关于坐标的相关知识汇总
- 格式:doc
- 大小:35.00 KB
- 文档页数:1
1 时间坐标系统转换方法研究1.1 不同时间类型研究内容中涉及到7种不同时间类型,分别是协调世界时(UTC )、地球动力学时(TT )、国际原子时(TAI )、太阳系质心动力学时(TDB )、地心坐标时(TCG )、GPS 时(GPST )和北斗时(BDT )。
UTC 是协调世界时,协调世界时的秒长严格等于原子时的秒长,而协调世界时与世界时UT 间的时刻差规定需要保持在0.9s 以内,否则将采取闰秒的方式进行调整。
闰秒一般发生在6月30日及12月31日。
地球动力学时(TDT )是建立在国际原子时TAI 的基础上的,其秒长与国际原子时相等。
1991年,第21届IAU 大会决定将地球动力学时(TDT )改称为地球时(TT )。
地球时(TT )和国际原子时(TAI )之间的关系式可以表示为:32.184TT TAI s =+ (1-1)国际原子时间(TAI ),是地球上的时间基准,它由国际时间局从多个国家的原子钟分析得出,被定义为:32.184()TAI TT s UTC =-=+跳秒 (1-2)太阳系质心动力学时有时也被简称为质心动力学时。
这是一种用以解算坐标原点位于太阳系质心的运动方程(如行星运动方程)并编制其星表时所用的时间系统。
质心动力学时(TDB )和地球时的(TT )之间没有长期漂移只有周期项变化,即0.001658sin s TDB TT M -=0e 20.000014sin 2()s MV X X c +-+ (1-3)其中M 为地球绕日公转的平近点角;e V 为地球质心在太阳系质心坐标系中的公转速度矢量;0X 为地心在太阳系质心坐标系中的位置矢量;X 为地面钟在太阳系质心坐标系中的位置矢量;0X X -实际上就是地面钟在地心坐标系中的位置矢量;c 为真空中的光速。
地心坐标时(TCG )是原点位于地心的天球坐标系中所使用的第四维坐标—时间坐标,用于讨论绕地球运行的卫星等天体的运动规律、编制相应的星历。
六.坐标系与简单的基本函数 1.平面直角坐标系与变量关系1.(2分)(2018•沈阳)在平面直角坐标系中,点B 的坐标是(4,﹣1),点A 与点B 关于x 轴对称,则点A 的坐标是( ) A .(4,1) B .(﹣1,4) C .(﹣4,﹣1)D .(﹣1,﹣4)2.(2分)(2017•沈阳) 在平面直角坐标系中,点,点关于轴对称,点的坐标是,则点的坐标是( )A.B.C.D.3.(4分)(2013•沈阳)在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是 _________ .4.(3分)(2012•沈阳)在平面直角坐标系中,点P (-1,2 ) 关于x 轴的对称点的坐标为( )A.(-1,-2 )B.(1,-2 )C.(2,-1 )D.(-2,1 ) 5.(4分)(2011•沈阳).在平面直角坐标系中,若点M (1,3)与点N (x ,3)之间的距离是5,则x 的值是____________.6.(4分)(2010•沈阳) 在平面直角坐标系中,点A 1(1,1),A 2(2,4),A 3(3,9),A 4(4,16),…,用你发现的规律确定点A 9的坐标为 。
2.一次函数或反比例函数7.(2分)(2020•沈阳)一次函数y =kx +b(k ≠0)的图象经过点A(−3,0),点B(0,2),那么该图象不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.(3分)(2020•沈阳)如图,在平面直角坐标系中,O 是坐标原点,在△OAB 中,AO =AB ,AC ⊥OB 于点C ,点A 在反比例函数y =kx (k ≠0)的图象上,若OB =4,AC =3,则k 的值为______.A B y A ()2,8-B ()2,8--()2,8()2,8-()8,29.(2分)(2019•沈阳)已知一次函数y =(k +1)x +b 的图象如图所示,则k 的取值范围是( )A .k <0B .k <﹣1C .k <1D .k >﹣110.(3分)(2019•沈阳)如图,正比例函数y 1=k 1x 的图象与反比例函数y 2=(x >0)的图象相交于点A (,2),点B 是反比例函数图象上一点,它的横坐标是3,连接OB ,AB ,则△AOB的面积是.11.(2分)(2018•沈阳)在平面直角坐标系中,一次函数y=kx +b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <012.(2分)(2018•沈阳)点A (﹣3,2)在反比例函数y=k x(k ≠0)的图象上,则k 的值是( )A .﹣6B .﹣32C .﹣1D .613. (2分)(2017•沈阳)点在反比例函数的图象上,则的值是( ) A.10B.5C.D.()-2,5A ()0ky k x=≠k 5-10-14. (2分)(2017•沈阳) 在平面直角坐标系中,一次函数的图象是( )A. B. C. D.15.(2分)(2016•沈阳)如图,在平面直角坐标系中,点P 是反比例函数y=(x >0)图象上的一点,分别过点P 作PA ⊥x 轴于点A ,PB ⊥y 轴于点B .若四边形OAPB 的面积为3,则k 的值为( )A .3B .﹣3C .D .﹣16.(3分)(2016•沈阳)在一条笔直的公路上有A ,B ,C 三地,C 地位于A ,B 两地之间,甲,乙两车分别从A ,B 两地出发,沿这条公路匀速行驶至C 地停止.从甲车出发至甲车到达C 地的过程,甲、乙两车各自与C 地的距离y (km )与甲车行驶时间t (h )之间的函数关系如图表示,当甲车出发 h 时,两车相距350km .17.(4分)(2015•沈阳)如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y (cm )和注水时间x (s )之间的关系满足如图2中的图象,则至少需要 s 能把小水杯注满.1y x =-18.(4分)(2014•沈阳)已知一次函数y=x+1的图象与反比例函数y=的图象相交,其中有一个交点的横坐标是2,则k的值为 .19.(3分)(2013•沈阳)在同一平面直角坐标系中,函数y=x ﹣1与函数的图象可能是( ) A .B .C .D .20.(3分)(2012•沈阳)一次函数y =-x +2的图象经过A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限 21.(3分)(2012•沈阳)已知点A 为双曲线y =图象上的点,点O 为坐标原点过点A 作AB ⊥x 轴于点B ,连接OA .若⊥AOB 的面积为5,则k 的值为____________. 22.(3分)(2011•沈阳)下列各点中,在反比例函数8y x=图象上的是 A .(-1,8)B .(-2,4)C .(1,7)D .(2,4)23.(3分)(2011•沈阳)如果一次函数y=4x +b 的图象经过第一、三、四象限,那么b 的取值范围是_________.24.(3分)(2010•沈阳)反比例函数y = -x15的图像在( ) (A) 第一、二象限 (B) 第二、三象限 (C) 第一、三象限 (D) 第二、四象限 。
数学篇数苑纵横坐标系与其它数学知识存在不可分割的联系.许多知识在平面直角坐标系中进行研究会更加直观易懂.所以只有牢固掌握了与直角坐标系有关的知识点与考点,才能更好地学习一次函数、反比例函数和二次函数等相关知识.一、平面直角坐标系相关知识点归纳1.平面直角坐标系的定义:在平面内画两条互相垂直、原点重合的数轴,就组成平面直角坐标系.水平的数轴称为x 轴或横轴,竖直的数轴称为y 轴或纵轴,两坐标轴的交点为平面直角坐标系的原点.2.各个象限内点的特征:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限.坐标在四个象限的特点:点P (x ,y )在第一象限则x >0,y >0;在第二象限则x <0,y >0;在第三象限则x <0,y <0;在第四象限则x >0,y <0.3.点到坐标轴的距离:点P (x ,y )到x 轴的距离为|y |,到y 轴的距离为|x |.到坐标原点的距离为x 2+y 2.4.点的对称:点P (m ,n ),关于x 轴的对称点坐标是(m ,-n ),关于y 轴的对称点坐标是(-m ,n ),关于原点的对称点坐标是(-m ,-n ).5.平行线:平行于x 轴的直线上的点的特征:纵坐标相等,如直线PQ ,P (m ,n )Q (p ,n );平行于y 轴的直线上的点的特征:横坐标相等,如直线PQ 、P (m ,n )、Q (m ,p ).6.象限角的平分线:第一、三象限角平分线上的点横、纵坐标相等,可记作:P (m ,m );点P (a ,b )关于第一、三象限坐标轴夹角平分线的对称点坐标是(b ,a );第二、四象限角P (m ,-m );点P (a ,b )关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b ,-a ).7.点的平移:在平面直角坐标系中,将点(x ,y )向右平移a 个单位长度,可以得到对应点(x +a ,y );向左平移a 个单位长度,可以得到对应点(x -a ,y );向上平移b 个单位长度,可以得到对应点(x ,y +b );向下平移b 个单位长度,可以得到对应点(x ,y -b ).二、平面直角坐标系相关考点归纳1.求坐标求点的坐标的方法是过这个点向x 轴作垂线,则垂足对应的数就是该点的横坐标;过这个点向y 轴作垂线,则垂足对应的数就是该点的纵坐标.确定了一个点的横坐标和纵坐标,就知道这个点的坐标.例1如图1,在平面直角坐标系xOy 中,已知点A(3,4),将OA 绕坐标原点O 逆时针旋转90°至OA ′,则点A ′的坐标是.解:如图2,过点A 作AB ⊥x 轴于B ,过点A ′作A ′B ′⊥x 轴于B ′,∵OA 绕坐标原点O 逆时针旋转90°至OA ′,∴OA =OA ′,∠AOA ′=90°,∵∠A ′OB ′+∠AOB =90°,∠AOB +∠OAB =90°,∴∠OAB =∠A ′OB ′.在△AOB 和△OA ′B ′中,ìíîïï∠OAB =∠A ′OB ′,∠ABO =∠OB ′A ′,OA =OA ′,∴△AOB ≌△OA ′B ′(AAS ),∴OB ′=AB =4,A ′B ′=OB =3,有关平面直角坐标系的知识点及考点归纳湖南怀化顾建明图123数学篇数苑纵横图2例2在平面直角坐标系中,A(-5,0),B(3,0),点C在y轴上,△ABC的面积为12,求点C的坐标.解:∵点A(-5,0),B(3,0),都在x轴上,∴AB=8.∵△ABC的面积为12,点C在y轴上,∴△ABC的面积=12AB⋅OC=12.解得OC=3,若点C在y轴的正半轴上,则点C的坐标为(0,3),若点C在y轴的负半轴上,则点C的坐标为(0,-3),综上所述,点C的坐标为(0,3)或(0,-3).2.求象限在平面直角坐标系中,各象限内点的符号特点是:第一象限内的点,横坐标和纵坐标都为正;第二象限内点的横坐标为负,纵坐标为正;第三象限内点的横坐标和纵坐标都为负;第四象限内点的横坐标为正,纵坐标为负.确定了点横坐标及纵坐标的正负,就确定了象限.例3若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在象限是().A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定解:∵(x+y)2=x2+y2+2xy,∴原式可化为xy=-1,∴x、y异号,∴点M(x,y)在第二象限或第四象限.故选B项.例4已知点P(x,y)在函数y=1x2+-x的图象上,那么点P在平面直角坐标系中的().A.第一象限B.第二象限C.第三象限D.第四象限解:由题意x2≠0且-x≥0,∴x<0,∴1x2>0,x>0,∴y>0.∴点P(x,y)在第二象限.故选B项.3.求面积当三角形有一边在x轴上时,则以x轴上的边为底边,其长等于x轴上两个顶点横坐标差的绝对值,此边上的高就等于另一个顶点纵坐标的绝对值;当三角形的一边在y 轴上时,则以y轴上的边为底边,其长等于y 轴上两个顶点纵坐标差的绝对值,此边上的高就等于另一个顶点横坐标的绝对值.确定了三角形的底边和高就能求出面积.例5如图3,△ABC的三个顶点坐标分别是A(2,4),B(-2,0),C(3,0),求△ABC的面积.图3解:过A作AD⊥x轴,垂足为D,∵A的坐标是(2,4),∴AD=4,24数学篇∵B (-2,0),C (3,0),∴BC =5,∴S △ABC =12BC ∙AD =12×5×4=10.例6如图4,平面直角坐标系中,已知点A (-3,-1),B (1,3),C (2,-3),求三角形ABC 的面积.图4分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一个坐标轴平行,高(宽)与另一个坐标轴平行.这样,梯形(长方形)的面积就容易求出,然后再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图5,过点A 、C 分别作平行于y 轴的直线,与过点B 平行于x 轴的直线交于点D 、E ,则四边形ADEC 为梯形.图5因为A (-3,-1),B (1,3),C (2,-3),所以AD =4,CE =6,DB =4,BE =1,DE =5.所以S △ABC =12(AD +CE )×DE -12×AD ×DB-12×CE ×BE =12×(4+6)×5-12×4×4-12×6×1=14.平面直角坐标系可以帮助我们建立图形与数量间的联系,并为几何问题和代数问题的相互转化提供条件.因此,同学们一定要掌握好平面直角坐标系的相关知识点与考点,从而不断提高分析问题和解答问题的能力.上期《<实数>巩固练习》参考答案1.D ;2.C ;3.D ;4.A ;5.B ;6.5;7.-1;8.4;9.14或22;10.-3;11.解:(1)3,14-3;(2)∵2<6<3,4<21<5,∴m =6-2,n =4,∴2m +n -26=2(6-2)+4-26=0;(3)a =15,b =32-5.12.解:(1)原来正方形场地的周长为80m;(2)设长方形场地宽为3a m ,则长为5a m.由题意有:3a ×5a =315,解得:a =±21,∵3a 表示长度,∴a >0,∴a =21,∴这个长方形场地的周长为2(3a +5a )=16a =1621(m ),∵80=16×5=16×25>1621,∴这些铁栅栏够用.答:这些铁栅栏够用.数苑纵横25。
