2019届高三第三次模拟考试卷文科数学(四)(附答案)
- 格式:doc
- 大小:966.00 KB
- 文档页数:11
2019年度高三第三次模拟考文科数学试卷班级: 姓名: 座号:第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,2,3,4,5}A =,1212{|,,}B y y x x x A x A ==+∈∈,则A B = ( )A . {}1,2,3,4,5B .{}2,3,4,5C .{}3,4,5D .{}4,52.设有下面四个命题,其中的真命题为 ( ) A .若复数12z z =,则12z z R ∈ B .若复数12,z z 满足12z z =,则21z z =或12z z =- C .若复数z 满足2z R ∈,则z R ∈ D .若复数12,z z 满足12z z R +∈,则12,z R z R ∈∈3.已知双曲线1C :2212x y -=与双曲线2C :2212x y -=-,给出下列说法,其中错误..的是 ( ) A .它们的焦距相等 B .它们的焦点在同一个圆上 C .它们的渐近线方程相同 D .它们的离心率相等4.已知一几何体的三视图如图所示,则该几何体的体积为( )A .1+63πB .+112πC .1+123πD .1+43π 5.在等比数列{}n a 中,22a =-,则“4a ,12a 是方程2310x x ++=的两根”是“81a =±”的 ( )A .充分而不必要条件B .必要而充分不条件C .充要条件D .既不充分也不必要条件6.为了反映国民经济各行业对仓储物流业务的需求变化情况,以及重要商品库存变化的动向,中国物流与采购联合会和中储发展股份有限公司通过联合调查,制定了中国仓储指数.如图所示的折线图是2016年1月至2017年12月的中国仓储指数走势情况.根据该折线图,下列结论正确的是 ( ) A .2016年各月的仓储指数最大值是在3月份B .2017年1月至12月的仓储指数的 中位数为54%C .2017年1月至4月的仓储指数比2016 年同期波动性更大D .2017年11月的仓储指数较上月有所 回落,显示出仓储业务活动仍然较为 活跃,经济运行稳中向好7.设1F ,2F 分别为椭圆C :22221x y a b+=()0a b >>的左右焦点,椭圆C 上存在一点P 使得12PF PF b -=,12158PF PF ab ⋅=,则该椭圆的离心率为 ( ) A .12 B .2C D .13 8.相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调.“三分损益”包含“三分损一”和“三分益一”,用现代数学的方法解释如下,“三分损一”是在原来的长度减去一分,即变为原来的三分之二;“三分益一”是在原来的长度增加一分,即变为原来的三分之四,如右图的程序是与“三分损益”结合的计算过程,若输入的x 的值为1, 输出的x 的值为 ( ) A .1627 B .3227 C .89 D .239.已知直线l 过点(2,0)-且倾斜角为α,若l 与圆22(3)20x y -+=相切,则3sin(2)2π-α= ( ) A .53 B .53- C .54 D .54-10.在ABC ∆中,AD AB ⊥,3BC BD =,1AD =,则AC AD ⋅= ( )A ..2 C .3D 11.三棱锥BCD A -的所有顶点都在球O 的表面上,⊥AB 平面BCD ,2==BD BC ,342==CD AB ,则球O 的表面积为 ( )A .π16B .2π3C .0π6D .4π612.设定义在R 上的函数()y f x =满足对任意t R ∈都有1(2)()f t f t +=, 且(0,4]x ∈时,()()f x f x x'>,则(2016)f ,4(2017)f ,2(2018)f 的大小关系是 ( ) A .2(2018)(2016)4(2017)f f f << B .2(2018)(2016)4(2017)f f f >> C .4(2017)2(2018)(2016)f f f << D .4(2017)2(2018)(2016)f f f >> 二、填空题(本题共 4小题,每题5分,满分20分,将答案填在答题纸上) 13.若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥-+≤+-≤,022,01,2y x y x x 则22y x z +=的最小值为_________;14.已知函数()121,14log , 1.x x f x x x ⎧⎛⎫<⎪ ⎪⎪⎝⎭=⎨⎪>⎪⎩, 若()()1f x f x =,()()*1,n n f x f f x n +=∈⎡⎤⎣⎦N ,则4(1)f -= .15. 远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如右上图所示的是一位母亲 记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知, 孩子已经出生的天数是 .16.已知数列{}a 的前n 项和为n S ,11a =,且满足12n n n a a S +=,数列{}b 满足115b =,三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤. (一)必考题:共60分.17. (本小题满分12分) 在ABC ∆中,内角A ,B ,C所对的边分别为a ,b ,c ,且(sinsin )(sin sin )()c C A A B b a -=+-. (Ⅰ)求B ; (Ⅱ)若8c =,点M ,N 是线段BC 的两个三等分点,13BM BC =,AN BM=,求AM 的值.18. (本小题满分12分) 已知四棱台1111ABCD A B C D -的上下底面 分别是边长为2和4的正方形,14AA =且1AA ⊥底面ABCD , 点P 为1AA 的中点. (Ⅰ)求证: 1AB ⊥平面PBC ; (Ⅱ)在BC 上找一点Q 使得PQ ∥平面11CDD C ,并求三棱锥1P QBB -的体积.19. (本小题满分12分) 某公司想了解对某产品投入的 宣传费用与该产品的营业额的影响.右图是以往公司对该 产品的宣传费用x (单位:万元)和产品营业额y (单位: 万元)的统计折线图.(Ⅰ)根据折线图可以判断,可用线性回归模型拟合宣传费用x 与产品营业额y 的关系,请用相关系数加以说明; (Ⅱ)建立产品营业额y 关于宣传费用x 的回归方程; (Ⅲ)若某段时间内产品利润z 与宣传费x 和营业额y 的关系为50)08.001.1(+--=x y x z 应投入宣传费多少万元才能使利润最大,并求最大利润. (计算结果保留两位小数) 参考数据:7137.28i i y ==∑, 5.33y =,71160.68i i i x y ==∑2.2=2.64≈参考公式:相关系数()()nii xx y y r --=∑,回归方程ˆˆy abx =+中斜率和截距的最小二乘法估计公式分别为121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-.20. (本小题满分12分)在平面直角坐标系xOy 中,抛物线()2:20C y px p =>,三点()11,1P ,()21,1P -,()31,2P 中仅有一个点在抛物线C 上.(Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过3P 点且与C 相交于,A B 两点.若直线3P A 与3P B 的斜率之和为4, 证明:l 过定点.21. (本小题满分12分) 已知函数x x x f ln 21)(⋅=,x b ax x g 2)(-=,曲线()y g x =在1x =处 的切线方程为012=--y x .(Ⅰ)求a ,b ;(Ⅱ)若),0(+∞∈x 时,()()f x m g x ≤⋅,求m 的取值范围.(二)选考题:共10分.请考生在第22,23题中任选一题作答.如果多做,则按所做的第一题记分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.[选修4—4:坐标系与参数方程] (本小题满分10分)在极坐标系中,曲线C :2cos a ρθ=(0a >),l :3cos()32πρθ-=,C 与直线l 有且仅有一个公共点. (Ⅰ)求a ;(Ⅱ)若O 为极点,,A B 为C 上的两不同点,且3AOB π∠=,求OA OB +的最大值.23.选修4-5:不等式选讲 (本小题满分10分)设函数13()22f x x x =+--. (Ⅰ)求函数()f x 的值域; (Ⅱ) 若函数()f x 的最大值为m ,且实数,, a b c 满足2222a b c m ++=,求证:22211131344a b c ++≥+++.2019年度莆田六中高三第三次模拟考文科数学试卷参考答案13. 1 ; 14.4-; 15.509; 16. 4三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤. (一)必考题:共60分. 17. (本小题满分12分)解:(Ⅰ)∵(sin sin )(sin sin )()c C A A B b a -=+-,则由正弦定理得:222c ca b a -=-,…2分∴222ac b ca +-=,∴2221cos 22a c b B ca +-==,…4分,又0B π<<,∴3B π=;…6分(Ⅱ)由题意得M ,N 是线段BC 的两个三等分点,设BM x =,则2BN x =,AN =,…7分又3B π=,8AB =,在ABN ∆中,由余弦定理得2212644282cos3x x x π=+-⨯⨯,…8分,解得2x = (负值舍去),则2BM =,…10分,又在ABM ∆中,AM…12分或解:在ABN ∆2sin sin3xBAN=,∴1sin 2BAN ∠=,…8分,又2BN x =,AN =,∴BN AN <,∴BAN ∠为锐角,∴6BAN π∠=,…9分,∴2ANB π∠=,又8AB =,∴24BN x ==,…10分,∴2x =,∴2MN =,AN =11分,∴在Rt ANM ∆中,AM ==12分18. (本小题满分12分)解:(1)证明:∵1AA ⊥底面ABCD ,BC ⊂面ABCD ,∴1AA BC ⊥,又∵ABCD 为正方形, ∴AB BC ⊥,…1分,又1ABAA A =,∴BC ⊥平面11AA B B ,…2分,又∵1AB ⊂平面11AA B B ,∴1BC AB ⊥,…3分,又∵112A B AP ==,14A A AB ==,1190B A A PAB ∠=∠=,∴11ABP A AB ∆≅∆,∴11B AA ABP ∠=∠,又11190B AB B AA ∠+∠=,∴190B AB ABP ∠+∠=,∴1B A BP ⊥,…5分,又BC BP B =,∴1AB ⊥平面PBC ;…6分,(Ⅱ) 在BC 上存在一点Q ,当3CQ =时,可使得PQ ∥平面11CDD C , 下证之.…7分,取1DD 中点M ,连接PM ,CM ,又点P 为1AA 的 中点,则在梯形11ADD A ,11PM AD A D ∥∥,111()2PM AD A D =+1(24)32=+=,又3CQ =,BC AD ∥,∴=PM CQ ∥,…8分, ∴四边形PQCM 为平行四边形,∴PQ MC ∥,又PQ ⊄平面11CDD C ,CM ⊂平面11CDD C , ∴PQ ∥平面11CDD C ;…9分,又∵4BC =,∴431BQ BC QC =-=-=,…10分, 又11111111(24)422246222PBB PA B PAB ABB A S S S S ∆∆∆=--=+⨯-⨯⨯-⨯⨯=梯形,…11分, 又BC ⊥平面11AA B B ,∴1111161233P QBB Q PBB PBB V V S BQ --∆==⋅=⨯⨯=.…12分,19. (本小题满分12分)解:(Ⅰ)由折线图中数据和参考数据得:71147i x i ===∑,772211()(4)28i i i x x i ==-=-=∑∑,…1分, 777111()()160.68437.2811.56i i i i i i i i x x y y x y x y ===--=-=-⨯=∑∑∑, (2)2.2=,2.64≈,∴7()()11.560.9952.64 4.4iix x y y r --==≈≈≈⨯∑,…3分,因为y 与x 的相关系数近似为0.995,说明y 与x 的线性相关程度相当高,从而可以用线性回归模型拟合y 与x 的关系. ……4分(Ⅱ)又715.337ii y y ==≈∑,∴71721()()11.560.41325()iii ii x x y y b x x ==--==≈-∑∑,…6分, ∴ 5.330.4134 3.68a y bx =-=-⨯≈,…7分,所以y 关于x 的回归方程为0.41 3.68y x =+. …8分 (Ⅲ)故22( 1.010.08)500.6 3.6500.6(3)55.4z x y x x x x =--+=-++=--+,…10分,故当3x =时,max 55.4z =.…11分,所以投入宣传费3万元时,可获得最大利润55.4万元. ……12分20. (本小题满分12分)解:(Ⅰ)因为点1P ,2P 关于x 轴对称,故两个点都不在抛物线上. ………………1分所以仅3P 在抛物线上,计算得222p =,解得2p =,………………2分所以2:4C y x =.………3分,经验证1P ,2P 都不在C 上. ………………4分(Ⅱ)由题意得直线l 斜率不为0,设直线:l x t y m =⋅+,()()1122,,,A x y B x y ,3P A 与3P B 的斜率分别为12,k k .将:l x ty m =+与C 联立,并消去x ,得:2440y t y m -⋅-=,……5分 故有124y y t +=;124y y m ⋅=-.…6分,又因为1212122211y y k k x x --+=+--,……………7分 所以1212221222444y y k k y y ⎛⎫--+=+ ⎪--⎝⎭,………8分,解得121211422k k y y ⎛⎫+=+ ⎪++⎝⎭又因为124k k +=,所以1211122y y +=++,…9分,即()()1212422y y y y ++=++,…10分 解得()12120y y y y =++⋅,即0t m -=,…11分,故:l x t y t =⋅+,必过定点()0,1-.…12分 21. (本小题满分12分)解:(1)∵x b ax x g 2)(-=,∴xb a x g -=)('.…2分,又依题意,可得:21)1('=g , 即21=-b a .…3分,又因为切点为10(,),所以(1)0g =,即02=-b a .…4分 由上可解得1=a ,21=b . …5分(2)依题意,)()(x mg x f ≤,即)1()(ln 21-=-≤x x m x x m x x .又0>x ,所以原不等式等价于)1(ln 21-≤x m x .……6分,构造函数)1(ln 21)(--=x m x x h ,则()0h x ≤,),0(+∞∈x ,则xxm x h 21)('-=. ……7分 ①当0≤m 时,0)('>x h 在),0(+∞∈x 上恒成立,故)(x h 在),0(+∞∈x 上单调递增,又(1)0h =,故当1x >时,()(1)0h x h >=,故不合题意. ……8分 ②当0>m 时,令0)('=x h ,得21x =,由下表: 可知,01ln )11(1ln 21)1(222max ≤--=--==m m mm m m h h .……10分 构造1ln )(--=m m m k ,011)('=-=mm k ,可得1=m ,由下表:可知,0)1()(=≥k m k .……11分,由上可知,只能有0)(=m k ,即1=m . …12分22. (本小题满分10分)解:(Ⅰ)∵曲线C :2cos a ρθ=,∴22cos a ρρθ=,故化为直角坐标方程,得222x y ax +=,即222()x a y a -+=,…1分,∴曲线C 是以(,0)a 为圆心,以a 为半径的圆,…2分,又l :3cos()32πρθ-=,∴13cos sin 222ρθθ+=,故化为直角坐标方程,得30x +-=,…3分, 又直线l 与圆C 有且仅有一个公共点,故32a a -=,…4分,又0a >,∴1a =;…5分, ∴曲线C :2cos ρθ=;(Ⅱ)不妨设点A 在点B 的下方,设点A 的极坐标为1(,)A ρθ,…6分,则依题意可设点B 的极坐标为2(,)3B πρθ+,且22ππθ-<<,232πππθ-<+<,故26ππθ-<<,…7分,∴12cos ρθ=,22cos()3πρθ=+,∴2cos OA θ=,2cos()3OB πθ=+,…8分,∴OA OB +2cos 2cos()3πθθ=++3cos )6πθθθ==+,…9分,又363πππθ-<+<,故当06πθ+=时,即6πθ=-时,OA OB +取得最大值,最大值为…10分,23.解:(Ⅰ)∵13()22f x x x =+--,∴1313()()()22222f x x x x x =+--≤+--=,…2分 (当且仅当13()()022x x +-≥即1322x x ≤-≥或时,等号成立),…3分 ∴2()2f x -≤≤,…4分 ∴函数()f x 的值域为[2,2]-;…5分(Ⅱ)由(Ⅰ)得: 函数()f x 的最大值2m =,又22224a b c m ++==,∴22213412a b c +++++=, …6分,∴2222222221111111()(134)13412134a b c a b c a b c ++=+++++++++++++…7分, 2222222222221314143(+3)12131434b a c a c b a b a c b c ++++++=+++++++++++ …8分, 13(2223)=124≥+++,(当且仅当2221344a b c +=+=+=,即22231,0a b c ===,时,等号成立),…9分∴22211131344a b c ++≥+++…10分.。
