【考试必备】2018-2019年最新芜湖一中初升高自主招生考试数学模拟精品试卷【含解析】【5套试卷】
- 格式:pdf
- 大小:4.70 MB
- 文档页数:5
芜湖市第一中学2018-2019年11月高考数学模拟题班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共10小题,每小题5分,共50分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≤-≥+≤-5342y x y x x y ,若目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则实数m 的取值范围是( )A .1-<mB .10<<mC .1>mD .1≥m【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.2. 设F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为1||2OF ,则双曲线的离心率为( )A. B.3C. D .3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想. 3. 一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )A.4πB.C. 5πD. 2π+【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力.4. 已知集合{| lg 0}A x x =≤,1={|3}2B x x ≤≤,则A B =( ) A .(0,3] B .(1,2]C .(1,3]D .1[,1]2【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力.5. 圆心在直线2x +y =0上,且经过点(-1,-1)与(2,2)的圆,与x 轴交于M ,N 两点,则|MN |=( ) A .4 2B .4 5C .2 2D .2 56. 已知抛物线24y x =的焦点为F ,(1,0)A -,点P 是抛物线上的动点,则当||||PF PA 的值最小时,PAF ∆的 面积为( )B.2C.D. 4【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力. 7. 将函数)63sin(2)(π+=x x f 的图象向左平移4π个单位,再向上平移3个单位,得到函数)(x g 的图象, 则)(x g 的解析式为( )A .3)43sin(2)(--=πx x g B .3)43sin(2)(++=πx x g C .3)123sin(2)(+-=πx x g D .3)123sin(2)(--=πx x g【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度. 8. 某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为 ( )A .π1492+B .π1482+C .π2492+D .π2482+【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.9. 已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}xB x x R =≤∈,则集合U AC B 为( )A.]1,1[-B.]1,0[C.]1,0(D.)0,1[- 【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.10.已知函数()x e f x x=,关于x 的方程2()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的取值范围是( )A .21(,)21e e -+?-B .21(,)21e e --?-C .21(0,)21e e --D .2121e e 禳-镲睚-镲铪【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.二、填空题(本大题共5小题,每小题5分,共25分.把答案填写在横线上)11.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为( )A .1B .±1 CD.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.12.81()x x-的展开式中,常数项为___________.(用数字作答)【命题意图】本题考查用二项式定理求指定项,基础题. 13.若复数34sin (cos )i 55z αα=-+-是纯虚数,则tan α的值为 . 【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力.14.设变量y x ,满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则22(1)3(1)z a x a y =+-+的最小值是20-,则实数a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.15.已知函数21,0()1,0x x f x x x ⎧-≤=⎨->⎩,()21xg x =-,则((2))f g = , [()]f g x 的值域为 .【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力.三、解答题(本大共6小题,共75分。
2019年安徽省芜湖市第一中学中考模拟考试一数学试题出卷人:初三数学备课组全体审卷人:初三数学备课组组长考生注意:1.本试卷共5页,23道试题,满分150分,考试时间120分钟.2.本试卷分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号码等相关信息.一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.2的绝对值是()A.﹣2 B.2 C.﹣D.2.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b3.下面几个几何体,主视图是圆的是()A.B.C.D.4.点A(a,b)关于x轴对称的点A′的坐标为()A.(a,﹣b)B.(﹣a,b)C.(﹣a,﹣b)D.(b,a)5.某班10名学生的校服尺寸与对应人数如表所示:则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm6.小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速度行走了450米,为了不迟到他加快了速度,以每分45米的速度行走完剩下的路程,那么小亮行走过的路程S(米)与他行走的时间t(分)之间的函数关系用图象表示正确的是()A.B.C.D.7.如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为()A.B.C.D.8.已知MN是线段AB的垂直平分线,C,D是MN上任意两点,则∠CAD和∠CBD之间的大小关系是()A.∠CAD<∠CBD B.∠CAD=∠CBD C.∠CAD>∠CBD D.无法确定9.用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣210.若数a使关于x的不等式组有且仅有四个整数解,且使关于y的分式方程+=2有非负数解,则所以满足条件的整数a的值之和是()A.3 B.1 C.0 D.﹣3二、填空题(本大题共4小题,每小题5分,共20分)11.若x2+x﹣3=0,则x4+2x3﹣2x2﹣3x+7= .12.如图,在平行四边形ABCD中,点E是CD边上一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F.若S△DEF=2,则S△ABE=_____.13.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3,若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为_____________.14.在﹣1,1,2这三个数中任选2个数分别作为P点的横坐标和纵坐标,过P点画双曲线,该双曲线位于第一、三象限的概率是.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:(1);(2).16.(8分)在平面直角坐标系中,反比例函数y=(k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在中,,,,动点从点开始沿着边向点以的速度移动(不与点重合),动点从点开始沿着边向点以的速度移动(不与点重合).若、两点同时移动;当移动几秒时,的面积为.设四边形的面积为,当移动几秒时,四边形的面积为?18.(8分)某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑四个等级,请根据两幅统计图中的信息回答下列问题:体能测试,测试结果分为A.B、C、D(1)求本次测试共调查了多少名学生?(2)求本次测试结果为B等级的学生数,并补全条形统计图;(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D等级的学生有多少人?五、(本大题共2小题,每小题10分,满分20分)19.(10分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.20.(10分)某单位为治理乱停车现象,出台了规范使用停车位的管理办法.如图,矩形ABCD是供一辆机动车停放的车位示意图,已知BC=2m,CD=5.6m,∠DCF=30°,请你计算车位所占的宽度EF为多少m?(结果保留根号)六、(本题满分12分)21.(12分)如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC的中点,连结DE.(1)若AD=DB,OC=5,求切线AC的长.(2)求证:ED是⊙O的切线.七、(本题满分12分)22.(12分)如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.八、(本题满分14分)23.(14分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.。