中考数学复习考点知识归类讲解与练习专题01 平面直角坐标系与函数基本概念知识对接考点一、平面直角坐标系1.相关概念(1)平面直角坐标系(2)象限(3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标(1)坐标轴上的点(2)一三或二四象限角平分线上的点的坐标(3)平行于坐标轴的直线上的点的坐标(4)关于x轴、y轴、原点对称的点的坐标4.距离(1)平面上一点到x轴、y轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离(3)平面上任意两点间的距离5.坐标方法的简单应用(1)利用坐标表示地理位置(2)利用坐标表示平移1 / 27要点补充:点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于;(2)点P(x,y)到y 轴的距离等于;(3)点P(x,y)到原点的距离等于.考点二、函数及其图象1.变量与常量2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象要点补充:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.专项训练一、单选题1.已知点P (a ,a+3)在第二象限,且点P 到x 轴的距离为2,则a 的值为()A .1-B .5-C .2-D .2y x 22y x +【答案】A【分析】先判断a的取值,进而根据点P到x轴的距离为2得到a+3=2,解得即可.【详解】解:∵点P(a,a+3)在第二象限,∴30aa<⎧⎨+>⎩,∴-3<a<0,∵点P到x轴的距离为2,∴|a+3|=2,∴a+3=2,∴a=-1,故选:A.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.在平面直角坐标系中,点P(3,4)关于y轴对称点的坐标为()A.(﹣3,4)B.(3,4)C.(﹣3,﹣4)D.(4,﹣3)【答案】A【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】3 / 27解:点P (3,4)关于y 轴对称点的坐标为(-3,4),故选:A .【点睛】此题主要考查了关于y 轴对称点的坐标,关键是掌握点的坐标的变化规律.3.如图,一个机器人从点O 出发,向正西方向走2m 到达点1A ;再向正北方向走4m 到达点2A ,再向正东方向走6m 到达点3A ,再向正南方向走8m 到达点4A ,再向正西方向走10m 到达点5A ,…按如此规律走下去,当机器人走到点20A 时,点20A 的坐标为()A .(20,20)-B .(20,20)C .(22,20)--D .(22,22)-【答案】A【分析】 先求出A 1,A 2,A 3,…A 8,发现规律,根据规律求出A 20的坐标即可.【详解】解:∵一个机器人从点O 出发,向正西方向走2m 到达点1A ,点A 1在x 轴的负半轴上,∴A 1(-2,0)从点A 2开始,由点1A 再向正北方向走4m 到达点2A ,A 2(-2,4),由点2A 再向正东方向走6m 到达点3A ,A 3(6-2,4)即(4,4),由点3A 再向正南方向走8m 到达点4A ,A 4(4,4-8)即(4,-4),由点A 4再向正西方向走10m 到达点5A ,A 5(4-10,-4)即(-6,-4),由点A 5再向正北方向走12m 到达点A 6,A 6(-6,12-4)即(-6,8),5 / 27由点A 6再向再向正东方向走14m 到达点A 7,A 7(14-6,8)即(8,8),由点A 7再向正南方向走16m 到达点8A ,A 8(8,8-16)即(8,-8),观察图象可知,下标为偶数时在二四象限,下标为奇数时(除1外)在一三象限,下标被4整除在第四象限.且横坐标与下标相同,因为2054=⨯,所以20A 在第四象限,坐标为(20,20)-.故选择A .【点睛】本题考查平面直角坐标系点的坐标规律问题,掌握求点的坐标方法与过程,利用下标与坐标的关系找出规律是解题关键.4.小娜驾车从哈尔滨到大庆.设她出发第x min 时的速度为y km/h ,图中的折线表示她在整个驾车过程中y 与x 之间的函数关系式.下列说法:(1)在77≤x ≤88时,小娜在休息;(2)小娜驾车的最高速度是120km/h ;(3)小娜出发第16.5min 时的速度为48km/h ;(4)如果汽车每行驶100km 耗油10升,那么小娜驾车在33≤x ≤66时耗油6.6升. 其中正确的个数是( )A .1个B .2个C .3个D .4个【答案】C【分析】根据函数图象对每个选项进行分析判断,最后得出结论.①观察图象在77≤x ≤88时,小娜在以时速96千米在行驶;②观察图象小娜的最高时速为120千米;③用待定系数法求出11≤x ≤22时的函数关系式,可求小娜出发第16.5min 时的速度;④小娜驾车在33≤x ≤66时时速为120千米/小时,依次求出小娜驾车在33≤x ≤66时行驶的路程,从而耗油量可求.【详解】解:①观察图象在77≤x ≤88时,小娜在以时速96千米在行驶;故①错误; ②观察图象小娜的最高时速为120千米,故②正确;③在11≤x ≤22时,设y =kx +b .将(11,24)和(22,72)代入上式:11242272k b k b +=⎧⎨+=⎩, 解得:481124k b ⎧=⎪⎨⎪=-⎩. ∴482411y x =-. 当x =16.5min 时,y =48.∴小娜出发第16.5min 时的速度为48km /h .故③正确;④由图象可知:小娜驾车在33≤x ≤66时时速为120千米/小时,∴车在33≤x ≤66时小娜行驶了66331206660-⨯=(千米). ∴耗油为:66×10100=6.6(升).7 / 27故④正确;综上,正确的有②③④共三个.故选:C .【点睛】本题主要考查了一次函数的应用.理解函数图象上的点的实际意义是解题的关键.另外待定系数法是确定函数解析式的重要方法.5.下列不能表示y 是x 的函数的是()A .B .21y x =+C .D .【答案】C【分析】根据函数的定义(给定一个x 值都有唯一确定的y 值与它对应),对选项逐个判断即可.【详解】解:根据函数的定义(给定一个x 值都有唯一确定的y 值与它对应),对选项逐个判断, A :观察列表数据发现,符合函数的定义,不符合题意;B :观察x 与y 的等式发现,符合函数的定义,不符合题意;C :观察函数图像发现,不符合函数的定义,符合题意;D :观察函数图像发现,符合函数的定义,不符合题意;故选:C .【点睛】此题主要考查了函数的定义,涉及到了函数的表示方法(解析法,图像法和列表法),熟练掌握函数的基础知识是解题的关键.x的函数的是()6.下列各图象中,y不是..A.B.C.D.【答案】B【分析】对于自变量x的每一个确定的值y都有唯一的确定值与其对应,则y是x的函数,根据函数的定义解答即可.【详解】根据函数的定义,选项A、C、D图象表示y是x的函数,B图象中对于x的一个值y有两个值对应,故B中y不是x的函数,故选:B.【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键.9 / 277.如图,在平面直角坐标系中,//AB DC ,AC BC ⊥,5CD AD ==,6AC =,将四边形ABCD向左平移m 个单位后,点B 恰好和原点O 重合,则m 的值是()A .11.4B .11.6C .12.4D .12.6【答案】A【分析】 由题意可得,m 的值就是线段OB 的长度,过点D 作DE AC ⊥,过点C 作CF OB ⊥,根据勾股定理求得DE 的长度,再根据三角形相似求得BF ,矩形的性质得到OF ,即可求解.【详解】解:由题意可得,m 的值就是线段OB 的长度,过点D 作DE AC ⊥,过点C 作CF OB ⊥,如下图:∵5CD AD ==,DE AC ⊥ ∴132CE AC ==,90DEC ∠=︒由勾股定理得4DE =∵//AB DC∴DCE BAC ∠=∠,90ODC BOD ∠=∠=︒又∵AC BC⊥∴90 ACB CED∠=∠=︒∴DEC BCA△∽△∴DE CE CDBC AC AB==,即4356BC AB==解得8BC=,10AB=∵CF OB⊥∴90 ACB BFC∠=∠=︒∴BCF BAC∽△△∴BC BFAB BC=,即8108BF=解得 6.4BF=由题意可知四边形OFCD为矩形,∴5OF CD==11.4OB BF OF=+=故选A【点睛】此题考查了相似三角形的判定与性质,图形的平移,矩形的判定与性质,勾股定理等,熟练掌握相关基本性质是解题的关键.8.在平面直角坐标系中,已知点A(0,0)、B(2,2)、C(3,0),若以点A、B、C、D为顶点的四边形是平行四边形,则点D的坐标不可能为()A.(﹣1,2) B.(5,2) C.(1,﹣2) D.(2,﹣2)【答案】D【分析】分三种情况:①BC为对角线时,②AB为对角线时,③AC为对角线时;由平行四边形的11 / 27性质容易得出点D 的坐标. 【详解】解:分三种情况:①BC 为对角线时,点D 的坐标为(5,2) ②AB 为对角线时,点D 的坐标为(﹣1,2), ③AC 为对角线时,点D 的坐标为(1,﹣2),综上所述,点D 的坐标可能是(5,2)或(﹣1,2)或(1,﹣2). 故选:D . 【点睛】本题考查了平行四边形的性质、坐标与图形的性质;熟练掌握平行四边形的性质是解决问题的关键.9.半径是R 的圆的周长C 2R π=,下列说法正确的是() A .C ,π,R 是变量,2是常量 B .C 是变量,2,π,R 是常量 C .R 是变量,2,π,C 是常量 D .C ,R 是变量,2π是常量【答案】D 【分析】根据变量和常量的概念解答即可. 【详解】解:在半径是R 的圆的周长2C R π=中,C ,R 是变量,2π是常量. 故选D . 【点睛】本题主要考查了变量和常量,在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.10.关于变量x ,y 有如下关系:①6-=x y ;②24y x =;③2y x =;④3y x =.其中y 是x 函数的是() A .①③ B .①②③④ C .①③④ D .①②③【答案】C 【分析】根据函数的定义可知,满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,据此即可确定函数的个数. 【详解】解:y 是x 函数的是①x -y =6;③y =2|x |;④3y x =; ∵x =1时,y =±2,∴对于y 2=4x ,y 不是x 的函数; 故选:C . 【点睛】本题考查了函数的定义,函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量. 二、填空题11.若点()25,4P a a --到两坐标轴的距离相等,则点P 的坐标是______. 【答案】()1,1或()3,3-; 【分析】根据题意可得关于a 的绝对值方程,解方程可得a 的值,进一步即得答案. 【详解】解:∵P (2a -5,4-a )到两坐标轴的距离相等, ∴254a a -=-.13 / 27∴254a a -=-或25(4)a a -=--, 解得3a =或1a =,当3a =时,P 点坐标为(1,1); 当1a =时,P 点坐标为(-3,3). 故答案为:(1,1)或(-3,3). 【点睛】本题考查了直角坐标系中点的坐标特征,根据题意列出方程是解题的关键.12.在平行四边形ABCD 中,点A 的坐标是(﹣1,0),点B 的坐标是(2,3),点D 的坐标是(3,1),则点C 的坐标是___. 【答案】(6,4). 【分析】根据四边形ABCD 是平行四边形,可得AB∥DC ,且AB =DC ,根据坐标间关系可得2-(-1)=x C -3,3-0=y C -1,解得x C =6,y C =4即可. 【详解】解:∵四边形ABCD 是平行四边形, ∴AB∥DC ,且AB =DC , ∴2-(-1)=x C -3,3-0=y C -1, ∴x C =6,y C =4, 点C (6,4) 故答案为(6,4).【点睛】本题考查平行四边形的性质,点的坐标关系建构方程,掌握平行四边形的性质,点的坐标关系建构方程.13.函数y=182xx+-的自变量的取值范围是______.【答案】x≠4【分析】当表达式的分母中含有自变量时,自变量取值要使分母不为零,据此可得结论.【详解】解:由题可得,8﹣2x为分母,8﹣2x≠0,解得x≠4,∴函数182xyx+=-的自变量的取值范围是x≠4,故答案为:x≠4.【点睛】本题考查的是自变量的取值范围,由于此题表达式为分式,根据分式有意义的条件,分母不为零,得到自变量的取值范围.14.