函数单调性专题训练题
- 格式:doc
- 大小:121.00 KB
- 文档页数:2
提升训练3.2 函数的单调性一、选择题1.函数y=(2k﹣1)x+b在(﹣∞,+∞)上是减函数,则()A. B. C. D.【答案】A【解析】∵函数y=(2k﹣1)x+b在(﹣∞,+∞)上是减函数,∴2k﹣1<0,解得k.故选:A.2.如图,直线l1、l2、l3的斜率分别为k1、k2、k3,则必有( )A.k1<k3<k2 B.k3<k1<k2 C.k1<k2<k3 D.k3<k2<k1【答案】A【解析】由于直线向左倾斜,故,直线与直线均向右倾斜,且更接近y轴,所以:.故选A.3.已知函数在上单调递增,则实数的取值范围是()A.B.C.D.【答案】B【解析】函数y=4x2﹣kx﹣8的对称轴为:x∵函数在上单调递增∴ 5∴k≤40故选B.4.直线与在同一直角坐标系中的图象可能是()A. B.C. D.【答案】C【解析】直线y=x+a是一次函数,斜率k=1,b=a,可判断从左到右图象上升,B,D不满足题意; 当b=a>0时,y=x+a的图象在y轴上的交点在正半轴,没有选项,所以a<0,则直线y=ax表示直线过原点,且斜率为小于0,所以选项A错误,C正确.故选:C5.下列函数中,在(-∞,0)上为减函数的是()A. B. C. D.【答案】D【解析】A中,函数y=﹣x2+2在(﹣∞,0)上为增函数;B中,函数y=4x﹣1在(﹣∞,0)上为增函数;C中,函数y=x2+4x在(﹣∞,﹣2)上为减函数,在(﹣2,0)上为增函数;D中,函数在(﹣∞,0)上为减函数故选:D.6.已知函数()y f x =在定义域R 上是减函数,则不等式()()2142f x f x +>-的解集为( ) A .()1,3B .()(),31,-∞-⋃-+∞C .()3,1--D .()(),13,-∞⋃+∞【答案】A【解析】 依题意,2142x x +<-,所以()()130x x --<,解得13x <<.故选A7.若函数y =ax +1(a >0)在区间[1,3]上的最大值为4,则a =( ).A .2B .3C .1D .-1【答案】C【解析】因为a >0,所以一次函数y =ax +1在区间[1,3]上单调递增,所以当x=3时,函数y =ax +1取得最大值,故3a +1=4,解得a =1.故选C.8.已知函数f (x )=x 2-kx -6在[2,8]上是单调函数,则k 的取值范围是( )A .B .C .D . 【答案】D【解析】根据题意,函数f (x )=x 2﹣kx ﹣6的对称轴为x, 若f (x )在[2,8]上是单调函数,必有2或8,解可得:k ≤4或k ≥16,即k 的取值范围是(﹣∞,4]∪[16,+∞);故选:D .9.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),且对任意的x 1,x 2∈(-∞,1](x 1≠x 2)有(x 1-x 2)(f (x 1)-f (x 2))<0.则( )A .()()()211f f f <-<B .()()()121f f f <<-C .()()()112f f f <-<D .()()()211f f f <<-【答案】B【解析】∵当x 1,x 2∈(-∞,1](x 1≠x 2)时有(x 1-x 2)(f (x 1)-f (x 2))<0,∴f(x )在(-∞,1]上单调递减,∵f(x )=f (2-x ),∴函数f (x )的图象关于x=1对称,则f (x )在∈(1,+∞)上单调递增,∴f(-1)=f (3)>f (2)>f (1)即f (-1)>f (2)>f (1)故选:B .10.已知函数在上是减函数,则a 的取值范围为 )A .B .C .D .【答案】B【解析】 函数在上是减函数,, 求得,故选:B .11.已知函数f (x )是R 上的增函数,A (4,2)是其图象上的一点,那么f (x )<2的解集是()A .B .C .D .【答案】B【解析】 因为是函数的图象上的一点,则, 所以, 又因为函数是上的增函数,所以, 即的解集是,故选B .12.函数f (x )=满足:对任意的实数x 1≠x 2,都有(x 1-x 2)[f (x 1)-f (x 2)]>0成立,则实数a 的取值范围是( )A .B .C .D .【答案】C【解析】因为函数f (x )=满足:对任意的实数x 1≠x 2,都有(x 1-x 2)[f (x 1)-f (x 2)]>0成立,所以函数f (x )在(-∞,+∞)上是增函数,所以f (x )在(-∞,1),(1,+∞)上均单调递增,且-12+2a×1≤(2a-1)×1-3a+6, 故有,解得1≤a≤2.所以实数a 的取值范围是[1,2].故选:C .二、填空题 13.已知函数2f x x b =+()在区间12-(,)上的函数值恒为正,则b 的取值范围为______. 【答案】[2+∞,)【解析】()2f x x b =+Q 为增函数,∴若()2f x x b =+在区间()12-,上的函数值恒为正, 则只需要()120f b -=-+≥即可,即2b ≥,即实数b 的取值范围是[2+∞,),故答案为:[2+∞,)14.已知函数,若在上是减函数,则实数的取值范围为____.【答案】[,0)【解析】若在R上是减函数,因为y=在上单调递减,故只需满足,解得:k∈[,0)故答案为:[,0)15.若,且,则实数的取值范围是______.