安徽省芜湖一中2018年自主招生考试数学模拟试卷一、填空题(本大题共12小题,共78.0分)1.已知实数a,b满足a2+b2=1,则a4+ab+b4的最小值为()A. B. 0 C. 1 D.2.已知函数y=|8-2x-x2|和y=kx+k(k为常数),则不论k为何常数,这两个函数图象的交点个数恒为()A. 1个B. 2个C. 3个D. 4个3.将1,2,3,4,5,6,7,8,这八个数分别填写于一个圆周的八等分点上,使得圆周上任意两个相邻位置的数之和为质数,如果圆周旋转后能重合的算作相同填法,那么不同的填法有()A. 4种B. 8种C. 12种D. 16种4.三个等圆O1、O2、O3有公共点M,点A、B、C是其他交点,则点M是△ABC的()A. 外心B. 内心C. 垂心D. 重心5.如图,已知平行四边形ABCD中,E、F分别为边AB、AD上的点,EF与对角线AC交于点P.若=,=(a、b、m、n均为正数),则的值为()A. B. C. D.6.如图,记二次函数y=-x2+1的图象与x轴正半轴的交点为A,将线段OA分成n等份.设分点分别为P1,P2,…,P n-1.过每个分点作x轴的垂线,分别与该图象交Q1,Q2,…,Q n-1再记直角三角形OP1Q1,P1P2Q2,…的面积分别为S1,S2…,这样就有S1=,S2=,…;记W=S1+S2+…+S n-1,当n越来越大时,W最接近的常数是()A. B. C. D.7.设a是正实数,若函数y=(x可取任意实数)的最小值为10,则a= ______ .8.今年3月12日植树节活动中,某单位的职工分成两个小组植树,已知他们植树的总数相同,均为100多棵,如果两个小组人数不等,第一组有一人植了6棵,其他每人都植了13棵;第二组有一人植了5棵,其他每人都植了10棵,则该单位共有职工______ 人.9.如图,已知直线y=x与双曲线y=(k>0)交于A、B两点,点B的坐标为(-4,-2),C为双曲线y=(k>0)上一点,且在第一象限内,若△AOC面积为6,则点C的坐标为______ .10.某广场地面铺满了边长为36cm的正六边形地砖,现在向上抛掷半径为6的圆碟,圆碟落地后与地砖间的间隙不相交的概率大约是______ .11.50个同样大小的立方体木块堆砌成如图所示的形状,现在从前、后、左、右和上面五个方向朝这堆木块喷漆,则有______ 块木块完全喷不到漆.12.满足25{x}+[x]=25的所有实数x的和是______ (其中[x]表示不大于x的最大整数,{x}=x-[x]表示x的小数部分).二、解答题(本大题共5小题,共72.0分)13.已知关于x的一元二次方程x2-2x-a2-a=0(a>0).(1)求证:这个方程的一根大于2,一根小于2;(2)若对于a=1,2,3,…,2010,2011时,相应得到的一元二次方程的两根分别为α1和β1,α2和β2,…,α2010和β2010,α2011和β2011.试求(++…++)+(++…++)的值.14.如图所示,等腰梯形ABCD中,AB∥CD,AD=CB,对角线AC与BD交于O,∠ACD=60°,点S、P、Q分别是OD、OA、BC的中点.(1)求证:△PQS是等边三角形;(2)若AB=8,CD=6,求△PQS的面积;(3)若△PQS与△AOD的面积比为4:5,求CD:AB的值.15.如图,以锐角△ABC的边AB为直径作半圆⊙O交边BC、CA于点E、F.过点E、F分别作⊙O的切线得交点P.求证:CP⊥AB.16.据气象台预报,一台风中心位于某沿海城市A东偏南θ(cosθ=)方向300km的海面B处,正以20km/h的速度向西偏北45°方向移动(如图所示),台风影响的范围为圆形区域,半径为60km,并以10km/h的速度不断增大.求几小时后该市开始受到台风的影响,受影响的时间是多长?17.如图1,A、D分别在x轴和y轴上,CD∥x轴,BC∥y轴.点P从D点出发,以1cm/s的速度,沿五边形OABCD的边匀速运动一周.记顺次连接P、O、D三点所围成图形的面积为Scm2,点P运动的时间为ts.已知S与t之间的函数关系如图2中折线段OEFGHI所示.(1)求A、B两点的坐标;(2)若直线PD将五边形OABCD分成面积相等的两部分,求直线PD的函数关系式.参考答案1.【答案】B【解析】解:∵a2+b2=1,∴可设a=cosθ,b=sinθ,θ∈[0,2π).∴a4+ab+b4=cos4θ+cosθsinθ+sin4θ=(cos2θ+sin2θ)2-2sin2θcos2θ+cosθsinθ=+1=,当sin2θ=-1时,上式取得最小值为0.故选:B.由a2+b2=1,可设a=cosθ,b=sinθ,θ∈[0,2π).利用倍角公式、同角三角函数基本关系式、二次函数的单调性即可得出.本题考查了倍角公式、同角三角函数基本关系式、二次函数的单调性,考查了转化方法,属于中档题.2.【答案】B【解析】菁优网解:函数y=8-2x-x2中,令y=0,解得:x=-4或2.则二次函数与x轴的交点坐标是(-4,0)和(2,0).则函数的图象如图.一次函数y=kx+k(k为常数)中,令y=0,解得:x=-1,故这个函数一定经过点(-1,0).经过(-1,0)的直线无论k为何常数,都是2个交点.故选:B.首先画出二次函数的图象,一次函数与x轴一定经过点(-1,0),根据图象即可确定交点的个数.本题主要考查了一次函数与二次函数的图象,正确作出二次函数的答题图象,确定一次函数比经过(-1,0),利用数形结合思想是解题关键.3.【答案】A【解析】解:∵相邻两数和为奇质数,则圆周上的数奇偶相间,∴8的两侧为3,5,而7的两侧为4,6,∴剩下两数1,2必相邻,且1与4,6之一邻接,考虑三个模块【4,7,6】,【5,8,3】,【1,2】的邻接情况,得到4种填法.故选A.根据“八个数分别填写于一个圆周八等分点上,使得圆周上任两个相邻位置的数之和为质数”可知,圆周上的数应该奇偶相间.根据这个规律,将8个数字排列好即可.本题主要考查了质数与合数的定义,考查计数原理的应用.4.【答案】C【解析】解:如图所示,可知点M是△ABC的垂心,故选C.作图说明即可.本题考查了学生的作图能力,属于基础题.5.【答案】C【解析】解:过点E作EG∥AD,交AC于点O,∵四边形ABCD是平行四边形,∴AD∥EG∥BC,AD=BC,∴,△AEO∽△ABC,△APF∽△OPE,∴,,,∵∴令AE=ax,BE=bx,AF=my,DF=ny,∴,∴EO=,∴,∴AP(a+b)bm+AP(m+n)ab+AP(m+n)a2=PC(a+b)am,∴AP(bm+an+am)(a+b)=PC(a+b)am,∴,∴C答案正确,故选C.过点E作EG∥AD,交AC于点O,利用平行线分线段成比例及三角形相似就可以表示出AO、CO的比值,进而表示出,AP+PO比PC-PO的比值,再表示出EO、BC的比值,从而表示出EO,利用△APF∽△OPE可以表示出PO,代入第一个比例式就可以求出结果.本题考查了相似三角形的判定及性质,平行四边形的性质,平行线分线段成比例定理的运用.6.【答案】B【解析】解:由题意,W=S1+S2+…+S n-1,当n越来越大时,可看成积分.×=×(-+1-0)=.故选B.由题意,W=S1+S2+…+S n-1,当n越来越大时,可看成积分.本题考查了积分的定义,属于基础题.7.【答案】2【解析】解:原式=+表示P(x,0)到两点M(3a,a),N(-a,-2a)的距离之和.当且仅当点P在线段MN上时取得最小值10,∴|MN|==10,a>0,解得a=2.故答案为:2.原式=+表示P(x,0)到两点M(3a,a),N(-a,-2a)的距离之和.当且仅当点P在线段MN上时取得最小值10,利用两点之间的距离公式即可得出.本题考查了两点之间的距离公式的应用,考查了转化方法,考查了推理能力与计算能力,属于中档题.8.【答案】32【解析】解:设一组x人,二组y人,x,y均为正整数,100<5+13(x-1)<200,100<4+10(y-1)<200,100<13x-8<200,100<10y-6<200,108<13x<208,106<10y<206,9≤x≤17,11≤x≤20,5+13(x-1)=4+10(y-1),13x-8=10y-6,y=,y是整数,那么13x的个位数字为2,x的个位数字为4,满足要求的数为x=14,y==18,两组一共:14+18=32人,故答案为:32.设一组x人,二组y人,x,y均为正整数,根据题意可以列出两个不等式100<5+13(x-1)<200,100<4+10(y-1)<200,求出x和y的取值范围,再根据x和y都是整数,推出x和y的值.本题主要考查应用类问题的知识点,解答本题的关键是根据题意列出不等式,求出x和y的取值范围,此题难度不大.9.【答案】(2,4)或(8,1)【解析】解:把点B的坐标(-4,-2)代入双曲线y=,可得k=-4×(-2)=8.∴双曲线方程为.联立,取x>0,解得x=4,y=2.∴A(4,2).设C(x,).(x>0)则点C到直线y=x的距离h=.|OA|==2.∴△AOC面积6=h=×,化为x2-16=±6x,x>0.解得x=2或8.∴C(2,4)或(8,1).把点B的坐标(-4,-2)代入双曲线y=,可得k=8,双曲线方程为.联立,取x>0,解得A(4,2).设C(x,).(x>0).点C到直线y=x的距离h=.利用△AOC面积6=h即可得出.本题考查了双曲线的方程及其性质、直线与双曲线相交转化为方程联立、点到直线的距离公式、三角形的面积计算公式、两点之间的距离公式,考查了计算能力,属于中档题.10.【答案】【解析】解:如图,作OC1⊥A1A2,且C1C2=6cm.∵A1A2=A2O=36,A2C1=18,∴C1O=A2O=18,则C2O=C1O-C1C2=12.∵C2O=B2O,∴B2O=C2O=×12=24,∵B1B2=B2O,∴小正六边形的边长为24cm.∴所求概率为P====,故答案为:欲使圆碟不压地砖间的间隙,则圆碟的圆心必须落在与地砖同中心,且边与地砖边彼此平行,距离为6cm的小正六边形内,找到小正六边形的面积占大正六边形面积的多少即可.本题主要考查几何概型的概率的计算,根据条件求出对应区域的面积是解决本题的关键,考查学生的运算能力.11.【答案】7【解析】解:从前方可点出10+9+9=28块,后面还有9+6=15块,则50-28-15=7块.故答案为:7.从前后分别点出可以喷漆的木块,注意不要重复.本题考查了学生的空间想象力,属于基础题.12.【答案】337【解析】解:25{x}+[x]=25,25(x-[x])+[x]=25,x=1+0.96[x],而:[x]≤x<[x]+1所以:[x]≤1+0.96[x]<[x]+1,0≤1-0.04[x]<1,-1≤-0.04[x]<0,0<[x]≤25,所以:[x]=1,2,3, (25)满足25{x}+[x]=25的所有实数x的和是:(1+0.96×1)+(1+0.96×2)+(1+0.96×3)+…+(1+0.96×25)=(1+1+1+...+1)+0.96×(1+2+3+ (25)=25+0.96×(1+25)×=337.故答案为:337.由已知得25(x-[x])+[x]=25,x=1+0.96[x],[x]≤x<[x]+1,所以[x]≤1+0.96[x]<[x]+1,[x]=1,2,3,…,25,由此能求出满足25{x}+[x]=25的所有实数x的和.本题考查满足条件的实数和的求法,是中档题,解题时要认真审题.13.【答案】解:(1)证明:关于x的一元二次方程x2-2x-a2-a=0(a>0),令f(x)=x2-2x-a2-a,由于f(2)=-a2-a<0,可得这个方程的一根大于2,一根小于2.(2)由条件利用韦达定理可得α1+β1=1,α1•β1=-a2-a=-a(a+1)=-2;α2+β2=1,α2•β2=-a2-a=-a(a+1)=-6;…,α2010+β2010=1,α2010•β2010=-a2-a=-2010×2011,α2011+β2011=1,α2011•β2011=-2011×2012,∴(++…++)+(++…++)=(+)+(+)+…+(+)=++…+=-[+++…+]=-[1-+-+-+…+-]=-(1-)=-.【解析】(1)令f(x)=x2-2x-a2-a,由于f(2)=-a2-a<0,可得这个方程f(x)=0的一根大于2,一根小于2.(2)由条件利用韦达定理可得α1+β1=1,α1•β1=-a2-a=-a(a+1)=-2;…,α2011+β2011=1,α2011•β2011=-2011×2012,而要求的式子即(+)+(+)+…+(+),即-[+++…+],再用裂项法进行求和.