若一个函数图象经过点A(1,3),B(3,1),则关于此函数的说法:①该函数可能是一次函数;②点P(2,2.5),Q(2,3.5)不可能同时在该函数图象上;15 / 27③函数值y 一定随自变量x 的增大而减小;④可能存在自变量x 的某个取值范围,在这个范围内函数值y 随自变量x 增大而增大. 所有正确结论的序号是 ___. 【答案】①②④ 【分析】根据函数的定义,一次函数的图象及函数的性质一一分析即可求解. 【详解】解:①因为一次函数的图象是一条直线,由两点确定一条直线,故该函数可能是一次函数,故正确;②由函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量,所以点P (2,2.5),Q (2,3.5)不可能同时在该函数图象上,故正确;③因为函数关系不确定,所以函数值y 不一定一直随自变量x 的增大而减小,故错误; ④可能存在自变量x 的某个取值范围,在这个范围内函数值y 随自变量x 增大而增大,故正确; 故答案为①②④. 【点睛】本题主要考查函数的定义及一次函数的图象与性质,熟练掌握函数的定义及一次函数的图象与性质是解题的关键.15.在圆周长公式2C r π=中,常量是__________. 【答案】2π 【分析】根据常量的定义即可解答. 【详解】解:圆周长公式2C r π=中,常量是2π, 故答案为:2π. 【点睛】本题考查了常量的定义,正确理解定义是关键.16.如图,平面直角坐标系中O 是原点,等边△OAB 的顶点A 的坐标是(2,0),点P 以每秒1个单位长度的速度,沿O →A →B →O →A …的路线作循环运动,点P 的坐标是__________________.【答案】12⎛ ⎝⎭【分析】计算前面7秒结束时的各点坐标,得出规律,再按规律进行解答便可. 【详解】解:由题意得,第1秒结束时P 点运动到了线段OA 的中点C 的位置,所以P 1的坐标为P 1(1,0);第2秒结束时P 点运动到了点A 的位置,所以P 2的坐标为P 2(2,0);第3秒结束时P 点运动到了线段AB 的中点D 的位置,如下图所示,过D点作x轴的垂线交于x2处,∵△OAB是等边三角形,且OA=2,∴在Rt△AD x2中,∠DA x2=60°,AD=1,∴21 2Ax=,2Dx=故D点的坐标为32⎛⎝⎭,即P332⎛⎝⎭;第4秒结束时P点运动到了点B的位置,同理过B点向x轴作垂线恰好交于点C,在Rt△OBC中,∠BOC =60°,2OB=,1OC=,BC故B点的坐标为(1,即P4(1;第5秒结束时P点运动到了线段OB的中点E的位置,根据点D即可得出E点的坐标为12⎛⎝⎭,即 P512⎛⎝⎭;第6秒结束时运动到了点O的位置,所以P6的坐标为P6(0,0);第7秒结束时P点的坐标为P7(1,0),与P1相同;……17 / 27由上可知,P 点的坐标按每6秒进行循环, ∵2021÷8=336……5,∴第2021秒结束后,点P 的坐标与P 5相同为12⎛ ⎝⎭,故答案为:12⎛ ⎝⎭.【点睛】本题主要考查了点的坐标特征,等边三角形的性质,数字规律,关键是求出前面几个点坐标,得出规律.17.平面直角坐标系中,点()5,3A -,()0,3B ,()5,0C -,在y 轴左侧一点(),P a b (0b ≠且点P 不在直线AB 上).若40APO ∠=︒,BAP ∠与COP ∠的角平分线所在直线交于D 点.则ADO ∠的度数为______°.【答案】110或70 【分析】分两种情况,①点P 在AO 下方,设AP 与CO 交于点N ,过点N 作//NM AD ,先证明NM 平分PNO ∠,根据“三角形两内角平分线的夹角与第三个角的关系”,可以得出1902NMO P ∠=+∠,即可求解;②点P 在AO 上方,设PO 与AB 交于点M,过点M 作//NM OD ,先证明NM 平分PNA ∠,根据“三角形两内角平分线的夹角与第三个角的关系”,可以得出1902NMA P ∠=+∠,即可求解. 【详解】19 / 27解:分两种情况, ①点P 在AO 下方时,设AP 与CO 交于点N ,过点N 作//NM AD ,PAD PNM ∴∠=∠, //AB NO , BAN ONP ∴∠=∠,AD 平分BAN ∠,12PAD BAN ∴∠=∠,12PNM ONP ∴∠=∠,NM∴平分ONP ∠,OM 平分NOP ∠,111(180)70222MNO NOM ONP PON NPO ∴∠+∠=∠+∠=-∠=︒,110NMO ∴∠=︒, //NM AD ,110ADO NMO ∴∠=∠=︒;①点P 在AO 上方时,设AB 与PO 交于点N ,过点N 作//NM OD ,POD PNM ∴∠=∠,//AB CO ,PNA POC ∴∠=∠,DO 平分POC ∠,12POD POC ∴∠=∠,12PNM PNA ∴∠=∠,NM∴平分ANP ∠,直线CD 平分NAP ∠,111(180)70222MNA NAM PNA PAN NPA ∴∠+∠=∠+∠=-∠=︒,110NMA ∴∠=︒, //NM AD ,18070ADO NMO ∴∠=-∠=, 70ADO ∴∠=︒或110︒.故答案为:70或110.【点睛】本题主要考查了三角形双内角平分线模型,平行线的性质,解题的关键是找基本模型. 18.一个三角形的底边长是3,高x 可以任意伸缩,面积为y ,y 随x 的变化变化,则其中的常量为________,y 随x 变化的解析式为______________. 【答案】3 32y x = 【分析】先根据变量与常量的定义,得到3为常量,x 和y 为变量,再根据三角形面积公式得到21 / 27y =12×3×x =32x (x >0), 【详解】解:数值发生变化的量为变量,数值始终不变的量为常量,因此常量为底边长3,由三角形的面积公式得y 随x 变化的解析式为32y x =. 故答案为:3;32y x =. 【点睛】本题考查主要函数关系式中的变量与常量和列函数关系式解决本题的关键是要理解函数关系中常量和变量. 三、解答题19.已知一个圆柱的底面半径是3cm ,当圆柱的高(cm)h 变化时,圆柱的体积()3cm V 也随之变化.(1)在这个变化过程变量h 、V 中,自变量是______,因变量是______; (2)在这个变化过程中,写出圆柱的体积V 与高h 之间的关系式;(3)当圆柱的高h 由3cm 变化到6cm 时,圆柱的体积V 由______变化到______. 【答案】(1)h ,V ;(2)9V h π=;(3)327cm π,354cm π 【分析】(1)利用函数的概念进行回答;(2)利用圆柱的体积公式求解;(3)分别计算出h =3和6对应的函数值可得到V 的变化情况. 【详解】解:(1)在这个变化过程中,自变量是h ,因变量是V ;故答案为h ,V ;(2)V =π•32•h =9πh ;(3)当h =3cm 时,V =27πcm 3;当h =6cm 时,V =54πcm 3;所以当h 由3cm 变化到6cm 时,V 是由27πcm 3变化到54πcm 3.故答案为:27πcm3;54πcm3.【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.函数解析式是等式.解决此题的关键是圆柱的体积公式.20.一辆大客车和一辆小轿车同时从甲地出发去乙地,匀速而行,大客车到达乙地后停止,小轿车到达乙地后停留4小时,再按照原速从乙地出发返回甲地,小轿车返回甲地后停止,已知两车距甲地的路程s千米与所用的时间t小时的关系如图所示,请结合图象解答下列问题:(1)在上述变化过程中,自变量是________;因变量是________;(2)小轿车的速度是________km/h,大客车的速度是________ km/h;(3)两车出发多少小时后两车相遇,两车相遇时,距离甲地的路程是多少?【答案】(1)t,s;(2)50,30;(3)15小时,450km【分析】(1)根据函数图像可得;(2)根据函数图象中的数据,可以计算出小轿车和大客车的速度;(3)设两车出发xh时,两车相遇,根据题意列出方程,解之可得x,再乘以大客车的速度可得到甲地的距离.【详解】解:(1)自变量是时间t;因变量是路程s;(2)由图象可得,小轿车的速度为:500÷10=50(km/h),大客车的速度为:500÷503=30(km/h),故答案为:50,30;(3)设两车出发x小时,两车相遇,30x+50(x-14)=500,解得,x=15,30x=30×15=450,即两车出发15h后两车相遇,两车相遇时,距离甲地的路程是450km,故答案为:15,450.【点睛】本题考查了从函数图像获取信息,一元一次方程的应用,解答本题的关键是明确题意,结合函数图像得到必要信息.21.在平面直角坐标系中,O为坐标原点,C(4,0),A(a,3),B(a+4,3)(1)求ΔOAC的面积;(2)若aOABC是菱形.【答案】(1)6;(2)见解析【分析】(1)过点A(a,3)作AE⊥x轴于点E,根据A(a,3),C(4,0)求出AE和OC的长度,23 / 27然后根据三角形面积公式求解即可;(2)首先根据点A 和点B 的纵坐标相同得到//AB OC ,然后结合AB OC =得到四边形OABC 是平行四边形,然后根据勾股定理求出OA 的长度,得到OA =OB ,根据菱形的判定定理即可证明. 【详解】解:(1)如图所示,过点A (a ,3)作AE ⊥x 轴于点E ,则AE =3, 又∵C (4,0), ∴OC =4,∴S △OAC =11=43622OC AE ⨯⨯⨯⨯=.(2)若a =)A ,)43B ,, ∵A B y y =, ∴//AB OC , ∵44AB OC ==,, ∴AB OC =.∴四边形OABC 是平行四边形, 过点A 作AE ⊥x 轴,则90AEO ∠=︒,3AE OE ==,∴4OA =,∴OA AB=,∴四边形OABC是菱形.【点睛】此题考查了三角形面积的求法,菱形的判定,解题的关键是根据题意找到坐标和线段的关系.22.定义:平面直角坐标系中,点M(a,b)和点N(m,n)的距离为MN,例如:点(3,2)和(4,0(1)在平面直角坐标系中,点(2,5-)和点(2,1)的距离是,点(72,3)和点(12,1-)的距离是;(2)在平面直角坐标系中,已知点M(2-,4)和N(6,3-),将线段MN平移到M ′ N′,点M的对应点是M′,点N的对应点是N′,若M′的坐标是(8-,m),且MM′=10,求点N′的坐标;(3)在平面直角坐标系中,已知点A在x轴上,点B在y轴上,点C的坐标是(12,5),若BC=13,且△ABC的面积是20,直接写出点A的坐标.【答案】(1)6,5;(2)当M′(-8,12)时,N′(0,5),当M′(-8,-4)时,N′(0,-11);(3)(8,0)或(-8,0)或(16,0)或(32,0)【分析】(1)分别利用两点间距离公式求解即可.(2)构建方程求出m的值,可得结论.(3)设(0,)B t,构建方程求出t的值,可得结论.【详解】解:(1)点(2,5)-和点(2,1)的距离6,25 / 27点7(2,3)和点1(2,1)-的距离5=, 故答案为:6,5. (2)由题意,10MM '=,∴10=,12m =∴或4-,(8,12)M ∴'-或(8,4)--,当(8,12)M '-时,(0,5)N ', 当(8,4)M '--时,(0,11)N '-. (3)设(0,)B t ,(12,5)C ,13BC =,∴13,解得0t =或10,(0,0)B ∴或(0,10),当(0,0)B 时,20ABC S ∆=,∴15202OA ⨯⨯=, 8OA ∴=,(8,0)A ∴或(8,0)-.当(0,10)B 时,20ABC BOC AOC AOB S S S S ∆∆∆∆=+-=或20ABC AOC AOB BOC S S S S ∆∆∆∆=--=,∴111101*********OA OA ⨯⨯+⨯⨯-⨯⨯=或111101012520222OA OA ⨯⨯-⨯⨯-⨯⨯=,16OA ∴=或32,∴或(32,0),A(16,0)综上所述,满足条件的点A的坐标为(8,0)或(8,0)-或(16,0)或(32,0).【点睛】本题属于三角形综合题,考查了两点间距离公式,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.27 / 27。
坐标轴的相关知识点总结一、坐标轴的定义坐标轴是一个用于描述空间中点位置的数学工具,它由两条相互垂直的直线组成。
其中一条直线称为横轴或x轴,另一条直线称为纵轴或y轴。
通常情况下,x轴水平向右延伸,y轴竖直向上延伸。
这两条直线的交点称为原点,通常用O表示。
二、坐标系当我们引入两个坐标轴时,就构成了一个二维坐标系。
一般来说,坐标系的原点是空间中的一个参考点,确定了坐标系的位置和方向。
在坐标系中,我们可以通过给定的坐标值来唯一确定平面上的一个点。
通常情况下,我们使用有序数对(x, y)来表示一个点的坐标,其中x代表该点在x轴上的坐标值,y代表该点在y轴上的坐标值。
在二维坐标系中,通常我们所称的直角坐标系就是以x轴和y轴为基础的坐标系。
除此之外,还存在极坐标系、球坐标系等不同类型的坐标系,它们的应用范围和描述方式各有不同。
三、坐标轴上的点在二维坐标系中,每个点都可以由一个唯一的有序数对(x, y)来表示。
其中,x坐标表示点在x轴上的位置,y坐标表示点在y轴上的位置。
坐标轴上的点的位置可以根据坐标的正负情况来确定。
例如,当x坐标为正数,y坐标为负数时,点在第四象限;当x和y坐标都为负数时,点在第三象限;当x坐标为负数,y坐标为正数时,点在第二象限;当x和y坐标都为正数时,点在第一象限。
四、坐标轴上的直线在坐标系中,我们可以通过两个点或者一个点和一个斜率来确定一条直线的方程。