.2019 年新课标全国卷 3 数学(文科)模拟试卷一、选择题:本题共12 小题,每小题5分,共60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M x 2 x 5 , N x log2 x 2 ,则M NA.1,2,3,4,5 B.2,3,4 C.x 0 x 5 D.x 2 x 4a b2.若a,b都是实数,且 11 i i,则a b 的值是A.-1 B.0 C.1 D.23.国家统计局统了我国近10 年(2009 年2018 年)的GDP(GDP是国民经济核算的核心指标,也是衡量一个国家或地区总体经济状况的重要指标)增速的情况,并绘制了下面的折线统计图.根据该折线统计图,下面说法错误的是A.这10 年中有 3 年的GDP增速在9.00%以上B.从2010 年开始GDP的增速逐年下滑C.这10 年GDP仍保持 6.5%以上的中高速增长D.2013 年—2018 年GDP的增速相对于2009 年—2012 年,波动性较小4.已知向量 a 1,m ,b 2,3 ,且向量a,b满足 a b b,则mA.2 B.-3 C.5 D.-45.一个盒中有形状、大小、质地完全相同的5张扑克牌,其中3张红桃,1张黑桃,1张梅花.现从盒中一次性随机抽出2张扑克牌,则这2张扑克牌花色不同的概率为A.45B.710C.35D.126.已知双曲线的左、右焦点分别为F1( c,0 ),F2( c, 0),过点F2 作x轴的垂线,与双曲线的渐近线在第一象限内的交点为P,线段PF2 的中点M 到原点的距离为2c,则双曲线的渐近线方程为A.y 2x B.1y x C.y 4x D.21y x42 27.在ABC 中,内角A,B,C满足sin B sin C cos2 A 122sin B sin C sin A 0 ,则A.78B.78C.34D.7168.如右图,执行程序框图,若输出结果为140,则判断框内应填A.n≤7? B.n>7? C.n≤6? D.n>6?9.如右图,在正方体ABCD-A1B1C1D1 中,M ,N 分别是棱B1C1,C1C 的中点,则异面直线B D1 与MN 所成的角的大小是A.30°B.45°C.60°D.90°目要求的。
最新高考数学三模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.设集合M={x|﹣1<x<1},N={x|x2≤x},则M∩N=()A.[0,1)B.(﹣1,1] C.[﹣1,1)D.(﹣1,0]2.若a+bi=(1+i)(2﹣i)(i是虚数单位,a,b是实数),则a+b的值是()A.1 B.2 C.3 D.43.已知数列{a n}为等差数列,且a1+a7+a13=π,则tan(a2+a12)的值为()A.B.C.D.4.某几何体的三视图如图所示,则该几何体的表面积为()A.24 B.20+4C.28 D.24+45.设a∈R,则“a=1”是“直线l1:ax+2y=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件6.给出计算的值的一个程序框图如图,其中判断框内应填入的条件是()A.i>10 B.i<10 C.i>20 D.i<207.已知实数x,y满足,则z=2x﹣3y的最大值是()A.﹣6 B.﹣1 C.6 D.48.某商场在国庆黄金周的促销活动中,对10月2日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时到12时的销售额为()A.6万元B.8万元C.10万元D.12万元9.设2a=5b=m,且,则m=()A.B.10 C.20 D.10010.设向量=(1,sinθ),=(3sinθ,1),且∥,则cos2θ等于()A.B.C.D.11.设a<b,函数y=(a﹣x)(x﹣b)2的图象可能是()A. B. C. D.12.与椭圆共焦点且过点P(2,1)的双曲线方程是()A.B.C.D.本卷包括必考题和选考题两个部分。
第(13)题-第(21)题为必考题,每个考生都必须作答。
第(22)题-第(24)题为选考题,考生根据要求作答。
12019届高三第三次模拟考试卷文 科 数 学(四)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.[2019·温州适应]已知i 是虚数单位,则2i1i +等于( ) A .1i -B .1i +C .1i --D .1i -+2.[2019·延边质检]已知1=a ,2=b ,()-⊥a b a ,则向量a 、b 的夹角为( ) A .π6B .π4C .π3D .π23.[2019·六盘水期末]在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且1a =,b =π6A =,则B =( ) A .π6B .π3C .π6或5π6D .π3或2π34.[2019·厦门一模]《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(表示一根阳线,表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有5根阳线和1根阴线的概率为( )A .328B .332C .532D .5565.[2019·重庆一中]已知某几何体的三视图如图所示(侧视图中曲线为四分之一圆弧),则该几何体的体积为( )A .24π+B .12π-C .14π-D .136.[2019·江西联考]程序框图如下图所示,若上述程序运行的结果1320S =,则判断框中应填入( )A .12k ≤B .11k ≤C .10k ≤D .9k ≤7.[2019·江门一模]若()ln f x x =与()2g x x ax =+两个函数的图象有一条与直线y x =平行的公共 切线,则a =( ) A .1B .2C .3D .3或1-8.[2019·湖师附中]已知拋物线()2:20C y px p =>的焦点为F ,准线:1l x =-,点M 在拋物线C 上,点M 在直线:1l x =-上的射影为A ,且直线AF的斜率为MAF △的面积为( )AB. C.D.9.[2019·河南名校]设点P 是正方体1111ABCD A B C D -的对角线1BD 的中点,平面α过点P ,且与 直线1BD 垂直,平面α平面ABCD m =,则m 与1A C 所成角的余弦值为( ) ABC .13D.310.[2019·合肥质检]“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等等.某仓库中部分货物堆放成如图所示的“菱草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n 件.已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的910.若这堆货物总价是910020010n⎛⎫- ⎪⎝⎭万元,则n 的值为( )此卷只装订不密封班级 姓名 准考证号 考场号 座位号2A .7B .8C .9D .1011.[2019·宁波期末]关于x ,y 的不等式组23000x y x m y m -+>+<->⎧⎪⎨⎪⎩,表示的平面区域内存在点()00,P x y ,满足0023x y -=,则实数m 的取值范围是( ) A .(),3-∞-B .()1,1-C .(),1-∞-D .()1,--∞12.[2019·凉山二诊]设函数()f x 是定义在R 上的偶函数,且()()22f x f x +=-,当[)2,0x ∈-时,()1xf x =-⎝⎭,则在区间()2,6-内关于x 的方程()()8log 20f x x -+=解得个数为( ) A .1 B .2 C .3 D .4第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.[2019·昆明诊断]设0m >,:0p x m <<,:01xq x <-,若p 是q 的充分不必要条件,则m 的值可以是______.(只需填写一个满足条件的m 即可)14.[2019·合肥质检]设等差数列{}n a 的前n 项和为n S .若51310a a -=,则13S =______. 15.[2019·南通联考]已知角ϕ的终边经过点()1,2P -,函数()()()sin 0f x x ωϕω=+>图象的相邻两条对称轴之间的距离等于π3,则π12f ⎛⎫⎪⎝⎭的值为____. 16.[2019·郴州期末]已知直线y x a =+与圆()2222500x y ax a a +-+-=>交于不同的两点A ,B ,若AB ≤,则a 的取值范围是__________.三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)[2019·咸阳模拟]在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos cos 12sin sin B C B C +=.(1)求A ∠的大小.(2)若4b c +=,求ABC △的面积的最大值.18.(12分)[2019·莆田质检]为推进“千村百镇计划”,2018年4月某新能源公司开展“电动莆田绿色出行”活动,首批投放200台P 型新能源车到莆田多个村镇,供当地村民免费试用三个月.试用到期后,为了解男女试用者对P 型新能源车性能的评价情况,该公司要求每位试用者填写一份性能综合评分表(满分为100分).最后该公司共收回有效评分表600份,现从中随机抽取40份(其中男、女的评分表各20份)作为样本,经统计得到如下茎叶图:(1)求40个样本数据的中位数m ;(2)已知40个样本数据的平均数80a =,记m 与a 的最大值为M .该公司规定样本中试用者的“认定类型”:评分不小于M 的为“满意型”,评分小于M 的为“需改进型”.①请以40个样本数据的频率分布来估计收回的600份评分表中,评分小于M 的份数; ②请根据40个样本数据,完成下面22⨯列联表:3根据22⨯列联表判断能否有99%的把握认为“认定类型”与性别有关?19.(12分)[2019·潍坊一模]如图,三棱柱111ABC A B C -中,CA CB =,145BAA ∠=︒,平面11AAC C ⊥平面11AA B B .(1)求证:1AA BC ⊥;(2)若12BB =,145A AC ∠=︒,D 为1CC 的中点,求三棱锥111D A B C -的体积.20.(12分)[2019·宜春期末]椭圆()2222:10x y C a b a b +=>>,过焦点且垂直于x 轴的直线被椭圆截得的弦长为 (1)求椭圆C 的方程;(2)过点()0,1P 的动直线l 与椭圆C 相交于A ,B 两点,在y 轴上是否存在异于点P 的定点Q , 使得直线l 变化时,总有PQA PQB ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.421.(12分)[2019·江南十校]已知函数()()()1e 0,x f x ax x a =->∈R (e 为自然对数的底数). (1)讨论函数()f x 的单调性;(2)当1a =时,()2f x kx >-恒成立,求整数k 的最大值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】[2019·广东模拟]在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos 2sin x y θθ==⎧⎨⎩(θ为参数),已知点()4,0Q ,点P 是曲线1C 上任意一点,点M 为PQ 的中点,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求点M 的轨迹2C 的极坐标方程;(2)已知直线:l y kx =与曲线2C 交于A ,B 两点,若3OA AB =,求k 的值.23.(10分)【选修4-5:不等式选讲】[2019·陕西质检]已知对任意实数x ,都有240x x m ++--≥恒成立. (1)求实数m 的范围;(2)若m 的最大值为n ,当正数a ,b 满足415326na b a b +=++时,求47a b +的最小值.2019届高三第三次模拟考试卷 文 科 数 学(四)答 案一、选择题. 1.【答案】B【解析】()()()2i 1i 2i 22i1i 1i 1i 1i 2-+===+++-,故选B . 2.【答案】C【解析】因为()-⊥a b a ,所以()0-⋅=a b a ,所以20-⋅=a a b ,所以1⋅=a b , 设向量a 、b 的夹角为θ,则11cos 122θ⋅===⨯a b a b , 由[]0,πθ∈,所以π3θ=,故选C .3.【答案】D 【解析】由正弦定理得sin sin a bA B=,即112=sin B =, 故π3B =或2π3,所以选D . 4.【答案】A【解析】由题意得,从八卦中任取两卦的所有可能为187282⨯⨯=种,设“取出的两卦的六根线中恰有5根阳线和1根阴线”为事件A ,则事件A 包含的情况为:一卦有三根阳线、另一卦有两根阳线和一根阴线,共有3种情况.由古典概型概率公式可得,所求概率为()328P A =.故选A .5.【答案】C【解析】根据几何体的三视图,转换为几何体:相当于把棱长为1的正方体切去一个以1为半径的14个圆柱.故21111π114π4V =⋅⋅-⋅⋅=-.故选C .6.【答案】D【解析】初始值12k =,1S =,执行框图如下:112121320S =⨯=≠,12111k =-=;k 不能满足条件,进入循环; 12111321320S =⨯=≠,11110k =-=;k 不能满足条件,进入循环;132101320S =⨯=,1019k =-=,此时要输出S ,因此k 要满足条件,所以9k ≤. 故选D . 7.【答案】D【解析】设在函数()ln f x x =处的切点设为(),x y ,根据导数的几何意义得到111k x x==⇒=, 故切点为()1,0,可求出切线方程为1y x =-, 直线和()2g x x ax =+也相切,故21x ax x +=-,化简得到()2110x a x +-+=,只需要满足()214013Δa a =--=⇒=-或.故答案为D . 8.【答案】C【解析】因为抛物线的准线:1l x =-,所以焦点为()1,0F , 抛物线2:4C y x =,点M 在抛物线C 上,点A 在准线l 上, 若MA l ⊥,且直线AF的斜率AF k =, 准线与x 轴的交点为N,则2tan3πAN ==,(A -,则(M ,∴11422MAF S AM AN =⨯⨯=⨯⨯△.故选C .9.【答案】B【解析】由题意知,点P 是正方体1111ABCD A B C D -的对角线1BD 的中点,平面α过点P ,且与直线1BD 垂直,平面α平面ABCD m =,根据面面平行的性质,可得m AC ∥,所以直线m 与1A C 所成角,即为直线AC 与直线1A C 所成的角, 即1ACA ∠为直线m 与1A C 所成角, 在直角1ACA △中,11cos AC ACA AC ∠===, 即m 与1A C,故选B . 10.