抗震设计术语抗震设计:seismic design二阶段设计:two-stage design工程结构抗震类别:seismic categoryof engineering structures5.2、抗震概念设计术语抗震概念设计:conceptual design of earthquake设计近震和设计远震:design mear earthquake and design far earthquake 多道抗震设防:multi-defence system of seismic engineering抗震结构整体性:integral behaviour of seismic structure塑性变形集中:concentration of plastic deformation强柱弱梁:strong column and weak beam强剪弱弯:strong shear and weak bending capacity柔性底层:soft ground floor5.3、抗震构造设计术语抗震构造措施:earthquake resistant constructional measure 抗侧力体系:lateral resisting system抗震墙:seismic structural wall抗震支撑:seismic bracing约束砌体:confined masonry圈梁:ring beam;tie column构造柱:constructional column;tie column约束混凝土:confined concrete防震缝:seismic joint隔震:base isolation;seismic isolation滑动摩擦隔震:friction isolation滚球隔震:ball bearing isolation叠层橡胶隔震:steel-plate-laminated-rubber-bearing isolation 耗能:energy dissipation5.4抗震计算设计术语抗震计算方法:seismic checking computation method静力法:static method底部剪力法:equivalent base shear method振型分解法:modal analysis method振型参与系数:mode-participation coefficient平方和方根法:aquare root of sumsquare combination method 完全二次型方根法:complete quadric combination method时程分析法:time history method时域分析法:time history method频域分析:frequency domain analysis地震作用:earthquake action设计反应谱:response apectrum楼面反应谱:floor response spectrum反应谱特征周期:characteristic period of response spectrum 地震影响系数:seismic influence coefficient地震作用效应:seismic action effect地震作用效应系数:coefficient of seismic action地震作用效应调整系数:modified coefficient of seismic action effect 变形二次效应:secondary effect of deformation 鞭梢效应:whipping effect晃动效应:sloshing effect地震动水压力:earthquake hydraulic dynamic pressure地震动土压力:earthquake dynamic earth pressure结构抗震可靠性:reliability of earthquake resistance of structure材料抗震强度:earthquake resistant strength of materials结构抗震承载能力:seismic bearing capacity of structure杆件承载力抗震调整系数:modified coefficient of seismic bearing capacity of member结构抗震变形能力:earthquake resistant deformability of structure6、地震危害和减灾术语6.1地震危害术语危害:risk危险:hazard地震危害分析:seismic risk analysis可接受的地震危害:acceqtable seismic risk灾害:disaster地震灾害:earthquake disaster地震原生灾害:primary earthquake disaster地震次生灾害:secondary earthquake disaster海啸:tsunami震害调查:earthquake damage investigation工程结构地震破坏等级:grade of earthquake damaged engineering structure完好:intact轻微破坏:slight damage中等破坏:moderate damage严重耍破坏:severe damage倒塌:collapse震害指数:esrthquake damage结构性破坏:structural damage非结构性破坏:nonstructural damage撞击损坏:pounding damage工程震害分析:earthquake damage analysis of engineering6.2减轻地震灾害术语减轻地震灾害:earthquake disaster mitigation震害预测:earthquake disaster prediction易损性:vulnerability累积损坏:cumulative damage地震经济损失:economic loss due to earthquake地震直接经济损失:direct economic loss due to earthquake 地震间接经济损失:indirect economic loss due to earthquake 地震社会损失(影响):social effect due to earthquake地震人员伤亡:earthquake casualty地震破坏率:earthquake casualty修复费用:rehabilitation cost抗震减灾规划:earthquake disaster reduction planing城市抗震减灾规划:urban earthquake disaster reduction planning工矿企业抗震减灾规划:earthquake disaster reduction planning for industrial enterpriss土地利用规划:land use planning灾害保险:disaster insurance地震灾害保险:earthquake disaster insurance震后救援:post-earthquake relief震后恢复:post-earthquake rehabilitation四、幕墙建筑幕墙:building curtain wall组合幕墙:composite curtain wall玻璃幕墙:glass curtain wall斜玻璃幕墙:inclinde building curtain wall框支承玻璃幕墙:frame supported glass curtain wall明框玻璃幕墙:exposed frame supported glass curtain wall 隐框玻璃幕墙:hidden frame supported glass curtain wall半隐框玻璃幕墙:semi-hidden frame supported glass curtain wall单元式玻璃幕墙:frame supported glass curtain wall assembled inprefabricated units构件式玻璃幕墙:frame supported glass curtain wallassembled inelements全玻璃幕墙:full glass curtain wall点支承玻璃幕墙:point-supported glass curtain wall支承装置:supporting device支承结构:suppouting structure钢绞线:strand硅酮结构密封胶:structural silicone sealant硅酮建筑密封胶:weather proofing silicone双面胶带:double-faced adhesive tape双金属腐蚀:bimetallic corrosion相容性:compatibility五、防火高层民用建筑设计防火规范裙房:skirt building建筑高度:building altitude耐火极限:duration of fire resistance不燃烧体:non-combustible component难燃烧体:hard-combustible component燃烧体:combustible component综合楼:multiple-use building商住楼:business-living building网局级电力调度楼:large-scale power dispatcher’building 高级旅馆:high-grade hotel高级住宅:high-grade hotel重要的办公楼、科研楼、档案楼:important office building、laboratory、archive半地下室:semi-basement地下室:basement安全出口:safety exit挡烟垂壁:hang wall六、防雷和采光建筑物防雷设计规范接闪器:air-termination system引下线:down-conductor system接地装置:earth-termination system接地体:earth-termination接地线:earth electrode防雷装置:lightning protection system,LPS 直击雷:direct lightning flash雷电感应:lightning induction。
