Meta分析中的异质性及其处理方法_王丹 (1)
- 格式:pdf
- 大小:1.17 MB
- 文档页数:4
Meta分析异质性大?这都不是事!美景欣赏完了,咱们该干正事了。
审稿人嫌弃异质性太高?让做meta回归?这个因素也有影响,那个因素也有影响,怎么办?有发表偏倚?都是什么乱七八糟的,到底是什么意思呢?今天我们就来理一理,异质性/meta回归/发表偏倚/亚组分析/敏感性分析之间的关系。
我们知道,meta分析是把不同的研究汇总到一起分析的,这其中必然是有异质性的,是不能避免的。
但是异质性如果超出了接收范围的话,我们把他硬拉到一起分析,得到的结论就是不可靠,没有意义的。
所以异质性是必然存在的,但要在合理的范围。
因此,异质性分析是就是必不可少的。
一般来说I square<50%,p>0.05是被认为可接受的。
而超出这一范围也是常见的。
如果真的非常大应该怎么办呢?不妨试试这两种方法:Meta回归Meta回归,看到底是哪个因素导致的异质性,当然了,如果影响因素很明显或者涉及因素很少的话,也没有必要做meta回归,直接做亚组分析就好了。
亚组分析亚组分析可以把研究对象细分,得出更为准确的结论。
看看是不是还很大,判断是哪些因素影响结果稳定性。
到这里就有人问了:我怎么知道以哪些因素为基础进行亚组分析呢?1) 根据临床经验,判断哪个因素可能对结果有较大影响。
2) 其实我想说,把原始文献中分了组的都分析一下就好了。
您可能觉得这样太粗放,太不严谨了。
那就试试第三种方法咯。
3) 第三种方法是啥?就是上面讲到的meta回归啊!那么审稿人觉得结果不稳定怎么办呢?敏感性分析啊。
敏感性分析一般有三种方法:1)逐个剔除纳入文献,看看结果是否发生较大变化(一般看是否逆转),如果逆转就说明结果不稳定,那么恭喜你,这篇文章对结果产生较大影响,需要细致讨论了(还在担心讨论不知道写什么吗);如果结果未发生较大变化,那么同样恭喜你,你的结果是稳定的,你可以自信的在你的结果部分说(chui)明(niu)了。
那么发表偏倚又是怎么回事呢?这个其实很好理解啦。
Meta分析中的异质性及其处理方法一、本文概述Meta分析是一种重要的统计方法,它通过综合多个独立研究的结果,以提高效应估计的精确性和可靠性。
然而,在Meta分析过程中,异质性是一个常见且重要的问题。
异质性指的是各个独立研究间结果的不一致性,这种不一致性可能源于研究设计、样本特征、干预措施、测量方法等多种因素。
异质性的存在会影响Meta分析结果的可靠性和有效性,因此,对异质性进行恰当的识别和处理是Meta分析过程中的关键步骤。
本文旨在深入探讨Meta分析中的异质性问题,包括其来源、识别方法以及处理策略。
我们将概述异质性的定义、来源和分类,以帮助读者理解其本质和重要性。
我们将介绍常用的异质性识别方法,包括图形展示和统计检验等,以帮助读者识别并量化异质性。
我们将详细讨论处理异质性的各种策略,包括敏感性分析、亚组分析、元回归分析以及随机效应模型等,以帮助读者根据实际情况选择合适的处理方法。
通过本文的阅读,读者将能够对Meta分析中的异质性有更深入的理解,并掌握有效的异质性处理方法,从而提高Meta分析的质量和可靠性。
二、异质性的定义与来源在Meta分析中,异质性(Heterogeneity)是一个核心概念,它描述了不同研究结果之间的一致性或差异性。
简单来说,异质性就是指在多个研究之间存在的差异,这些差异可能是由于各种因素造成的,例如研究设计、样本特征、干预措施、测量方法以及研究环境等。
异质性可以分为两类:临床异质性和方法学异质性。
临床异质性主要源于参与者的不同特征、疾病的严重程度、干预措施的差异等;而方法学异质性则主要与研究的设计、执行和分析方式有关,如不同的随机化方法、盲法使用、数据收集和处理方式等。
在临床实践中,异质性的存在可能会导致Meta分析结果的解释变得复杂和困难。
如果忽视异质性,可能会得出误导性的结论,甚至误导临床决策。
因此,在进行Meta分析时,对异质性的识别、量化和处理至关重要。
为了更准确地理解和处理异质性,研究者需要深入探究其来源,并在分析过程中采取相应的措施。
收藏Meta分析步骤详解,以及常见问题解析(二)前几日的《收藏|Meta分析步骤详解,以及常见问题解析(一)》中已经介绍了Meta分析步骤中的前三步:选题和立意、文献检索、对文献的质量评价和数据收集。
今天我们继续第三步,从统计分析的指标开始讲起:统计分析的指标(一)、异质性检验1检验原理:meta 分析的原理首先是假定各个不同研究都是来自非同一个总体(H0:各个不同样本来自不同总体,存在异质性,备择假设H1,如果p>0.1,拒绝H0, 接受H1,,即来自同一总体)这样就要求不同研究间的统计量应该接近总体参数真实值,所以各个不同文献研究结果是比较接近,就是要符合同质性,这时候将所有文献的效应值合并可以采用固定效应模型的有些算法,如倒方差法,mantel haenszel 法,peto法等。