【答案】D【解析】由题意,第一层货物总价为1万元,第二层货物总价为9210⨯万元,第三层货物总价为29310⎛⎫⨯ ⎪⎝⎭万元,,第n 层货物总价为1910n n -⎛⎫⋅ ⎪⎝⎭万元,设这堆货物总价为W 万元,则21999123101010n W n -⎛⎫⎛⎫=+⨯+⨯++⋅ ⎪ ⎪⎝⎭⎝⎭,23999991231010101010nW n ⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,两式相减得2311999991101010101010nn W n -⎛⎫⎛⎫⎛⎫⎛⎫=-⋅++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭919991010109101010110nn n nn n ⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎝⎭=-⋅+=-⋅+-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-, 则99910100100100200101010n nnW n ⎛⎫⎛⎫⎛⎫=-⋅+-⋅=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得10n =,故选D . 11.【答案】C【解析】作出不等式组对应的平面区域如图:若平面区域内存在点()00,P x y ,满足0023x y -=, 则说明直线23x y -=与区域有交点,即点(),A m m -位于直线23x y -=的下方即可,则点A 在区域230x y -->,即230m m --->,得1m <-, 即实数m 的取值范围是(),1-∞-,故选C .12.【答案】C【解析】对于任意的x ∈R ,都有()()22f x f x +=-,∴()()()()42222f x f x fx f x +=++=+-=⎡⎤⎡⎤⎣⎦⎣⎦, ∴函数()f x 是一个周期函数,且4T =.又∵当[]2,0x ∈-时,()1xf x =-⎝⎭,且函数()f x 是定义在R 上的偶函数,且()61f =,则函数()y f x =与()8log 2y x =+在区间()2,6-上的图象如下图所示:根据图象可得()y f x =与()8log 2y x =+在区间()2,6-上有3个不同的交点. 故选C .二、填空题. 13.【答案】12(()0,1的任意数均可) 【解析】由01xx <-得01x <<,所以:01q x <<, 又0m >,:0p x m <<,若p 是q 的充分不必要条件,则p q ⇒,q ⇒p ,所以01m <<,满足题意的12m =(()0,1的任意数均可),故答案为12(()0,1的任意数均可). 14.【答案】65【解析】在等差数列中,由51310a a -=,可得()113410a d a +-=, 即121210a d +=,即1765a da +==, ()113713721313136522aa a S a +∴=⨯=⨯==,故答案为65. 15.【答案】【解析】角ϕ终边经过点()1,2sin P ϕ-⇒==,cos ϕ==,()f x 两条相邻对称轴之间距离为π3π23T ⇒=,即2π2π33T ωω==⇒=,()()sin 3f x x ϕ=+,sin sin cos cos sin 12444ππππf ϕϕϕ⎛⎛⎫⎛⎫∴=+=+== ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,本题正确结果. 16.【答案】⎡⎢⎣⎭【解析】()2222500x y ax a a +-+-=>,可得圆心坐标为(),0C a,半径为r =,根据圆的弦长公式,得l =,因为直线y x a =+与交于不同的两点A ,B,且AB ≤,则d <d <又由点到直线的距离公式可得圆心(),0C a 到直线y x a =+的距离为d<,解得1a ≤<即实数a 的取值范围是⎡⎢⎣⎭.三、解答题. 17.【答案】(1)π3A =;(2 【解析】(1)由2cos cos 12sin sin B C B C +=,得()1cos 2B C +=-,可得2π3B C +=,所以π3A =. (2)22π114sin sin 22322ABCb c S bc A bc +⎫⎛⎫===≤==⎪ ⎪⎝⎭⎝⎭△ 当且仅当2b c ==时取等号,即ABC △ 18.【答案】(1)81;(2)①300;②见解析. 【解析】(1)由茎叶图知8082812m +==. (2)因为81m =,80a =,所以81M =.①由茎叶图知,女性试用者评分不小于81的有15个,男性试用者评分不小于81的有5个,所以在40个样本数据中,评分不小于81的频率为1550.540+=, 可以估计收回的600份评分表中,评分不小于81的份数为6000.5300⨯=; ②根据题意得22⨯列联表:由于()224015155510 6.63520202020K ⨯⨯-⨯==>⨯⨯⨯,查表得()2 6.6350.010P K ≈≥,所以有99%的把握认为“认定类型”与性别有关. 19.【答案】(1)见解析;(2)16. 【解析】(1)过点C 作1CO AA ⊥,垂足为O ,因为平面11AAC C ⊥平面11AA B B ,所以CO⊥平面11AA B B ,故CO OB ⊥,又因为CA CB =,CO CO =,90COA COB ∠=∠=︒, 所以AOC BOC ≅Rt Rt △△,故OA OB =, 因为145A AB ∠=︒,所以1AA OB ⊥,又因为1AA CO ⊥,所以1AA ⊥平面BOC ,故1AA BC ⊥. (2)由(1)可知,OA OB =,因为AB =12BB =,故1OA OB ==,又因为145A AC ∠=︒,CO AO ⊥,所以1CO AO ==,1111111113D A B C B A C D A C D V V S h --==⨯⋅△,11111122A C D S =⨯⨯=△,因为OB ⊥平面11AA C C ,所以1h OB ==,故1111111326B A C D V -=⨯⨯=,所以三棱锥111D A B C -的体积为16.20.【答案】(1)22184x y +=;(2)存在定点()0,4Q 满足题意. 【解析】(1)因为过焦点且垂直于x轴的直线被椭圆截得的弦长为22b a=,且离心率是2,所以c a =24b =,28a =, 所以椭圆C 的方程为22184x y +=.(2)当直线l 斜率存在时,设直线l 方程1y kx =+,由22281x y y kx +==+⎧⎨⎩,得()2221460k x kx ++-=,()221624210Δk k =++>, 设()11,A x y ,()22,B x y ,122122421621k x x k x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩,假设存在定点()0,Q t 符合题意,PQA PQB ∠=∠,QA QB k k ∴=-,()()()()2112122112121212121211QA QB x y x y t x x x kx x kx t x x y t y t k k x x x x x x +-++++-+--∴+=+== ()()()()1212122124421063kx x t x x k t k k t x x +-+--==+-==-,上式对任意实数k 恒等于零,40t ∴-=,即4t =,()0,4Q ∴.当直线l 斜率不存在时,A ,B 两点分别为椭圆的上下顶点()0,2-,()0,2, 显然此时PQA PQB ∠=∠, 综上,存在定点()0,4Q 满足题意.21.【答案】(1)见解析;(2)k 的最大值为1.【解析】(1)()()()()()1e 0,,1e x xf x ax x a f x ax a =->∈⇒=--⎡⎤⎣⎦'R ,当1a ≥时,()()0f x f x '≥⇒在()0,+∞上递增; 当01a <<时,令()0f x '=,解得1ax a-=, ()f x ⇒在10,a a -⎛⎫ ⎪⎝⎭上递减,在1,a a -⎛⎫+∞⎪⎝⎭上递增; 当0a ≤时,()()0f x f x '≤⇒在()0,+∞上递减. (2)由题意得()()1e x f x x =-,即()1e 2x x kx ->-对于0x >恒成立,方法一、令()()()1e 20x g x x kx x =--+>,则()()e 0x g x x k x =->', 当0k ≤时,()()0g x g x '≥⇒在()0,+∞上递增,且()010g =>,符合题意; 当0k >时,()()1e 0x g x x x ''=+⇒>时,()g x '单调递增,则存在00x >,使得()000e 0x g x x k '=-=,且()g x 在(]00,x 上递减,在[)0,x +∞上递增()()()0000min 1e 20x g x g x x kx ⇒==--+>,00000122011x k kx k x x x -∴⋅-+>⇒<⎛⎫+- ⎪⎝⎭, 由0012x x +≥,得02k <<, 又k ∈⇒Z 整数k 的最大值为1,另一方面,1k =时,1021g ⎛⎫=-< ⎪⎝⎭',()1e 10g ='->, 01,12x ⎛⎫∴∈ ⎪⎝⎭,()0021,211x x ∈⎛⎫+- ⎪⎝⎭,1k ∴=时成立.方法二、原不等式等价于()()1e 20x x k x x-+<>恒成立,令()()()()()()221e 21e 200x x xx x h x x h x x xx -+--+>⇒='=>,令()()()21e 20x t x x x x =-+->,则()()1e 0x t x x x =+>', ()t x ∴在()0,+∞上递增,又()10t >,1202t ⎛⎫< ⎪⎝⎭,∴存在01,12x ⎛⎫∈ ⎪⎝⎭, 使得()()()200001e 20x h x t x x x ==-+-=',且()h x 在(]00,x 上递减,在[)0,x +∞上递增,()()0min 00211h x h x x x ∴==+-, 又01,12x ⎛⎫∈ ⎪⎝⎭,001311,2x x ⎛⎫⇒+-∈ ⎪⎝⎭,()04,23h x ⎛⎫∴∈ ⎪⎝⎭,2k ∴<,又k ∈Z ,整数k 的最大值为1.22.【答案】(1)24cos 30ρρθ-+=;(2)k = 【解析】(1)设()2cos ,2sin P θθ,(),M x y .且点()4,0Q ,由点M 为PQ 的中点, 所以2cos 42cos 22sin sin 2x y θθθθ+==+==⎧⎪⎪⎨⎪⎪⎩,整理得()2221x y -+=.即22430x y x +-+=,化为极坐标方程为24cos 30ρρθ-+=.(2)设直线:l y kx =的极坐标方程为θα=.设()1,A ρα,()2,B ρα, 因为3OA AB =,所以43OA OB =,即1243ρρ=. 联立24cos 30ρρθθα-+==⎧⎨⎩,整理得24cos 30ραρ-⋅+=.则1212124cos 343ρραρρρρ+===⎧⎪⎨⎪⎩,解得7cos 8α=.所以222115tan 1cos 49k αα==-=,则k = 23.【答案】(1)6m ≤;(2)9.【解析】(1)对任意实数x ,都有240x x m ++--≥恒成立, 又24246x x x x ++-≥+-+=,6m ∴≤.(2)由(1)知6n =,由柯西不等式知:()()414147475329532532a b a b a b a b a b a b a b a b ⎛⎫⎛⎫+=++=++++≥ ⎪ ⎪++++⎝⎭⎝⎭,当且仅当313a =,1513b =时取等号,47a b ∴+的最小值为9.。
2019届湖南师大附中高三上学期月考四文科数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 已知集合,,若,则 m 的值为()A . 2_________________B . -1________________C . -1或2________D . 2或2. 已知角的终边上有一点,则的值为()A . 1______________________B .______________C . -1_________D . -43. 已知命题;命题直线与直线()垂直.则命题p是命题q成立的A.充要条件B .既非充分又非必要条件C.必要不充分条件D .充分不必要条件4. 下列函数中,y的最小值为4的是()A.B.C.________________________D .5. 已知各项不为0的等差数列满足,数列是等比数列,且,则等于()A . 1 ____________________B . 2________ ________C . 4______________ D . 86. 设集合,,从集合A中任取一个元素,则这个元素也是集合B中元素的概率是()A .B .C . ________D .7. 对满足不等式组的任意实数x,y,的最小值是()A . -2______________________________B . 0____________________________C . 1____________________________D . 68. 若长方体中, AB=1 ,,分别与底面ABCD所成的角为,,则长方体的外接球的体积为()A .____________________B .______________C .______________ D .9. 在△ABC中,内角A,B,C的对边分别为a,b,c,若,,则A= ()A .______________B .______________C .___________D .二、填空题10. 如图,,是双曲线的左、右焦点,过的直线l与双曲线的左右两支分别交于点A、B .若为等边三角形,则双曲线的离心率为()A . 4______________B .______________C .___________D .三、选择题11. 已知定义在R上的函数f(x)满足f(x+2)=f(x),当时,,则()A.______________________________B .C.________________________D .12. 设函数的图象上关于y轴对称的点至少有3对,则实数 a 的取值范围是()A .________________B .C . ________D .四、填空题13. 将某班参加社会实践编号为:1 , 2 , 3 ,..., 48的48名学生,采用系统抽样的方法抽取一个容量为6的样本,已知5号, 21号, 29号, 37号, 45号学生在样本中,则样本中还有一名学生的编号是_________ .14. 过点(2 , 1)且在x轴上截距是在y轴上截距的两倍的直线的方程为______ .15. 如图,在△ ABC 中, E为边AC上一点,且, P为BE上一点,且满足,则的最小值为______ .16. 已知函数若关于x的方程恰有5个不同的实数解,则实数a的取值范围是_____ .五、解答题17. 某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85.(1)计算甲班7位学生成绩的方差;(2)从成绩在90分以上的学生中随机抽取两名学生,求甲班、乙班各一人的概率.18. 如图,PA ⊥ 平面ABCD,矩形ABCD的边长AB=1,BC=2,E为BC的中点.(1)证明:PE ⊥ D E;(2)如果异面直线AE与PD所成的角的大小为,求PA的长及点A到平面PED的距离.19. 已知数列的前n项和为,且满足(1)求数列的通项公式;(2)是否存在整数对(m,n),使得等式成立?若存在,请求出所有满足条件的(m,n);若不存在,请说明理由.20. 如下图所示,点,,动点M到点的距离是4 ,线段的中垂线交于点P .(1)当点M变化时,求动点P的轨迹G的方程;(2)若斜率为的动直线l与轨迹G相交于A、B两点,为定点,求△ QAB面积的最大值.21. 已知函数,其中a为实常数.(1)若f(x)在上存在单调递增区间,求a的取值范围;(2)当0<a<2时,若f(x)在区间[1 , 4]上的最小值为,求f(x)在该区间上的最大值.22. 选修4-4:坐标系与参数方程已知曲线C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m , 0) ,若直线L与曲线C交于两点A , B ,且,求实数m的值.23. 选修4-5:不等式选讲设.(1)当m=5时,解不等式;(2)若对任意恒成立,求实数m的取值范围.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】。
2019年普通高等学校招生全国统一考试模拟试题文数(四)本试卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中。
只有一项是符合题目要求的。