【答案】【解析】,可得时,递减;时,递减,且,可得在R上递减,,可得,解得,故答案为:.16.能说明“若对任意的都成立,则在上是增函数”为假命题的一个函数=_________________.【答案】答案不唯一,比如或;【解析】根据题意只要举出的例子不符合函数单调增即可,可以在区间端点处违反单调性,即.答案为:答案不唯一,比如或;三、解答题17.已知函数.Ⅰ画出的图象;Ⅱ根据图象写出的值域、单调区间.【答案】(Ⅰ)见解析(Ⅱ)的单调递减区间为,无增区间.【解析】Ⅰ,的图象;Ⅱ由图象知的值域为,的单调递减区间为,无增区间.18.已知函数f(x)=,(Ⅰ)画出f(x)的图象;(Ⅱ)写出f(x)的单调递增区间.【答案】(Ⅰ)详见解析(Ⅱ)[-1,0],[2,5]【解析】(Ⅰ)函数f(x)=的图象如下:(Ⅱ)f(x)的单调递增区间为[-1,0],[2,5].19.已知函数,且.(1)求f(x)的解析式;(2)判断f(x)在区间(0,1)上的单调性,并用定义法证明.【答案】(1)(2)f(x)在(0,1)上单调递减,证明见解析. 【解析】(1)∵;∴;解得a=1,b=1;∴;(2)f(x)在区间(0,1)上单调递减,证明如下:设x1,x2∈(0,1),且x1<x2,则:=;∵x1,x2∈(0,1),且x1<x2;∴x1-x2<0,,;∴;∴f(x1)>f(x2);∴f(x)在(0,1)上单调递减.20.已知函数,且,.(I )求的函数解析式;(II )求证:在上为增函数; (III )求函数的值域. 【答案】(I )(II )见解析(III ) 【解析】(I )函数, 由得a+4b=6,① 由得2a+5b=9,②联立①②解得a=2,b=1, 则函数解析式为(II )任取x 1,x 2∈[3,5]且x 1<x 2, ∴∵3≤x 1<x 2≤5, ∴<0, ∵>0, ∴<0, ∴,即在上为增函数. (III )由(II )知在上为增函数 则. 所以函数的值域为21.已知函数()21x f x x =+是定义在()1,1-上的函数. (1)用定义法证明函数()f x 在()1,1-上是增函数;(2)解不等式()()10f x f x ++<.【答案】(1)详见解析;(2)10,2⎛⎫ ⎪⎝⎭.【解析】(1)证明:对于任意的()12,1,1x x ∈-,且12x x <,则: ()()()()()()121212122222121211111x x x x x x f x f x x x x x ---=-=++++, ∵1211x x -<<<,∴120x x -<,121x x <,∴1210x x ->. ∴()()120f x f x -<,即()()12f x f x <.∴函数在()1,1-上是增函数.(2)由函数的分析式及(1)知,()f x 是奇函数且在()1,1-上递增, ()()10f x f x -+<,即:()()()1f x f x f x -<-=-,结合函数的定义域和单调性可得关于实数x 的不等式:111111x x x x -<-<⎧⎪-<<⎨⎪-<-⎩,求解关于实数x 的不等式组可得:102x <<, 则不等式的解集为10,2⎛⎫ ⎪⎝⎭. 22.已知定义在(1,+∞)上的函数f (x )=.(1)当m ≠0时,判断函数f (x )的单调性,并证明你的结论;(2)当m =时,求解关于x 的不等式f (x 2-1)>f (3x -3).【答案】(1)见解析;(2)(,2) 【解析】(1)根据题意,设1<x 1<x 2, 则f (x 1)-f (x 2)=-=m ×,又由1<x 1<x 2,则(x 2-x 1)>0,(x 2-1)>0,(x 1-1)>0, 当m >0时,f (x 1)>f (x 2),f (x )在(1,+∞)上递减;当m<0时,f(x1)<f(x2),f(x)在(1,+∞)上递增;(2)当m=时,f(x)为减函数,则f(x2-1)>f(3x-3)⇒,解可得:<x<2,即不等式的解集为(,2)。
函数单调性练习题1. 已知函数f(x)=x 2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a 的取值范围是 .2.讨论函数f(x)=21xax - (a≠0)在区间(-1,1)内的单调性.3.判断函数f (x )=-x 3+1在(-∞,0)上是增函数还是减函数,并证明你的结论;如果x ∈(0,+∞),函数f (x )是增函数还是减函数?4. 已知:f (x )是定义在[-1,1]上的增函数,且f (x -1)<f (x 2-1)求x 的取值范围.5.设y=f (x )的单增区间是(2,6),求函数y=f (2-x )的单调区间.6.函数21)(++=x ax x f 在区间(-2,+∞)上是增函数,那么a 的取值范围是( ).7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( )8.已知f (x )在其定义域R +上为增函数,f (2)=1,f (xy )=f (x )+f (y ),解不等式f (x )+f (x -2) ≤39.已知定义在区间(0,+∞)上的函数f(x)满足f()21x x =f(x 1)-f(x 2),且当x >1时,f(x)<0. (1)求f(1)的值;(2)判断f(x )的单调性;(3)若f(3)=-1,解不等式f(|x|)<-2.10.函数f(x)对任意的a 、b ∈R,都有f(a+b)=f(a)+f(b)-1,并且当x >0时,f(x)>1.(1)求证:f(x)是R 上的增函数;(2)若f(4)=5,解不等式f(3m 2-m-2)<3.11.设f (x )的定义域为(0,+∞),且在(0,+∞)是递增的,)()()(y f x f y x f -=(1)求证:f (1)=0,f (xy )=f (x )+f (y );(2)设f (2)=1,解不等式2)31()(≤--x f x f 。