本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,韦达定理以及用裂项法进行数列求和,体现了转化的数学思想,属于基础题.14.【答案】(1)连接CS∵ABCD是等腰梯形,且AC与BD相交于O,∴AO=BO,CO=DO.∵∠ACD=60°,∴△OCD与△OAB均为等边三角形.∵S是OD的中点,∴CS⊥DO.又SP是△OAD的中位线,∴SP=AD=BC.∴SP=PQ=SQ.故△SPQ为等边三角形.(2)作DE⊥AB,垂足为E,∵AB=8,CD=6,∴AE=1,BE=8-1=7,∴DE=BE•tan60°=7,在Rt△ADE中,AD=2,∴PS=PQ=SQ=,∴S△PQS=(3)设CD=a,AB=b(a<b),BC2=SC2+BS2=a2+b2+ab,∴S△SPQ=(a2+ab+b2),又△PQS与△AOD的面积比为4:5,S△AOD=S△BOC=ab,∴5×(a2+ab+b2)=4×ab,即5a2-11ab+5b2=0,故【解析】(1)由于梯形ABCD是等腰梯形∠ACD=60°,可知△OCD与△OAB均为等边三角形.连接CS,BP根据等边三角形的性质可知△BCS与△BPC为直角三角形,再利用直角三角形的性质可知QS=BP=BC,由中位线定理可知,QS=QP=PS=BC,故△PQS是等边三角形;(2)根据等腰梯形的性质及∠AOD=120°可求出等边三角形的边长,从而可得出答案.(3)设CD=a,AB=b(a<b),根据题意表示出两面积的比,从而可得出答案.本题主要考查等腰梯形及直角三角形的性质,三角形中位线定理.15.【答案】证明:如图,连接AE、BF得交点Q,∵∠AEB=∠AFB=90°,∴点Q为△ABC的垂心,∴CQ⊥AB.①延长FP到点K,使PK=PF,连接EF、KE.由题意知∠PEF=∠PFE=∠EAF.连接PQ并延长交AB于点H,∵∠EQF=180°-∠AQF=180°-(90°-∠EAF)=90°+∠EAF=90°+∠PEF,∴∠EQF+∠K=180°.故K、F、Q、E四点共圆,∵PK=PE=PF,∴P必是该圆的圆心.∴PQ=PF.∴∠PQF=∠PFQ=∠PFB=∠FAB=∠FAH,∴A、H、Q、F四点共圆.则∠PHA=∠QHA=180°-∠QFA=90°,∴PH⊥AB,即PQ⊥AB.②由①、②知,C、P、Q三点共线,∴CP⊥AB.【解析】连接AE、BF得交点Q,由已知得CQ⊥AB.延长FP到点K,使PK=PF,连接EF、KE.则∠PEF=∠PFE=∠EAF.连接PQ并延长交AB于点H,由已知推导出K、F、Q、E四点共圆,由此能证明CP⊥AB.本题考查两直线垂直的证明,解题时要注意四点共圆的性质的合理运用,是中档题.16.【答案】解:以A为原点,正东方向为x轴正向.∵cosθ=,∴sin(90°-θ)=,cos(90°-θ)=,在时刻:t(h)台风中心B(x,y)的坐标为x=300×-20×t,y=-300×+20×t令(x′,y′)是台风边缘线上一点,则此时台风侵袭的区域是(x′-x)2+(y′-y)2≤[r(t)]2,其中r(t)=10t+60,若在t时,该城市受到台风的侵袭,则有(0-x)2+(0-y)2≤(10t+60)2,即(300×-20×t)2+-300×+20×t)2≤(10t+60)2,即t2-36t+288≤0,解得12≤t≤24.答:12小时后该城市开始受到台风气侵袭,受到台风的侵袭的时间有12小时.【解析】建立坐标系,设在时刻:t(h)台风中心B(x,y)的坐标进而可知此时台风侵袭的区域,根据题意可知其中r(t)=10t+60,若在t时,该城市A受到台风的侵袭,则有(0-x)2+(0-y)2≤(10t+60)2,进而可得关于t的一元二次不等式,求得t的范围,答案可得.本题主要考查了圆的方程的综合运用,考查了学生运用所学知识解决实际问题的能力,属于中档题.17.【答案】解:(1)连接AD,设点A的坐标为(a,0),由图2知,DO+OA=6cm,DO=6-AO,由图2知S△AOD=4,∴DO×AO=4,∴a2-6a+8=0,解得a=2或a=4,由图2知,DO>3,∴AO<3,∴a=2,∴A的坐标为(2,0),D点坐标为(0,4),在图1中,延长CB交x轴于M,由图2,知AB=5cm,CB=1cm,∴MB=3,∴AM==4.∴OM=6,∴B点坐标为(6,3);(2)显然点P一定在AB上.设点P(x,y),连PC.PO,则S四边形DPBC=S△DPC+S△PBC=S五边形OABCD=(S矩形O MCD-S△ABM)=9,∴6×(4-y)+×1×(6-x)=9,即x+6y=12,同理,由S四边形DPAO=9 可得2x+y=9,由A(2,0),B(6,3)求得直线AB的函数关系式为y=x-,由解得x=,y=.∴P(,),设直线PD的函数关系式为y=kx+4,则=k+4,∴k=-,∴直线PD的函数关系式为y=-x+4.【解析】(1)(1)先连接AD,设点A的坐标为(a,0),由图2得出DO=6-AO和S△AOD=4,即可得出DO•AO=4,从而得出a的值,再根据图2得出A的坐标,再延长CB交x轴于M,根据D点的坐标得出AB=5cm,CB=1cm,即可求出AM==4,从而得出点B的坐标.(2)先设点P(x,y),连PC、PO,得出S四边形DPBC的面积,再进行整理,即可得出x与y的关系,再由A,B点的坐标,求出直线AB的函数关系式,从而求出x、y的值,即可得出P点的坐标,再设直线PD的函数关系式为y=kx+4,求出K的值,即可得出直线PD的函数关系式.此题考查了动点问题的函数图象,解题的关键是根据题意设出函数关系式,是难点,也是高考的重点,需熟练掌握.。
芜湖市第一中学2023-2024学年高一上学期自主招生考试数学试卷学校:___________姓名:___________班级:___________考号:___________依次类推,A.4 B.3C.2D.12.若正实数a ,b ,c 满足不等式组则a ,b ,c 的大小关系为( )A. B.C.D.3.若实数a ,b 满足等式( )4.在中,,,,连,则长的最大值是( )A.8B.9C.10D.115.已知三个实数,,它们中的任何一个数加上其余两数积的6倍总等于7,则这样的三元数组共有_______组( )A.3B.4C.5D.66.如图,在中,,的中点,以为底边在其右侧作等要,使,连( )64,537,6112,4c a b c a b c a b c a b ⎧<+<⎪⎪⎪<+<⎨⎪⎪<+<⎪⎩b ac <<b c a <<c b a <<c a b<<222a a -=-b =Rt ABC △90ABC ∠=︒2AB =BC =30ADB =︒CD CD 1x 2x 3x ()123,,x x x Rt ABC △90BAC ∠=︒sin B =AD ADE △ADE B ∠=∠=7.四边形中,,是其两对角线,是等边三角形,,,,则( )A. B. C. D.二、填空题8.已知19个连续整数的和为380,则紧接在这19个数后面的21个连续偶数的和是__________.9.已知__________.10.在实数范围内因式分解:__________.11.在平面直角坐标系中,点,,连,,若线段,分别交曲线于点D ,E (异于点B ),若,则k 的值为__________.12.把两个半径为8和一个半径为9的圆形纸片放在桌面上,使它们两两相外切,若要用一个圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于__________.13.在菱形中,,点E ,F 分别在边,上,将沿着对折,使点A 恰好落在对角线上的点G ,若,,则的面积等于__________.14.对于任意不为0的实数a ,b ,c 定义一种新运算“#”:①;②,则关于x 的方程的根为__________.三、解答题15.回答下列问题(1)解方程:;(2)求所有的实数a ,使得关于x 的方程的两根均为整数.16.如图,点E 是正方形的边上一动点(异于C ,D ),连,以为对角线作正方形,与交于点H ,连.ABCD AC BD ABC △6AD =10BD =8CD =ADC ∠=30︒45︒60︒75︒x =)()()()211232x x x x ++++=222234a b c ab bc ca -+-++=xOy ()4,0A (4,B OB AB OB AB (0,0)k y k x x=>>DE OB ⊥ABCD 60A ∠=︒AD AB AEF △EF BD 4DG =6BG =AEF △#1a a =()()###a b c a b c =()2#24x x =+()2224341615x x x x x =+-++-()221430x a x a --+-=ABCD CD BE BE BGEF EF BD AF(1)求证:A ,F ,C 三点共线;(2)若17.在平面直角坐标系中,抛物线经过点和,且在x 轴上截得的线段长为(1)求抛物线的解析式;(2)已知点A 在抛物线上,且在其对称轴右侧,点B 在抛物线的对称轴上,若是以为斜边的等腰直角三角形,求点A 的坐标;(3)将抛物线向左平行移动3个单位得到抛物线,直线与交于E ,F 两点,直线与交于G ,H 两点,若M ,N 分别为线段和线段的中点,连,求证:直线过定点.18.如图,等边内有一动点D ,是等边三角形(点B ,E 在直线两侧),直线与直线交于点F .(1)判断的大小是否为定值?若是定值,求出其大小;若不是定值,请说明理由.(2)若,,求线段长的最小值.:1:CE DE =xOy 21:(0)C y ax bx c a =++>()0,3-()4,11-1C 1C 1C OAB △OB 1C 2C ()0y kx k =≠2C 2y x k=-2C EF GH MN MN ABC △CDE △AC BD AE AFC ∠5AB =3CD =AF参考答案1.答案:C解析:令,第二次余下的数为,,.故选:C.2.答案:B解析:由题意可得,因a ,b ,c 均为正实数,于是因此,故选:B.3.答案:A,根据非负性可知,所以故选:A.4.答案:B解析:要使长取到最大,则点C 与点D 位于直线两侧.延长到点E ,使4046=11211123323a a a ⎛⎫⨯-=⨯= ⎪⎝⎭13111,4434a a ⎛⎫⨯-=⨯= ⎪⎝⎭ 1202211114046220232023202220232023a a ⎛⎫⨯-=⨯==⨯= ⎪⎝⎭117,531326c abc c a a b c a ⎧<++<⎪⎪⎪<++<⎨⎪⎪⎪⎩11753132,6153,4a b c c a b c a c a b b ++⎧<<⎪⎪++⎪<<⎨⎪++⎪<<⎪⎩711133356a b c c ++>>>>>>b c a <<(21)20a b -+-=1,22a b ==b a =CD AB CB BE =连,则,,于是点D 在以为直径的圆上(与E 在直线同侧),设圆心为O ,则,当C ,O ,D 三点共线时,长取到最大,最大值为,故选:B.5.答案:C 解析:由条件知①-②得,,所以或.当时,代入③得,又代入①得,消去得,解得于是,或.当,解得或故选:C.6.答案:D解析:由条件知,,所以,所以,又公共,所以,所以也是等腰三角形,于是发现,故选:D.7.