浅析结构抗震概念设计要点【摘要】:本文浅述了抗震“概念设计”的一般设计要点,从而在理论上提出了建筑结构设计在抗震上的建议。
文章从对地震破坏的分析开始,多方面谈及概念设计的含义及意义,最后着力阐述了各设计要点在不同情况下的体现。
【关键词】:抗震;延性;概念设计;多道抗震防线abstract: this article analyzes the seismic conceptual design of the general design features, which, in theory, put forward the recommendations of the building structures design on the seismic. from the analysis of earthquake damage, talk about the meaning and significance of the concept design, and finally focus on design features in different situations embody.key words: earthquake; ductility; conceptual design; multi-channel seismic line of defense中图分类号:tu973+.31 文献标识码:a文章编号:2095-2104(2012)作为结构设计的一员,在经历过汶川地震震后重建的实际经验告诉我,对于结构的抗震设计来说,其“概念设计”往往比“计算设计”更要引人注意。
汶川地震中体现出来的问题是,历史造成的贫困和愚昧致使结构设计未遵守有关的规范、标准;结构方案、传力途径和连接构造缺陷造成整体稳固性的不足,这些是建筑物的重大安全隐患,也是引起倒塌的根本原因。
但凡按照设计规范要求采取了必要构造措施的砌体结构,基本上都经受住了地震的考验,能够“裂而不倒”。
Chapter 3GENERAL CONCEPTS OF EARTHQUAKERESISTANT DESIGN3.1 INTRODUCTION Experience in past earthquakes has dem-onstrated that many common buildings and typical methods of construction lack basic resistance to earthquake forces. In most cases this resistance can be achieved by following simple, inexpensive princi-ples of good building construction prac-tice. Adherence to these simple rules will not prevent all damage in moderate or large earthquakes, but life threatening collapses should be prevented, and damage limited to repairable proportions. These principles fall into several broad categories:(i)Planning and layout of the buildinginvolving consideration of the loca-tion of rooms and walls, openingssuch as doors and windows, thenumber of storeys, etc. At this stage,site and foundation aspects shouldalso be considered.(ii)Lay out and general design of the structural framing system with spe-cial attention to furnishing lateralresistance, and(iii)Consideration of highly loaded and critical sections with provision ofreinforcement as required.Chapter 2 has provided a good overview of structural action, mechanism of damage and modes of failure of buildings. From these studies, certain general principles have emerged:(i)Structures should not be brittle orcollapse suddenly. Rather, theyshould be tough, able to deflect ordeform a considerable amount.(ii)Resisting elements, such as bracing or shear walls, must be providedevenly throughout the building, inboth directions side-to-side, as wellas top to bottom.(iii)All elements, such as walls and the roof, should be tied together so as toact as an integrated unit duringearthquake shaking, transferringforces across connections and pre-venting separation.(iv)The building must be well connected to a good foundation and the earth.Wet, soft soils should be avoided, andthe foundation must be well tied to-gether, as well as tied to the wall.Where soft soils cannot be avoided,special strengthening must be pro-vided.(v)Care must be taken that all materials used are of good quality, and are pro-tected from rain, sun, insects andother weakening actions, so that theirstrength lasts.(vi)Unreinforced earth and masonry have no reliable strength in tension,and are brittle in compression. Gen-erally, they must be suitably rein-forced by steel or wood.These principles will be discussed and illustrated in this Chapter.3.2 CATEGORIES OF BUILDINGSFor categorising the buildings with the purpose of achieving seismic resistance at economical cost, three parameters turn out to be significant:(i)Seismic intensity zone where thebuilding is located,(ii)How important the building is, and (iii)How stiff is the foundation soil.A combination of these parameters will determine the extent of appropriate seismic strengthening of the building.3.2.1 Seismic zonesIn most countries, the macro level seismic zones are defined on the basis of Seismic Intensity Scales. In this guide, we shall re-fer to seismic zones as defined with refer-ence to MSK Intensity Scale as described in Appendix I for buildings.Zone A:Risk of Widespread Collapseand Destruction (MSK IX orgreater),Zone B:Risk of Collapse and HeavyDamage (MSK VIII likely), Zone C:Risk of Damage (MSK VII likely), Zone D:Risk of Minor Damage(MSK VI maximum).The extent of special earthquake strengthening should be greatest in Zone A and, for reasons of economy, can be de-creased in Zone C, with relatively little spe-cial strengthening in Zone D. However, since