2分类:异质性检验,包括三个方面:临床异质性,统计学异质性和方法学异质性,作meta分析首先应当保证临床同质性,比如研究的设计类型、实验目的、干预措施等相同,否则就要进入亚组分析,或者取消合并,在满足临床同质性的前提下(非常重要,不能一味追求统计学同质性,首先考虑专业和临床同质性),我们进一步观测统计学同质性。
临床异质性较大时不能行meta分析,随机效应模型也不行。
只能行描述性系统综述(systemic reviews,SR)或分成亚组消除临床异质性.解决临床异质后再考虑统计学异质性的问题。
如果各个文献研究间结果不存在异质性(p>0.1),选用固定效应模型(fixed model),这时其实选用随即效应模型的结果与固定效应模型相同;如果不符合同质性要求,即异质性检验有显著性意义(p<>此外,这里要说明的是,采用的模型不同,和合并效应值的方法不同,都会导致异质性检验P值存在变动,这个可以从算法原理上证明,不过P值变动不会很大,一般在小数点后第三位的改变。
异质性检验的Q 值在固定模型中采用倒方差法和Mantel-haenszel法中也会不同。
Meta分析中的异质性检验一、M eta分析原理假定各个不同研究都是来自同一个总体,要求不同研究间的统计量应该接近总体参数真实值,所以各个不同文献研究结果是比较接近,就要符合同质性,这时候将所有文献的效应值合并可以采用固定效应模型的有些算法,如倒方差法,man tel hae nszel 法, peto 法等。
二、异质性的概念2.1广义:描述参与者、干预措施和一系列研究间测量结果的差异和多样性,或那些研究间的内在真实性的变异。
2.2狭义:专指统计学异质性,用来描述一系列研究中效应量的变异程度,也表明除可预见的偶然机会之外的研究间存在的差异性。
三、异质性的分类3.1临床异质性:包含试验对象的差异,如纳入及排除标准的不同;试验条件的差异,如干预剂量、剂型、方法不同;定义指标的差异,如试验定义的暴露、结局、测量工具不同,等等。
3.2方法学异质性:包含研究设计的差异,如前瞻性、回顾性、随机化对照试验;偏倚风险,如盲法;结局完整性,如随访时间长短不同。
3.3统计学异质性:是指不同试验间被估计的效应指标的变异,它是研究间临床和方法学上多样性的直接结果。
统计学计算一致性以数据为基础,其原理是各研究间可信区间的重合程度越,则各研究间存在统计学同质性的可能性越大,相反,可信区间的重合程度越小,各研究间存在统计学异质性的可能性越大。
临床异质性、方法学异质性和统计学异质性三种是相互独立又相互关联的,临床或方法学上的异质,不一定在统计学上就有异质性的表现,反之亦然。
但寻找临床和方法学上的异质性可以提示统计学异质性的来源。
四、异质性检验方法4.1概念:又叫统计量的齐性检验(一致性检验),目的是检查各个独立研究的结果是否具有可合并性。
4.2常见方法:4.2.1 Q检验(1)计算公式及解释注:Wi :第i个研究的权重,Yi :第i个研究的效应量,M :所有研究的平均效应量。
Q为效应量的标准化平方和,因此服从自由度为(k-1 )的x 2分布。
• 1115 •© 2009 中国循证医学杂志编辑部C JEBMMeta分析中的异质性及其处理方法王 丹1 翟俊霞2 牟振云3,* 宗红侠1 赵晓东2 王学义4 顾 平51. 河北医科大学图书馆(石家庄 050017);2. 河北省医学情报研究所(石家庄 050021);3. 河北医科大学公共卫生学院流行病与卫生统计教研室(石家庄 050017);4. 河北医科大学第一医院精神卫生研究所(石家庄 050031);5.河北医科大学第一医院神经内科(石家庄 050031)摘要 介绍Meta 分析中异质性研究,包括Meta 分析中异质性的定义,并将异质性分为临床异质性、方法学异质性、统计学异质性三类,介绍减少纳入临床异质性和方法学异质性研究的措施,统计学异质性的五种检验方法(Q 统计量、I 2统计量、H 统计量、Galbraith 图法、L’Abbe 图)、实例分析及适用情况。
根据异质性的有无将Meta 分析分为探索型Meta 分析和分析型Meta 分析,存在异质性时可采取的措施及其流程图。