通常情况下,我们使用直线的斜率和截距来表示直线的方程。
如果两条直线的斜率相同,并且它们的截距也相同,那么这两条直线是重合的;如果两条直线的斜率相同,但截距不同,那么这两条直线是平行的;如果两条直线的斜率互为倒数,那么这两条直线是垂直的。
除了直线的方程,我们还可以通过两个点来确定一条直线的方程。
根据两点之间的坐标关系,可以得到直线的斜率和截距,从而确定直线的方程。
五、坐标轴的应用坐标轴在数学中有着广泛的应用,它不仅可以帮助我们理解和解决代数和几何中的各种问题,还可以应用到物理、工程等其他领域。
中考复习——平面直角坐标系、一次函数、反比例函数【知识梳理】一、平面直角坐标系1. 坐标平面上的点与 有序实数对 构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于x 轴对称的点的坐标为 ;关于y 轴对称的点的坐标为 ;关于原点对称的点的坐标为5.两点之间的距离二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有 的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式 (2)实际问题具有 意义3.函数的表示方法; (1) (2) (3) 三、一次函数的概念、图象、性质1.正比例函数的一般形式是 ( ),一次函数的一般形式是 (k≠0). 2. 一次函数y kx b =+的图象是经过( , )和( , )两点的一条直线.4.若两个一次函数解析式中,k 相等,表示两直线 ;若两直线垂直,则 。
5.的大小决定直线的倾斜程度,越大,直线越 ;四、反比例函数的概念、图象、性质1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k >0,b >0k >0,b <0k <0,b >0k <0,21212211P P )0()0()2(y y y P y P -=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 3.k 的几何含义:反比例函数y =k x(k≠0)中比例系数k 的几何意义,即过双曲线y =k x(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 。
【例题精讲】 例1.函数22y x =-中自变量x 的取值范围是 ;函数y =x 的取值范围是 .例2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 例3.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的 坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,点C 的坐标为例4.一次函数y=(3a+2)x -(4-b),求满足下列条件的a 、b 的取值范围。
初中数学知识归纳坐标轴上的点和直线的性质和计算坐标轴是数学中常用的工具,用于表示平面上的点和直线。
了解坐标轴上的点和直线的性质以及进行相关的计算是初中数学中的重要内容。
本文将对坐标轴上的点和直线的性质进行归纳,并介绍相关的计算方法。
一、坐标轴上的点在二维平面上,我们可以用一个有序数对(x, y)表示一个点,其中x 为点在x轴上的坐标,y为点在y轴上的坐标。
这种表示方法称为坐标表示法。
1. 点的坐标:一个点在坐标轴上的位置由其坐标确定。
x轴和y轴的交点称为原点,坐标为(0, 0)。
2. 点的象限:根据点的坐标,可以确定它所在的象限。
第一象限中的点满足x>0且y>0,第二象限中的点满足x<0且y>0,第三象限中的点满足x<0且y<0,第四象限中的点满足x>0且y<0。
3. 点的对称性:关于x轴对称的点的坐标为(x, -y),关于y轴对称的点的坐标为(-x, y),关于原点对称的点的坐标为(-x, -y)。
二、坐标轴上的直线1. 平行于坐标轴的直线:与x轴平行的直线的方程为y=k,其中k 为常数;与y轴平行的直线的方程为x=k,其中k为常数。
2. 直线的斜率:直线上的两点A(x₁, y₁)和B(x₂, y₂),其斜率记为k=(y₂-y₁)/(x₂-x₁)。
若直线垂直于x轴,则斜率不存在;若直线垂直于y轴,则斜率为无穷大。
3. 直线的截距:直线与x轴和y轴的交点称为截距。
直线与x轴的交点的坐标为(x, 0),其中x为截距;直线与y轴的交点的坐标为(0, y),其中y为截距。
4. 直线的方程:直线的方程可以用一般式、点斜式和截距式表示。
- 一般式:Ax+By+C=0,其中A、B、C为常数,A和B不同时为0。
- 点斜式:y-y₁=k(x-x₁),其中(x₁, y₁)为直线上的一点,k为斜率。
- 截距式:直线与x轴和y轴的交点分别为(a, 0)和(0, b),则直线的方程为x/a+y/b=1。
关于位置与方向的知识位置与方向是人们日常生活中常常涉及的概念。
无论是在导航中找寻目的地,还是在交通中行驶到指定的地点,我们都需要准确理解位置与方向的含义。
本文将从不同的角度介绍关于位置与方向的知识。
一、位置的概念位置是指事物所处的具体地点或空间中的相对关系。
在空间中,位置可以通过坐标来表示,常用的方式有直角坐标系和极坐标系。
直角坐标系是由水平轴和垂直轴组成的二维坐标系,通过横坐标和纵坐标可以确定一个点的位置。
而极坐标系则是通过极径和极角来确定一个点的位置。
除了坐标表示,位置还可以通过方位词来描述。
方位词是用来指示事物所处方位的词语,比如前、后、左、右、上、下等。
通过方位词,我们可以清晰地描述一个物体相对于其他物体的位置关系。
二、方向的概念方向是指事物在运动或发生改变时所指向的目标或轨迹。
方向可以用方位角来表示,方位角是从参考方向逆时针转过的角度。
常用的参考方向包括正北、正东、正南、正西等。
通过方位角,我们可以确定一个物体运动或指向的具体方向。
在日常生活中,方向的表达还可以用相对方位词来描述,比如前方、后方、左侧、右侧等。
相对方位词可以帮助我们清楚地理解事物之间的相对位置关系。
三、位置与方向的关系位置和方向是密切相关的概念。
位置可以通过方向来确定,而方向可以决定位置的变化。
比如在导航中,我们通过确定目的地的位置和方向来规划行驶路线。
在交通中,车辆行驶的方向决定了它们到达目的地的位置。
位置和方向的变化也可以相互影响。
比如我们可以通过改变位置来改变方向,例如在行驶中调整方向盘改变车辆的行驶方向。
相反,改变方向也会导致位置的变化,例如在导航中改变行驶方向会导致到达目的地的位置发生偏移。
四、应用领域位置和方向的概念在各个领域都有广泛的应用。
在航空航天领域,飞行器的位置和方向信息对于飞行安全和导航是至关重要的。
在地理信息系统中,通过定位和方向传感器可以实现地图导航和位置服务。
在机器人技术中,位置和方向的感知是机器人导航和定位的基础。
关于GPS坐标转换的一些基本知识由于经常涉及到GPS程序的编写,现在貌似这个GPS是越来越火,越来越多的朋友在编写GPS程序,估计是个人都会遇到这个GPS坐标转换的问题,很惭愧的是,作为一个测量专业出身的学生,我还得时不时的要把这些概念翻过来覆过去的看好几遍,每次看书都能有新的收获,我希望这次用这篇博客能够详细具体的把GPS坐标转换讲清楚。
这里我就不赘述有关什么GPS测量原理已经GPS通信等问题了,GPS测量原理有空大家自己翻书去看,核心原理就是由已知卫星的位置通过距离来反算GPS位置坐标,测量上叫后方交会吧!GPS通信问题其实也就是个串口通讯原理,在WINDOWS MOBILE 5.0版本上更是已经被封装好了,方便使用由于懒的打字,本人这里的文字都是从网上转载,我只选经典,解释正确的放这里!地球椭球体大地基准面投影坐标系统定义转自:/bbs/viewthread.php?tid=128地球椭球体(Ellipsoid)大地基准面(Geodetic datum)投影坐标系统(Projected Coordinate Systems )GIS中的坐标系定义由基准面和地图投影两组参数确定,而基准面的定义则由特定椭球体及其对应的转换参数确定,因此欲正确定义GIS系统坐标系,首先必须弄清地球椭球体(Ellipsoid)、大地基准面(Datum)及地图投影(Projection)三者的基本概念及它们之间的关系。
地球椭球体(Ellipsoid)众所周知我们的地球表面是一个凸凹不平的表面,而对于地球测量而言,地表是一个无法用数学公式表达的曲面,这样的曲面不能作为测量和制图的基准面。
假想一个扁率极小的椭圆,绕大地球体短轴旋转所形成的规则椭球体称之为地球椭球体。
地球椭球体表面是一个规则的数学表面,可以用数学公式表达,所以在测量和制图中就用它替代地球的自然表面。
因此就有了地球椭球体的概念。
地球椭球体有长半径和短半径之分,长半径(a)即赤道半径,短半径(b)即极半径。
二次函数图象上点的坐标特征能量储备● 对称性:二次函数y =ax 2+bx +c(a ≠0)的图象叫做抛物线y =ax 2+bx +c(a ≠0),抛物线是轴对称图形,所以二次函数图象上的点关于直线x=-b 2a 对称, 直线x=-b 2a 是抛物线的对称轴.● 顶点:抛物线与对称轴的交点叫做抛物线的顶点,顶点是抛物线的最低点或最高点. ● 对于二次函数y =ax 2+bx +c(a ≠0)图象上的两点A(x 1,y 1),B(x 2,y 2),当a>0时,若|x 1-h|<|x 2-h|,则y 1<y 2;当a<0时,若|x 1-h|<|x 2-h|,则y 1>y 2;而对任何a ≠0,若|x 1-h|=|x 2-h|,则y 1=y 2.通关宝典★ 基础方法点方法点1:根据二次函数图象上点关于对称轴对称的性质进行函数值大小比较. 例1 点P 1(-1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y=-x 2+2x+c 的图象上,则y 1,y 2,y 3的大小关系是( )A .y 3>y 2>y 1B .y 3>y 1=y 2C .y 1>y 2>y 3D .y 1=y 2>y 3分析 根据函数解析式的特点,其对称轴为x=1,图象开口向下,在对称轴的右侧,y 随x 的增大而减小,据二次函数图象的对称性可知,P1(-1,y 1)与(3,y 1)关于对称轴对称,可判断y 1=y 2>y 3.解:∵y=-x 2+2x+c ,∴对称轴为x=1,P 2(3,y 2),P 3(5,y 3)在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴y 2>y 3,根据二次函数图象的对称性可知,P 1(-1,y 1)与(3,y 1)关于对称轴对称, 故y 1=y 2>y 3,故选D答案:D .方法点2:如果抛物线上两点(x 1,m),(x 2,m)的纵坐标相等,那么这两点关于抛物线的对称轴直线x =x 1+x 22对称.例2 如图所示,已知抛物线y=x2+bx+c的对称轴为直线x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为() A.(2,3)B.(3,2)C.(3,3) D.(4,3)解析:∵ 点A,B均在抛物线上,且AB与x轴平行,∴ 点A与点B关于对称轴x=2对称.又∵ A(0,3),∴ AB=4,y B=y A=3,∴ 点B的坐标为(4,3),故选D.答案:D蓄势待发考前攻略该知识点一般与二次函数的性质结合考查,多以选择题和填空题为主,题目难度中等偏下.完胜关卡。
数学坐标相关知识点总结数学坐标是数学中一个重要的概念,它是描述点在二维平面或三维空间中位置的工具。
在数学中,坐标系统有多种表示方法,比如直角坐标、极坐标和球坐标等。
这些坐标系统都可以通过数学方法描述一个点在空间中的位置,从而便于进行各种计算和分析。
1. 直角坐标系直角坐标系是描述点在二维平面上位置的一种坐标系统。
它由两条互相垂直的坐标轴组成,一般约定为x轴和y轴。
x轴和y轴的交点称为原点O,x轴正方向为正方向,y轴正方向也为正方向。
在直角坐标系中,每个点可以由一对有序实数(x, y)表示,其中x称为横坐标,y称为纵坐标。
横坐标和纵坐标的符号取决于点所在的象限,其中象限是平面上以原点为中心的四个部分。
在直角坐标系中,两点的距离可以通过勾股定理计算:设两点A(x1, y1)和B(x2, y2),则AB的距离为√((x2-x1)² + (y2-y1)²)。
2. 极坐标系极坐标系是描述点在二维平面上位置的另一种坐标系统,它由极轴和极角组成。
极轴是一个过原点的射线,极角是从极轴到点的射线的逆时针方向的角度。
在极坐标系中,每个点可以由一对有序实数(r, θ)表示,其中r称为极径,θ称为极角。
在极坐标系中,点的坐标可以通过直角坐标系的转换关系来表示:x = r * cos(θ),y = r *sin(θ)。
同样地,直角坐标系的坐标也可以通过极坐标系的转换关系来表示:r = √(x² + y²),θ = arctan(y/x)。
3. 球坐标系球坐标系是描述点在三维空间中位置的一种坐标系统,它由径向、极角和方位角组成。
径向是从原点到点的直线距离,极角是径向与z轴的夹角,方位角是x轴正方向与点在水平面上的投影的夹角。
在球坐标系中,每个点可以由一组有序实数(r, θ, φ)表示,其中r称为径向,θ称为极角,φ称为方位角。
在球坐标系中,点的坐标可以通过直角坐标系的转换关系来表示:x = r * sin(θ) * cos(φ),y = r * sin(θ) * sin(φ),z = r * cos(θ)。