1.已知全集{}()()10,23U x U R A xB x xC A A B x +⎧⎫==≤=≤⋂⋃=⎨⎬-⎩⎭,集合,则 A .[){}2,13--⋃B .[)2,1--C .[)2,3--D .[)1,2-2.已知复数z 满足12i i z -=-(i 为虚数单位),则其共轭复数z 的虚部为 A .15i - B .35i - C .15- D .35- 3.某单位组织全体员工共300人听取了习总书记作的“党的十九大报告”之后,从中抽取15人分别到A ,B ,C 三个部门进行“谈感想,定目标”的经验交流.现将300人随机编号为1,2,3,…,300,分组后在第一组中采用简单随机抽样的方法抽得的号码是8号,抽到的15人中号码落入区间[1,150]去A 区,号码落入区间[151,250]去B 区,号码落入区间[251,300]去C 区,则到B 区去的人数为A . 2B .4C .5D .84.已知椭圆()222210x y a b a b+=>>的左,右焦点分别为()()12,0,,0F c F c -,过点1F 且斜率为1的直线l 交椭圆于点A ,B ,若212AF F F ⊥,则椭圆的离心率为A .12B 1C .2D .125.下列不等式中,恒成立的是①,,;a b c d a c b d >>+>+若则 ②,0,ln ln ;a b c a c b c ><+>+若则 ③22,;ac bc a b ><若则④0,;a b a b a b >>-<+若则 A .①② B .③④ C .①③D .②④ 6.在△ABC 中,内角A ,B ,C 满足()()sin 2cos sin cos 2sin cos 1A B C C A A -++-0=,则角A 的值为A .6πB .56πC .566ππ或 D .233ππ或 7.若αβ,是两个不同的平面,,m n 是两条不同的直线,则下列命题中正确的是①,//,m m αββα⊥⊥若则;②//,//,//m n m n ββ若则;③,,//,////m n m n ααββαβ⊂⊂若,则;④,,,,m n n m n αβαβαβ⊥⋂=⊂⊥⊥若则.A .①②B .①④C .②④D .①③④8.执行如图所示的程序框图,若输出的值为14-,则①处应填入的条件为A .7?n ≥B .6?n ≥C .5?n ≥D .4?n ≥9.已知函数()222sin cos f x x x x x =-+,则函数()f x 的一条对称轴方程为 A .512x π=B .3x π=C .12x π= D .3x π=-10.一几何体的三视图如图所示,则该几何体的表面积为A.3π+ B .38π+ C. 28π+ D.2π+11.设实数,x y 满足不等式组()()2230,5260,21345,x y x y x y x y -+≥⎧⎪+-≤-+-⎨⎪+-≥⎩则的取值范围为A .5,54⎡⎤⎢⎥⎣⎦B .5,104⎡⎤⎢⎥⎣⎦C .36,1029⎡⎤⎢⎥⎣⎦D .1,1029⎡⎤⎢⎥⎣⎦12.已知等比数列{}n a 的前n 项和n S 满足()2,,k n n S m m k Z n N +*=+∈∈,且()24132a a a a +=+,若关于k 的不等式2n n nS a n N S *≤∈对恒成立,则k 的最小值为 A .1B .2C .3D .4 第Ⅱ卷本卷包括必考题和选考题两部分。
2019届高三第三次模拟考试卷文 科 数 学(四)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.[2019·温州适应]已知i 是虚数单位,则2i1i +等于( )A .1i -B .1i +C .1i --D .1i -+2.[2019·延边质检]已知1=a ,2=b ,()-⊥a b a ,则向量a 、b 的夹角为( ) A .π6B .π4C .π3D .π23.[2019·六盘水期末]在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且1a =,bπ6A =,则B =( ) A .π6B .π3C .π6或5π6D .π3或2π34.[2019·厦门一模]《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(表示一根阳线,表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有5根阳线和1根阴线的概率为( )A .328B .332C .532D .5565.[2019·重庆一中]已知某几何体的三视图如图所示(侧视图中曲线为四分之一圆弧),则该几何体的体积为( )A .24π+B .12π-C .14π-D .136.[2019·江西联考]程序框图如下图所示,若上述程序运行的结果1320S =,则判断框中应填入( )A .12k ≤B .11k ≤C .10k ≤D .9k ≤7.[2019·江门一模]若()ln f x x =与()2g x x ax =+两个函数的图象有一条与直线y x =平行的公共 切线,则a =( ) A .1B .2C .3D .3或1-8.[2019·湖师附中]已知拋物线()2:20C y px p =>的焦点为F ,准线:1l x =-,点M 在拋物线C 上,点M 在直线:1l x =-上的射影为A ,且直线AF的斜率为MAF △的面积为( )AB. C.D.9.[2019·河南名校]设点P 是正方体1111ABCD A B C D -的对角线1BD 的中点,平面α过点P ,且与 直线1BD 垂直,平面α平面ABCD m =,则m 与1A C 所成角的余弦值为( ) ABC .13D10.[2019·合肥质检]“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等等.某仓库中部分货物堆放成如图所示的“菱草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n 件.已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的910.若这堆货物总价是910020010n⎛⎫- ⎪⎝⎭万元,则班级 姓名 准考证号 考场号 座位号n 的值为( )A .7B .8C .9D .1011.[2019·宁波期末]关于x ,y 的不等式组23000x y x m y m -+>+<->⎧⎪⎨⎪⎩,表示的平面区域内存在点()00,P x y ,满足0023x y -=,则实数m 的取值范围是( ) A .(),3-∞-B .()1,1-C .(),1-∞-D .()1,--∞12.[2019·凉山二诊]设函数()f x 是定义在R 上的偶函数,且()()22f x f x +=-,当[)2,0x ∈-时,()1xf x =-⎝⎭,则在区间()2,6-内关于x 的方程()()8log 20f x x -+=解得个数为( ) A .1 B .2 C .3 D .4第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分. 13.[2019·昆明诊断]设0m >,:0p x m <<,:01xq x <-,若p 是q 的充分不必要条件,则m 的值可以是______.(只需填写一个满足条件的m 即可)14.[2019·合肥质检]设等差数列{}n a 的前n 项和为n S .若51310a a -=,则13S =______. 15.[2019·南通联考]已知角ϕ的终边经过点()1,2P -,函数()()()sin 0f x x ωϕω=+>图象的相邻两条对称轴之间的距离等于π3,则π12f ⎛⎫⎪⎝⎭的值为____. 16.[2019·郴州期末]已知直线y x a =+与圆()2222500x y ax a a +-+-=>交于不同的两点A ,B,若AB ≤,则a 的取值范围是__________.三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)[2019·咸阳模拟]在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos cos 12sin sin B C B C +=. (1)求A ∠的大小.(2)若4b c +=,求ABC △的面积的最大值.18.(12分)[2019·莆田质检]为推进“千村百镇计划”,2018年4月某新能源公司开展“电动莆田绿色出行”活动,首批投放200台P 型新能源车到莆田多个村镇,供当地村民免费试用三个月.试用到期后,为了解男女试用者对P 型新能源车性能的评价情况,该公司要求每位试用者填写一份性能综合评分表(满分为100分).最后该公司共收回有效评分表600份,现从中随机抽取40份(其中男、女的评分表各20份)作为样本,经统计得到如下茎叶图:(1)求40个样本数据的中位数m ;(2)已知40个样本数据的平均数80a =,记m 与a 的最大值为M .该公司规定样本中试用者的“认定类型”:评分不小于M 的为“满意型”,评分小于M 的为“需改进型”.①请以40个样本数据的频率分布来估计收回的600份评分表中,评分小于M 的份数; ②请根据40个样本数据,完成下面22⨯列联表:根据22⨯列联表判断能否有99%的把握认为“认定类型”与性别有关?19.(12分)[2019·潍坊一模]如图,三棱柱111ABC A B C -中,CA CB =,145BAA ∠=︒,平面11AAC C ⊥平面11AA B B .(1)求证:1AA BC ⊥;(2)若12BB ==,145A AC ∠=︒,D 为1CC 的中点,求三棱锥111D A B C -的体积.20.(12分)[2019·宜春期末]椭圆()2222:10x y C a b a b +=>>,过焦点且垂直于x 轴的直线被椭圆截得的弦长为 (1)求椭圆C 的方程;(2)过点()0,1P 的动直线l 与椭圆C 相交于A ,B 两点,在y 轴上是否存在异于点P 的定点Q , 使得直线l 变化时,总有PQA PQB ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.21.(12分)[2019·江南十校]已知函数()()()1e 0,x f x ax x a =->∈R (e 为自然对数的底数). (1)讨论函数()f x 的单调性;(2)当1a =时,()2f x kx >-恒成立,求整数k 的最大值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】[2019·广东模拟]在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos 2sin x y θθ==⎧⎨⎩(θ为参数),已知点()4,0Q ,点P 是曲线1C 上任意一点,点M 为PQ 的中点,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求点M 的轨迹2C 的极坐标方程;(2)已知直线:l y kx =与曲线2C 交于A ,B 两点,若3OA AB =,求k 的值.23.(10分)【选修4-5:不等式选讲】[2019·陕西质检]已知对任意实数x ,都有240x x m ++--≥恒成立. (1)求实数m 的范围;(2)若m 的最大值为n ,当正数a ,b 满足415326na b a b +=++时,求47a b +的最小值.2019届高三第三次模拟考试卷文 科 数 学(四)答 案一、选择题. 1.【答案】B 【解析】()()()2i 1i 2i 22i1i 1i 1i 1i 2-+===+++-,故选B . 2.【答案】C【解析】因为()-⊥a b a ,所以()0-⋅=a b a ,所以20-⋅=a a b ,所以1⋅=a b , 设向量a 、b 的夹角为θ,则11cos 122θ⋅===⨯a b a b , 由[]0,πθ∈,所以π3θ=,故选C . 3.【答案】D【解析】由正弦定理得sin sin a bA B=,即112=sin B , 故π3B =或2π3,所以选D . 4.【答案】A【解析】由题意得,从八卦中任取两卦的所有可能为187282⨯⨯=种,设“取出的两卦的六根线中恰有5根阳线和1根阴线”为事件A ,则事件A 包含的情况为:一卦有三根阳线、另一卦有两根阳线和一根阴线,共有3种情况.由古典概型概率公式可得,所求概率为()328P A =.故选A .5.【答案】C【解析】根据几何体的三视图,转换为几何体:相当于把棱长为1的正方体切去一个以1为半径的14个圆柱.故21111π114π4V =⋅⋅-⋅⋅=-.故选C .6.【答案】D【解析】初始值12k =,1S =,执行框图如下:112121320S =⨯=≠,12111k =-=;k 不能满足条件,进入循环; 12111321320S =⨯=≠,11110k =-=;k 不能满足条件,进入循环;132101320S =⨯=,1019k =-=,此时要输出S ,因此k 要满足条件,所以9k ≤. 故选D . 7.【答案】D【解析】设在函数()ln f x x =处的切点设为(),x y ,根据导数的几何意义得到111k x x==⇒=, 故切点为()1,0,可求出切线方程为1y x =-, 直线和()2g x x ax =+也相切,故21x ax x +=-,化简得到()2110x a x +-+=,只需要满足()214013Δa a =--=⇒=-或.故答案为D . 8.【答案】C【解析】因为抛物线的准线:1l x =-,所以焦点为()1,0F , 抛物线2:4C y x =,点M 在抛物线C 上,点A 在准线l 上, 若MA l ⊥,且直线AF的斜率AF k =, 准线与x 轴的交点为N,则2tan3πAN ==,(A -,则(M ,∴11422MAF S AM AN =⨯⨯=⨯⨯=△.故选C .9.【答案】B【解析】由题意知,点P 是正方体1111ABCD A B C D -的对角线1BD 的中点,平面α过点P ,且与直线1BD 垂直,平面α平面ABCD m =,根据面面平行的性质,可得m AC ∥,所以直线m 与1A C 所成角,即为直线AC 与直线1A C 所成的角, 即1ACA ∠为直线m 与1A C 所成角, 在直角1ACA △中,11cos AC ACA AC ∠===, 即m 与1A CB . 10.【答案】D【解析】由题意,第一层货物总价为1万元,第二层货物总价为9210⨯万元,第三层货物总价为29310⎛⎫⨯ ⎪⎝⎭万元,,第n 层货物总价为1910n n -⎛⎫⋅ ⎪⎝⎭万元,设这堆货物总价为W 万元,则21999123101010n W n -⎛⎫⎛⎫=+⨯+⨯++⋅ ⎪ ⎪⎝⎭⎝⎭,23999991231010101010nW n ⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,两式相减得2311999991101010101010nn W n -⎛⎫⎛⎫⎛⎫⎛⎫=-⋅++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭919991010109101010110nn n nn n ⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎝⎭=-⋅+=-⋅+-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-, 则99910100100100200101010n n nW n⎛⎫⎛⎫⎛⎫=-⋅+-⋅=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得10n =,故选D . 11.【答案】C【解析】作出不等式组对应的平面区域如图:若平面区域内存在点()00,P x y ,满足0023x y -=, 则说明直线23x y -=与区域有交点,即点(),A m m -位于直线23x y -=的下方即可,则点A 在区域230x y -->,即230m m --->,得1m <-, 即实数m 的取值范围是(),1-∞-,故选C .12.【答案】C【解析】对于任意的x ∈R ,都有()()22f x f x +=-,∴()()()()42222f x f xf x f x +=++=+-=⎡⎤⎡⎤⎣⎦⎣⎦, ∴函数()f x 是一个周期函数,且4T =.又∵当[]2,0x ∈-时,()12xf x =-⎝⎭,且函数()f x 是定义在R 上的偶函数,且()61f =,则函数()y f x =与()8log 2y x =+在区间()2,6-上的图象如下图所示:根据图象可得()y f x =与()8log 2y x =+在区间()2,6-上有3个不同的交点. 故选C .二、填空题. 13.【答案】12(()0,1的任意数均可) 【解析】由01xx <-得01x <<,所以:01q x <<, 又0m >,:0p x m <<,若p 是q 的充分不必要条件,则p q ⇒,q ⇒p ,所以01m <<,满足题意的12m =(()0,1的任意数均可),故答案为12(()0,1的任意数均可). 