关键词 Meta 分析;异质性;分类;检验方法;措施Discussing on the Research of Heterogeneity in Meta-analysisWANG Dan 1, ZHAI Jun-xia 2, MOU Zhen-yun 3,*, ZONG Hong-xia 1, ZHAO Xiao-dong 2, WANG Xue-yi 4, Gu Ping 51. Library of Hebei Medical University, Shijiazhuang 050017, China;2. Hebei Institute of Medical Information, Shijiazhuang 050021, China;3. Department of Epidemiology and Health Statistics, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China;4. Mental Health Center, The First Hospital, Hebei Medical University, Shijiazhuang 050031, China;5. Department of Neurology, The First Hospital, Hebei Medical University, Shijiazhuang 050031, ChinaAbstract This paper is to discuss the research of heterogeneity in Meta-analysis, including the defi nition of the heterogeneity in Meta-analysis and classifi cation it into clinical heterogeneity, methodological heterogeneity and statistical heterogeneity, the strategies for diminishing clinical heterogeneity and methodological heterogeneity, the fi ve testing methods in statistical heterogeneity (Q statistic, I 2 statistic, H statistic, Galbraith plot and L’Abbe plot) and the examples and applying conditions of the fi ve testing methods, classifi cation of meta-analysis into exploratory meta-analysis and analytic meta-analysis according if the meta-analysis has heterogeneity, and the strategies and the fl owchart when existing the heterogeneity in meta-analysis.Key words Meta-analysis; Heterogeneity; Classifi cation; Testing methods; Strategies基金项目:河北省2007年医学科学研究重点课题计划指令性课题(07025)。
Meta 分析中的异质性检验一、Meta 分析原理假定各个不同研究都是来自同一个总体,要求不同研究间的统计量应该接近总体参数真实值,所以各个不同文献研究结果是比较接近,就要符合同质性,这时候将所有文献的效应值合并可以采用固定效应模型的有些算法,如倒方差法,mantel haenszel 法,peto法等。
二、异质性的概念2.1广义:描述参与者、干预措施和一系列研究间测量结果的差异和多样性,或那些研究间的内在真实性的变异。
2.2狭义:专指统计学异质性,用来描述一系列研究中效应量的变异程度,也表明除可预见的偶然机会之外的研究间存在的差异性。
三、异质性的分类3.1临床异质性:包含试验对象的差异,如纳入及排除标准的不同;试验条件的差异,如干预剂量、剂型、方法不同;定义指标的差异,如试验定义的暴露、结局、测量工具不同,等等。
3.2方法学异质性:包含研究设计的差异,如前瞻性、回顾性、随机化对照试验;偏倚风险,如盲法;结局完整性,如随访时间长短不同。
3.3统计学异质性:是指不同试验间被估计的效应指标的变异,它是研究间临床和方法学上多样性的直接结果。
统计学计算一致性以数据为基础,其原理是各研究间可信区间的重合程度越,则各研究间存在统计学同质性的可能性越大,相反,可信区间的重合程度越小,各研究间存在统计学异质性的可能性越大。
临床异质性、方法学异质性和统计学异质性三种是相互独立又相互关联的,临床或方法学上的异质,不一定在统计学上就有异质性的表现,反之亦然。
但寻找临床和方法学上的异质性可以提示统计学异质性的来源。