知识点4 坐标与图形的变化知识链接1、坐标与图形变化---对称(1)关于x轴对称横坐标相等,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,-y).(2)关于y轴对称纵坐标相等,横坐标互为相反数.即点P(x,y)关于y轴的对称点P′的坐标是(-x,y).(3)关于直线对称①关于直线x=m对称,P(a,b)⇒P(2m-a,b)②关于直线y=n对称,P(a,b)⇒P(a,2n-b)2、坐标与图形变化---平移(1)平移变换与坐标变化向右平移a个单位,坐标P(x,y)⇒P(x+a,y)向左平移a个单位,坐标P(x,y)⇒P(x-a,y)向上平移b个单位,坐标P(x,y)⇒P(x,y+b)向下平移b个单位,坐标P(x,y)⇒P(x,y-b)(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)3 坐标与图形变化---旋转(1)关于原点对称的点的坐标.即点P(x,y)关于原点O的对称点是P′(-x,-y).(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.同步练习1.(2014•大连)在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A.(1,3)B.(2,2)C.(2,4)D.(3,3)考点:坐标与图形变化-平移.分析:根据向上平移,横坐标不变,纵坐标加解答.解答:∵点(2,3)向上平移1个单位,∴所得到的点的坐标是(2,4).故选:C.2.(2014•呼伦贝尔)将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:坐标与图形变化-平移.分析:先利用平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减) ,,求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.解答:点A(-2,-3)向右平移3个单位长度,得到点B的坐标为为(1,-3),故点在第四象限.故选D.3.(2014•牡丹江)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(-x,y-2)B.(-x,y+2)C.(-x+2,-y)D.(-x+2,y+2)考点:坐标与图形变化-平移.分析:先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(-x,y+2),即为P′点的坐标.解答:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(-x,y+2).故选:B.4.(2014•潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)考点:翻折变换(折叠问题);正方形的性质;坐标与图形变化-对称、平移.专题:规律型.分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.解答:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选:A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n 为偶数时为(2-n,2)是解此题的关键.5.(2014•昆明)如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为.考点:坐标与图形变化-平移.分析:根据点向左平移a个单位,坐标P(x,y)⇒P(x-a,y)进行计算即可.解答:∵点A坐标为(1,3),∴线段OA向左平移2个单位长度,点A的对应点A′的坐标为(1-2,3),即(-1,3),故答案为:(-1,3).6.(2014•宜宾)在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是.考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.分析:首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.解答:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为:(2,-2).7.(2014•厦门)在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是,A1的坐标是.考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,纵坐标不变解答.解答:∵点O (0,0),A (1,3),线段OA 向右平移3个单位,∴点O 1的坐标是(3,0),A 1的坐标是(4,3).故答案为:(3,0),(4,3).*8.(2014•巴中)如图,直线y =−34x +4与x 轴、y 轴分别交于A 、B 两点,把△A 0B 绕点A 顺时针旋转90°后得到△AO ′B ′,则点B ′的坐标是 .考点:坐标与图形变化-旋转.分析:首先根据直线AB 来求出点A 和点B 的坐标,B ′的横坐标等于OA +OB ,而纵坐标等于OA ,进而得出B ′的坐标.解答:直线y =-34x +4与x 轴,y 轴分别交于A (3,0),B (0,4)两点, ∵旋转前后三角形全等,∠O ′AO =90°,∠B ′O ′A =90°∴OA =O ′A ,OB =O ′B ′,O ′B ′∥x 轴,∴点B ′的纵坐标为OA 长,即为3,横坐标为OA +OB =OA +O ′B ′=3+4=7,故点B ′的坐标是(7,3),故答案为:(7,3).点评:本题主要考查了对于图形翻转的理解,其中要考虑到点B 和点B ′位置的特殊性,以及点B ′的坐标与OA 和OB 的关系.9.(2013•梅州)如图,在平面直角坐标系中,A (-2,2),B (-3,-2)(1)若点C 与点A 关于原点O 对称,则点C 的坐标为______;(2)将点A 向右平移5个单位得到点D ,则点D 的坐标为______;(3)由点A ,B ,C ,D 组成的四边形ABCD 内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.考点:关于原点对称的点的坐标;坐标与图形变化-平移;概率公式.分析:(1)根据关于原点的对称点,横纵坐标都互为相反数求解即可;(2)把点A 的横坐标加5,纵坐标不变即可得到对应点D 的坐标;(3)先找出在平行四边形内的所有整数点,再根据概率公式求解即可.解答:(1)∵点C 与点A (-2,2)关于原点O 对称,∴点C 的坐标为(2,-2);(2)∵将点A 向右平移5个单位得到点D ,∴点D 的坐标为(3,2);(3)由图可知:A (-2,2),B (-3,-2),C (2,-2),D (3,2),∵在平行四边形ABCD 内横、纵坐标均为整数的点有15个,其中横、纵坐标和为零的点有3个,即(-1,1),(0,0),(1,-1),∴P =153=51. 点评:本题考查了关于原点对称的点的坐标,坐标与图形变化-平移,概率公式.难度适中,掌握规律是解题的关键.10.(黄冈)在平面直角坐标系中,△ABC 的三个顶点的坐标是A (-2,3),B (-4,-1),C (2,0),将△ABC 平移至△A 1B 1C 1的位置,点A 、B 、C 的对应点分别是A 1、B 1、C 1,若点A 1的坐标为(3,1).则点C 1的坐标为______.考点:坐标与图形变化-平移.分析:首先根据A 点平移后的坐标变化,确定三角形的平移方法,点A 横坐标加5,纵坐标减2,那么让点C 的横坐标加5,纵坐标-2即为点C 1的坐标.解答:由A (-2,3)平移后点A 1的坐标为(3,1),可得A 点横坐标加5,纵坐标减2,则点C 的坐标变化与A 点的变化相同,故C 1(2+5,0-2),即(7,-2). 故答案为:(7,-2).点评:本题主要考查图形的平移变换,解决本题的关键是根据已知对应点找到所求对应点之间的变化规律.11.(北京)操作与探究:(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以31,再把所得数对应的点向右平移1个单位,得到点P 的对应点P ′.点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段A ′B ′,其中点A ,B 的对应点分别为A ′,B ′.如图1,若点A 表示的数是-3,则点A ′表示的数是______;若点B ′表示的数是2,则点B 表示的数是______;已知线段AB 上的点E 经过上述操作后得到的对应点E ′与点E 重合,则点E 表示的数是______.(2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0),得到正方形A ′B ′C ′D ′及其内部的点,其中点A ,B 的对应点分别为A ′,B ′.已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F ′与点F 重合,求点F 的坐标.考点:坐标与图形变化-平移;数轴;正方形的性质;平移的性质.。
关于极坐标的相关知识点在平面内取一个定点O,叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。
对于平面内任何一点M,用ρ表示线段OM的长度,θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对(ρ,θ)就叫点M 的极坐标,这样建立的坐标系叫做极坐标系。
在极坐标中,x被ρcosθ代替,y被ρsinθ代替。
ρ∧2=(x∧2+y∧2)极坐标系是一个二维坐标系统。
该坐标系统中的点由一个夹角和一段相对中心点——极点(相当于我们较为熟知的直角坐标系中的原点)的距离来表示。
极坐标系的应用领域十分广泛,包括数学、物理、工程、航海以及机器人领域。
在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。
对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。
正如所有的二维坐标系,极坐标系也有两个坐标轴:r(半径坐标)和θ(角坐标、极角或方位角,有时也表示为φ或t)。
r坐标表示与极点的距离,θ坐标表示按逆时针方向坐标距离0°射线(有时也称作极轴)的角度,极轴就是在平面直角坐标系中的x轴正方向。
比如,极坐标中的(3,60°)表示了一个距离极点3个单位长度、和极轴夹角为60°的点。
(−3,240°)和(3,60°)表示了同一点,因为该点的半径为在夹角射线反向延长线上距离极点3个单位长度的地方(240° − 180° = 60°)。
极坐标系中一个重要的特性是,平面直角坐标中的任意一点,可以在极坐标系中有无限种表达形式。
通常来说,点(r,θ)可以任意表示为(r,θ ± 2kπ)或(−r,θ ± (2k+ 1)π),这里k是任意整数。
[7] 如果某一点的r坐标为0,那么无论θ取何值,该点的位置都落在了极点上。
第六节空间直角坐标系及空间向量的线性运算复习目标学法指导1.会确定空间点的坐标.2.会求直线方向向量及平面法向量.3.会进行空间向量的几何运算及代数运算.4.会进行空间向量的数量积及坐标运算. 1.空间直角坐标系中的点是由横、纵、竖三个数组成的有序数组.2.直线的方向向量与直线上的向量是共线向量,平面的法向量与平面上的任何直线都垂直.3.空间向量的几何运算及代数运算与平面向量类似.4.会通过数量积进行空间向量的坐标运算表达直线、平面位置关系.一、空间直角坐标系及空间向量的有关概念1.空间直角坐标系及有关概念(1)空间直角坐标系以空间一点O为原点,建立三条两两垂直的数轴:x轴、y轴、z轴.这时我们说建立了一个空间直角坐标系Oxyz,其中点O叫做坐标原点,x 轴、y轴、z轴叫做坐标轴,通过每两个坐标轴的平面叫做坐标平面.(2)右手直角坐标系在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系.(3)空间一点M 的坐标空间一点M 的坐标可以用有序实数组(x,y,z)来表示,记作M(x,y,z),其中x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标. 2.空间两点间的距离公式、中点公式 (1)距离公式①设点A(x 1,y 1,z 1),B(x 2,y 2,z 2),则②点P(x,y,z)与坐标原点O 之间的距离为 .(2)中点公式设点P(x,y,z)为线段P 1P 2的中点,其中P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),则有121212,2,2.2x x x y y y z z z +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩3.空间向量的有关概念向量零向量长度(或模)为0的向量相等向量方向相同且模相等的向量相反向量方向相反且模相等的向量共线向量(或平行向量)如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,a平行于b记作 a∥b共面向量平行于同一个平面的向量叫做共面向量概念理解(1)空间直角坐标系的建立原则是:合理利用几何体中的垂直关系,特别是面面垂直;尽可能地让相关点落在坐标轴或坐标平面上.