14.【答案】65【解析】在等差数列中,由51310a a -=,可得()113410a d a +-=, 即121210a d +=,即1765a d a +==, ()113713721313136522a a a Sa +∴=⨯=⨯==,故答案为65. 15.【答案】 【解析】角ϕ终边经过点()1,2sin P ϕ-⇒==,cos ϕ==,()f x 两条相邻对称轴之间距离为π3π23T ⇒=,即2π2π33T ωω==⇒=,()()sin 3f x x ϕ=+,sin sin cos cos sin 12444ππππf ϕϕϕ⎛⎛⎫⎛⎫∴=+=+== ⎪ ⎪ ⎝⎭⎝⎭⎝⎭本题正确结果 16.【答案】⎡⎢⎣⎭【解析】()2222500x y ax a a +-+-=>,可得圆心坐标为(),0C a,半径为r =根据圆的弦长公式,得l =,因为直线y x a =+与交于不同的两点A ,B,且AB ≤,则≤d <d ≤,又由点到直线的距离公式可得圆心(),0C a 到直线y x a =+的距离为d =<1a ≤<即实数a 的取值范围是⎡⎢⎣⎭.三、解答题. 17.【答案】(1)π3A =;(2 【解析】(1)由2cos cos 12sin sin B C B C +=,得()1cos 2B C +=-,可得2π3B C +=,所以π3A =. (2)22π114sin sin 22322ABCb c S bc A bc +⎫⎛⎫===≤==⎪ ⎪⎝⎭⎝⎭△ 当且仅当2b c ==时取等号,即ABC △ 18.【答案】(1)81;(2)①300;②见解析. 【解析】(1)由茎叶图知8082812m +==. (2)因为81m =,80a =,所以81M =.①由茎叶图知,女性试用者评分不小于81的有15个,男性试用者评分不小于81的有5个,所以在40个样本数据中,评分不小于81的频率为1550.540+=, 可以估计收回的600份评分表中,评分不小于81的份数为6000.5300⨯=; ②根据题意得22⨯列联表:由于()224015155510 6.63520202020K ⨯⨯-⨯==>⨯⨯⨯,查表得()2 6.6350.010P K ≈≥,所以有99%的把握认为“认定类型”与性别有关. 19.【答案】(1)见解析;(2)16. 【解析】(1)过点C 作1CO AA ⊥,垂足为O ,因为平面11AAC C ⊥平面11AA B B ,所以CO ⊥平面11AA B B ,故CO OB ⊥,又因为CA CB =,CO CO =,90COA COB ∠=∠=︒, 所以AOC BOC ≅Rt Rt △△,故OA OB =, 因为145A AB ∠=︒,所以1AA OB ⊥,又因为1AA CO ⊥,所以1AA ⊥平面BOC ,故1AA BC ⊥. (2)由(1)可知,OA OB =,因为AB 12BB =,故1OA OB ==,又因为145A AC ∠=︒,CO AO ⊥,所以1CO AO ==,1111111113D A B C B A C D A C D V V S h --==⨯⋅△,11111122A C D S =⨯⨯=△,因为OB ⊥平面11AA C C ,所以1h OB ==,故1111111326B A C D V -=⨯⨯=,所以三棱锥111D A B C -的体积为16.20.【答案】(1)22184x y+=;(2)存在定点()0,4Q 满足题意. 【解析】(1)因为过焦点且垂直于x轴的直线被椭圆截得的弦长为22b a=,且离心率是2,所以c a =24b =,28a =, 所以椭圆C 的方程为22184x y +=.(2)当直线l 斜率存在时,设直线l 方程1y kx =+,由22281x y y kx +==+⎧⎨⎩,得()2221460k x kx ++-=,()221624210Δk k =++>, 设()11,A x y ,()22,B x y ,122122421621k x x k x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩,假设存在定点()0,Q t 符合题意,PQA PQB ∠=∠,QA QB k k ∴=-,()()()()2112122112121212121211QA QB x y x y t x x x kx x kx t x x y t y t k k x x x x x x +-++++-+--∴+=+== ()()()()1212122124421063kx x t x x k t k k t x x +-+--==+-==-,上式对任意实数k 恒等于零,40t ∴-=,即4t =,()0,4Q ∴.当直线l 斜率不存在时,A ,B 两点分别为椭圆的上下顶点()0,2-,()0,2, 显然此时PQA PQB ∠=∠, 综上,存在定点()0,4Q 满足题意.21.【答案】(1)见解析;(2)k 的最大值为1.【解析】(1)()()()()()1e 0,,1e x xf x ax x a f x ax a =->∈⇒=--⎡⎤⎣⎦'R ,当1a ≥时,()()0f x f x '≥⇒在()0,+∞上递增; 当01a <<时,令()0f x '=,解得1ax a-=, ()f x ⇒在10,a a -⎛⎫ ⎪⎝⎭上递减,在1,a a -⎛⎫+∞⎪⎝⎭上递增; 当0a ≤时,()()0f x f x '≤⇒在()0,+∞上递减. (2)由题意得()()1e x f x x =-,即()1e 2x x kx ->-对于0x >恒成立,方法一、令()()()1e 20x g x x kx x =--+>,则()()e 0x g x x k x =->', 当0k ≤时,()()0g x g x '≥⇒在()0,+∞上递增,且()010g =>,符合题意; 当0k >时,()()1e 0x g x x x ''=+⇒>时,()g x '单调递增,则存在00x >,使得()000e 0x g x x k '=-=,且()g x 在(]00,x 上递减,在[)0,x +∞上递增()()()0000min 1e 20x g x g x x kx ⇒==--+>,00000122011x k kx k x x x -∴⋅-+>⇒<⎛⎫+- ⎪⎝⎭, 由0012x x +≥,得02k <<, 又k ∈⇒Z 整数k 的最大值为1,另一方面,1k =时,1021g ⎛⎫=-< ⎪⎝⎭',()1e 10g ='->, 01,12x ⎛⎫∴∈ ⎪⎝⎭,()0021,211x x ∈⎛⎫+- ⎪⎝⎭,1k ∴=时成立.方法二、原不等式等价于()()1e 20x x k x x-+<>恒成立,令()()()()()()221e 21e 200x x x x x h x x h x x xx -+--+>⇒='=>,令()()()21e 20x t x x x x =-+->,则()()1e 0x t x x x =+>', ()t x ∴在()0,+∞上递增,又()10t >,1202t ⎛⎫=< ⎪⎝⎭,∴存在01,12x ⎛⎫∈ ⎪⎝⎭, 使得()()()200001e 20x h x t x x x ==-+-=',且()h x 在(]00,x 上递减,在[)0,x +∞上递增,()()0min 00211h x h x x x ∴==+-, 又01,12x ⎛⎫∈ ⎪⎝⎭,001311,2x x ⎛⎫⇒+-∈ ⎪⎝⎭,()04,23h x ⎛⎫∴∈ ⎪⎝⎭,2k ∴<,又k ∈Z ,整数k 的最大值为1.22.【答案】(1)24cos 30ρρθ-+=;(2)k = 【解析】(1)设()2cos ,2sin P θθ,(),M x y .且点()4,0Q ,由点M 为PQ 的中点, 所以2cos 42cos 22sin sin 2x y θθθθ+==+==⎧⎪⎪⎨⎪⎪⎩,整理得()2221x y -+=.即22430x y x +-+=,化为极坐标方程为24cos 30ρρθ-+=.(2)设直线:l y kx =的极坐标方程为θα=.设()1,A ρα,()2,B ρα, 因为3OA AB =,所以43OA OB =,即1243ρρ=. 联立24cos 30ρρθθα-+==⎧⎨⎩,整理得24cos 30ραρ-⋅+=.则1212124cos 343ρραρρρρ+===⎧⎪⎨⎪⎩,解得7cos 8α=.所以222115tan 1cos 49k αα==-=,则k =. 23.【答案】(1)6m ≤;(2)9.【解析】(1)对任意实数x ,都有240x x m ++--≥恒成立, 又24246x x x x ++-≥+-+=,6m ∴≤.(2)由(1)知6n =,由柯西不等式知:()()414147475329532532a b a b a b a b a b a b a b a b ⎛⎫⎛⎫+=++=++++≥ ⎪ ⎪++++⎝⎭⎝⎭,当且仅当313a =,1513b =时取等号,47a b ∴+的最小值为9.。
绝密★启封并使用完毕前试题类型:2019年江西省高考第三次模拟考试文科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的.(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7}(2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=(A )-3(B )-2(C )2(D )3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,学.科.网余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A )13(B )12(C )23(D )56(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3A =,则b= (A )2(B )3(C )2(D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13(B )12(C )23(D )34(6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为(A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4) (D )y =2sin(2x –π3)(7)如图,学.科网某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π (8)若a>b>0,0<c<1,则(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b (9)函数y =2x 2–e |x |在[–2,2]的图像大致为(A )(B )(C )(D )(10)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足(A )2y x =(B )3y x = (C )4y x = (D )5y x =(11)平面α过正文体ABCD —A 1B 1C 1D 1的顶点A 11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为 (A )32(B )22(C )33(D )13(12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是 (A )[]1,1-(B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦(D )11,3⎡⎤--⎢⎥⎣⎦第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x =. (14)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=. (15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C 的面积为。
2019年普通高等学校招生全国统一考试(全国Ⅲ)数学(文科)一、 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要 求的. (1)【2017年全国Ⅲ,文1,5分】已知集合{}1,2,3,4A =,{}2,4,6,8B =,则A B 中的元素的个数为( ) (A )1 (B )2 (C )3 (D )4 【答案】B【解析】集合A 和集合B 有共同元素2,4,则{}2,4A B =I 所以元素个数为2,故选B .(2)【2017年全国Ⅲ,文2,5分】复平面内表示复数i(2i)z =-+的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】C【解析】化解i(2i)z =-+得22i i 2i 1z =-+=--,所以复数位于第三象限,故选C . (3)【2017年全国Ⅲ,文3,5分】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )(A )月接待游客量逐月增加 (B )年接待游客量逐年增加 (C )各年的月接待游客量高峰期大致在7,8月(D )各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 【答案】A【解析】由折线图可知,每年月接待游客量从8月份后存在下降趋势,故选A .(4)【2017年全国Ⅲ,文4,5分】已知4sin cos ,3αα-=,则sin2α=( )(A )79- (B )29- (C )29(D )79【答案】A【解析】()2167sin cos 12sin cos 1sin 2,sin 299αααααα-=-=-=∴=-,故选A .(5)【2017年全国Ⅲ,文5,5分】设,x y 满足约束条件3260,0,0,x y x y +-≤⎧⎪≥⎨⎪≥⎩则z x y =-的取值范围是( ) (A )[]3,0- (B )[]3,2- (C )[]0,2 (D )[]0,3【答案】B【解析】由题意,画出可行域,端点坐标()0,0O ,()0,3A ,()2,0B .在端点,A B 处分别取的最 小值与最大值. 所以最大值为2,最小值为3-,故选B .(6)【2017年全国Ⅲ,文6,5分】函数1()sin()cos()536f x x x ππ=++-的最大值为( )(A )65 (B )1 (C )35 (D )15【答案】A【解析】11113()sin()cos()(sin cos cos sin sin 5365225f x x x x x x x x xππ=++-=⋅++⋅=6sin()53x π=+,故选A .(7)【2017年全国Ⅲ,文7,5分】函数2sin 1xy x x=++的部分图像大致为( ) (A )(B )(C )(D ) 【答案】D【解析】当1x =时,()111sin12sin12f =++=+>,故排除A ,C ,当x →+∞时,1y x →+,故排除B ,满足条件的只有D ,故选D .(8)【2017年全国Ⅲ,文8,5分】执行右面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )(A )5 (B )4 (C )3 (D )2 【答案】D【解析】若2N =,第一次进入循环,12≤成立,100100,1010S M ==-=-,2i =2≤成立,第二次进入循环,此时101001090,110S M -=-==-=,3i =2≤不成立,所以输出9091S =<成立,所以输入的正整数N 的最小值是2,故选D .(9)【2017年全国Ⅲ,文9,5分】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )(A )π (B )3π4(C )π2 (D )π4【答案】B【解析】如果,画出圆柱的轴截面,11,2AC AB ==,所以r BC ==22314V r h πππ==⨯⨯=⎝⎭,故选B . (10)【2017年全国Ⅲ,文10,5分】在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( )(A )11A E DC ⊥ (B )1A E BD ⊥ (C )11A E BC ⊥ (D )1A E AC ⊥ 【答案】C【解析】11A B ⊥平面11BCC B 111A B BC ∴⊥,11BC B C ⊥又1111B C A B B =,1BC ∴⊥平面11A B CD ,又1A E ⊂平面11A B CD 11A E BC ∴⊥,故选C .(11)【2017年全国Ⅲ,文11,5分】已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )(A(B(C(D )13【答案】A【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a =,c e a =选A .(12)【2017年全国Ⅲ,文12,5分】已知函数()()2112x x f x x x a e e --+=-++有唯一零点,则a =( ) (A )12- (B )13 (C )12 (D )1【答案】C【解析】()()11220x x f x x a e e --+'=-+-=,得1x =,即1x =为函数的极值点,故()10f =,则1220a -+=,12a =,故选C . 二、填空题:本大题共4小题,每小题5分,共20分.(13)【2017年全国Ⅲ,文13,5分】已知向量()2,3a =-,()3,b m =,且a b ⊥,则m =______. 【答案】2【解析】因为a b ⊥0a b ∴⋅=,得630m -+=,2m ∴=.(14)【2017年全国Ⅲ,文14,5分】双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a =__ ____. 【答案】5【解析】渐近线方程为by x a=±,由题知3b =,所以5a =.(15)【2017年全国Ⅲ,文15,5分】ABC ∆内角C B A ,,的对边分别为c b a ,,,已知3,6,600===c b C ,则=A _______. 【答案】075【解析】根据正弦定理有:3sin 60=sin B ∴,又b c > 045=∴B 075=∴A . (16)【2017年全国Ⅲ,文16,5分】设函数1,0,()2,0,xx x f x x +≤⎧=⎨>⎩,则满足1()()12f x f x +->的x 的取值范围是_______.【答案】1(,)4-+∞【解析】由题意得:当12x >时12221x x-+> 恒成立,即12x >;当102x <≤时12112x x +-+> 恒成立,即102x <≤;当0x ≤时1111124x x x ++-+>⇒>-,即104x -<≤;综上x 的取值范围是1(,)4-+∞. 三、解答题:共70分。