高中数学函数的单调性练习题及其答案1.在区间(0.+∞)上不是增函数的函数是:A。
y=2x+1 C。
y=1/x B。
y=3x^2+1 D。
y=2x^2+x+12.函数f(x)=4x^2-mx+5在区间[-2.+∞]上是增函数,在区间(-∞。
-2)上是减函数,则f(1)等于:C。
173.函数f(x)在区间(-2.3)上是增函数,则y=f(x+5)的递增区间是:B。
(-7.-2)4.函数f(x)=(ax+1)/(x+2)在区间(-2.+∞)上单调递增,则实数a的取值范围是:B。
(0.+∞)5.已知函数f(x)在区间[a。
b]上单调,且f(a)f(b)<0,则方程f(x)=0在区间[a。
b]内:A。
至少有一实根6.已知函数f(x)=8+2x-x^2,如果g(x)=f(2-x^2),那么函数g(x):C。
在区间(-2.0)上是增函数7.已知函数f(x)是R上的增函数,A(0.-1)、B(3.1)是其图象上的两点,那么不等式|f(x+1)|<1的解集的补集是:D。
(-∞。
-1)∪[2.+∞)8.已知定义域为R的函数f(x)在区间(-∞。
5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是:B。
f(13)<f(9)<f(-1)9.函数f(x)=|x|和g(x)=x(2-x)的递增区间依次是:C。
(-∞。
1]。
[1.+∞)10.已知函数f(x)=x^2+2(a-1)x+2在区间(-∞。
4]上是减函数,则实数a的取值范围是:a≤0 或a≥51.对于第一题,正确答案为D,即a≥3.2.第二题中,删除了明显有问题的选项,正确答案为C,即f(a)+f(b)≥-f(a)+f(b)。
3.对于第三题,正确答案为B,即f(0)>f(3)。
4.填空题的答案为:13.(1.+∞),14.(-∞。
3),15.(-∞。
3]。
5.解答题的答案为:17.(1) f(1)=0;(2) f(x+3)-f(x)5,即单调递减区间为(-∞,1)∪(5.+∞)。
函数的单调性练习一、选择题:1.在区间(0,+∞)上不是增函数的函数是〔 〕A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,那么f (1)等于 〔 〕 A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,那么y =f (x +5)的递增区间是 〔 〕 A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,那么实数a 的取值范围是 〔 〕A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,那么方程f (x )=0在区间[a ,b ]内〔 〕 A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) 〔 〕 A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数 7.函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式 |f (x+1)|<1的解集的补集是 〔 〕 A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞〕D .(-∞,-1)∪[2,+∞〕8.定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么以下式子一定成立的是 〔 〕 A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是〔 〕A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,那么实数a 的取值范围是〔 〕 A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 11.f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,那么以下不等式中正确的选项是〔 〕 A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,那么 〔 〕 A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,那么()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,那么a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) 〔1〕求f (1)的值.〔2〕假设f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.