四、异质性检验方法4.1概念:又叫统计量的齐性检验(一致性检验),目的是检查各个独立研究的结果是否具有可合并性。
4.2常见方法:4.2.1 Q检验(1)计算公式及解释?注:Wi :第i个研究的权重,Yi :第i个研究的效应量,M :所有研究的平均效应量。
Q为效应量的标准化平方和,因此服从自由度为(k-1)的χ2分布。
第二军医大学学报Acad J Sec Mil Med Univ 2006Apr ;27(4)・449 ・・学术园地・Meta 分析中异质性的识别与处理The identif ication and solution of heterogeneity in Meta 2analysis魏丽娟,董惠娟(第二军医大学研究生管理大队,上海200433)[摘要] 异质性评价是Meta 分析中必须要进行的一项工作,对于保证Meta 分析的质量具有重要的意义。
本文介绍了异质性含义、来源和检验方法,重点讨论了异质性的处理方法。
[关键词] Meta 分析;异质性检验[中图分类号] R 195.1 [文献标识码] B [文章编号] 02582879X (2006)0420449202[作者简介] 魏丽娟,本科在读.E 2mail :feiyangstudent @hot Meta 分析(Meta 2analysis )是对具有相同研究内容、目的、类型的多个医学研究进行综合分析的一种方法。
通过Meta 分析,可以达到增大样本含量从而增大检验效能的目的,其结果作为最佳的证据,在卫生决策和临床实践中发挥了越来越大的作用。
异质性评价是保证Meta 质量的一个重要步骤,其与效应量合并同样重要。
然而异质性评价的重要性并未引起国内研究者的充分重视,为此本文就异质性含义、来源、检验方法及其处理作一讨论。
1 异质性的含义及其来源 由于纳入同一个Meta 分析的所有研究都存在差异,因此我们将Meta 分析中不同研究间的各种变异,称之为异质性[1]。
这些变异主要是研究对象、研究设计、干预措施、结果测量上的变异。
Meta 分析效应合并时的变异来源有两类[2]:一类是研究内变异,即使两个研究的总体效应完全相同,不同的研究由于样本含量不同,样本内的各观察单位可能存在差异,可得到不同的结果,但与实际效应相差不会很大。
当样本含量较大时,抽样误差相对较小。
© 2009 中国循证医学杂志编辑部 C JEBMMeta分析中的异质性及其处理方法王 丹1翟俊霞2牟振云3,*宗红侠1赵晓东2王学义4顾 平51. 河北医科大学图书馆(石家庄 050017);2. 河北省医学情报研究所(石家庄 050021);3. 河北医科大学公共卫生学院流行病与卫生统计教研室(石家庄 050017);4. 河北医科大学第一医院精神卫生研究所(石家庄 050031);5.河北医科大学第一医院神经内科(石家庄 050031)摘要介绍Meta分析中异质性研究,包括Meta分析中异质性的定义,并将异质性分为临床异质性、方法学异质性、统计学异质性三类,介绍减少纳入临床异质性和方法学异质性研究的措施,统计学异质性的五种检验方法(Q统计量、I2统计量、H统计量、Galbraith图法、L’Abbe图)、实例分析及适用情况。
根据异质性的有无将Meta分析分为探索型Meta分析和分析型Meta分析,存在异质性时可采取的措施及其流程图。
关键词 Meta分析;异质性;分类;检验方法;措施Discussing on the Research of Heterogeneity in Meta-analysisWANG Dan1, ZHAI Jun-xia2, MOU Zhen-yun3,*, ZONG Hong-xia1, ZHAO Xiao-dong2, WANG Xue-yi4, Gu Ping51. Library of Hebei Medical University, Shijiazhuang 050017, China;2. Hebei Institute of Medical Information, Shijiazhuang 050021, China;3. Department of Epidemiology and Health Statistics, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China;4. Mental Health Center, The First Hospital, Hebei Medical University, Shijiazhuang 050031, China;5. Department of Neurology, The First Hospital, Hebei Medical University, Shijiazhuang 050031, ChinaAbstract This