2019-2020年高三第三次模拟考试数学文试题含答案一、选择题:本题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=i,是z的共轭复数,则=()A.1 B.﹣i C.i D.﹣12.已知全集U=R,集合A={x|>0},B={x|y=},则A∩B=()A.(1,2)B.(2,3)C.[2,3)D.(1,2] 3.已知向量,=(3,m),m∈R,则“m=﹣6”是“”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.已知实数x、y满足不等式组,则z=x﹣y的最小值为()A.﹣1 B.﹣C.﹣3 D.35.设奇函数f(x)=cos(ωx+φ)﹣sin(ωx+φ)(ω>0,|φ|<)的最小正周期为π,则ω,φ分别是()A.2,B.,C.,D.2,6.按1,3,6,10,15,…的规律给出xx个数,如图是计算这xx个数的和的程序框图,那么框图中判断框①处可以填入()A.i≥xx B.i>2014 C.i≤xx D.i<xx7.如图所示是一个几何体的三视图,则这个几何体外接球的表面积为()A.8πB.12πC.16πD.48π8.设双曲线﹣=1(a>0,b>0)的一条渐近线方程为y=x,关于x的方程ax2+bx﹣=0的两根为m,n,则点P(m,n)()A.在圆x2+y2=7内B.在椭圆+=1内C.在圆x2+y2=7上D.在椭圆+=1上9.设f(x)=|lnx|,若函数g(x)=f(x)﹣ax在区间(0,3]上有三个零点,则实数a的取值范围是()A.(0,)B.(,e)C.(0,]D.[,)10.如图,圆C:x2+(y﹣1)2=1与y轴的上交点为A,动点P从A点出发沿圆C按逆时针方向运动,设旋转的角度∠ACP=x(0≤x≤2π),向量在=(1,0)方向的射影为y(O为坐标原点),则y关于x的函数y=f(x)的图象是()二、填空题:本题共5个小题,每小题5分,共25分.11.不等式|x﹣1|≤x的解集是_________.12.已知x、y的取值如表所示,如果y与x线性相关,且线性回归方程为y=x+,则表中的且与其准线相切的圆的方程是_________.14.已知双曲正弦函数shx=和双曲余弦函数chx=与我们学过的正弦函数和余弦函数有许多类似的性质,请类比正弦函数和余弦函数的和角公式,写出双曲正弦或双曲余弦函数的一个类似的正确结论_________.15.已知数列{a n}中,a1=1,a2=2,设S n为数列{a n}的前n项和,对于任意的n≥2,n∈N+,S n+1+S n﹣1=2(S n+1)都成立,则S n=_________.三、解答题:本题共6小题,共75分,解答题应写出文字说明、证明过程和演算步骤.16.(12分)在△ABC中,已知a,b,c分别是角A,B,C的对边,且2cosBcosC(1﹣tanBtanC)=1.(1)求角A的大小;(2)若a=2,△ABC的面积为2,求b+c的值.17.(12分)甲、乙两位同学从A、B、C、D共4所高校中,任选两所参加自主招生考试(并且只能选两所高校),但同学甲特别喜欢A高校,他除选A高校外,再在余下的3所中随机选1所;同学乙对4所高校没有偏爱,在4所高校中随机选2所.(1)求乙同学选中D高校的概率;(2)求甲、乙两名同学恰有一人选中D高校的概率.18.(12分)如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是菱形,AC,BD交于点O,A1O⊥平面ABCD,A1A=BD=2,AC=2.(1)证明:A1C⊥平面BB1D1D;(2)求三棱锥A﹣C1CD的体积.19.(12分)已知等差数列{a n}的公差d≠0,首项a1=3,且a1、a4、a13成等比数列,设数列{a n}的前n项和为S n(n∈N+).(1)求a n和S n;(2)若b n=,求数列{b n}的前n项和T n.20.(13分)如图所示,设F是抛物线E:x2=2py(p>0)的焦点,过点F作斜率分别为k1、k2的两条直线l1、l2,且k1•k2=﹣1,l1与E相交于点A、B,l2与E相交于点C,D.已知△AFO外接圆的圆心到抛物线的准线的距离为3(O为坐标原点).(1)求抛物线E的方程;(2)若•+•=64,求直线l1、l2的方程.21.(14分)已知函数f(x)=ax+lnx(a∈R),函数g(x)的导函数g′(x)=e x,且函数f (x)无极值,g(0)g′(1)=﹣e(其中e为自然对数的底数).(1)求a的取值范围;(2)若存在x∈(0,+∞),使得不等式g(x)<+﹣2成立,求实数m的取值范围;(3)当a≤0时,对于任意的x∈(0,+∞),求证:f(x)<g(x).20.解:(1)由题意,F(0,),△AFO外接圆的圆心在线段OF的垂直平分线y=上,∴+=3,∴p=4.∴抛物线E的方程是x2=8y;(2)设直线l1的方程y=k1x+2,代入抛物线方程,得y2﹣(8k12+4)y+4=0设A(x1,y1),B(x2,y2),则y1+y2=8k12+4,y1y2=4设C(x3,y3),D(x4,y4),同理可得y3+y4=+4,y3y4=4∴•+•=32+16(k12+)≥64,当且仅当k12=,即k1=±1时取等号,∴直线l1、l2的方程为y=x+2或y=﹣x+2.21.解:(1)函数f(x)的定义域为(0,+∞),f′(x)=a+(x>0);当a≥0时,f′(x)>0,∴f(x)在(0,+∞)上是增函数,f(x)无极值;当a<0时,f′(x)=;若x∈(0,﹣)时,f′(x)>0;若x∈(﹣,+∞)时,f′(x)<0;∴f(x)存在极大值,且当x=﹣时,f(x)极大=f(﹣)=ln(﹣)﹣1;综上,a的取值范围是[0,+∞);(2)∵函数g(x)的导数是g′(x)=e x,∴g(x)=e x+c;∵g(0)g′(1)=﹣e,∴(1+c)e=﹣e,∴c=﹣2,∴g(x)=e x﹣2;∵存在x∈(0,+∞),使得不等式g(x)<+﹣2成立,即存在x∈(0,+∞),使得m>e x﹣x成立;令h(x)=e x﹣x,则问题可化为m>h(x)min,对于h(x)=e x﹣x,x∈(0,+∞),∵h′(x)=e x(+)﹣,当x∈(0,+∞)时,∵e x>1,+≥2=,∴e x(+)>;∴h′(x)>0,∴h(x)在(0,+∞)上是增函数;∴h(x)>h(0)=0,∴m>0,即实数m的取值范围是(0,+∞);(3)由(1)得a=0,则f(x)=lnx,令φ(x)=g(x)﹣f(x),则φ(x)=e x﹣lnx﹣2,∴φ′(x)=e x﹣,且φ′(x)在(0,+∞)上为增函数;设φ′(x)=0的根为t,则e t=,即t=e﹣t,∵当x∈(0,t)时,φ′(x)<0,φ(x)在(0,t)上是减函数,当x∈(t,+∞)时,φ′(x)>0,φ(x)在(t,+∞)上是增函数;∴φ(x)min=φ(t)=e t﹣lne﹣t﹣2=e t+t﹣2;∵φ′(1)=e﹣1>0,φ′()=﹣2<0,∴t∈(,1);∵φ(t)=e t+t﹣2在t∈(,1)上是增函数,∴φ(x)min=φ(t)=e t+t﹣2>+﹣2>0,∴f(x)<g(x).。
2019-2020年高三下学期第三次模拟考试数学(文)试题含答案考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B铅笔填涂, 非选择题必须使用0.5毫米黑色字迹的签字笔书写, 字体工整, 字迹清楚;(3)请在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;(4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.参考公式:柱体体积公式,其中为底面面积,为高;锥体体积公式,其中为底面面积,为高,球的表面积和体积公式,,其中为球的半径,第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1. 已知集合,,则( )A. B. C. D.2. 已知,则()A. B. C. D.3.若,则()A. B. 0 C. D. 14. 已知向量, 向量,则的最大值,最小值分别是( )A.4,0 B.,4C.,0 D.16,05. 某几何体的三视图如图所示,则该几何体外接球的表面积为()A. B. C. D.6. 已知满足约束条件,则下列目标函数中,在点处取得最小值的是()A. B.C. D.7.执行右边的程序框图,若,则输出的为()A.B.C.D.8. 柜子里有3双不同的鞋,随机地取出2只,则取出的鞋一只是左脚的,一只是右脚的,但它们不成对的概率为()A. B. C. D.9. 已知函数,若的图像的一条切线经过点,则这条切线与直线及轴所围成的三角形面积为()A. B.1 C. 2 D.10. 如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部11. 过双曲线的右顶点作轴的垂线与C的一条渐近线相交于点A,若以的右焦点F为圆心,半径为4的圆经过A,O两点(O为原点),则双曲线的方程为()A. B. C. D.12. 已知函数对定义域内的任意都有,且当时导函数满足,若,则()A. B.C. D.二、填空题:本大题共4小题,每小题5分。
OPB 2019-2020年高三第三次模拟考试 文科数学 含答案xx.5本试卷分为选择题和非选择题两部分,共4页,满分150分.考试时间120分钟. 注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题纸各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷 (选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合则(A ) (B ) (C ) (D ) 2.设(i 是虚数单位),则(A )1 (B ) (C ) (D ) 3.下列函数中,与函数定义域相同的是 (A ) (B ) (C ) (D )4从这四人中选择一人参加奥运会射击项目比赛,最佳人选是(A )甲 (B )乙 (C )丙 (D )丁 5.设则(A ) (B ) (C ) (D )6.设不等式组表示的平面区域为D ,在区域D 内随机取一点,则此点到坐标原点的距离大于1的概率是 (A ) (B ) (C ) (D ) 7.执行如图所示的程序框图,输出的的值为 (A ) (B )0 (C ) (D ) 8.某公司一年购买某种货物400t ,每次都购买x t ,运费为4万元/次,一年的总存储费用为4x 万元. 要使一年的总运费与储存费用之和最小,则x 等于 (A )10 (B )20 (C )30 (D )40 9.命题“”为真命题的一个充分不必要条件是(A ) (B ) (C ) (D ) 10.函数的部分图象如图所示,设是图象的最高点,是图象与轴的交点,则(A )8 (B ) (C ) (D ) 11.一只蚂蚁从正方体的顶点处出发,经过正方体的表面,按最短路线爬行到达顶点位置,则下列图中可以表示正方体及蚂蚁最短爬行路线的正视图是(A )① ② (B )① ③ (C )② ④ (D )③ ④12.为双曲线的左右焦点,为双曲线右支上一点,直线与圆切于一点,且,则双曲线的离心率为 (A ) (B ) (C )(D )5xx 年高考模拟试题文科数学xx.5第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.把正确答案填写在答题纸给定的横线上.13.一个总体分为A 、B 两层,用分层抽样的方法,从总体中抽取一个容量为10的样本,已知B 层中每个个体被抽到的概率为,则总体中的个体数为 .14.设向量,,且则 .15.与直线垂直,且过抛物线焦点的直线的方程是 . 16.函数是定义在R 上的奇函数,,对任意的,有,则的解集为. 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分) 设△所对的边分别为,已知. (Ⅰ)求; (Ⅱ)求.B 1C 1①②③④18.(本小题满分12分)某地9月份(30天)每天的温差T数据如下:5 7 5 5 10 7 7 8 5 68 5 6 9 7 5 6 10 7 610 5 6 5 6 6 9 7 8 9当温差时为“适宜”天气,时为“比较适宜”天气,时为“不适宜”天气.(Ⅰ)求这30天的温差T的众数与中位数;(Ⅱ)分别计算该月“适宜”天气、“比较适宜”天气、“不适宜”天气的频率;(Ⅲ)从该月“不适宜”天气的温差T中,抽取两个数,求所抽两数都是10的概率.19.(本小题满分12分)如图,在边长为3的正三角形中,为边的三等分点,分别是边上的点,满足,今将△△分别沿,向上折起,使边与边所在的直线重合,折后的对应点分别记为.(Ⅰ)求证:∥平面;(Ⅱ)求证:平面.20.(本小题满分12分)个正数排成行列,如下所示:……. . .. . .. . .…其中表示第i行第j列的数. 已知每一行中的数依次都成等差数列,每一列中的数依次都成等比数列,且公比均为q,.(Ⅰ)求;(Ⅱ)设数列的和为,求.21.(本小题满分12分)已知椭圆C经过点M,其左顶点为N,两个焦点为,,平行于MN的直线l交椭圆于A,B两个不同的点.(Ⅰ)求椭圆C的方程;(Ⅱ)求证:直线MA,MB与x轴始终围成一个等腰三角形.22.(本小题满分14分)已知函数在点处的切线l的斜率为零.(Ⅰ)求a的值;(Ⅱ)求的单调区间;(Ⅲ)若对任意的,不等式恒成立,这样的是否存在?若存在,请求出的取值范围;若不存在,请说明理由.xx年高考模拟试题文科数学参考答案及评分标准xx.5说明:一、本解答只给出了一种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容参照评分标准酌情赋分.二、当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容与难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确答案应得分数的一半;如果后继部分的解答有较严重的错误或又出现错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数,选择题和填空题不给中间分.一、选择题:(每小题5分,满分60分)1.(D)2.(C)3.(D)4.(C)5.(D)6.(D)7.(A)8.(B)9.(A) 10.(A) 11.(C) 12.(B)二、填空题:(每小题4分,满分16分)13. 120 14. 5 15. 16.三、解答题:解:(Ⅰ)∵∴2222212cos23223()16.4c a b ab C=+-=+-⨯⨯⨯-=…………(2分)∴……………………………………………………………………(4分)(Ⅱ)在△ABC中,∵∴sin C===且为钝角.