函数f (x )=x ax x ++22,x ∈[1,+∞]〔1〕当a =21时,求函数f (x )的最小值;〔2〕假设对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,那么f (1)=0.②在等式中令x=36,y=6那么.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x x x18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,那么f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数. 20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,那么f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的表达.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,那么f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,那么f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。
完整版)函数的单调性练习题及答案1.函数的单调性练题一选择题:1.函数f(x)=x^2+2x-3的递增区间为(D。
[-1,+∞))2.如果函数f(x)=x^2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a的取值范围是(A。
[-3,+∞))3.函数y=1-(1/(x-1))在(-1,+∞)内是单调递增。
4.如果函数f(x)=kx+b在R上单调递减,则(C。
b>0)5.在区间(-∞,0)上为增函数的是(B。
y=x^2)6.函数f(x)=2x-x^2的最大值是(B。
1)7.函数y=x+x^-2的最小值是(A。
0)2.填空题:8.函数f(x)=2x^2-mx+3,在(-∞,1)上是减函数,在[1,+∞)上是增函数,则m=4.9.已知f(x)是定义在(-2,2)上的减函数,并且f(m-1)-f(1-2m)>0,则实数m的取值范围为(-∞,-1/2)U(1/2,+∞)。
3.解答题:10.利用单调函数的定义证明:函数f(x)=x+2/x在区间(0,2)上是减函数。
证明:对于任意的x1,x2∈(0,2),且x1<x2,有:f(x2)-f(x1)=(x2+2/x2)-(x1+2/x1)x2-x1+2/x2-2/x1x2-x1+2(x1-x2)/(x1x2)x2-x1)(1-2/(x1x2))因为x1,x2∈(0,2),所以x1x2>0,而1-2/(x1x2)<1,所以f(x2)-f(x1)<0,即f(x)在区间(0,2)上是减函数。
11.已知定义在区间(1,+∞)上的函数f(x)满足f(x)=f(x/2)-f(x/4),且当x>1时f(x)<0.1)求f(1)的值;因为f(x)=f(x/2)-f(x/4),所以f(2)=f(1)-f(1/2),又因为f(2)=f(1)-f(1/2)=f(1/2)-f(1/4),所以f(1/2)=f(1)-f(1/4),继续类似地推导,得到:f(1)=f(1)-f(1/2)+f(1/2)-f(1/4)+f(1/4)-f(1/8)+。
单调性专题训练1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( )A .f (x )=3-xB .f (x )=x 2-3x C .f (x )=-1x +1 D .f (x )=-|x |2.给定函数:①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1.其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④ 3.函数cos 2xy -=的单调递增区间是4.函数22(log 2)y x x =-的单调增区间为_________.5.函数()f x =__________6.函数13ln y x x=+的单调增区间为 。
7.函数221()(1)x f x x x -=-的单调增区间为___________.8.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x的取值范围是 。
9.已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R 。
10.已知函数f (x )=ln x +x ,若f (a 2-a )>f (a +3),则正数a 的取值范围是________.11.设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是 。