paper is to discuss the research of heterogeneity in Meta-analysis, including the defi nition of the heterogeneity in Meta-analysis and classifi cation it into clinical heterogeneity, methodological heterogeneity and statistical heterogeneity, the strategies for diminishing clinical heterogeneity and methodological heterogeneity, the fi ve testing methods in statistical heterogeneity (Q statistic, I2 statistic, H statistic, Galbraith plot and L’Abbe plot) and the examplesand applying conditions of the fi ve testing methods, classifi cation of meta-analysis into exploratory meta-analysis andanalytic meta-analysis according if the meta-analysis has heterogeneity, and the strategies and the fl owchart when existingthe heterogeneity in meta-analysis.Key words Meta-analysis; Heterogeneity; Classifi cation; Testing methods; Strategies基金项目:河北省2007年医学科学研究重点课题计划指令性课题(07025)。
Meta分析中的异质性检验
佚名
【期刊名称】《临床肝胆病杂志》
【年(卷),期】2022(38)8
【摘要】异质性检验是Meta分析中一个非常重要的环节。
作者需要知道如何判断有无异质性存在,以及异质性的大小。
异质性的检验方法有卡方检验、I2检验,以及采用P值进行判断。
通常以P<0.1作为具有异质性的判断标准。
如果存在统计学检验的异质性,通常可采用以下几种方法进行处理:(1)如果异质性太强,即纳入研究的特征差异较大,可以放弃资料合并,改为单个研究的效应分析。
【总页数】1页(P1833-1833)
【正文语种】中文
【中图分类】R73
【相关文献】
1.双变量Meta分析——评价基线危险度对Meta分析中异质性的影响
2.Meta分析中的异质性检验方法
3.Meta分析中异质性方差区间估计方法及改进
4.Meta分析中异质性检验方法的改进
5.环境规制与区域绿色经济增长——基于时间、空间和规制类型异质性框架的Meta分析检验
因版权原因,仅展示原文概要,查看原文内容请购买。
meta-analysis data analysis标题:Meta-Analysis数据分析Meta-Analysis,又称为元分析,是一种通过综合多个研究结果来得出总体结论的统计方法。
它在处理样本量小、异质性高的问题时具有明显的优势,能够为研究者提供更加精确的统计结论。
因此,对于元分析的数据分析显得尤为重要。
一、数据清洗与预处理在开始元分析之前,首先要对原始数据进行分析和处理。
主要包括缺失值处理、异常值处理、数据一致性检查等。
例如,对于一些缺失的数据,可以考虑使用插值或估计等方法进行填补;对于明显异常的数据点,可能需要剔除或替换。
这一步的目标是确保数据的完整性和准确性,为后续的分析打下基础。
二、异质性分析元分析的主要优势在于处理异质性问题。
然而,如果不同研究之间的异质性过大,可能会影响最终的统计效果。
因此,在进行分析之前,需要对异质性进行评估。
常用的异质性评估方法包括I2指数、Q 统计量等。
如果异质性过大,可以考虑进行亚组分析、排除研究等方法来减小异质性。
三、统计方法选择在确定了数据的清洗和预处理以及异质性之后,需要选择合适的统计方法进行分析。
一般来说,元分析常用的统计方法包括合并效应量、随机效应模型、固定效应模型等。
选择哪种模型需要根据研究的设计、数据的特点以及预期的结论来决定。
一般来说,如果研究之间的同质性较高,可以选择固定效应模型;如果研究之间的异质性较大,可以考虑使用随机效应模型。
四、效应量合成在确定了统计方法之后,需要对各个研究的结果进行合成。
这通常需要使用一些统计软件,如RevMan、Stata等。