the principles stated in 3.1, are good principles for building in general (not just for earthquake), they should always be fol-lowed.3.2.2 Importance of buildingThe importance of the building should be a factor in grading it for strengthening purposes,and the following buildings are suggested as specially important:IMPORTANT Hospitals, clinics, com-munication buildings, fire and police sta-tions, water supply facilities, cinemas, thea-tres and meeting halls, schools, dormito-ries, cultural treasures such as museums, monuments and temples, etc.ORDINARY Housings, hostels, of-fices, warehouses, factories, etc.3.2.3 Bearing capacity of foundation soilThree soil types are considered here: Firm:Those soils which have an allowable bearing capacity of morethan 10 t/m2Soft:Those soils, which have allowable bearing capacity less than or equalto 10 t/m2.Weak:Those soils, which are liable to large differential settlement, or liquefac-tion during an earthquake.Buildings can be constructed on firm and soft soils but it will be dangerous to build them on weak soils. Hence appropri-ate soil investigations should be carried out to establish the allowable bearing capacity and nature of soil. Weak soils must be avoided or compacted to improve them so as to qualify as firm or soft.3.2.4 Combination of parametersFor defining the categories of buildings for seismic strengthening purposes, four cat-egories I to IV are defined in Table 3.1. in which category I will require maximum strengthening and category IV the least in-puts. The general planning and designing principles are, however, equally applica-ble to them.3.3. GENERAL PLANNING AND DESIGN ASPECTS3.3.1. Plan of building(i)Symmetry: The building as a wholeor its various blocks should be keptsymmetrical about both the axes.Asymmetry leads to torsion duringearthquakes and is dangerous,Fig 3.1. Symmetry is also desirablein the placing and sizing of door andwindow openings, as far as possi-ble.(ii)Regularity: Simple rectangular shapes, Fig 3.2 (a) behave better inan earthquake than shapes withmany proj ections Fig 3.2 (b). Tor-sional effects of ground motion arepronounced in long narrow rectan-gular blocks. Therefore, it is desirableto restrict the length of a block tothree times its width. If longerlengths are required two separateblocks with sufficient separation inbetween should be provided,Fig 3.2 (c).(iii)Separation of Blocks: Separation of a large building into several blocksmay be required so as to obtain sym-metry and regularity of each block.Fig 3.1 Torsion of unsymmetrical plansFor preventing hammering or pounding damage between blocks a physical separation of 3 to 4 cm throughout the height above the plinth level will be adequate as well as practical for upto 3 storeyed buildings, Fig 3.2 (c).The separation section can be treated just like expansion joint or it may be filled or covered with a weak mate-rial which would easily crush and crumble during earthquake shaking. Such separation may be consideredin larger buildings since it may notbe convenient in small buildings. (iv)Simplicity: Ornamentation invo1ving large cornices, vertical orhorizontal cantilever projections, fa-cia stones and the like are danger-ous and undesirable from a seismic viewpoint. Simplicity is the best ap-proach.Where ornamentation is insistedupon, it must be reinforced withsteel, which should be properly em-Fig 3.2 Plan of building blocks.bedded or tied into the main struc-ture of the building.Note: If designed, a seismic coeffi-cient about 5 times the coefficientused for designing the main struc-ture should be used for cantileverornamentation.(v)Enclosed Area: A small building en-closure with properly intercon-nected walls acts like a rigid boxsince the earthquake strength whichlong walls derive from transversewalls increases as their length de-creases.Therefore structurally it will be ad-visable to have separately enclosedrooms rather than one long room,Fig 3.3. For unframed walls of thick-ness t and wall spacing of a, a ratioof a/t = 40 should be the upper limitbetween the cross walls for mortarsof cement sand 1:6 or richer, and lessfor poor mortars. For larger panelsor thinner walls, framing elementsshould be introduced as shown atFig 3.3(c).