12.若偶函数()f x 在(-∞,0]上为增函数,则不等式(21)(2)f x f x +>-的解集__________.13.已知函数3 0(){ 1 0x a x f x x x +>=+≤在R 上是增函数,则实数a 的取值范围是________.14.若函数()()2212f x x a x =+-+在区间(),4-∞上是单调减函数,则实数a 的取值范围是________.15.若函数f (x )=|x -2|(x -4)在区间(5a,4a +1)上单调递减,则实数a 的取值范围是____.16.已知函数23()2x af x x +=+在(2,)-∞上单调递增,则实数a 的取值范围__________.17.已知(2)1(1)()(1)xa x x f x a x -+<⎧=⎨≥⎩满足对任意121212()(),0f x f x x x x x -≠>-都有成立,那么a 的取值范围是_______18.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-ax -5,x ≤1,ax ,x >1是R 上的增函数,则实数a 的取值范围是单调性答案1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( )A .f (x )=3-xB .f (x )=x 2-3x C .f (x )=-1x +1 D .f (x )=-|x |【答案】C【解析】当x >0时,f (x )=3-x 为减函数;当x ∈⎝ ⎛⎭⎪⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝ ⎛⎭⎪⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.给定函数:①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1.其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④ 【答案】B【解析】[①y =x 12在(0,1)上递增;②∵t =x +1在(0,1)上递增,且0<12<1,故y =log 12(x +1)在(0,1)上递减;③结合图象可知y =|x -1|在(0,1)上递减;④∵u =x +1在(0,1)上递增,且2>1,故y =2x +1在(0,1)上递增.故在区间(0,1)上单调递减的函数序号是②③.] 3.函数cos 2xy -=的单调递增区间是 。
函数的单调性一、单选题(共10道,每道10分)1.若函数与在区间(0,+∞)上都是减函数,则在区间(0,+∞)上是( )A.增函数B.减函数C.先增后减D.先减后增答案:B解题思路:试题难度:三颗星知识点:函数单调性的判断与证明2.函数( )A.在(-1,+∞)上单调递增B.在(-1,+∞)上单调递减C.在(1,+∞)上单调递增D.在(1,+∞)上单调递减答案:C解题思路:试题难度:三颗星知识点:函数的单调性及单调区间3.函数的单调递减区间是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数的单调性及单调区间4.函数的一个单增区间是( )A. B.C. D.无单增区间答案:C解题思路:试题难度:三颗星知识点:函数的单调性及单调区间5.函数的单调递增区间是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数的单调性及单调区间6.函数的单调递减区间是( )A.,B.,C.,D.,答案:A解题思路:试题难度:三颗星知识点:函数的单调性及单调区间7.设函数,则的单调递增区间是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:函数的单调性及单调区间8.函数的单调递增区间是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:函数的单调性及单调区间9.已知函数是定义在上的增函数,A(0,-1),B(3,1)是其图象上的两点,那么不等式组的解集是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:函数的单调性及单调区间10.已知函数的图象关于直线x=1对称,且在上单调递减,,则的解集为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:函数单调性的性质。
函数的单调性一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,假如g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式 |f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对随意实数t ,都有f (5+t )=f (5-t ),那么下列式子肯定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥311.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( ) A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?假如具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试探讨函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对随意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x x x18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数.20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满意f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①推断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须探讨0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。