在合成效应量时,需要考虑研究的设计、样本量、测量工具等因素对结果的影响,以确保合成结果的准确性。
五、结果解读与结论总结最后,需要对合成后的结果进行解读,并得出结论。
一般来说,如果合成后的效应量在统计上是显著的,并且具有较高的效应强度,那么可以认为元分析的结果是有意义的。
同时,还需要考虑研究的设计和方法学特点对结果的影响,以及结果的适用范围和局限性。
Meta分析中异质性检验的传统方法是Q检验,缺陷体现在受纳入研究数的影响明显:囊纳入的研究数较少时,其检验效能低(及时存在异质性,Q检验也可能无统计意义);当纳入的研究数多时,即使不存在异质性,QAJ检验也可能有统计学意义。
另外Q检验法仅考虑了样本大小的贡献性,没有考虑研究质量的作用。
在Q检验的基础上,Higgins等提出了异质性定量化描述的I2统计量,定义为:
I2 =H2−1
H2∗100%= Q−(K−1)
Q
∗100%(K表示纳入meta
分析的研究数)
其中,H = √Q
K−1
,
I2是一个衡量多个研究效应间差异程度大小的质保,描述由于研究间所致的变异(而非抽样误差所引起的变异)占总变异的百分比。
I2判定异质性划分是:I2 = 0 时,表面研究间的变异仅由于抽样误差造成;当I2 在0.25 和0.5 之间时,则认为存在中度异质性;当I2 > 0.5时将被认为存在高度异质性。
有学者认为I2统计量就是利用了自由度矫正了纳入研究数对Q值得影响,其值大小不会随研究数变化而变化,异质性检验结果也更稳健可靠。
Meta分析中的异质性(heterogeneity)及其处理原则和方法Meta 分析又称荟萃分析、汇总分析、整合分析,是对具有相同研究题目的多个医学研究进行综合分析。
meta分析的目的在于增大样本含量,减少随机误差所致的差异,增大检验效能。
一个高质量的Meta 分析相当于开展了一个多中心的研究,理想情况下,Meta分析纳入的各项研究均指向同一个结果,即各研究间具有同质性。
尽管,我们试图通过严格的入选和排除标准,以保证纳入研究的同质性。
然而,实际情况往往不尽如意。
会造成“合并萝卜、白菜、西红柿”的错误,就算是勉强合并统计量,得出的结论也不可信。
meta就没有意义了。
所以,合并效应量之前,一定要进行异质性检验。
可以明确的说,纳入Meta分析的所有研究都存在异质性。
当异质性较大时,超出了随机误差,Meta分析的结果就不太可靠。
我们需要通过适当的方法识别它,对其进行检验,以决定后续的处理策略。
梅斯医学提供有关异质性处理的策略。
我们在做meta分析前,必须要做的事有两件:A 确定文献的纳入和排除标准;B 纳入文章的质量评分,例如jadad评分、QUADAS评分等。
临床异质性、方法学异质性和统计学异质性三者是相互独立又相互关联的,临床或方法学上的异质,不一定在统计学上就有异质性表现,反之亦然。
统计学异质性是指:不同试验间被估计的治疗效应的变异。
其实,我们可以这样理解,A“严格执行文献的纳入和排除标准”可以减少临床异质性的来源;B “纳入文章的质量评分”可以减少方法学异质性的来源。
异质性检验方法异质性检验方法主要有图示法和统计学检验。
比如,大家熟悉的森林图,森林图可显示单项研究和合并效应量及其置信区间,如果单项研究结果的置信区间有很少的重叠或者不重叠,则提示研究间可能存在异质性。
如图,第1项研究和第2、第4项研究的置信区间无重叠,提示研究间可能存在异质性。
统计学异质性的六种检验方法,三种是检验,三种图示,即Q统计量、I2统计量、H统计量、Galbraith图法、L’Abbe图、漏斗图)。
stata network meta analysis heterogeneity 在Stata中进行网络Meta分析时,需要考虑异质性的问题。
异质性指的是不同的研究或治疗组之间存在的差异,它可能由许多因素引起,如患者的基线特征、治疗方法或研究的执行方式等。
在进行网络Meta分析时,我们需要估计这种异质性并恰当地处理它,以确保结果的准确性和可靠性。
在Stata中进行网络Meta分析时,可以使用`netgraph`命令生成网络图,以可视化不同治疗之间的比较关系。
然后,可以使用`netreg`命令进行网络Meta分析,该命令可以估计不同治疗之间的效果,并考虑异质性的影响。
要处理异质性,可以考虑以下方法:
1. 使用随机效应模型:随机效应模型可以考虑到不同研究或治疗组之间的变异,并提供一个估计的异质性范围。
2. 计算I²统计量:I²统计量是一个量化异质性的常用方法,它可以告诉我们不同研究或治疗组之间的变异程度。
3. 敏感性分析:敏感性分析可以检查异质性对结果的影响,并确定哪些因素可能导致异质性。
总之,在进行网络Meta分析时,需要考虑异质性的问题,并采取适当的方法来处理它。
这可以帮助我们获得更准确和可靠的结果,并为临床决策提供更有力的支持。