答案:A解析:以为一边在四边形外作等边,连,则可证,所以,又,,于是,所以,故选:A.AE 30AEB ∠=︒4AE =AE AB 7OC ==CD 729+=12321331267,67,,67,x x x x x x x x x +=⎧⎪+=⎨⎪+=⎩①②③()()123160x x x --=12x x =316x =12x x =23267x x +=22367x x x +=3x ()()()222161670x x x --+=2x =()()123,,1,1,1x x x =1141,,666⎛⎫ ⎪⎝⎭777,,666⎛⎫--- ⎪⎝⎭3x =121274136x x x x +==1216416x x ⎧=⎪⎪⎨⎪=⎪⎩12x x ⎧=⎪⎪⎨⎪⎪⎩AD BD DC ==B BAD ADE ∠=∠=∠//DE AB CDE B ADE ∠=∠=∠DE ADE CDE ≌△△CDE △CDE BAD ∽△△11552236BC CD AB AB ===⨯=15226CE BD ==⨯=CD ABCD CDE △AE BCD ACE ≌△△10BD AE ==6AD =8DE =222AD DE AE +=90ADE ∠=︒906030ADC ∠=-=︒︒︒8.答案:1050解析:设19个连续整数中最小的整数是,则最大的整数是,,解得,所以紧接在这19个数后面的21个连续偶数分别为30,32,34,,70,.9.答案:42解析:由条件得,又.10.答案:解析:利用待定系数法或双十字相乘法.解析:由条件知,设,则,,又,,所以,,于是于,所以(舍)或12.答案:18解析:要使大圆形纸片的半径最小,只需这个大圆形纸片与三个小圆形纸片均内切,设最小半径大小为r ,则,解得.解析:作于点P ,设,则,,,,n 18n +380=11n = 1050=22540x x +-=()()()()()()()()211232212123x x x x x x x x ⎡⎤⎡⎤++++=++++⎣⎦⎣⎦()()222522536742x x x x =++++=⨯=()()23a b c a b c ++-+:OB y =()D t 2k =2OD t =8OB =60AOB ∠=︒82BD t =-60BED ∠=︒DE =BE =AE ==E ⎛ ⎝k =2=4=t =k =222(8)8(915)r r -=++-18r =FP BD ⊥BP x =PF =2BF x =PF =102AF GF x ==-在中,,即,解得所以14.答案:4或-2解析:令,因,由得,令,由得,于是,所以,解方程得两根分别为4或-2.15.答案:(1)解析:(1)原方程可化为令,则原方程可化为,于是,整理得,所以于是或,当时,,解得当时,,解得综上,原方程的根为(2)不妨设两根为,,则根据韦达定理可知,,于是,所以6PG x=-Rt PFQ △222PF PG GF +=2223(6)(102)x x x +-=-x =AF =AE =AEF △b c a ==#1a a =()()###a b c a b c =#1a a =c b =()()###a b c a b c =()()###a b b a b b =()##1a b b a a ==#a b =)2#2x x =+4x =+x ==()()222434433x x x x x =+-++--243x x t +-=243x t t =+-()224343x t t t x x -=+--+-()2250x t x t -+-=()()50x t x t -++=x t =50x t ++=x t =2330x x +-=x =50x t ++=2520x x ++=x =x =x =1x ()212x x x ≤1221x x a +=-1243x x a =-()121221x x x x -+=-()()12223x x --=因,为整数,,于是,也为整数,且,所以或,当时,解得,此时当时,解得,此时16.答案:(1)见解析解析:证明:(1)在正方形和正方形中,所以,即,所以,所以,又,所以A ,F ,C 三点共线(2)因,设,则,,因,,公共,所以,于是即,解得所以17.答案:(1)(2)或1x 2x 12x x ≤12x -22x -1222x x -≤-122123x x -=⎧⎨-=⎩122321x x -=-⎧⎨-=-⎩122123x x -=⎧⎨-=⎩1235x x =⎧⎨=⎩a =122321x x -=-⎧⎨-=-⎩1211x x =-⎧⎨=⎩12a =ABCD BGEF 45ABD FBE ∠=∠=BE BF==ABD DBF FBE DBF ∠-∠=∠-∠ABF DBE ∠=∠ABF DBE ∽△△45BAF BDC ∠=∠=︒45BAC ∠=︒:1:2CE DE =CE t =2DE t =BD =BE =45BEH BDE ∠=∠=︒DBE ∠BEH BDE ∽△△=2BE BD BH =⋅210t BH =⋅BH =DH BD BH =-=-==263y x x =--()7,4()6,3-(3)解析:(1)由条件可知又,解得所以抛物线的解析式为.(2)当点A 在x 轴上方时,过点A 作轴于点P ,过点B 作直线的垂线,垂足为点Q ,因,,所以,又,,所以,于是.设,则,所以,解得,所以点同理当点A 在x 轴下方时,可求得,综上所述,点A 的坐标为或.(3)由条件知,联立得,于是点,同理可得,设,则,解得所以,其过定点.18.答案:(1)的大小是定值,定值大小为,理由见解析()0,1316411,c a b c ⎧⎪=-⎪⎪++=-⎨=0a >163a b c =⎧⎪=-⎨⎪=-⎩1C 263y x x =--AP x ⊥AP 90OAP BAQ ∠+∠=︒90OAP AOP ∠+∠=︒AOP BAQ ∠=∠OA AB =90OPA AQB ∠=∠=︒OAP ABQ ≌△△AP BQ =()2,63A m m m --3m >2633m m m --=-7m =()7,4A ()6,3A -()7,4()6,3-22:12C y x =-212y kx y x =⎧⎨=-⎩2120x kx --=2,22k k M ⎛⎫ ⎪⎝⎭212,N k k ⎛⎫- ⎪⎝⎭:MN y px q =+222221k k p q p q kk ⎧=+⎪⎪⎨⎪=-+⎪⎩p q ⎧=⎪⎨⎪=⎩22:1k MN y x k-=+()0,1AFC ∠120︒(2)解析:(1)的大小是定值,定值大小为,理由如下:在等边和等边中,,,,于是,即,所以,所以,所以C ,D ,F ,E 四点共圆,所以,于是(2)由(1)知,所以A,F ,C ,B 四点共圆.若最大,则最小.当时,最大,因,,所以,由(1)得,,于是在和中,,所以,所以,于是所以线段长的最小值为.4AFC ∠120︒ABC △CDE △AC BC =CE CD =60ACB DCE CDE ∠=∠=∠=︒ACB ACD DCE ACD ∠-∠=∠-∠ACE BCD ∠=∠ACE BCD ≌△△BDC AEC ∠=∠60CFE CDE ∠=∠=︒180********AFC CFE ∠=-∠=︒-=︒︒︒12060180AFC ABC ︒∠+︒+∠==︒CBF ∠AF CD BF ⊥CBF ∠5AB =3CD =4BD ==ACE BCD ≌△△4AE BD ==90AEC BDC ∠=∠=︒Rt CEF △Rt CDF △CE CD =CF CF=Rt Rt CEF CDF ≌△△30ECF DCF ∠=∠=︒EF =4AF AE EF =-=-AF 4。
芜湖一中2012年高一自主招生考试数 学 试 卷题 号 一二三总 分1314151617得 分一、选择题(每题6分,共36分)(答案必须填在下表中,否则以0分计算)题 号 1 2 3 4 5 6 答 案1.某同学编制了一个计算程序。
当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1之差。
若输入2-,并将所显示的结果再次输入,这时显示的结果应当是: A .3 B .4 C .8 D .9 2.已知231,231+=-=b a ,则622++b a 的值为: A . 3B .4C .5D .63.函数y =224548x x x x +++-+的最小值为:A .225+B .3C .1+22D .54.如图,等腰梯形ABCD 中,AD ∥BC ,∠DBC =45°,翻折梯形ABCD ,使点B 重合于点D ,折痕分别交边AB 、BC 于点E 、F .若AD =2,BC =6,则△ADB 的面积等于: A .2 B .4 C .6 D .8 5.如图,⊙P 与y 轴相切于点C (0,3),与x 轴相交于点A (1,0),B (9,0). 直线y=kx -3恰好平分⊙P 的面积,那么k 的值是:A .65B .21C .56D .2第4题图 第5题图第6题图ABCxyP6.已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->。
其中所有正确结论的序号是:A .①②B .①③④C .①②③⑤D .①②③④⑤二、填空题(本大题共6个小题,每小题7分,共42分) 7.方程24|21|x x -=+的解为 。
8.如图,在矩形ABCD 中,E 是BC 边上的点,且CE=2BE ,△DEF 的面积等于2,则此矩形的面积等于 。
9.已知x 、y 是实数且满足0222=-++y xy x ,设M=22y xy x +-,则M 的取值范围是 。
第一套:满分120分2020-2021年芜湖市第一中学初升高自主招生数学模拟卷一.选择题(共6小题,满分42分)1. (7分)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y (千米)与各自行驶时间t (小时)之间的函数图象是【 】A. B. C. D.2. (7分)在平面直角坐标系中,任意两点规定运算:①;②;③当x 1= x 2且y 1=y 2时,A =B.有下列四个命题:(1)若A (1,2),B (2,–1),则,; (2)若,则A =C ; (3)若,则A =C ;()()1122,,,A x y B x y ()1212,⊕=++A B x x y y 1212=⊗+A B x x y y (),31⊕= A B 0=⊗A B ⊕=⊕A B B C =⊗⊗A B B C(4)对任意点A 、B 、C ,均有成立. 其中正确命题的个数为( )A. 1个B. 2个C. 3个D. 4个 3.(7分)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①AC ∥OD ;②CE=OE ;③△ODE ∽△ADO ;④2CD 2=CE •AB .正确结论序号是( )A .①②B .③④C .①③D .①④ 4. (7分)如图,在△ABC 中,∠ACB =90º,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①;②当点E 与点B 重合时,;③;④MG •MH =,其中正确结论为( )A. ①②③B. ①③④C. ①②④D. ①②③④ 5.(7分)在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A. 4,2,1B. 2,1,4C. 1,4,2D. 2,4,1 6. (7分)如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D()()⊕⊕=⊕⊕A B C A B C 2AB =12MH =AF BE EF +=12作⊙O 的切线交BC 于点M ,则DM 的长为( )A.B. C. D.二.填空题(每小题6分,满分30分)7.(6分)将边长分别为1、2、3、4……19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为 . 