(2)直线的方向向量:l是空间一直线,A,B是直线l上任意两点,则称ABu u u r为直线l的方向向量,与ABu u u r平行的任意非零向量也是直线l的方向向量.(3)平面的法向量可利用方程组求出:设a,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为0,0.n a n b ⋅=⎧⎨⋅=⎩ (4)共线向量定理中a ∥b ⇔存在λ∈R,使a=λb,不要忽视b ≠0. (5)一个平面的法向量有无数个,但要注意它们是共线向量,不要误认为是共面向量. 二、数量积与坐标运算 1.数量积及相关概念(1)两向量的夹角:已知两个非零向量a,b,在空间任取一点O,作OA u u u r =a,OB u u u r=b,则∠AOB 叫做向量a 与b 的夹角,记作<a,b>,其范围是[0,π].若<a,b>=π2,则称向量a 与b 互相垂直,记作a ⊥b.若<a,b>=0,则称向量a 与b 同向共线,若<a,b>=π,则称向量a 与b 反向共线. (2)两向量的数量积:已知两个非零向量a,b,则|a||b|cos<a,b>叫做向量a,b 的数量积,记作 a ·b,即a ·b=|a||b|cos<a,b>. 2.两个向量数量积的性质和结论 已知两个非零向量a 和b.(1)a ·e=|a|cos<a,e>(其中e 为单位向量). (2)a ⊥b ⇔a ·b=0. (3)cos<a,b>=a b a b⋅.(4)a 2=a ·a=|a|2,|a|=.(5)|a ·b|≤|a||b|.3.空间向量数量积的运算律 (1)数乘结合律:(λa)·b=λ(a ·b).(2)交换律:a ·b=b ·a.(3)分配律:a ·(b+c)=a ·b+a·c. 4.向量坐标的定义设i,j,k 为空间三个两两垂直的单位向量,如果OP u u u r=xi+yj+zk,则(x,y,z)叫做向量OP u u u r的坐标. 5.空间向量运算的坐标表示 设a=(x 1,y 1,z 1),b=(x 2,y 2,z 2),那么(1)加、减运算:a ±b=(x 1±x 2,y 1±y 2,z 1±z 2). (2)数量积:a ·b=x 1x 2+y 1y 2+z 1z 2. (3)夹角公式:cos<a,b>=121212222222111222x y z x y z ++++.(4)模长公式:|a|=a a ⋅=222111x y z ++.(5)数乘运算:λa=(λx 1,λy 1,λz 1)(λ∈R).(6)平行的充要条件:a ∥b ⇔x 1=λx 2,y 1=λy 2,z 1=λz 2(λ∈R). (7)垂直的充要条件:a ⊥b ⇔x 1x 2+y 1y 2+z 1z 2=0.1.概念理解(1)探求两向量的夹角时, 必须从两向量共起点来看.(2)空间向量的数量积运算律与平面向量数量积运算律保持一致. (3)向量OP u u u r的坐标是终点坐标减去起点坐标.(4)立体几何中的平行或共线问题一般可以用向量共线定理解决,求两点间距离可以用向量的模解决;解决垂直问题一般可化为向量的数量积为零;求角问题可以转化为两向量的夹角.2.与数量积及坐标运算相关联的结论(1)aa表示单位向量.(2)|a|2=a·a.(3)空间向量不满足结合律,即(a·b)·c≠a·(b·c).1.在平行六面体ABCD-EFGH中,若AG u u u r=2xABu u u r+3yBCu u u r+3zHDu u u r,则x+y+z等于( D )(A)76(B)23(C)56(D)12解析:因为AG u u u r=AB u u u r+BC u u u r-HD u u u r,所以21,31,31,xyz=⎧⎪=⎨⎪=-⎩所以1,21,31,3xyz⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩所以x+y+z=12.故选D.2.平行六面体ABCD-A1B1C1D1中,向量AB u u u r,AD u u u r,1AAu u u r两两的夹角均为60°,且|AB u u u r|=1,|AD u u u r|=2,|1AAu u u r|=3,则|1ACu u u u r|等于( A )(A)5 (B)6 (C)4 (D)8解析:设AB u u u r=a,AD u u u r=b,1AAu u u r=c,则1ACu u u u r=a+b+c,21ACu u u u r=(a+b+c)2=a2+b2+c2+2a·b+2b·c+2c·a=25,因此|1ACu u u u r|=5.故选A.3.在空间四边形ABCD中,AB u u u r·CD u u u r+AC u u u r·DB u u u r +AD u u u r·BC u u u r等于( B )(A)-1 (B)0(C)1 (D)不确定解析:如图,令AB u u u r=a,AC u u u r=b,AD u u u r=c,则AB u u u r·CD u u u r+AC u u u r·DB u u u r+AD u u u r·BC u u u r=a·(c-b)+b·(a-c)+c·(b-a)=a·c-a·b+b·a-b·c+c·b-c·a=0.考点一空间直角坐标系[例1] 在空间直角坐标系Oxyz中,点A(1,2,2),则|OA|= ;点A到坐标平面yOz的距离是.解析:根据空间直角坐标系中两点间的距离公式,得|OA|=()()()222-+-+-=3.102020因为A(1,2,2),所以点A到平面yOz的距离为|1|=1.答案:3 1(1)点P(x,y,z)关于各点、线、面的对称点的坐标点、线、面对称点坐标原点(-x,-y,-z)x轴(x,-y,-z)y轴(-x,y,-z)z轴(-x,-y,z)坐标平面xOy (x,y,-z)坐标平面yOz (-x,y,z)坐标平面zOx (x,-y,z)(2)两点间距离公式的应用①求两点间的距离或线段的长度;②已知两点间的距离,确定坐标中参数的值;③根据已知条件探求满足条件的点的存在性.设点M(2,1,3)是直角坐标系Oxyz中一点,则点M关于x轴对称的点的坐标为( A )(A)(2,-1,-3) (B)(-2,1,-3)(C)(-2,-1,3) (D)(-2,-1,-3)解析:点M关于x轴对称的点与点M的横坐标相同,纵坐标、竖坐标均互为相反数,所以对称点为(2,-1,-3).故选A.考点二空间向量的线性运算[例2] 在三棱锥O-ABC中,M,N分别是OA,BC的中点,G是△ABC的重u u u u r.心,用基向量OA u u u r,OB u u u r,OC u u u r表示OG u u u r,MG解:OG u u u r =OA u u u r +AG u u u r=OA u u u r +23AN u u u r=OA u u u r +23(ON u u u r -OA u u u r)=OA u u u r+23[12(OB u u u r +OC u u u r )-OA u u u r]=13OA u u u r+13OB u u u r+13OC u u u r. MG u u u u r =OG u u u r -OM u u u u r=OG u u u r -12OA u u u r=13OA u u u r +13OB u u u r +13OC u u u r -12OA u u u r=-16OA u u u r+13OB u u u r+13OC u u u r. (1)选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的基本要求.如本例用OA u u u r ,OB u u u r ,OC u u u r 表示OG u u u r ,MG u u u u r等,另外解题时应结合已知和所求观察图形,联想相关的运算法则和公式等,就近表示所需向量.(2)首尾相接的若干个向量的和,等于由起始向量的起点指向末尾向量的终点的向量.所以求若干向量的和,可以通过平移将其转化为首尾相接的向量求和.如图,已知空间四边形OABC,其对角线为OB,AC,M,N 分别是对边OA,BC 的中点,点G 在线段MN 上,且分MN 所成的比为2,现用基向量OA u u u r ,OB u u u r ,OC u u u r 表示向量OG u u u r ,设OG u u u r =x OA u u u r +y OB u u u r+z OCu u u r ,则x,y,z 的值分别是( D ) (A)x=13,y=13,z=13(B)x=13,y=13,z=16(C)x=13,y=16,z=13 (D)x=16,y=13,z=13解析:设OA u u u r =a,OB u u u r =b,OC u u u r=c, 因为G 分MN 所成的比为2,所以MG u u u u r =23MN u u u u r, 所以OG u u u r=OM u u u u r +MG u u u u r =OM u u u u r +23(ON u u u r -OM u u u u r) =12a+23(12b+12c-12a) =12a+13b+13c-13a =16a+13b+13c, 即x=16,y=13,z=13. 考点三 空间向量的数量积与坐标运算[例3] 已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4).设a=AB u u u r ,b=AC u u u r,(1)求a 和b 的夹角θ的余弦值;(2)若向量ka+b 与ka-2b 互相垂直,求k 的值.解:因为A(-2,0,2),B(-1,1,2),C(-3,0,4),a=AB u u u r,b=AC u u u r,所以a=(1,1,0),b=(-1,0,2). (1)cos θ=a b a b⋅=10025-++⨯=-1010,所以a 和b 的夹角θ的余弦值为-1010.解:(2)因为ka+b=k(1,1,0)+(-1,0,2)=(k-1,k,2), ka-2b=(k+2,k,-4)且(ka+b)⊥(ka-2b),所以(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k 2-8=2k 2+k-10=0. 解得k=-52或k=2. (1)求空间向量数量积的方法①定义法.设向量a,b 的夹角为θ,则a ·b=|a||b|cos θ; ②坐标法.设a=(x 1,y 1,z 1),b=(x 2,y 2,z 2),则a ·b=x 1x 2+y 1y 2+z 1z 2. ③基向量法.将所求向量用基向量表示,再进行运算. (2)数量积的应用①求夹角.设非零向量a,b 的夹角为θ,则cos θ=a b a b⋅,进而可求两异面直线所成的角;②求长度(距离).运用公式|a|2=a ·a,可将线段长度的计算问题转化为向量数量积的计算问题;③解决垂直问题.利用a ⊥b ⇔a ·b=0(a ≠0,b ≠0),可将垂直问题转化为向量数量积的计算问题.1.如图,在棱长为2的正四面体A-BCD 中,E,F 分别为直线AB,CD 上的动点,且3若记EF 中点P 的轨迹为L,则|L|等于 .(注:|L|表示L 的测度,在本题,L 为曲线、平面图形、空间几何体时,|L|分别对应长度、面积、体积)解析:为了便于计算,将正四面体放置于如图的正方体中,可知,正方体的棱长为2,建立如图所示的空间直角坐标系,设E(0,y 1,y 1),F(2,y 2,2-y 2),P(x,y,z),|EF|=()()()222121222yy y y +-+-+=3,即(y 1-y 2)2+(y 1+y 2-2)2=1,又12122,22x y y y y y z ⎧⎪⎪⎪+=⎨⎪⎪+-=⎪⎩即121222,2x y y y y y z ⎧⎪⎪⎪+=⎨⎪+-⎪⎪⎩代入上式得2222=1,即2)22)2=14,即P 的轨迹为半径为12的圆,周长为|L|=2πr=π. 答案:π2.A,B,C,D 是空间不共面的四点,且满足AB u u u r ·AC u u u r =0,AC u u u r ·AD u u u r =0,AB u u u r ·AD u u u r=0,M为BC 的中点,则△AMD 是( C )(A)钝角三角形 (B)锐角三角形 (C)直角三角形 (D)不确定 解析:因为M 为BC 的中点, 所以AM u u u u r =12(AB u u u r +AC u u u r).所以AM u u u u r·AD u u u r =12(AB u u u r +AC u u u r )·AD u u u r=12AB u u u r·AD u u u r +12AC u u u r ·AD u u u r=0.所以AM ⊥AD,即△AMD 为直角三角形. 考点四 易错辨析[例4] 如图所示,在空间直角坐标系中,BC=2,原点O 是BC 的中点,点A 的坐标是(32,12,0),点D 在平面yOz 内,且∠BDC=90°,∠DCB=30°.(1)求OD u u u r的坐标;(2)设AD u u u r 和BC u u u r的夹角为θ,求cos θ的值.解:(1)如图所示,过D 作DE ⊥BC,垂足为E.在Rt △DCB 中,由∠BDC=90°,∠DCB=30°,BC=2,得BD=1,CD=3.所以DE=CDsin 30°3.OE=OB-BDcos 60°=1-12=12.所以D 点坐标为(0,-12,3),即OD u u u r的坐标为(0,-12,3).解:(2)依题意,OA u u u r=(3, 12,0), OB u u u r =(0,-1,0), OC u u u r=(0,1,0),所以AD u u u r =OD u u u r -OA u u u r=(-3,-1,3),BC u u u r =OC u u u r -OB u u u r=(0,2,0).