(vi)Separate Buildings for Different Functions: In view of the differencein importance of hospitals, schools,assembly halls, residences, commu-nication and security buildings, etc.,it may be economical to plan sepa-rate blocks for different functions soas to affect economy in strengthen-ing costs.3.3.2 Choice of siteThe choice of site for a building from the seismic point of view is mainly concerned with the stability of the ground. The fol-lowing are important:(i)Stability of Slope: Hillside slopes li-able to slide during an earthquakeshould be avoided and only stableslopes should be chosen to locate thebuilding. Also it will be preferable Fig 3.3 Enclosed area forming box units3.3.4 Fire resistanceIt is not unusual during earthquakes that due to snapping of electrical fittings short circuiting takes place, or gas pipes may develop leaks and catch fire. Fire could also be started due to kerosene lamps and kitchen fires. The fire hazard sometimes could even be more serious than the earth-quake damage. The buildings should there-fore preferably be constructed of fire resist-ant materials.3.4 STRUCTURAL FRAMINGThere are basically two types structural framing possible to withstand gravity and seismic load, viz. bearing wall construction and framed construction. The framed con-struction may again consist of:(i)Light framing members which must have diagonal bracing such as wood frames (see Chapter 6) or infill walls for lateral load resistance, Fig 3.3 (c),or (ii)Substantial rigid jointed beams and columns capable of resisting the lat-eral loads by themselves.The latter will be required for large col-umn free spaces such as assembly halls.The framed constructions can be used for a greater number of storeys compared to bearing wall construction. The strength and ductility can be better controlled in framed construction through design. The strength of the framed construction is not affected by the size and number of openings. Such frames fall in the category of engineered construction, hence outside the scope of the present book.to have several blocks on terraces than have one large block with footings at very different elevations.A site subject to the danger of rock falls has to be avoided.(ii)V ery Loose Sands or Sensitive Clays:These two types of soils are liable to be destroyed by the earthquake so much as to lose their original struc-ture and thereby undergo compaction. This would result in large unequal settlements and dam-age the building. If the loose cohesionless soils are saturated with water they are apt to lose their shear resistance altogether during shaking and become liquefied.Although such soils can be compacted,for small buildings the operation may be too costly and these soils are better avoided.For large building complexes, such as hous-ing developments, new towns, etc., this fac-tor should be thoroughly investigated and appropriate action taken.Therefore a site with sufficient bearing capacity and free from the above defects should be chosen and its drainage condi-tion improved so that no water accumu-lates and saturates the ground close to the footing level.3.3.3. Structural designDuctility (defined in Section 3.6) is the most desirable quality for good earthquake per-formance and can be incorporated to some extent in otherwise brittle masonry con-structions by introduction of steel reinforc-ing bars at critical sections as indicated later in Chapters 4 and 5.The strengthening measures necessary to meet these safety requirements are pre-sented in the following Chapters for vari-ous building types. In view of the low seismicity of Zone D, no strengthening measures from seismic consideration are considered necessary except an emphasis on good quality of construction. The fol-lowing recommendations are therefore in-tended for Zones A, B and C. For this pur-pose certain categories of construction in a number of situations were defined in Table 3.1.3.6 CONCEPTS OF DUCTILITY,DEFORMABILITY AND DAMAGEABILITYDesirable properties of earthquake-resist-ant design include ductility, deformability and damageability. Ductility and deformability are interrelated concepts sig-nifying the ability of a structure to sustain large deformations without collapse.Damageability refers to the ability of a struc-3.5 REQUIREMENTS OF STRUCTURAL SAFETYAs a result of the discussion of structural action and mechanism of failure of Chap-ter 2, the following main requirements of structural safety of buildings can be arrived at.