8.(6分)如图,三个半圆依次相外切,它们的圆心都在x 轴上,并与直线3y x =相切.设三个半圆的半径依次为r 1、r 2、r 3,则当r 1=1时,r 3= .9.(6分)如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOB=60°,点A 在第一象限,过点A 的双曲线为k y x=.在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ´B ´.(1)当点O ´与点A 重合时,点P 的坐标是 ;(2)设P (t ,0),当O ´B ´与双曲线有交点时,t 的取值范围是 .1339241332510.(6分)如图,正方形A 1B 1P 1P 2的顶点P 1、P 2在反 比例函数2(0)y x x=>的图象上,顶点A 1、B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数2(0)y x x=>的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为 .11.(6分)如图,在⊙O 中,直径AB ⊥CD ,垂足为E ,点M 在OC 上,AM 的延长线交⊙O 于点G ,交过C 的直线于F ,∠1=∠2,连结CB 与DG 交于点N .若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=41,则BN= .三.解答题(每小题12分,满分48分)12.(12分)先化简,再求值:, 其中.13.(12分)如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数的图象上.(1)求m ,k 的值;32221052422x x x x x x x x --÷++--+-2022(tan 45cos30)21x =-+︒-︒-xky =xO yAB (2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式. (3)将线段AB 沿直线进行对折得到线段,且点始终在直线OA 上,当线段与轴有交点时,则b 的取值范围为 (直接写出答案)14.(12分)如图,在Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O 交AC 于点D ,DE 是⊙O 的切线,连接DE .(1)连接OC 交DE 于点F ,若OF=CF ,证明:四边形OECD 是平行四边形; (2)若=n ,求tan ∠ACO 的值b kx y +=11B A 1A 11B A x OFCF15.(12分)如图1,抛物线y =ax 2+bx +c (a ≠0)的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0)。
第一套:满分150分2020-2021年芜湖市第一中学初升高自主招生数学模拟卷一.选择题(共8小题,满分48分)1.(6分)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM=()A.3:2:1 B.5:3:1C.25:12:5 D.51:24:102.(6分)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②1> ;m4③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【】A.0B.1C.2D.33.(6分)已知长方形的面积为20cm2,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A. B. C. D.4.(6分)如图,在平面直角坐标系中,⊙O 的半径为1,则直线y x 2=-与⊙O 的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能 5.(6分)若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A .B .C .D .6.(6分)如图,Rt △ABC 中,BC=,∠ACB=90°,∠A=30°,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E 2013,分别记△BCE 1、△BCE 2、△BCE 3、…、△BCE 2013的面积为S 1、S 2、S 3、…、S 2013.则S 2013的大小为( ) A.31003 B.320136 C.310073 D.67147.(6分)抛物线y=ax 2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a 的取值范围是( )A .≤a ≤1B .≤a ≤2C .≤a ≤1D .≤a ≤28.(6分)如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB ,AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交BD 于点02,同样以AB ,AO 2为两邻边作平行四边形ABC 2O 2.…,依此类推,则平行四边形ABC 2009O 2009的面积为( )A.n 25 B.n 22 C.n 31 D.n 23二.填空题:(每题7分,满分42分)9.(7分)方程组的解是 .10.(7分)若对任意实数x 不等式ax >b 都成立,那么a ,b 的取值范围为 .11.(7分)如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是 .12.(7分)有一张矩形纸片ABCD ,AD=9,AB=12,将纸片折叠使A 、C 两点重合,那么折痕长是 .13.(7分)设﹣1≤x ≤2,则|x ﹣2|﹣|x|+|x+2|的最大值与最小值之差为 .14.(7分)两个反比例函数y=,y=在第一象限内的图象如图所示.点P 1,P 2,P 3、…、P 2007在反比例函数y=上,它们的横坐标分别为x 1、x 2、x 3、…、x 2007,纵坐标分别是1,3,5…共2007个连续奇数,过P 1,P 2,P 3、…、P 2007分别作y 轴的平行线,与y=的图象交点依次为Q 1(x 1′,y 1′)、Q 1(x 2′,y 2′)、…、Q 2(x 2007′,y 2007′),则|P 2007Q 2007|= .三.解答题:(每天12分,满分60分)15.(12分).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.16.(12分)如图,ABC △是等腰直角三角形,CA CB =,点N 在线段AB 上(与A 、B 不重合),点M 在射线BA 上,且45NCM ∠=︒。
第四单元物质构成的奥秘第一节原子的构成1. 原子的构成原子一般是由质子、中子和电子构成,有的原子不一定有中子,质子数也不一定等于中子数。
原子的种类由核电荷数(质子数)决定。
2. 构成原子的各种粒子间的关系在原子中,原子序数=核电荷数=核内质子数=核外电子数。
由于原子核所带的正电荷与核外电子所带的负电荷的电量相等,电性相反,所以原子整体不显电性。
3. 相对原子质量以一种碳原子(碳12)质量的1/12(1.66×10-27kg)为标准,其他原子的质量跟它相比较所得到的比,作为这种原子的相对原子质量,符号为Ar。
相对原子质量是通过比较得出的比值,单位为“1”。
原子中质子和中子的质量接近碳原子质量的1/12,而电子的质量约为质子质量的1/1836,可以忽略不计,所以原子的质量集中在原子核上,即相对原子质量≈质子数+中子数第二节元素1. 定义:元素就是具有相同电荷数(即核内电子数)的一类原子的总称。
元素与原子的区别和联系:2. 元素之最地壳中含量(质量分数)排在前五位的元素:氧、硅、铝、铁、钙地壳中含量最多的金属元素:铝地壳中含量最多的非金属元素:氧生物细胞中含量最多的元素:氧人体中含量最多的金属元素:钙3. 元素的分类:金属元素、非金属元素、稀有气体元素4. 元素符号:元素用元素符号表示。
元素符号是用元素拉丁文名称的第一个字母表示的,如果第一个字母相同,则再附加一个小写字母加以区别。
5. 元素符号的意义:元素符号不仅表示一种元素,还表示这种元素的一个原子。
如果物质由原子构成,元素符号还可以表示一种物质。
如果元素符号前加上系数,就只表示该原子的个数,只具有微观意义。
如:H表示氢元素、1个氢原子。
2H表示2个氢原子。
Cu表示铜元素、一个铜原子、金属铜。
6. 描述物质宏观组成和微观构成:① 宏观组成(描述物质的组成时用元素叙述):铁是由铁元素组成的。
二氧化碳是由碳元素、氧元素组成的。
② 微观构成(描述物质的构成时用分子、原子、离子叙述)铁是由铁原子构成的。
D BOPAC2019年芜湖市初中毕业学业考试数学模拟试卷(三)一、选择题(本大题共10小题,每小题4分,共40分.)在每小题给出的四个选项中,只有一项是符合题意的,请把你认为正确的选项前字母填写在该题后面的括号中.1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.已知y 关于x的函数图象如图所示,则当0y <时,自变量x 的取值范围是( ) A .0x < B .11x -<<或2x > C .1x >-D .1x <-或12x <<3.长度单位1纳米910-=米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( ) A .625.110-⨯米 B .40.25110-⨯米C .52.5110⨯米D .52.5110-⨯米4.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点 C 上升的高度h 是( )AmB.4 m C .mD .8 m5. 下列事件:(1)调查长江现有鱼的数量; (2)调查你班每位同学穿鞋的尺码; (3)了解一批电视机的使用寿命;(4)校正某本书上的印刷错误. 最适合做全面调查的是( ).A .(1)(3) B .(1)(4) C .(2)(3) D .(2)(4) 6. 尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于21CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是 ( ) A . SAS B .ASA C .AAS D .SSS7.如图,在等腰梯形ABCD 中,AD BC ∥,对角线AC BD ⊥于点O ,AE BC DF BC ⊥⊥,,垂足分别为E 、F ,设AD =a ,BC =b ,则四边形AEFD 的周长是( )A A .3a b + B .2()a b +C .2b a +D .4a b +8.在平面直角坐标系中有两点(62)A ,,(60)B ,,以原点为位似中心,相似比为1∶3.把线段AB 缩小,则过A 点对应点的反比例函数的解析式为( ) A .4y x=B .43y x=C .43y x=-D .18y x=9.用长4米的铝材制成一个矩形窗框,使它的面积为22425米,若设它的一边长为x 米,根据题意列出关于x 的方程为( )A .24(4)25x x -=B .242(2)25x x -=C .24(42)25x x -= D .24(2)25x x -=10.