由AD u u u r 和BC u u u r的夹角为θ,得 cos θ=AD BC AD BC⋅u u u r u u u ru u u r u u u r=()()2222223301202233102022-⨯+-⨯+⨯⎛⎫⎛⎫-+-+⨯++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=-10.所以cos θ=-10.解答空间向量的计算问题时,以下两点容易造成失分,在备考时要高度关注:(1)对向量运算法则特别是坐标运算的法则掌握不熟练导致失误. (2)不能熟练地运用向量共线、垂直的充要条件将问题转化.类型一 空间直角坐标系1.在四棱锥O-ABCD 中,底面ABCD 是平行四边形,设OA u u u r=a, OB u u u r=b,OC u u u r =c,则OD u u u r可表示为(A )(A)a+c-b (B)a+2b-c(C)b+c-a (D)a+c-2b 解析:因为OA u u u r=a,OB u u u r=b,OC u u u r=c,在▱ABCD 中,BA u u u r =OA u u u r -OB u u u r =a-b,OD u u u r - OC u u u r =CD u u u r =BA u u u r=a-b, 所以OD u u u r=OC u u u r+CD u u u r =a-b+c.故选A.2.已知空间任意一点O 和不共线的三点A,B,C,若OP u u u r =x OA u u u r +y OB u u u r +z OC u u u r(x,y,z ∈R),则“x=2,y=-3,z=2”是“P,A,B,C四点共面”的( B ) (A)必要不充分条件 (B)充分不必要条件 (C)充要条件(D)既不充分也不必要条件 解析:当x=2,y=-3,z=2时, 即OP u u u r=2OA u u u r-3OB u u u r+2OC u u u r.则AP u u u r -AO u u u r =2OA u u u r -3(AB u u u r -AO u u u r )+2(AC u u u r -AO u u u r), 即AP u u u r=-3AB u u u r +2AC u u u r,根据共面向量定理知,P,A,B,C 四点共面; 反之,当P,A,B,C 四点共面时,根据共面向量定理, 设AP u u u r =m AB u u u r +n AC u u u r(m,n ∈R), 即OP u u u r-OA u u u r=m(OB u u u r-OA u u u r)+n(OC u u u r-OA u u u r), 即OP u u u r=(1-m-n)OA u u u r+m OB u u u r+n OC u u u r,即x=1-m-n,y=m,z=n,这组数显然不止2,-3,2.故“x=2,y=-3,z=2”是“P,A,B,C 四点共面”的充分不必要条件.故选B.3.已知a=(2,3,1),b=(-4,2,x),且a ⊥b,则|b|= . 解析:因为a ⊥b,所以-8+6+x=0,解得x=2, 故|b|=()222422-++=26.答案:26类型二 空间向量线性运算4.在正方体ABCD-A 1B 1C 1D 1中,向量1DD u u u u r -AB u u u r +BC u u u r化简后的结果是( A )(A)1BD u u u u r (B)1D B u u u u r (C)1B D u u u u r (D)1DB u u u u r解析:根据空间向量加法的平行四边形法则,把向量平移到同一起点,得1DD u u u u r -AB u u u r +BC u u u r =BA u u u r +BC u u u r +1BB u u u r =1BD u u u u r,故选A.类型三 空间向量数量积及坐标运算5.点P 是棱长为1的正方体ABCD-A 1B 1C 1D 1的底面A 1B 1C 1D 1上一点,则PA u u u r·1PC u u u u r 的取值范围是(D )(A)[-1,-14] (B)[-12,-14] (C)[-1,0] (D)[-12,0] 解析:如图,以D 1为原点,以D 1C 1,D 1A 1,D 1D 方向为x 轴,y 轴,z 轴,建立空间直角坐标系,则A(0,1,1),C 1(1,0,0),P(x,y,0), PA u u u r=(-x,1-y,1),1PC u u u u r=(1-x,-y,0), PA u u u r ·1PC u u u u r =(x-12)2+(y-12)2-12,(其中0≤x ≤1,0≤y ≤1),所以PA u u u r ·1PC u u u u r的取值范围是[-12,0].故选D.6.已知空间四边形ABCD 的每条边和对角线的长都等于a,点E,F 分别是BC,AD 的中点,则AE u u u r ·AF u u u r 的值为( C )(A)a 2 (B)12a 2 (C)14a 2(a 2解析:AE u u u r ·AF u u u r =12(AB u u u r +AC u u u r)·12AD u u u r =14(AB u u u r ·AD u u u r +AC u u u r ·AD u u u r)=14(a 2cos 60°+a 2cos 60°)=14a 2.故选C. 7.在四棱锥P-ABCD 中,AB u u u r =(4,-2,3),AD u u u r=(-4,1,0),AP u u u r=(-6,2,-8),则这个四棱锥的高h 等于( B )(A)1 (B)2 (C)13 (D)26解析:设平面ABCD 的法向量为n=(x,y,z),则,,n AB n AD ⎧⎪⎨⎪⎩u u u ru u u r ⊥⊥⇒4230,40,x y z x y -+=⎧⎨-+=⎩ 令y=4,则n=(1,4,43), 则h=n AP n⋅u u u r=326833-+-=2.故选B.8.OA u u u r=(1,2,3),OB u u u r=(2,1,2),OP u u u r=(1,1,2)(其中O 为坐标原点),点Q 在OP 上运动,当QA u u u r ·QB u u u r取最小值时,点Q 的坐标为( C )(A)( 12,34,13) (B)( 12,23,34) (C)( 43,43,83) (D)( 43,43,73) 解析:设OQ u u u r =λOP u u u r=λ(1,1,2)=(λ,λ,2λ), 则QA u u u r=(1-λ,2-λ,3-2λ), QB u u u r=(2-λ,1-λ,2-2λ),QA u u u r ·QB u u u r=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)(2-2λ)=6λ2-16λ+10 =6(λ-43)2-23.当λ=43时,QA u u u r ·QB u u u r取得最小值,此时Q(43,43,83).故选C.9.A,B,C,D 是空间不共面的四点,且满足AB u u u r ·AC u u u r =0,AC u u u r ·AD u u u r =0,AB u u u r ·AD u u u r=0,则△BCD是( B )(A)钝角三角形 (B)锐角三角形 (C)直角三角形 (D)不确定 解析:BC u u u r ·BC u u u r =(AD u u u r -AB u u u r )·(AC u u u r -AB u u u r) =AD u u u r ·AC u u u r -AD u u u r ·AB u u u r -AB u u u r ·AC u u u r +2AB u u u r =2AB u u u r >0,所以cos ∠DBC>0,∠DBC 为锐角, 同理∠BDC,∠BCD 为锐角. 所以△BCD 为锐角三角形,故选B.。
初中坐标知识点总结一、直角坐标系1. 直角坐标系的概念:以两条相互垂直的直线为坐标轴,取定原点,便构成了直角坐标系。
2. 第一象限、第二象限、第三象限、第四象限:根据坐标轴的正负,将平面分成四个部分,分别为第一象限、第二象限、第三象限、第四象限。
3. 坐标的表示:平面上的任意点都可以用坐标表示,一般用(x, y)来表示,其中x表示横坐标,y表示纵坐标。
4. 设点的坐标:求一个点在坐标系中的坐标,要数出横坐标和纵坐标的位置,然后用逗号隔开。
二、坐标系与图形1. 点的位置关系:通过坐标系中点的坐标,可以判断点的位置关系,如同一直线上的点、同一象限中的点、对称点等。
2. 线段的长度:根据坐标系中两点的坐标,可以求出两点之间的距离,即线段的长度。
3. 正方形、矩形、平行四边形:利用坐标系可以判断图形的形状和位置关系,如判断一个四边形是不是正方形、矩形或平行四边形等。
三、平面直角坐标系上的点的对称1. 关于横坐标轴的对称:一个点关于横坐标轴对称的点,横坐标不变,纵坐标变号。
2. 关于纵坐标轴的对称:一个点关于纵坐标轴对称的点,纵坐标不变,横坐标变号。
3. 关于原点的对称:一个点关于原点对称的点,横纵坐标变号。
四、平移、旋转、镜面对称和轴对称的关系1. 平移:平行于坐标轴的平移,横坐标或纵坐标加上一个常数。
2. 旋转:绕原点逆时针旋转θ度的公式为:x'=x*cosθ-y*sinθ,y'=x*sinθ+y*cosθ。
3. 镜面对称:关于x轴的镜面对称,横坐标不变,纵坐标变号;关于y轴的镜面对称,纵坐标不变,横坐标变号。
4. 轴对称:与y轴对称,x坐标不变,y坐标变为相反数;与x轴对称,y坐标不变,x坐标变为相反数。
五、坐标系中的直线、直线方程1. 点斜式方程:直线方程y=kx+b中,k是直线的斜率,b是截距。
2. 斜率的性质:斜率为正,代表线向上倾斜;斜率为负,代表线向下倾斜;当斜率为0,代表水平线;当斜率不存在,代表竖直线。
极坐标与参数方程知识点及题型归纳总结知识点精讲一、极坐标系在平面上取一个定点O ,由点O 出发的一条射线Ox 、一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.点O 称为极点,Ox 称为极轴.平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ (弧度制)来刻画(如图16-31和图16-32所示). 这两个实数组成的有序实数对(,)ρθ称为点M 的极坐标. ρ称为极径,θ称为极角.二、极坐标与直角坐标的互化设M 为平面上的一点,其直角坐标为(,)x y ,极坐标为(,)ρθ,由图16-31和图16-32可知,下面的关系式成立:cos sin x y ρθρθ=⎧⎨=⎩或222tan (0)x y yx x ρθ⎧=+⎪⎨=≠⎪⎩(对0ρ<也成立). 三、极坐标的几何意义r ρ=——表示以O 为圆心,r 为半径的圆;0θθ=——表示过原点(极点)倾斜角为0θ的直线,0(0)θθρ=≥为射线;2cos a ρθ=表示以(,0)a 为圆心过O 点的圆.(可化直角坐标: 22cos a ρρθ=222x y ax ⇒+=222()x a y a ⇒-+=.)四、直线的参数方程直线的参数方程可以从其普通方程转化而来,设直线的点斜式方程为00()y y k x x -=-,其中tan (k αα=为直线的倾斜角),代人点斜式方程:00sin ()()cos 2y y x x απαα-=-≠,即00cos sin x x y y αα--=. 记上式的比值为t ,整理后得00cos t sin x x t y y αα=+⎧⎨=+⎩,2πα=也成立,故直线的参数方程为00cos t sin x x t y y αα=+⎧⎨=+⎩(t 为参数,α为倾斜角,直线上定点000(,)M x y ,动点(,)M x y ,t 为0M M 的数量,向上向右为正(如图16-33所示).五、圆的参数方程若圆心为点00(,)M x y ,半径为r ,则圆的参数方程为00cos (02)sin x x r y y r θθπθ=+⎧≤≤⎨=+⎩.六、椭圆的参数方程椭圆2222C :1x y a b +=的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数,(02)θπ≤≤).七、双曲线的参数方程双曲线2222C :1x y a b -=的参数方程为sec tan x a y b θθ=⎧⎨=⎩(,)2k k πθπ≠+∈Z .八、抛物线的参数方程抛物线22y px =的参数方程为222x pt y pt⎧=⎨=⎩(t 为参数,参数t 的几何意义是抛物线上的点与顶点连线的斜率的倒数).题型归纳即思路提示题型1 极坐标方程化直角坐标方程 思路提示对于极坐标方程给出的问题解答一般都是通过化为直角坐标方程,利用直角坐标方程求解.这里需注意的是极坐标系与直角坐标系建立的对应关系及其坐标间的关系cos sin x y ρθρθ=⎧⎨=⎩. 例16.7 在极坐标系中,圆4sin ρθ=的圆心到直线6πθ=(ρ∈R )的距离是 .分析 将极坐标方程转化为平面直角坐标系中的一般方程求解.解析 极坐标系中的圆4sin ρθ=转化为平面直角坐标系中的一般方程为224x y y +=,即22(2)4x y +-=,其圆心为(0,2),直线6πθ=转化为平面直角坐标系中的方程为:y x =,即0x =.圆心(0,2)到直线0x ==. 变式1 已知曲线12,C C 的极坐标方程分别为cos 3ρθ=,4cos ρθ=,(0,0)2πρθ≥≤<,则曲线1C 与2C 交点的极坐标为 .