……………(6分)又∵∴……………………………………(8分)∴……………………………(10分)∴…………………………(12分)18.解:(Ⅰ)由题中数据知温差T的众数是5,中位数是.………(2分)(Ⅱ)该月“适宜”天气的频率为……………………(3分)“比较适宜”天气的频率为……………………(4分)0 x<,0 x≥,“不适宜”天气的频率为(或亦可)…………………………………………(5分)(Ⅲ)温差为9的共3天,记为M1, M2, M3;温差为10的共3天,记为N1,N2,N3;从中随机抽取两数的情况有:M1M2, M1M3, M1 N1, M1N2, M1N3, M2M3, M2 N1, M2N2, M2N3,M3N1, M3 N2, M3N3, N1N2, N1N3, N2N3,共15种.…………………………………………(8分)都是10的情况有:N1N2,N1N3, N2N3共3种.……………………(10分)故所抽两数都是10的概率为.………………………………(12分)19.证明:(Ⅰ)取EP的中点D,连接FD, C1D.∵BC=3,CP=1,∴折起后C1为B1P的中点.∴在△B1EP中,DC1∥EB1,…………………(1分)又∵AB=BC=AC=3,AE=CP=1,∴∴E P=2且E P∥G F.…………(2分)∵G,F为AC的三等分点,∴GF=1.又∵,∴G F=E D,…………………………………………(3分)∴四边形GEDF为平行四边形.∴F D∥G E.………………………………………………………………(4分)又∵DC1FD=D,GE∩B1E=E,∴平面D F C1∥平面B1G E.…………………………………………(5分)又∵C1F平面DFC1∴C1F∥平面B1GE.………………………………………………………(6分)(Ⅱ)连接EF,B1F,由已知得∠EPF=60°,且FP=1,EP=2,故PF⊥EF. ……………………………………………………………………(8分)∵B1C1=PC1=1,C1F=1,∴FC1=B1C1=PC1,∴∠B1FP=90°,即B1F⊥PF.……………………………………………(10分)∵EF∩B1F=F, ∴PF⊥平面B1EF.…………………………………………(12分)20.解:(Ⅰ)由题意知成等差数列,∵,,∴其公差为∴……………………………(2分)又∵成等比数列,且∴公比…………………………………………(4分)又∵也成等比数列,且公比为,∴…………………………………………(6分)(Ⅱ)由(Ⅰ)知第成等差数列,首项公差∴2,2,1(1)32(1)2 5.ka a k d k k=+-=-+-=-…………………………(7分)①当时,∴.……………………………………………(8分)②当时,………………(10分)综上可知,………………………………………(12分)21.解:(Ⅰ)设椭圆的方程为因为过点,∴①……………………………………………………(1分)又②由①②可得.………………………………………(3分)故椭圆C的方程为……………………………………(4分)(Ⅱ)由(Ⅰ)易知所以………………(5分)故设直线l:,联立得.………………………………(7分)∴………………………………………………(8分)∴121212123313132222221111MA MBy y x m x mk kx x x x--+-+-+=+=+----1212121221111(1)11()1x xm mmx x x x x x+---=++=+-⋅---++222(1)(2)1(1)1312m m mmm m m m---+=+-⋅=--+++-……………………………………………………(11分)故直线MA,MB与x轴始终围成一个等腰三角形.………………………(12分)22.解(Ⅰ)时,且∴∴.……………………………………………(2分)(Ⅱ)由(Ⅰ)知………………………………(3分)当时,∴时 时…………………………(4分) 当时,, ∴时 时.……………………(5分) ∴在,上单调递增;在上单调递减.………………………………………………(6分) (Ⅲ)由(Ⅱ)知,①当时,在上递增, 故由32321111(3)()(3)(3)2(3)(2)3232+-=+++-+-+-f m f m m m m m m m 2321111(3)[(3)(3)2]23232=++++---+m m m m m m.……………………………………(7分)∵,∴3(m+2)2即,此时m 不存在.. …………………………………(8分)②当时,在上递减,在上递增, 故.∴1264745()()(4)(1)=+=362f x f x f f --≤, ∴时,符合题意.…………………………………………………(10分)③当时, ∴ 时, 时,即 ∴时, ,∴时,符合题意.……………………………………………………(13分) 综上,存在使原不等式恒成立.……………………………(14分)。
2019年四川省高考第三次模拟考试文科数学一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.设i 为虚数单位,则复数(1+i)2= (A) 0 (B)2 (C)2i (D)2+2i2.设集合A={x11≤x ≤5},Z 为整数集,则集合A ∩Z 中元素的个数是 (A)6 (B) 5 (C)4 (D)33.抛物线y 2=4x 的焦点坐标是(A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0) 4.为了得到函数y=sin )3(π+x 的图象,只需把函数y=sinx 的图象上所有的点(A)向左平行移动3π个单位长度 (B) 向右平行移动3π个单位长度 (C) 向上平行移动3π个单位长度 (D) 向下平行移动3π个单位长度5.设p:实数x ,y 满足x>1且y>1,q: 实数x ,y 满足x+y>2,则p 是q 的 (A)充分不必要条件 (B)必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件6.已知a 函数f(x)=x 3-12x 的极小值点,则a= (A)-4 (B) -2 (C)4 (D)27.某公司为激励创新,计划逐年加大研发奖金投入。
若该公司2015年全年投入研发奖金130万元,在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是 (参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30) 学科&网 (A)2018年 (B) 2019年 (C)2020年 (D)2021年8.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法。
如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为(A)35 (B) 20 (C)18 (D)99.已知正三角形ABC 的边长为32,平面ABC 内的动点P ,M 满足,则的最大值是 (A)443 (B) 449(C) 43637+ (D) 433237+10. 设直线l 1,l 2分别是函数f(x)= 图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B 则则△PAB 的面积的取值范围是 (A)(0,1) (B) (0,2) (C) (0,+∞) (D) (1,+ ∞) 11、0750sin = 。
2019届高三第三次调研考试数学(文科)附答案全卷满分150分,时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。
2.作答选择题时,选出每个小题答案后,用2B 铅笔把答题卡上对应题目的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案,写在本试卷上无效。
3.非选择题必须用黑色字迹签字笔作答,答案必须写在答题卡各题指定的位置上,写在本试卷上无效。
一.选择题:本大题共12小题,每小题5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1. 集合}{022≤--=x x x A ,}{1<=x x B ,则)(B C A R = ( ) (A) }{1x x > (B) }{12x x <≤ (C) }{1x x ≥ (D) }{12x x ≤≤ 2.设1i z i =-(i 为虚数单位),则1z =( )(A) (B) (C) 12(D) 2 3.等比数列{}n a 中,122a a +=,454a a +=,则1011a a +=( )(A) 8 (B) 16 (C) 32 (D) 644. 已知向量a b ⊥r r ,2,a b ==r r 则2a b -=r r ( )(A) (B) 2 (C) (D)5.下列说法中正确的是( )(A) “(0)0f =”是“函数()f x 是奇函数”的充要条件(B) 若2000:,10p x R x x ∃∈-->,则2:,10p x R x x ⌝∀∈--< (C) 若p q ∧为假命题,则,p q 均为假命题(D) “若6πα=,则1sin 2α=”的否命题是“若6πα≠,则1sin 2α≠” 6.已知输入实数12x =,执行如图所示的流程图,则输出的x 是 ( )(A) 25 (B) 102 (C) 103 (D) 517.将函数()()1cos 24f x x θ=+(2πθ<)的图象向右平移512π个单位后得到函数()g x 的图象,若()g x 的图象关于直线9x π=对称,则θ=( ) (A) 718π (B) 18π (C) 18π- (D) 718π- 8.已知x ,y 满足条件04010x y x y x -≤⎧⎪+-≤⎨⎪-≥⎩,则y x 的最大值是 ( ) (A) 1 (B) 2 (C) 3 (D) 49.某几何体的三视图如图所示,则该几何体的体积为 ( )(A) 3(B) 3(C) (D)10.已知函数()y f x =的定义域为{}|0x x ≠,满足()()0f x f x +-=,当0x >时,()ln 1f x x x =-+,则函数()y f x =的大致图象是( )(A) (B) (C) (D)11.已知P 为抛物线24y x =上一个动点,Q 为圆()2241x y +-=上一个动点,则点P 到 点Q 的距离与点P 到抛物线的准线的距离之和最小值是( )(A)1- (B)2 (C) 2 (D)12. 设定义在R 上的函数()y f x =满足任意t R ∈都有()()12f t f t +=,且(]0,4x ∈时, ()()f x f x x'>,则()()()20164201722018f f f 、、的大小关系是( )(A) ()()()22018201642017f f f << (B) ()()()22018201642017f f f >>(C) ()()()42017220182016f f f << (D) ()()()42017220182016f f f >>二.填空题:本大题共4小题,每小题5分。
2019届高三第三次模拟考试卷文 科 数 学(四) 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·温州适应]已知i 是虚数单位,则2i1i +等于( )A .1i -B .1i +C .1i --D .1i -+2.[2019·延边质检]已知1=a ,2=b ,()-⊥a b a ,则向量a 、b 的夹角为( )A .π6B .π4 C .π3 D .π23.[2019·六盘水期末]在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且1a =,bπ6A =,则B =( )A .π6B .π3C .π6或5π6 D .π3或2π34.[2019·厦门一模]《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(表示一根阳线,表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有5根阳线和1根阴线的概率为( )A .328B .332C .532D .556 5.[2019·重庆一中]已知某几何体的三视图如图所示(侧视图中曲线为四分之一圆弧),则该几何体的体积为( )A .24π+B .12π-C .14π-D .13 6.[2019·江西联考]程序框图如下图所示,若上述程序运行的结果1320S =,则判断框中应填入( )A .12k ≤B .11k ≤C .10k ≤D .9k ≤ 7.[2019·江门一模]若()ln f x x =与()2g x x ax =+两个函数的图象有一条与直线y x =平行的公共 切线,则a =( ) A .1 B .2 C .3 D .3或1- 8.[2019·湖师附中]已知拋物线()2:20C y px p =>的焦点为F ,准线:1l x =-,点M 在拋物线C 上,点M 在直线:1l x =-上的射影为A ,且直线AF的斜率为MAF △的面积为( ) AB. C.D.9.[2019·河南名校]设点P 是正方体1111ABCD A B C D -的对角线1BD 的中点,平面α过点P ,且与 直线1BD 垂直,平面α平面ABCD m =,则m 与1A C 所成角的余弦值为( )班级姓名准考证号考场号座位号ABC .13 D10.[2019·合肥质检]“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等等.某仓库中部分货物堆放成如图所示的“菱草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n 件.已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的910.若这堆货物总价是910020010n⎛⎫- ⎪⎝⎭万元,则n 的值为( )A .7B .8C .9D .1011.[2019·宁波期末]关于x ,y 的不等式组23000x y x m y m -+>+<->⎧⎪⎨⎪⎩,表示的平面区域内存在点()00,P x y , 满足0023x y -=,则实数m 的取值范围是( )A .(),3-∞-B .()1,1-C .(),1-∞-D .()1,--∞12.[2019·凉山二诊]设函数()f x 是定义在R 上的偶函数,且()()22f x f x +=-,当[)2,0x ∈-时,()12xf x ⎛=- ⎝⎭,则在区间()2,6-内关于x 的方程()()8log20f x x -+=解得个数为( )A .1B .2C .3D .4第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.[2019·昆明诊断]设0m >,:0p x m <<,:01xq x <-,若p 是q 的充分不必要条件,则m 的值可以是______.(只需填写一个满足条件的m 即可)14.[2019·合肥质检]设等差数列{}n a 的前n 项和为n S .若51310a a -=,则13S =______.15.[2019·南通联考]已知角ϕ的终边经过点()1,2P -,函数()()()sin 0f x x ωϕω=+>图象的相邻 两条对称轴之间的距离等于π3,则π12f ⎛⎫ ⎪⎝⎭的值为____. 16.[2019·郴州期末]已知直线y x a =+与圆()2222500x y ax a a +-+-=>交于不同的两点A ,B,若AB ≤,则a 的取值范围是__________. 三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)[2019·咸阳模拟]在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos cos 12sin sin B C B C +=. (1)求A ∠的大小. (2)若4b c +=,求ABC △的面积的最大值. 18.(12分)[2019·莆田质检]为推进“千村百镇计划”,2018年4月某新能源公司开展“电动莆田绿色出行”活动,首批投放200台P 型新能源车到莆田多个村镇,供当地村民免费试用三个月.试用到期后,为了解男女试用者对P 型新能源车性能的评价情况,该公司要求每位试用者填写一份性能综合评分表(满分为100分).最后该公司共收回有效评分表600份,现从中随机抽取40份(其中男、女的评分表各20份)作为样本,经统计得到如下茎叶图:(1)求40个样本数据的中位数m;(2)已知40个样本数据的平均数80a=,记m与a的最大值为M.该公司规定样本中试用者的“认定类型”:评分不小于M的为“满意型”,评分小于M的为“需改进型”.