(i)A free standing wall must be de-signed to be safe as a vertical canti-lever.This requirement will be difficult to achieve in un-reinforced masonry in Zone A. Therefore all partitions in-side the buildings must be held on the sides as well as top. Parapets of category I and II buildings must be reinforced and held to the main structural slabs or frames.(ii)Horizontal reinforcement in walls is required for transferring their own out-of-plane inertia load horizon-tally to the shear walls.(iii)The walls must be effectively tiedtogether to avoid separation at verti-cal joints due to ground shaking.(iv)Shear walls must be present alongboth axes of the building.(v)A shear wall must be capable of re-sisting all horizontal forces due to its own mass and those transmitted to it.(vi)Roof or floor elements must be tiedtogether and be capable of exhibit-ing diaphragm action.(vii)Trusses must be anchored to the sup-porting walls and have an arrange-ment for transferring their inertia force to the end walls.Table 3.1 Categories of buildings for strengthening purposesCategory Combination of conditions for the Category I Important building on soft soil in zone A IIImportant building on firm soil in zone A Important building on soft soil in zone B Ordinary building on soft soil in zone A IIIImportant building on firm soil in zone B Important building on soft soil in zone C Ordinary building on firm soil in zone A Ordinary building on soft soil in zone B IVImportant building on firm soil in zone C Ordinary building on firm soil in zone B Ordinary building on firm soil in zone CNotes:(i)Seismic zones A, B and C and important buildings are definedin Section 3.2.(ii)Firm soil refers to those having safe bearing value more than 10 t/m 2 and soft those less than 10 t/m 2.(iii)Weak soils liable to compaction and liquefaction under earth-quake condition are not covered here.together so that excessive stress concentra-tions are avoided and forces are capable of being transmitted from one component to another even through large deformations.Ductility is a term applied to material and structures, while deformability is ap-plicable only to structures.Even when ductile materials are present in sufficient amounts in structural compo-nents such as beams and walls, overall structural deformability requires that geo-metrical and material instability be avoided. That is, components must have proper aspect ratios (that is not be too high),must be adequately connected to resisting elements (for example sufficient wall ties for a masonry wall, tying it to floors, roof and shear walls), and must be well tied to-gether (for example positive connection at beam seats, so that deformations do not permit a beam to simply fall off a post) so as to permit large deformations and dy-namic motions to occur without sudden collapse.3.6.3 DamageabilityDamageability is also a desirable quality for construction, and refers to the ability of a structure to undergo substantial damages,without partial or total collapseA key to good damageability is redun-dancy, or provision of several supports for key structural members, such as ridge beams, and avoidance of central columns or walls supporting excessively large por-tions of a building. A key to achieving good damageability is to always ask the ques-tion, if this beam or column, wall connec-tion, foundation, etc. fails, what is the con-sequence? . If the consequence is total col-ture to undergo substantial damage, with-out partial or total collapse. This is desir-able because it means that structures can absorb more damage, and because it per-mits the deformations to be observed and repairs or evacuation to proceed, prior to collapse. In this sense, a warning is received and lives are saved.3.6.1 DuctilityFormally, ductility refers to the ratio of the displacement j ust prior to ultimate dis-placement or collapse to the displacement at first damage or yield. Some materials are inherently ductile, such as steel, wrought iron and wood. Other materials are not ductile (this is termed brittle), such as cast iron, plain masonry, adobe or concrete, that is, they break suddenly, without warning.Brittle materials can be made ductile, usu-ally by the addition of modest amounts of ductile materials, Such as wood elements in adobe construction, or steel reinforcing in masonry and concrete constructions.For these ductile materials to achieve a ductile effect in the overall behaviour of the component, they must be proportioned and placed so that they come in tension and are