变式2 ⊙1O 和⊙2O 的极坐标方程分别为4cos ρθ=,4sin ρθ=-.(1)把⊙1O 和⊙2O 的极坐标方程分别化为直角坐方程; (2)求经过⊙1O 和⊙2O 交点的直线的直角坐标方程.变式3已知一个圆的极坐标方程是5sin ρθθ=-,求此圆的圆心和半径. 例16.8 极坐标方程(1)()0(0)ρθπρ--=≥表示的图形是( )A. 两个圆B.两条直线C.一个圆和一条射线D.一条直线和一条射线分析 将极坐标方程化为直角坐标方程.解析 因为(1)()0(0)ρθπρ--=≥,所以1ρ=或θπ=(0)ρ≥.11ρ=⇒=,得221x y +=,表示圆心在原点的单位圆;(0)θπρ=≥表示x 轴的负半轴,是一条射线.故选C.变式1 极坐标方程cos ρθ=和参数方程123x ty t =--⎧⎨=+⎩(t 参数)所表示的图形分别是( )A.圆、直线B.直线、圆C.圆、圆D.直线、直线 变式2 在极坐标系中,点(2,)6P π-到直线:sin()16l πρθ-=的距离是 .变式3 直线2cos 1ρθ=与圆2cos ρθ=相交的弦长为 .题型2 直角坐标方程化为极坐标方程思路提示如果题目中已知的曲线为直角坐标方程,而解答的问题是极坐标系下的有关问题,这里要利用直角坐标与极坐标关系式cos sin x y ρθρθ=⎧⎨=⎩,将直角坐标方程化为极坐标方程.例16.9 在直角坐标系xOy 中,圆1C :224x y +=,圆2C :22(2)4x y -+=.(1)在以O 为极点,x 轴为极轴的极坐标系中,分别写出圆1C , 2C 的极坐标方程,并求出圆1C , 2C 的交点坐标(用极坐标表示);(2)求出1C 与2C 的公共弦的参数方程.解析 (1)圆1C 的极坐标方程为2ρ=,圆2C 的极坐标方程为4cos ρθ=.24cos ρρθ=⎧⎨=⎩解得2ρ=,3πθ=±,故圆1C 与圆2C 的交点的坐标为(2,),(2,)33ππ-. 注:极坐标系下点的表示不唯一.(2)解法一:由cos sin x y ρθρθ=⎧⎨=⎩,得圆1C 与圆2C 的交点的坐标分别为.故圆1C 与2C 的公共弦的参数方程为1(x t y t=⎧≤≤⎨=⎩.解法二: 将1x =代入cos sin x y ρθρθ=⎧⎨=⎩得cos 1ρθ=,从而1cos ρθ=.于是圆1C 与2C 的公共弦的参数方程为1()tan 33x y ππθθ=⎧-≤≤⎨=⎩.变式1 曲线C 的直角坐标方程为2220x y x +-=,以原点为极点,x 轴的正半轴为极抽建立极坐标系,则曲线C 的极坐标方程为 _.题型3 参数方程化普通方程 思路提示已知直线或曲线的参数方程讨论其位置关系、性质问题一般要通过消参(代入法、加减法,三角法)转化为普通方程解答.例16.10 若直线340x y m ++=与圆1cos 2sin x y θθ=+⎧⎨=-+⎩( θ为参数)没有公共点,则实数m 的取值范围是 . 解析 将圆的参数方程1cos 2sin x y θθ=+⎧⎨=-+⎩( θ为参数)化为普通方程22(1)(2)1x y -++=,圆心(1,2)-,半径1r =.直线与圆无公共点,则圆心到直线的距离大于半径,|38|15m -+>|5|5m ⇒->,得10m >或0m <,即m 的范围是(,0)(10,)-∞+∞.变式 1 在平面直角坐标系xOy 中,直线l 的参数方程33x t y t=+⎧⎨=-⎩(参数t ∈R ),圆C 的参数方程为2cos 2sin 2x y θθ=⎧⎨=+⎩(参数[0,2]θ∈π),则圆C 圆心坐标为 _,圆心到直线l 的距离为 . 变式2 (2013湖北理16)在庄角坐标系xOy 中,椭圆C 的参数方程cos sin x a y b ϕϕ=⎧⎨=⎩(ϕ为参数,0a b >>),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l与圆O 的极坐标方程分别为sin()4πρθ+=(m 为非零数)与b ρ=.若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为 . 变式3 参数方程sin cos sin cos x y θθθθ=+⎧⎨=⎩(θ是参数)的普通方程是 .例16.11 已知动圆22:2cos 2sin 0C x y ax by θθ+--=(,a b 是正常数,a b ≠,θ是参数),则圆心的轨迹是 .解析 由动圆22:2cos 2sin 0C x y ax by θθ+--=得222222(cos )(sin )cos sin x a y b a b θθθθ-+-=+.圆心坐标为(cos ,sin )a b θθ(θ为参数),设cos x a θ=,sin y b θ=,则221x y a b ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即22221x y a b +=为所求轨迹方程,所以圆心的轨迹是椭圆.变式1 方程2232(05)1x t t y t ⎧=+⎪≤≤⎨=-⎪⎩表示的曲线是( ) A. 线段 B. 双曲线的一支 C. 圆弧 D. 射线变式2 已知直线11cos :sin x t C y t αα=+⎧⎨=⎩(t 为参数),2cos :sin x C y θθ=⎧⎨=⎩(θ为参数).(1)当3πα=时,求1C 与2C 的交点坐标;(2)过坐标原点O 作1C 的垂线,垂足为A ,P 为OA 的中点.当α变化时,求点P 轨迹的参数方程,并指出它是什么曲线.题型4 普通方程化参数方程 思路提示对于直线与圆锥曲线方程化为参数方程问题实质是引入第三个变量的换元法,这里有代数换元(如抛物线22y px =的参数方程222x pt y pt =⎧⎨=⎩)或三角换元(如椭圆22221x y a b +=的参数方程cos sin x a y b θθ=⎧⎨=⎩).例16.12 在平面直角坐标系xOy 中,设(,)P x y 是椭圆2213x y +=上的一个动点,求S x y =+的最大值.分析 利用椭圆的参数方程,建立,x y 与参数θ的关系,运用三角函数最值的求法,求解x y +的最大值.解析 点(,)P x y 是椭圆2213x y +=上的一个动点,则sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),[0,2]θ∈π,则sin x y θθ+=+2sin()3πθ=+,[0,2]θ∈π,故max ()2x y +=.变式1 已知点(,)P x y 是圆2220x y y +-=上的动点.(1)求2x y +的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围. 变式2 直线l 过(1,1)P ,倾斜角6πα=.(1) 写出l 的参数方程;(2)l 与圆224x y +=相交于,A B 两点,求P 到,A B 两点的距离之积.变式3 已知抛物线2:4C y x =,点(,0)M m 在x 轴的正半轴上,过M 的直线l 与C 相交于,A B 两点,O 为坐标原点.(1)若1m =时,l 的斜率为1,求以AB 为直径的圆的方程;(2)若存在直线l 使得||,||,||AM OM MB 成等比数列,求实数m 的取值范围.题型5 参数方程与极坐标方程的互化 思路提示参数方程与极坐标方程的互化问题,需要通过普通方程这一中间桥梁来实现,先将参数方程(极坐标方程)化为普通方程,再将普通方程化为极坐标方程(参数方程).例16.13 已知曲线C的参数方程为x ty t⎧=⎪⎨=⎪⎩(t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为 .分析 把曲线C 的参数方程化为普通方程,求出切线l 的普通方程,然后把求出的直线l 的普通方程化为极坐标方程.解析 由22sin cos 1t t +=得曲线C 的普通方程为222x y +=,过原点O 及切点(1,1)的直线的斜率为1,故切线l 的斜率为1-,所以切线l 的方程为1(1)y x -=--,即20x y +-=.把cos x ρθ=,sin y ρθ=代入直线l 的方程可得cos sin 20ρθρθ+-=sin()204πθ+-=,化简得sin()4πθ+=变式1 设曲线C 的参数方程为2x ty t=⎧⎨=⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 .有效训练题 1.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A. 一条射线和一个圆B. 两条直线C. 一条直线和一个圆D. 一个圆 2.圆cos )ρθθ=-的圆心的一个极坐标是( )A. (B. (2,)4πC. 3(2,)4π D. 7(2,)4π3.在极坐标系中,若等边△ABC 的两个顶点是(2,)4A π,5(2,)4B π.那么顶点C 的坐标可能是( )A. 3(4,)4πB. 3)4πC. )πD. (3,)π4.直线的参数方程为sin 501cos50x t y t ⎧=-⎪⎨=-⎪⎩(t 为参数),则直线的倾斜角为( )A. 40B. 50C. 140D.1305.过点(2,3)A 的直线的参数方程为232x ty t =+⎧⎨=+⎩(t 为参数),若此直线与直线30x y -+=相交于点B ,则||AB =( )6.设曲线C 的参数方程23cos 13sin x y θθ=+⎧⎨=-+⎩( θ为参数),直线l 的方程为320x y -+=,则曲线C 上到直线l的点的个数为( ) A. 1 B. 2 C.3 D.4 7.已知直线l的极坐标方程为sin()42πρθ-=,圆M 的参数方程为22cos 12sin x y θθ=+⎧⎨=-+⎩( θ为参数),则圆M 上的点到直线l 的最短距离为 .8.在平面直角坐标系xOy 中,曲线1C 和2C的参数方程分别为x y θθ⎧=⎪⎨=⎪⎩(θ为参数,02πθ≤≤)和1x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),则曲线1C 与2C 的交点坐标为 . 9.已知抛物线的参数方程为222x pt y pt=⎧⎨=⎩(t 为参数),其中0p >,焦点为F ,准线为l ,过抛物线上一点M 作准线l 的垂线,垂足为E ,若||||EF MF =,点M 的横坐标是3,则p = .10.在极坐标系中,O 为极点,已知两点,M N 的极坐标分别为2(4,)3π,)4π,求△OMN 的面积. 11.已知椭圆221164x y +=,O 为坐标原点,,P Q 为椭圆上的两动点,若OP OQ ⊥,求22||||OP OQ +的最大值.12. 已知曲线12cos :sin x C y θθ=⎧⎨=⎩(θ为参数),曲线2247:cos 016C ρθ-+=.(1)若,P Q 分别是曲线1C 和曲线2C 上的两个动点,求线段PQ 长度的最小值;(2)若曲线1C 上与x 轴、y 轴的正半轴分别交于,A B 点,P 是曲线1C 上第一象限内的动点,O 是坐标原点,试求四边形OAPB 面积的最大值.。
关于坐标相关知识点汇总
1、建立平面直角坐标系(语言描述)
2、平面直角坐标系内的点与有序实数对一一对应.
3、各象限内点的坐标符号:
第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-)
4、特殊点的坐标(特征和表示)
(1)坐标轴上的点的坐标特征:x 轴上的点纵坐标为零;y 轴上的点横坐标为零.
(2)平行于坐标轴的直线上的点的坐标特征:
平行于x 轴直线上的点横坐标不相等,纵坐标相等;
平行于y 轴直线上的点横坐标相等,纵坐标不相等.
注:反之亦成立.
(3)关于坐标轴、原点对称的点的坐标特征:
关于x 轴对称的点横坐标相等,纵坐标互为相反数;
关于y 轴对称的点纵坐标相等,横坐标互为相反数;
关于原点对称的点横、纵坐标分别互为相反数.
(4)象限角平分线上的点的坐标特征:
一、三象限角平分线上的点横、纵坐标相等;
二、四象限角平分线上的点横、纵坐标互为相反数.
5、距离
(1)坐标平面内点P(x ,y)到x 轴的距离为y ,到y 轴的距离为x .
(2)x 轴上两点A (1x ,0)、B (2x ,0)的距离为AB=21x x -;
y 轴上两点C (0,1y )、D (0,2y )的距离为CD= 21y y -.
(3)平行于x 轴的直线上两点A (1x ,y )、B (2x ,y )的距离为AB=21x x -;
平行于y 轴的直线上两点C (x ,1y )、D (x ,2y )的距离为CD=21y y -.
6、用坐标表示平移
(1) 点的平移
① 点的平移引起的坐标的变化规律:
在平面直角坐标中,
将点(x ,y )向右(或左)平移a 个单位长度,可以得到对应点(x+a ,y )(或(x-a ,y )); 将点(x ,y )向上(或下)平移b 个单位长度,可以得到对应点(x ,y+b )(或(x ,y-b )). ② 点的坐标的某种变化引起的点的平移变换.
(2) 图形的平移
① 图形上点的坐标的某种变化引起的图形的平移变换.
在平面直角坐标系内,
如果把一个图形各个点的横坐标都加(或减去)一个正数a ,相应的新图形就是把原图形向 右(或向左)平移a 个单位长度;
如果把它各个点的纵坐标都加(或减去)一个正数a ,相应的新图形就是把原图形向上(或 向下)平移a 个单位长度.
② 图形的平移引起的对应点的坐标的变化规律.
在平面直角坐标系内,
如果把一个图形向右(或向左)平移a 个单位长度,则图形上各个点的横坐标都加(或减去)a ; 如果把一个图形向上(或向下)平移a 个单位长度,则它各个点的纵坐标都加(或减去)a.。