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )二、填空题(本大题共6小题,每小题5分,共30分)11=. 12.当m 满足时,关于x 的方程21402x x m -+-=有两个不相等的实数根.xxxxxD CA BEFO13. 如图,点A 、B 是双曲线xy 3=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += .14. 如图,P A 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交P A 、PB 于点E 、F ,切点C 在AB 上,若PA 长为2,则△PEF 的周长是_ _. 15. 如图,正方形ABCD 的边长是4cm ,点G 在边AB 上,以BG 为边向外作正方形GBFE ,连结AE 、AC 、CE ,则AEC △的面积是_____________cm 2.16. 如图,在锐角ABC △中,45AB BAC =∠=°,BAC∠的平分线交BC 于点D M N ,、分别是AD 和AB 上的动点,则BM MN +的最小值是___________ .三、解答题(本大题共8小题,共80分.)解答应写明文字说明和运算步骤.17.(本题共两小题,每小题6分,满分12分)(1)计算:(()2122sin 30tan 45--+-+°°.(2)解分式方程:131x x =--.18.(本小题满分8分) 如图,ABCD 是正方形,点G 是BC 上的任意一点,DE AG ⊥于E ,BF DE ∥,交AG 于F .求证:AF BF EF =+.D CBA E FGA DCGE FA B CDN M19.(本小题满分8分)如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向.当轮船到达灯塔C 的正东方向的D 处时,求此时轮船与灯塔C 的距离.(结果保留根号)20.(本小题满分8分) 某服装专卖店老板对第一季度男、女服装的销售收入进行统计,并绘制了扇形统计图(如图).由于三月份开展促销活动,男、女服装的销售收入分别比二月份增长了40%,64%,已知第一季度男女服装的销售总收入为20万元.(1)一月份销售收入为 万元,二月份销售收入为 万元,三月份销售收入为 万元;(2)二月份男、女服装的销售收入分别是多少万元?21.(本小题满分10分) 如图,在平面直角坐标系内,O 为原点,点A 的坐标为(30) ,,经过A O 、两点作半径为52的C ⊙,交y 轴的负半轴于点B .(1)求B 点的坐标;(2)过B 点作C ⊙的切线交x 轴于点D ,求直线BD 的解析式.CDB A 北60°30°22.(本小题满分10分)袋中装有除数字不同其它都相同的六个小球,球上分别标有数字1,2,3,4,5,6.(1)从袋中摸出一个小球,求小球上数字小于3的概率;(2)将标有1,2,3数字的小球取出放入另外一个袋中,分别从两袋中各摸出一个小球,求数字之和为偶数的概率.(要求用列表法或画树状图求解)23.(本小题满分12分)如图,⊙O 的直径AB =4,C 为圆周上一点,AC =2,过点C 作⊙O 的切线l ,过点B 作l 的垂线BD ,垂足为D ,BD 与⊙O 交于点 E . (1) 求∠AEC 的度数; (2)求证:四边形OBEC 是菱形. 24.(本小题满分12分)如图1,已知抛物线经过坐标原点O 和x 轴上另一点E ,顶点M 的坐标为(24),;矩形ABCD 的顶点A 与点O 重合,AD AB 、分别在x 轴、y 轴上,且2AD =,3AB =.(1)求该抛物线所对应的函数关系式;(2)将矩形ABCD 以每秒1个单位长度的速度从图1所示的位置沿x 轴的正方向匀速平行移动,同时一动点P 也以相同的速度.....从点A 出发向B 匀速移动.设它们运动的时间为t 秒(03t ≤≤),直线AB 与该抛物线的交点为N (如图2所示).①当52t =时,判断点P 是否在直线ME 上,并说明理由; ②设以P N C D 、、、为顶点的多边形面积为S ,试问S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.ACDEBOl 图12019年初中毕业学业考试(三)数学试题参考答案一、选择题(本大题共10小题,每题4分,满分40分)二、填空题(本大题共6小题,每题5分,满分30分)1112. 92m < 13.4 14.4 15.8 16. 4三、解答题(本大题共8小题,共80分)解答应写明文字说明和运算步骤.17.(本小题满分12分)(1) 解:原式=2131+-+=1 (2) 解:去分母得:()213x x -=- 解得1x =-检验1x =-是原方程的解 所以,原方程的解为1x =- 18.(本小题满分8分) 证明:ABCD 是正方形, 90AD AB BAD ∴=∠=,°. DE AG ⊥,90DEG AED ∴∠=∠=°. 90ADE DAE ∴∠+∠=°.又90BAF DAE BAD ∠+∠=∠=°, ADE BAF ∴∠=∠. BF DE ∥,AFB DEG AED ∴∠=∠=∠.在ABF △与DAE △中,AFB AED ADE BAF AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)ABF DAE ∴△≌△.BF AE ∴=.AF AE EF =+, AF BF EF ∴=+.19.(本小题满分8分) 解:由题意得306030CAB CBD ACB ∠=∠=∴∠=°,°,°, BCA CAB ∴∠=∠,20240BC AB ∴==⨯=.90sin CDCDB CBD BC∠=∴∠=°,.sin 60CD BC ∴==°40CD BC ∴===. ∴此时轮船与灯塔C的距离为20.(本小题满分10分)答案:(1)5,6,9.(2)设二月份男、女服装的销售收入分别为x 万元、y 万元,根据题意,得6(140)(164)9x y x y +=⎧⎨+++=⎩,%%.解之,得 3.52.5x y =⎧⎨=⎩,.答:二月份男、女服装的销售收入分别为3.5万元、2.5万元.21.(本小题满分10分) 解:(1)90AOB ∠=° AB ∴是直径,且5AB =在AOB Rt △中,由勾股定理可得4BO =B ∴点的坐标为(04)-,(2)BD 是C ⊙的切线,CB 是C ⊙的半径 BD AB ∴⊥,即90ABD ∠=° 90DAB ADB ∴∠+∠=° 又90BDO OBD ∠+∠=° DAB DBO ∴∠=∠90AOB BOD ∠=∠=° ABO BDO ∴△∽△2241633OA OB OB OD OB OD OA ∴=∴=== D ∴的坐标为1603⎛⎫⎪⎝⎭, 设直线BD 的解析式为(0)y kx b k k b =+≠,、为常数则有16034k b b ⎧+=⎪⎨⎪=-⎩344k b ⎧=⎪∴⎨⎪=-⎩ ∴直线BD 的解析式为344y x =-. 22.(本小题满分10分) 解:(1)小于3的概率2163P ==从表或树状图中可以看出其和共有9种等可能结果,其中是偶数的有4种结果,所以和为偶数的概率49P =23.(本小题满分12分) 解:(1)在△AOC 中,AC =2, ∵ AO =OC =2, ∴ △AOC 是等边三角形. ∴ ∠AOC =60°, ∴∠AEC =30°.(2)证明:∵OC ⊥l ,BD ⊥l . ∴ OC ∥BD .∴ ∠ABD =∠AOC =60°. ∵ AB 为⊙O 的直径,∴ △AEB 为直角三角形,∠EAB =30°. ∴∠EAB =∠AEC .∴ 四边形OBEC 为平行四边形. 又∵ OB =OC =2. ∴ 四边形OB EC 是菱形. 24.(本小题满分12分)解:(1)因所求抛物线的顶点M 的坐标为(2,4), 故可设其关系式为2(2)4y a x =-+.14 5 6 5 6 7 24 5 6 6 7 8 34 5 6 7 8 9开始树状图如下和: ACDEB Ol又抛物线经过(00)O ,,于是得2(02)40a -+=, 解得1a =-.∴所求函数关系式为2(2)4y x =--+,即24y x x =-+. (2)①点P 不在直线ME 上.根据抛物线的对称性可知E 点的坐标为(4,0),又M 的坐标为(2,4),设直线ME 的关系式为y kx b =+.于是得4024k b k b +=⎧⎨+=⎩,解得28k b =-⎧⎨=⎩.所以直线ME 的关系式为28y x =-+.由已知条件易得,当52t =时,52OA AP ==,∴5522P ⎛⎫⎪⎝⎭,. ∵P 点的坐标不满足直线ME 的关系式28y x =-+, ∴当52t =时,点P 不在直线ME 上. ②S 存在最大值.理由如下:∵点A 在x 轴的非负半轴上,且N 在抛物线上, ∴OA AP t ==,∴点P N ,的坐标分别为()t t ,、2(4)t t t -+,, ∴24AN t t =-+(03t ≤≤),∴22(4)3(3)0AN AP t t t t t t t -=-+-=-+=-≥, ∴23PN t t =-+.(i )当0PN =,即0t =或3t =时,以点P N C D ,,,为顶点的多边形是三角形,此三角形的高为AD ,∴1132322S DC AD ==⨯⨯=. (ii )当0PN ≠时,以点P N C D ,,,为顶点的多边形是四边形, ∵PN CD AD CD ∥,⊥,∴22211321()[3(3)]2332224S CD PN AD t t t t t ⎛⎫=+=+-+⨯=-++=--+ ⎪⎝⎭,其中(03t <<),由1a =-,3032<<,此时214S =最大. 综上所述,当32t =时,以点P N C D ,,,为顶点的多边形面积有最大值,这个最大值为214. 说明:(ii )中的关系式,当0t =和3t =时也适合.。
2018-2019年最新安徽芜湖市第一中学初升高自主招生化学模拟精品试卷(第一套)一、选择题(共12小题,每小题3分,满分18分)1.(3分)甲、乙两烧杯中分别盛有等体积、等溶质质量分数的H2SO4溶液.现向甲杯中加入m克Mg,向乙杯中加入m克Zn,充分反应后,有一只烧杯中仍有金属未溶解,则甲、乙烧杯中原有H2SO4的溶质质量x应为( )A.g≤x<g B.g>x≥g C.x=g D.x<g2.(3分)某白色粉末可能含有NaOH、Na2CO3、Na2SO4、NaCl中的一种或几种.为探究白色粉末的性质,将该粉末放入足量水中,充分搅拌后,把所得溶液分为三份进行实验:(1)第一份溶液中滴加酚酞后,溶液呈红色;(2)第二份溶液中滴加稀盐酸后,开始无明显现象,随着盐酸的滴入逐渐有气泡产生;(3)第三份溶液中滴加BaCl2后有白色沉淀生成,过滤,所得沉淀全部溶于稀盐酸,分析实验得出的以下结论,合理的是( )A.一定含有Na2CO3,一定没有Na2SO4、NaCl,可能含有NaOHB.一定含有Na2CO3,一定没有Na2SO4、NaOHC.一定含有Na2CO3、NaCl,一定没有Na2SO4,可能含有NaOHD.一定含有Na2CO3,一定没有Na2SO43.(3分)小婧做探究性实验:用称量法测定铁在O2中燃烧的产物.发现5.6g铁在足量的O2中燃烧得到7.82g固体.小婧排除了其他因素可能产生的误差,则她得到的固体产物可能是( )A.Fe3O4和Fe的混合物B.Fe3O4和FeO的混合物C.Fe3O4、FeO和Fe的混合物D.Fe3O4和Fe2O3的混合物4.(3分)有Na、S、O、H四种元素中的二种或三种元素组成四种常见的化合物.甲能跟氯化钡反应生成一种硫酸盐和另﹣种盐,乙能跟氢氧化钠反应生成盐和水,丙能跟盐酸反应生成盐和水,丁呈中性,且可以分别跟氧化钙或二氧化碳发生化合反应,生成相应的碱或酸,其中下列推断:①甲﹣定是硫酸钠;②乙可能是硫酸;③丙﹣定是氢氧化钠;④丁﹣定是水.