函数的单调性一、选择题1. 下列函数中,在区间上为增函数的是( ).A .B .C .D .2.函数 的增区间是( )。
A .B .C .D .3. 在上是减函数,则a 的取值范围是( )。
A .B .C .D .4.当时,函数的值有正也有负,则实数a 的取值范围是( )A .B .C .D .5.若函数)(x f 在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数)(x f 在区间(a ,c )上( ) (A )必是增函数 (B )必是减函数 (C )是增函数或是减函数(D )无法确定增减性6.设偶函数)(x f 的定义域为R ,当[)+∞∈,0x 时,)(x f 是增函数,则),2(-f )(πf ,)3(-f 的大小关系是 ( )A )2()3()(->->f f f πB )3()2()(->->f f f πC )2()3()(-<-<f f f πD )3()2()(-<-<f f f π7.已知偶函数()f x 在区间[0,)+∞单调递增,则满足(21)f x -<1()3f 的x 取值范围是 A .(13,23) B .(∞-,23) C .(12,23) D .⎪⎭⎫ ⎝⎛+∞,32 8.已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0,a 的取值范围是( ) A.(22,3)B.(3,10)C.(22,4)D.(-2,3)9.若(31)41()log 1a a x ax f x xx -+≤⎧=⎨>⎩是R 上的减函数,那么a 的取值范围是( )A.(0,1)B.1(0,)3C.11[,)73D.1[,1)710.已知函数f (x )=⎩⎪⎨⎪⎧a x, x <0,(a -3)x +4a , x ≥0.满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是( )A .(0,3)B .(1,3)C .(0,14]D .(-∞,3)二、填空题1.函数,当时,是增函数,当时是减函数,则f(1)=_____________ 2.已知在定义域内是减函数,且,在其定义域内判断下列函数的单调性:①( 为常数)是___________; ②( 为常数)是___________;③是____________; ④是__________.3.函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ .三、解答题1.求函数的单调递减区间.2.证明函数x x x f 3)(3+=在),(+∞-∞上是增函数3.讨论函数322+-=ax x f(x)在(-2,2)内的单调性。
函数的单调性·基础练习函数的单调性(一)选择题[ ]A .增函数B .既不是增函数又不是减函数C .减函数D .既是增函数又是减函数2.函数(1) ,(2) ,(3) ,(4) 中在上围增函数的有[ ]A .(1)和(2)B .(2)和(3)C .(3)和(4)D .(1)和(4)3.若y =(2k -1)x +b 是R 上的减函数,则有[ ]A 、B 、C 、D 、4.如果函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,那么实数a 的取值范围是[ ]A .a ≥-3B .a ≤-3C .a ≤5D .a ≥35.函数y =3x -2x 2+1的单调递增区间是[ ]1y ().函数=-在区间-∞,+∞上是x 2x y =x x y =x x y 2-=x xx y +=)0,(-∞21>k 21<k 21->k 21-<kA 、B 、C 、D 、6.若y =f (x )在区间(a ,b)上是增函数,则下列结论正确的是[ ]A .在区间上是减函数B .y =-f (x )在区间(a ,b)上是减函数C .y =|f (x )|2在区间(a ,b)上是增函数D .y =|f (x )|在区间(a ,b)上是增函数7.设函数f (x )是(-∞,+∞)上的减函数,则[ ]A .f (a)>f(2a)B .f (a 2)<f (a)C .f (a 2+a)<f (a)D .f (a 2+1)<f (a)(二)填空题1.(1)函数的单调区间是 (2)函数的单调区间是 2.函数y =4x 2-m x +5,当x ∈(-2,+∞)时,是增函数,当x ∈(-∞,-2)时是减函数,则f (1)=________.3.(1)函数的增区间是(2)函数的减区间是 ⎥⎦⎤ ⎝⎛∞-43,⎪⎭⎫⎢⎣⎡+∞,43⎦⎤ ⎝⎛-∞-43,⎪⎭⎫⎢⎣⎡+∞-,43)(1x f y =()b a ,xy -=11xx y +-=11245x x y --=322-+=x x y4.函数f (x +1)=x 2-2x +1的定义域是[-2,0],则f (x )的单调递减区间是________.5.已知函数f (x )是区间(0,+∞)上的减函数,那么f (a 2-a +1)与之间的大小关系是 。