subjected to yielding. Thus, a necessary re-quirement for good earthquake-resistant design is to have sufficient ductile materi-als at points of tensile stresses.3.6.2 DeformabilityDeformability is a less formal term refer-ring to the ability of a structure to displace or deform substantial amounts without collapsing. Besides inherently relying on ductility of materials and components,deformability requires that structures be well-proportioned, regular and well tiedlapse of the structure, additional supports or alternative structural layouts should be examined, or an additional factor of safety be furnished for such critical members or connections.3.7 CONCEPT OF ISOLATION The foregoing discussion of earthquake-resistant design has emphasized the tradi-tional approach of resisting the forces an earthquake imposes on a structure. An al-ternative approach which is presently emerging is to avoid these forces, by isola-tion of the structure from the ground mo-tions which actually impose the forces on the structure.This is termed base-isolation. For sim-ple buildings, base- friction isolation may be achieved by reducing the coefficient of friction between the structure and its foun-dation, or by placing a flexible connection between the structure and its foundation.For reduction of the coefficient of fric-tion between the structure and its founda-tion, one suggested technique is to place two layers of good quality plastic between the structure and its foundation, so that the plastic layers may slide over each other.Flexible connections between the struc-ture and its foundation are also difficult to achieve on a permanent basis. One tech-nique that has been used for generations has been to build a house on short posts resting on large stones, so that under earth-quake motions, the posts are effectively pin-connected at the top and bottom and the structure can rock to and fro somewhat. This has the advantage of substantially re-ducing the lateral forces, effectively isolat-ing the structure from the high amplitude high frequency motions. Unfortunately, tra-ditional applications of this technique usu-ally do not account for occasional large displacements of this pin-connected mechanism, due to rare very large earth-quakes or unusually large low-frequency content in the ground motion, so that when lateral displacements reach a certain point, collapse results. A solution to this problem would be provision of a plinth slightly be-low the level of the top of the posts, so that when the posts rock too far, the structure is only dropped a centimeter or so.3.8 FOUNDATIONSFor the purpose of making a building truly earthquake resistant, it will be necessary to choose an appropriate foundation type for it. Since loads from typical low height buildings will be light, providing the re-quired bearing area will not usually be a problem. The depth of footing in the soil should go below the zone of deep freezing in cold countries and below the level of shrinkage cracks in clayey soils. For choos-ing the type of footing from the earthquake angle, the soils may be grouped as Firm and Soft (see Section 3.2.3) avoiding the weak soil unless compacted and brought to Soft or Firm condition.3.8.1 Firm soilIn firm soil conditions, any type of footing (individual or strip type) can be used. It should of course have a firm base of lime or cement concrete with requisite width over which the construction of the footing may start. It will be desirable to connect the in-dividual reinforced concrete column footings in Zone A by means of RC beams just below plinth level intersecting at right angles.3.8.2 Soft soilIn soft soil, it will be desirable to use a plinth band in all walls and where necessary to connect the individual column footings by means of plinth beams as suggested above. It may be mentioned that continuous rein-forced concrete footings are considered to be most effective from earthquake consid-erations as well as to avoid differential set-tlements under normal vertical loads. De-tails of plinth band and continuous RC footings are presented in Chapters 4 and 9 respectively.These should ordinarily be provided continuously under all the walls. Continu-ous footing should be reinforced both in the top and bottom faces, width of the foot-ing should be wide enough to make the contact pressures uniform, and the depth of footing should be below the lowest level of weathering.。