其中正确的一组是( )A.①②③B.②③④C.①③④D.①②④5.(3分)下列各物质无论以何种比例混合,其氯元素的质量分数不变的是( )A.HClO4、KClO3B.NaClO、KCl C.KClO、KCl D.NaCl、KCl6.(3分)(2014•南海区二模)已知所含元素化合价发生变化的反应是氧化还原反应,其中被还原的元素化合价降低,被氧化的元素化合价升高.海洋中有丰富的资源,如图所示利用海水可获得许多化工产品.下列有关说法正确的是( )A.第①步中除去粗盐中的SO42﹣、Ca2+、Mg2+等杂质,加入的试剂顺序为:Na2CO3溶液、NaOH 溶液、BaCl2溶液,过滤后加盐酸B.第②步中加入的试剂为CaCl2溶液C.第③步中发生分解反应D.在第④步中溴元素被还原8.有一包不纯的Na2CO3样品,其中只含一种杂质,现取该样品5.3g与足量稀盐酸反应生成2.4g CO2,则所混杂质可能是( )A.BaCO3B.K2CO3C.CaCO3D.MgCO310.无色溶液可能由K2CO3、MgCl2、NaHCO3、BaCl2溶液中的一种或几种组成.向溶液中加入烧碱溶液出现白色沉淀,加入稀硫酸也出现白色沉淀并放出气体.据此分析,下列判断中正确的是( )①肯定有BaCl2;②肯定有MgCl2;③肯定有NaHCO3;④肯定有Na2CO3或NaHCO3⑤肯定没有MgCl2.A.①②③B.②④C.①③D.①③⑤11.(2010•常州模拟)Fe、Mg、Al 三种金属分别跟稀盐酸充分反应,得到相同质量的氢气,其原因是:①Fe、Mg、Al的质量相等,盐酸足量;②Fe、Mg、Al的质量比是56:24:27,盐酸足量;③Fe、Mg、Al的质量比是28:12:9,盐酸足量;④Fe、Mg、Al均为过量,所用盐酸的质量分数和质量都相同.你认为可能的原因是( )A.③④B.①②C.①③D.②③14.t℃时,Na2CO3溶解度为Ag,现有饱和Na2CO3溶液(100+A)g,溶质质量分数为a%;向该溶液中投入无水碳酸钠Ag,静置后析出碳酸钠晶体(Na2CO3•10H2O)Bg;加水使晶体全部溶解,所得溶液质量分数为a%,则加入水的质量为( )A.(100+A)g B.100g C.g D.(100﹣A•a%)g16.(2012•新乡模拟)由Mg(OH)2和MgO组成的混合物,测得其中含镁元素的质量分数为48%.取该混合物10g,将其投入110g的稀硫酸中恰好完全反应,所得溶液中溶质的质量分数为( )A.12% B.24% C.20% D.30%17.(2011•平房区二模)已知将氯酸钾加热到较高温度时,氯酸钾可以发生分解放出氧气.现有氯酸钾和氯化钾的固体混合物共319.5克,在较高温度下将其加热至固体质量不再减少为止.而后将所得固体加入足量的水中充分溶解后,再向其中加入足量的硝酸银溶液,充分反应后得沉淀的质量为430.5克.则原固体混合物中氯酸钾的质量分数为( )A.35% B.50% C.76.7% D.82.14%二、解答题(共6小题,满分0分)7.(2011•西城区二模)工业上用CaSO4、NH3、CO2制备硫酸铵晶体(NH4)2SO4,过程如图所示.(1)硫酸铵在农业生产上的一种用途是 _________ ,它属于 _________ (填“酸”、“碱”或“盐”).(2)操作①中需要使用的玻璃仪器有 _________ ;从滤液中得到硫酸铵晶体,正确操作顺序是 _________ → _________ → _________ (填序号).a.过滤 b.加热浓缩 c.冷却结晶(3)用CaSO4、NH3、CO2制备硫酸铵的化学方程式是 _________ .12.(2010•青岛)某气体可能含有氢气、一氧化碳、二氧化碳、水蒸气和氯化氢中的一种或几种,为了确定其成分,将该气体依次进行如下实验(假设各步均完全反应):①通过浓硫酸,浓硫酸质量增加;②通过澄清石灰水,石灰水不变浑浊;③先通过浓硫酸,再通过灼热的氧化铜,固体由黑色变成红色;④通过无水硫酸铜,固体不变色(无水硫酸铜具有遇水变蓝的性质);⑤通过澄清石灰水,石灰水变浑浊.请根据上述实验现象推断,并用化学式填空:该气体中一定有 _________ ,一定没有 _________ ,无法确定的是 _________ .13.某一种气体可能是氮气、水蒸气、二氧化碳、氢气和一氧化碳中的一种或几种,某学生设计了如下实验来分析研究该气体的成分.该学生观察到如下化学现象:装置A中澄清的石灰水变白色浑浊,装置B中白色无水硫酸铜变蓝,装置C中浓硫酸无明显变化,装置D中黑色的氧化铜变为一种亮红色物质,装置E中澄清的石灰水变白色浑浊,装置F中白色的无水硫酸铜变蓝色.该学生从上述实验现象中得出如下结论:气体中①肯定不含二氧化碳,②肯定含一氧化碳,③肯定含水蒸气,④肯定含氢气,⑤可能含氮气.请你分析:(1)上述不正确的结论是(填代号) _________ ,你认为不正确的原因是 _________ .(2)上述正确的结论是(填代号) _________ .(3)当使本实验有可能得出更多的正确结论,可将各实验仪器重新连接,你认为的连接次序是(从左到右填写仪器代号) _________ .15.某校的化学学习小组根据下面给出的药品和实验装置,设计一个实验,粗略测定由铜和锌两种金属组成的合金﹣黄铜中锌的质量分数(黄铜已加工成粉末).实验装置如图(另有托盘天平可用):【药品】稀硫酸、浓硫酸、氧化铜【分析与思考】同学们通过充分“交流﹣分析﹣讨论”后一致认为,设计以下三种实验方案可测出黄铜中锌的质量分数.C装置中,提供热源的仪器名称是酒精灯酒精灯,三种方案都必需选用的药品是稀硫酸稀硫酸.同学们用过量该药品与称取的ag黄铜粉样品进行充分反应后,实验中测定了以下数据:①测定生成H2的体积bL(已知氢气的密度);②过滤、洗涤、烘干后,测定漏斗中剩余固体的纯净质量为Cg;③充分反应后,测定A装置中仪器和药品总质量减少了d克.【方案一】小悦同学仅选用一个实验装置 _________ 进行实验,用测定数据 _________ ,通过计算可求出黄铜中锌的质量分数为(写计算结果) _________ 装置A中发生反应的化学方程式为 _________ 【方案二】小华同学选用两个装置 _________ (填装置编号,以下同)进行实验,并用测定数据 _________ (填数据编号,以下同),通过计算也求出了黄铜中锌的质量分数.【方案三】小琳同学选用三个实验装置进行实验,装置连接的顺序是(用装置接口处的编号表示) _________ ,并用测定的数据 _________ ,通过计算也求出了黄铜中锌的质量分数.【反思与评价】同学们对上述三种实验方案进行了综合评价,一致认为方案一一简单易行.18.某实验小组欲测定某白色粉末(已知是碳酸钠与碳酸氢钠的混合物)的组成,取三份质量不同的样品甲、乙、丙分别与30g稀盐酸充分反应,得到的常温常压下气体体积关系如下表,试求:(1)样品中碳酸钠的质量分数?(2)稀盐酸的质量分数?(已知二氧化碳常温常压下的密度是1.97g/L)(计算过程中保留两位小数)甲乙丙混合物质量/g 3.80 7.60 11.4二氧化碳的体积/L 0.893 1.786 1.78619.(2010•扬州)叠氮化钠(NaN3)被广泛应用于汽车安全气囊,某兴趣小组对其进行下列研究.应用研究:(1)汽车经撞击后,30毫秒内引发NaN3,迅速分解为Na、N2,反应方程式为 _________ .制备研究:(2)将金属钠与液态氨反应得NaNH2,再将NaNH2与N2O反应可生成NaN3、NaOH和气体X,该反应的化学方程式为2NaNH2+N2O=NaN3+NaOH+X,实验室检验X气体使用的试纸是湿润的 _________ .Na2CO3质量分数测定:工业级NaN3中常含有少量的Na2CO3,为测定样品中Na2CO3的质量分数设计如图装置(已知H2SO4溶液与NaN3,反应不生成气体).。
芜湖一中2019年高一自主招生考试化学试卷(满分:80分)可能用到的相对原子质量:H:1 C:12 N:14 O:16 Na:23 Mg:24 S:32 Cl:35.5 Ca:40 Fe:56 Cu:64 一、选择题(10小题,每小题只有1个正确答案,每小题4分,共40分)1.下列关于物质分类的说法正确的是( )A.金刚石、白磷都属于单质B.纯碱、烧碱都属于碱C.冰水混合物、波尔多液都属于混合物D.生石灰、熟石灰都属于氧化物2.下列实验数据读取正确的是( )A.用胶头滴管取1.0mL 水B.用电子天平(精度:0.001g)称取50g 食盐C.用10mL 量筒量取8.2mL 水D.用广泛pH 试纸测定某溶液的pH=5.6 3.北京大学生命科学学院蒋争凡教授研究组发现,锰离子是细胞内天然免疫激活剂和警报素。
在元素周期表中锰元素的某些信息如图所示,下列有关锰的说法不正确的是( )A.原子序数为25B.属于金属元素C.原子核内质子数为25D.相对原子质量为54.94g4.某同学归纳了知识点:①用水灭火的原理是降低了可燃物的着火点;②红磷在空气中燃烧产生大量白雾;③“粗盐中难溶性杂质的去除”实验中,当蒸发皿中出现较多固体时,停止加热;④防毒面具的原理是利用活性炭的强吸附性;⑤洗涤剂去除油污是因为洗涤剂可以溶解油污;⑥日常生活中塑料、合成纤维和合成橡胶都属于合成材料。
其中正确的组合是( )A. ①⑤⑥B.③④⑥C.③⑤⑥D.②④⑤5.下列各组物质可在同一溶液中大量共存,且形成无色溶液的是( )A.NaOH、HCl、NaCl B.CuCl2、Na2SO4、KNO3C.BaCl2、KOH、NaNO3D.FeCl3、NaOH、NaCl6.类比是化学学习中的一种思维方法。
有一种碘和氧的化合物可以称为碘酸碘,其中碘元素呈+3、+5两种价态,则这种化合物的化学式为( )A.I2O4B.I3O5C.I4O7D.I4O97. 镍氢充电电池有着广泛应用,镍及其化合物能发生下列反应:①Ni+2HCl=NiCl2+H2↑ ②NiO+2HCl=NiCl2+H2O ③NiO2+4HCl=NiCl2+Cl2↑+2H2O已知:Ni(OH)2不溶于水。
安徽芜湖2018-2019年初二上年末考试数学试卷含解析数学试卷〔总分值100分,时刻100分钟〕【一】选择题:〔本大题12个小题;每题3分,共36分〕在每个小题旳下面,都给出了代号为A、B、C、D旳四个【答案】,其中只有一个是正确旳,请将正确【答案】旳代号填在题后旳括号中、1、以下计算正确旳选项是A、a2÷a2=a0B、a2+a2=a5C、(a+l)2=a2+lD、3a2-2a2=12、一个正多边形旳每个外角等于600,那么那个正多边形是A、正五边形B、正六边形C、正七边形D、正八边形3、下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,,是轴对称图形旳是4、假设x2+6x十k是完全平方式,那么k是A、9B、-9C、±9'D、±35、一个三角形旳两边长分别为3cm和7cm,,那么此三角形旳第三边旳长可能是A.3cmB.4cmC、7cmD、1lcm6、一个正方形和两个等边三角形旳位置如下图,假设∠3=50°,那么∠1+∠2=A.90°B.100°C.130°D.180°7.如图,在△ABC中,AB=AC、D为BC中点,∠BAD=35°,那么∠C旳度数为A.35°B.45°C.55°D.60°8、如图,小明做了一个角平分仪ABCD、其中AB=AD,BC=DC,将仪器上旳点A与∠PRQ旳顶点尺R合,调节AB和AD,使它们分别落在角旳两边上,过点A,C画一条射线AE,AE确实是∠PRQ旳平分线,此角平分仪旳画图原理是:依照仪器结构,可得△ABC≌△ADC,如此就有∠QAE=∠PAF、那么说明这两个三角形全等旳依据是A.SAS.B.ASAC.AASD.SSS9、如图,边长为(m+3)旳正方形纸片剪出一个边长为m旳正方形之后,剩余部分可剪拼成一个矩形〔不重叠无缝隙〕,假设拼成旳矩形一边长为3,那么另一边长是A.m+3B.m+6C.2m+3D.2m+610.分式方程111(1)(2)m x x x -=--+无解,那么m 旳值为 A.0或3B.lC.1或2D.311.如图,有一块矩形纸片ABCD ,AB=8,AD=6,将纸片折叠,使得AD 边落在AB 边上,折痕为AE 、再将△AED 沿DE 向右翻折、AE 与BC 旳交点为F 、那么△CEF 旳面积为A.12B.98C.2D.412.如图,A 、B 、C 分别是线段A 1B 、B 1C 、C 1A 旳中点,假设△ABC 旳面积是l ,那么△A 1B l C 1旳面积是A.4B.5C.6D.7【二】填空题:〔本大题6个小题,每题4分,共24分〕在每题中,请将【答案】直截了当填在题后旳横线上13、0,456c b a ==≠那么b c a+旳值为。