①请以40个样本数据的频率分布来估计收回的600份评分表中,评分小于M的份数;②请根据40个样本数据,完成下面22⨯列联表:根据22⨯列联表判断能否有99%的把握认为“认定类型”与性别有关?19.(12分)[2019·潍坊一模]如图,三棱柱111ABC A B C-中,CA CB=,145BAA∠=︒,平面11AAC C⊥平面11AA B B.(1)求证:1AA BC⊥;(2)若12BB==,145A AC∠=︒,D为1CC的中点,求三棱锥111D A B C-的体积.20.(12分)[2019·宜春期末]椭圆()2222:10x yC a ba b+=>>,过焦点且垂直于x轴的直线被椭圆截得的弦长为(1)求椭圆C的方程;(2)过点()0,1P的动直线l与椭圆C相交于A,B两点,在y轴上是否存在异于点P的定点Q,使得直线l变化时,总有PQA PQB∠=∠?若存在,求点Q的坐标;若不存在,说明理由.21.(12分)[2019·江南十校]已知函数()()()1e 0,x f x ax x a =->∈R (e 为自然对数的底数).(1)讨论函数()f x 的单调性;(2)当1a =时,()2f x kx >-恒成立,求整数k 的最大值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】 [2019·广东模拟]在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos 2sin x y θθ==⎧⎨⎩(θ为参数),已知点()4,0Q ,点P 是曲线1C 上任意一点,点M 为PQ 的中点,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求点M 的轨迹2C 的极坐标方程; (2)已知直线:l y kx =与曲线2C 交于A ,B 两点,若3OA AB =,求k 的值. 23.(10分)【选修4-5:不等式选讲】 [2019·陕西质检]已知对任意实数x ,都有240x x m ++--≥恒成立.(1)求实数m的范围;(2)若m的最大值为n,当正数a,b满足415326na b a b+=++时,求47a b+的最小值.2019届高三第三次模拟考试卷文 科 数 学(四)答 案一、选择题.1.【答案】B【解析】()()()2i 1i 2i 22i1i 1i 1i 1i 2-+===+++-,故选B .2.【答案】C【解析】因为()-⊥a b a ,所以()0-⋅=a b a ,所以20-⋅=a a b ,所以1⋅=a b ,设向量a 、b 的夹角为θ,则11cos 122θ⋅===⨯a b a b ,由[]0,πθ∈,所以π3θ=,故选C .3.【答案】D【解析】由正弦定理得sin sin a bA B =,即112=sin B =, 故π3B =或2π3,所以选D .4.【答案】A【解析】由题意得,从八卦中任取两卦的所有可能为187282⨯⨯=种,设“取出的两卦的六根线中恰有5根阳线和1根阴线”为事件A ,则事件A 包含的情况为:一卦有三根阳线、另一卦有两根阳线和一根阴线,共有3种情况.由古典概型概率公式可得,所求概率为()328P A =.故选A .5.【答案】C【解析】根据几何体的三视图,转换为几何体:相当于把棱长为1的正方体切去一个以1为半径的14个圆柱.故21111π114π4V =⋅⋅-⋅⋅=-.故选C .6.【答案】D【解析】初始值12k =,1S =,执行框图如下:112121320S =⨯=≠,12111k =-=;k 不能满足条件,进入循环;12111321320S =⨯=≠,11110k =-=;k 不能满足条件,进入循环;132101320S =⨯=,1019k =-=,此时要输出S ,因此k 要满足条件,所以9k ≤.故选D . 7.【答案】D 【解析】设在函数()ln f x x =处的切点设为(),x y ,根据导数的几何意义得到111k x x ==⇒=, 故切点为()1,0,可求出切线方程为1y x =-, 直线和()2g x x ax =+也相切,故21x ax x +=-, 化简得到()2110x a x +-+=,只需要满足()214013Δa a =--=⇒=-或.故答案为D . 8.【答案】C 【解析】因为抛物线的准线:1l x =-,所以焦点为()1,0F , 抛物线2:4C y x =,点M 在抛物线C 上,点A 在准线l 上, 若MA l ⊥,且直线AF的斜率AF k =, 准线与x 轴的交点为N,则2tan 3πAN ==,(A -,则(M ,∴11 422MAF S AM AN =⨯⨯=⨯⨯=△. 故选C .9.【答案】B 【解析】由题意知,点P 是正方体1111ABCD A B C D -的对角线1BD 的中点,平面α过点P ,且与直线1BD 垂直,平面α平面ABCD m =,根据面面平行的性质,可得m AC ∥, 所以直线m 与1A C 所成角,即为直线AC 与直线1A C 所成的角, 即1ACA ∠为直线m 与1A C 所成角, 在直角1ACA △中,11cos AC ACA AC ∠===, 即m 与1A CB . 10.【答案】D【解析】由题意,第一层货物总价为1万元,第二层货物总价为9210⨯万元,第三层货物总价为29310⎛⎫⨯ ⎪⎝⎭万元,,第n 层货物总价为1910n n -⎛⎫⋅ ⎪⎝⎭万元,设这堆货物总价为W 万元, 则21999123101010n W n -⎛⎫⎛⎫=+⨯+⨯++⋅ ⎪ ⎪⎝⎭⎝⎭,23999991231010101010n W n ⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,两式相减得2311999991101010101010n n W n -⎛⎫⎛⎫⎛⎫⎛⎫=-⋅++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭919991010109101010110n n n nn n ⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎝⎭=-⋅+=-⋅+-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-,则99910100100100200101010n n nW n⎛⎫⎛⎫⎛⎫=-⋅+-⋅=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得10n =,故选D .11.【答案】C【解析】作出不等式组对应的平面区域如图:若平面区域内存在点()00,P x y ,满足0023x y -=,则说明直线23x y -=与区域有交点,即点(),A m m -位于直线23x y -=的下方即可,则点A 在区域230x y -->,即230m m --->,得1m <-,即实数m 的取值范围是(),1-∞-,故选C . 12.【答案】C【解析】对于任意的x ∈R ,都有()()22f x f x +=-, ∴()()()()42222f x f x f xf x +=++=+-=⎡⎤⎡⎤⎣⎦⎣⎦, ∴函数()f x 是一个周期函数,且4T =. 又∵当[]2,0x ∈-时,()1x f x =-⎝⎭,且函数()f x 是定义在R 上的偶函数, 且()61f =,则函数()y f x =与()8log 2y x =+在区间()2,6-上的图象如下图所示: 根据图象可得()y f x =与()8log 2y x =+在区间()2,6-上有3个不同的交点. 故选C . 二、填空题. 13.【答案】12(()0,1的任意数均可) 【解析】由01x x <-得01x <<,所以:01q x <<, 又0m >,:0p x m <<,若p 是q 的充分不必要条件,则p q ⇒,q ⇒p ,所以01m <<,满足题意的12m =(()0,1的任意数均可),故答案为12(()0,1的任意数均可). 14.【答案】65 【解析】在等差数列中,由51310a a -=,可得()113410a d a +-=, 即121210a d +=,即1765a d a +==, ()113713721313136522a a a S a +∴=⨯=⨯==,故答案为65. 15.【答案】【解析】角ϕ终边经过点()1,2sin P ϕ-⇒==,cos ϕ==,()f x 两条相邻对称轴之间距离为π3π23T ⇒=, 即2π2π33T ωω==⇒=,()()sin 3f x x ϕ=+,sin sin cos cos sin 12444ππππf ϕϕϕ⎛⎛⎫⎛⎫∴=+=+== ⎪ ⎪ ⎝⎭⎝⎭⎝⎭本题正确结果16.【答案】⎡⎢⎣⎭【解析】()2222500x y ax a a +-+-=>,可得圆心坐标为(),0C a,半径为r =根据圆的弦长公式,得l =因为直线y x a =+与交于不同的两点A ,B,且AB ≤,则≤d <d ≤,又由点到直线的距离公式可得圆心(),0C a 到直线y x a =+的距离为d=<1a ≤<即实数a 的取值范围是⎡⎢⎣⎭.三、解答题.17.【答案】(1)π3A =;(2【解析】(1)由2cos cos 12sin sin B C B C +=,得()1cos 2B C +=-,可得2π3B C +=,所以π3A =.(2)22π114sin sin 22322ABC b c S bc A bc +⎫⎛⎫===≤==⎪ ⎪⎝⎭⎝⎭△当且仅当2b c ==时取等号,即ABC △18.【答案】(1)81;(2)①300;②见解析. 【解析】(1)由茎叶图知8082812m +==. (2)因为81m =,80a =,所以81M =. ①由茎叶图知,女性试用者评分不小于81的有15个,男性试用者评分不小于81的有5个, 所以在40个样本数据中,评分不小于81的频率为1550.540+=, 可以估计收回的600份评分表中,评分不小于81的份数为6000.5300⨯=; ②根据题意得22⨯列联表:由于()224015155510 6.63520202020K ⨯⨯-⨯==>⨯⨯⨯,查表得()2 6.6350.010P K ≈≥, 所以有99%的把握认为“认定类型”与性别有关. 19.【答案】(1)见解析;(2)16. 【解析】(1)过点C 作1CO AA ⊥,垂足为O , 因为平面11AAC C ⊥平面11AA B B ,所以CO⊥平面11AA B B ,故CO OB ⊥, 又因为CA CB =,CO CO =,90COA COB ∠=∠=︒, 所以AOC BOC ≅Rt Rt △△,故OA OB =, 因为145A AB ∠=︒,所以1AA OB ⊥, 又因为1AA CO ⊥,所以1AA ⊥平面BOC ,故1AA BC ⊥. (2)由(1)可知,OA OB =, 因为AB 12BB =,故1OA OB ==, 又因为145A AC ∠=︒,CO AO ⊥,所以1CO AO ==,1111111113D A B C B A C D A C D V V S h --==⨯⋅△,11111122A C D S =⨯⨯=△,因为OB ⊥平面11AA C C ,所以1h OB ==, 故1111111326B A C D V -=⨯⨯=,所以三棱锥111D A B C -的体积为16.20.【答案】(1)22184x y +=;(2)存在定点()0,4Q 满足题意.【解析】(1)因为过焦点且垂直于x轴的直线被椭圆截得的弦长为22ba =,,所以c a =24b =,28a =,所以椭圆C 的方程为22184x y +=.(2)当直线l 斜率存在时,设直线l 方程1y kx =+,由22281x y y kx +==+⎧⎨⎩,得()2221460k x kx ++-=,()221624210Δk k =++>,设()11,A x y ,()22,B x y ,122122421621kx x k x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩,假设存在定点()0,Q t 符合题意,PQA PQB ∠=∠,QA QB k k ∴=-, ()()()()2112122112121212121211QA QB x y x y t x x x kx x kx t x x yt y t k k x x x x x x +-++++-+--∴+=+== ()()()()1212122124421063kx x t x x k t k k t x x +-+--==+-==-,上式对任意实数k 恒等于零,40t ∴-=,即4t =,()0,4Q ∴.当直线l 斜率不存在时,A ,B 两点分别为椭圆的上下顶点()0,2-,()0,2, 显然此时PQA PQB ∠=∠,综上,存在定点()0,4Q 满足题意.21.【答案】(1)见解析;(2)k 的最大值为1.【解析】(1)()()()()()1e 0,,1e x x f x ax x a f x ax a =->∈⇒=--⎡⎤⎣⎦'R , 当1a ≥时,()()0f x f x '≥⇒在()0,+∞上递增;当01a <<时,令()0f x '=,解得1ax a -=, ()f x ⇒在10,a a -⎛⎫ ⎪⎝⎭上递减,在1,a a -⎛⎫+∞ ⎪⎝⎭上递增; 当0a ≤时,()()0f x f x '≤⇒在()0,+∞上递减. (2)由题意得()()1e x f x x =-, 即()1e 2x x kx ->-对于0x >恒成立, 方法一、令()()()1e 20x g x x kx x =--+>,则()()e 0x g x x k x =->', 当0k ≤时,()()0g x g x '≥⇒在()0,+∞上递增,且()010g =>,符合题意; 当0k >时,()()1e 0x g x x x ''=+⇒>时,()g x '单调递增, 则存在00x >,使得()000e 0x g x x k '=-=,且()g x 在(]00,x 上递减,在[)0,x +∞上递增()()()0000min 1e 20x g x g x x kx ⇒==--+>, 00000122011x k kx k x x x -∴⋅-+>⇒<⎛⎫+- ⎪⎝⎭, 由0012x x +≥,得02k <<, 又k ∈⇒Z 整数k 的最大值为1, 另一方面,1k =时,1021g ⎛⎫< ⎪⎝⎭',()1e 10g ='->, 01,12x ⎛⎫∴∈ ⎪⎝⎭,()0021,211x x ∈⎛⎫+- ⎪⎝⎭,1k ∴=时成立. 方法二、原不等式等价于()()1e 20x x k x x -+<>恒成立, 令()()()()()()221e 21e 200x x x x x h x x h x x x x -+--+>⇒='=>, 令()()()21e 20x t x x x x =-+->,则()()1e 0x t x x x =+>', ()t x ∴在()0,+∞上递增, 又()10t >,1202t ⎛⎫=-< ⎪⎝⎭,∴存在01,12x ⎛⎫∈ ⎪⎝⎭,使得()()()200001e 20x h x t x x x ==-+-=',且()h x 在(]00,x 上递减,在[)0,x +∞上递增,()()0min 00211h x h x x x ∴==+-, 又01,12x ⎛⎫∈ ⎪⎝⎭,001311,2x x ⎛⎫⇒+-∈ ⎪⎝⎭,()04,23h x ⎛⎫∴∈ ⎪⎝⎭,2k ∴<, 又k ∈Z ,整数k 的最大值为1.22.【答案】(1)24cos 30ρρθ-+=;(2)k = 【解析】(1)设()2cos ,2sin P θθ,(),M x y .且点()4,0Q ,由点M 为PQ 的中点, 所以2cos 42cos 22sin sin 2x y θθθθ+==+==⎧⎪⎪⎨⎪⎪⎩,整理得()2221x y -+=.即22430x y x +-+=, 化为极坐标方程为24cos 30ρρθ-+=.(2)设直线:l y kx =的极坐标方程为θα=.设()1,A ρα,()2,B ρα, 因为3OA AB =,所以43OA OB =,即1243ρρ=.联立24cos 30ρρθθα-+==⎧⎨⎩,整理得24cos 30ραρ-⋅+=. 则1212124cos 343ρραρρρρ+===⎧⎪⎨⎪⎩,解得7cos 8α=. 所以222115tan 1cos 49k αα==-=,则k =. 23.【答案】(1)6m ≤;(2)9.【解析】(1)对任意实数x ,都有240x x m ++--≥恒成立, 又24246x x x x ++-≥+-+=,6m ∴≤. (2)由(1)知6n =,由柯西不等式知:()()414147475329532532a b a b a b a b a b a b a b a b ⎛⎫⎛⎫+=++=++++≥ ⎪ ⎪++++⎝⎭⎝⎭, 当且仅当313a =,1513b =时取等号, 47a b ∴+的最小值为9.。