安徽省芜湖市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列几何体中,主视图是圆的是()A .B .C .D .2. (2分) (2020七上·苍南期末) 计算:-6+4的结果是()A . 2B . 10C . -2D . -103. (2分)(2019七下·萍乡期中) 计算下列各式① ② ③④ 正确有()题A .B .C .D .4. (2分)某中学举行歌咏比赛,六名评委对某歌手打分如下:77,82,78,95,83,75,去掉一个最高分和一个最低分后的平均分是()A . 79分B . 80分C . 81分D . 82分5. (2分)在数轴上与原点的距离小于8的点对应的x满足()A . -8<x<8B . x<-8或x>8C . x<8D . x>86. (2分)(2017·淄博) 将二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是()A . y=(x+3)2﹣2B . y=(x+3)2+2C . y=(x﹣1)2+2D . y=(x﹣1)2﹣27. (2分)如图,△ABC中,E、D分别是AC、BC的中点,AD、BE交于点O ,则S△DOE:S△AOB=()A . 1:2B . 2:3C . 1:3D . 1:48. (2分)在Rt△ABC与Rt△A'B'C'中,∠C=∠C'=90°,∠A=∠B',AB=A'B',则下面结论正确的是()A . AB=A'C'B . BC=B'C'C . AC=B'C'D . ∠A=∠A'二、填空题 (共8题;共8分)9. (1分) (2017九上·十堰期末) 如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M的坐标为________.10. (1分)某项工作甲单独做4天完成,乙单独做6天完成,若甲先干2天,然后,甲、乙合作完成此项工作,若设甲一共做了x天,可列方程为________.11. (1分)分解因式:x﹣3x+4=________ .12. (1分)如图,A.B之间是一座山,一条铁路要通过A.B两地,在A地测得B地在北偏东70°,如果A.B 两地同时开工修建铁路,那么在B地应按________方向开凿,才能使铁路在山腹中准确接通.13. (1分) (2016九上·萧山期中) 在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子________颗.14. (1分)阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,DE∥BC分别交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.小明发现,过点E作EF∥DC,交BC延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图2).请回答:BC+DE的值为________参考小明思考问题的方法,解决问题:如图3,已知▱ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠AGF的度数________15. (1分)如图,双曲线经过点A(2,2)与点B(4, ),则△AOB的面积为________.16. (1分)(2018·普宁模拟) 如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A、B、C、D,得到四边形ABCD,若AC=10cm,∠BAC=36°,则图中阴影部分的面积为________.三、解答题 (共8题;共73分)17. (10分) (2019七下·江苏月考) 计算:(1)(2) (-2a2)3+2a2·a4-a8÷a218. (10分)(2017·全椒模拟) 如图,在△ABC中,∠BAC=45°,AB=AC,D为△ABC内一点,AD=4,如果把△ABD绕点A按逆时针方向旋转,使AB与AC重合,求点D运动的路径长.19. (5分)(2017·娄底) 数学“综合与实践”课中,老师带领同学们来到娄底市郊区,测算如图所示的仙女峰的高度,李红盛同学利用已学的数学知识设计了一个实践方案,并实施了如下操作:先在水平地面A处测得山顶B的仰角∠BAC为38.7°,再由A沿水平方向前进377米到达山脚C处,测得山坡BC的坡度为1:0.6,请你求出仙女峰的高度(参考数据:tan38.7°≈0.8)20. (10分)(2017·合肥模拟) 如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O 上一点,且∠AED=45°.(1)试判断CD与⊙O的位置关系,并证明你的结论;(2)若⊙O的半径为3,sin∠ADE= ,求AE的值.21. (3分)(2016·泰州) 某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.最喜爱的传统文化项目类型频数分布表项目类型频数频率书法类18a围棋类140.28喜剧类80.16国画类b0.20根据以上信息完成下列问题:(1)直接写出频数分布表中a的值;(2)补全频数分布直方图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?22. (10分) (2016七上·黑龙江期中) 恺桐超市购进一批四阶魔方,按进价提高40%后标价,为了让利于民,增加销量,超市决定打八折出售,这时每个魔方的售价为28元.(1)求魔方的进价?(2)超市卖出一半后,正好赶上双十一促销,商店决定将剩下的魔方以每3个80元的价格出售,很快销售一空,这批魔方超市共获利2800元,求该超市共购进四阶魔方多少个?23. (15分) (2018七下·深圳期中) 一只蚂蚁在一个半圆形的花坛的周边寻找食物,如图1,蚂蚁从圆心O 出发,按图中箭头所示的方向,依次爬完下列三条线路:(1)线段OA、(2)半圆弧AB、(3)线段BO后,回到出发点。
2018-2019年最新芜湖一中自主招生考试
数学模拟精品试卷
(第一套)
考试时间:90分钟总分:150分
一、选择题(本题有12小题,每小题3分,共36分)
下面每小题给出的四个选项中,只有一个是正确的,请你把正确选项前的字母填涂在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.
1.下列事件中,必然事件是( )
A.掷一枚硬币,正面朝上
B.a是实数,|a|≥0
C.某运动员跳高的最好成绩是20.1米
D.从车间刚生产的产品中任意抽取一个,是次品
2、如图是奥迪汽车的标志,则标志图中所包含的图形变换没有的是()
A.平移变换 B.轴对称变换 C.旋转变换 D.相似变
换
3.如果□×3ab=3a2b,则□内应填的代数式( )
A.ab B.3ab C.a D.3a
4.一元二次方程x(x-2)=0根的情况是( )
A.有两个不相等的实数根
B.有两个相等的实数根
C.只有一个实数根
D.没有实数根
5、割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不
可割,则与圆周合体而无所失矣”。
试用这个方法解决问
题:如图,⊙的内接多边形周长为3 ,⊙的外切多边形
O
周长为3.4,则下列各数中与此圆的周长最接近的是
()
A
B
.
10
D
6、今年5月,我校举行“庆五四”歌咏比赛,有17位同学参加选
A
拔赛,所得分数互不相同,按成绩取前8名进入决赛,若知道某同学分数,要判断他能否进入决赛,只需知道17位同学分数的()A.中位数 B.众数 C.平均数 D.方差
7.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是( )
A.Error!
B. Error!
C.Error!
D.Error!
8.已知二次函数的图象(0≤x≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )
A.有最小值0,有最大值3
B.有最小值-1,有最大值0
C.有最小值-1,有最大值3
D.有最小值-1,无最大值
9.如图,矩形OABC的边OA长为2 ,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )
A.2.5 B.2 C. D.
235
10.广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x2+4x(单位:米)的一部分,则水喷出的最大高度是( )
水平面
主视方向
A .4米
B .3米
C .2米
D .1米
11、两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是( )
(A )两个外离的圆 (B )两个外切的圆(C )两个相交的圆 (D )两个内切的圆
12.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:
①b 2-4ac >0;
②abc >0;
③8a +c >0;
④9a +3b +c <0.
其中,正确结论的个数是( )
A .1
B .2
C .3
D .4
二、填空题(本小题有6小题,每小题4分,共24分)
要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案
13.当x ______时,分式有意义. 13-x
14.在实数范围内分解因式:2a 3-16a =________.
15.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.0000963贝克/立方米.数据“0.0000963”用科学记数法可表示为________.
16.如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB =________.
17.若一次函数y =(2m -1)x +3-2m 的图象经过 一、二、四象限,则m 的取值范围是________.
18.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形有________个小圆. (用含 n 的代数式表示)
三、解答题(本大题7个小题,共90分)
19.(本题共2个小题,每题8分,共16分)
(1).计算:(-1)0+sin45°-2-1 201118。