函数的单调性〔一〕一、选择题:1.在区间(0,+∞)上不是增函数的函数是〔 〕A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 〔 〕 A .-7 B .1 C .17 D .25 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是〔 〕A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是〔 〕A .a ≤3B .a ≥-3C .a ≤5D .a ≥310.已知函数()()2212f x x a x =+-+的单调递减区间(]4,∞-上是减函数,则实数a 的取值范围是〔 〕 A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) 〔1〕求f (1)的值.〔2〕假设f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞]〔1〕当a =21时,求函数f (x )的最小值;〔2〕假设对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36),又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数.20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的表达.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。
高考数学专题训练函数单调性问题【例1】(2020•新课标Ⅰ)已知函数)2()(+-=x a e x f x .(1)当1=a 时,讨论)(x f 的单调性;【例2】(2017•新课标Ⅰ)设函数x e x x f )1()(2-=.(1)讨论)(x f 的单调性;【例3】(2020•新课标Ⅰ) 已知函数x x x f 2sin sin )(2=.(1)讨论)(x f 在区间)0(π,的单调性;【例4】(2020•天津) 已知函数)(ln )(3R k x k x x f ∈+=,)(x f '为)(x f 的导函数.(1) 当6=k 时,(Ⅰ)求曲线)(x f y =在点))1(1(f ,处的切线方程;(Ⅰ)求函数x x f x f x g 9)()()(+'-=的单调区间和极值;【例5】(2019•新课标Ⅰ)已知函数11ln )(-+-=x x x x f (1)讨论)(x f 的单调性;【例6】(2014•新课标Ⅰ)已知函数x e e x f x x 2)(--=-.(1)讨论)(x f 的单调性;【例7】(2017•北京理)已知函数x x e x f x -=cos )(.(1)求函数)(x f 在区间]2[0π,上的最大值和最小值;【例8】(2020•新课标Ⅰ)已知函数x ax e x f x -+=2)((1)当1=a 时,讨论)(x f 的单调性;【例9】(2016•北京)设函数bx xe x f x a +=-)(,曲线)(x f y =在点))2(2(f ,处的切线方程为4)1(+-=x e y(1)求a ,b 的值;(2)求)(x f 的单调区间.【例10】(2020•新课标Ⅰ)已知函数1ln 2)(+=x x f .(1)设0>a ,讨论函数a x a f x f x g --=)()()(的单调性.【例1】(2019•重庆模考)已知函数)(1ln )(R a x ax x f ∈++=.(1)讨论函数)(x f 的单调性;【例2】(2020•广西联考)已知函数x a x x f ln 1)(--=,(1)求函数)(x f 的极值.【例3】(2020•江西联考)已知函数1sin )1ln(2)(+++=x x x f ,函数x b ax x g ln 1)(--=(a ,R b ∈,0≠ab )(1)讨论)(x g 的单调性;【例4】(2019•广东二模)已知函数()21x f x ae x =+-.(其中常数 71828.2=e ,是自然对数的底数.)(1)讨论函数)(x f 的单调性;【例5】(2019•重庆二模)已知函数x b x a x f +=ln )((其中2≤a 且0≠a ),且)(x f 的一个极值点为ex 1=. (1)求函数)(x f 的单调区间;【例6】(2018•揭阳一模)已知0≠a ,函数ax e e e x f x x ++-=)(.(1)讨论)(x f 的单调性;【例7】(2017•新课标Ⅰ)已知函数x a ax x x f )12(ln )(2+++=.(1)讨论函数)(x f 的单调性;【例8】(2019•新课标Ⅰ)已知函数b ax x x f +-=232)(.(1)讨论)(x f 的单调性;【例9】(2020•济宁模拟)已知函数1ln )(-=x x x f ,x a ax x g )2()(2--=.(1)设函数)()()(x g x f x H -'=,讨论)(x H 的单调性;【例10】(2014•山东) 设函数11ln )(+-+=x x x a x f ,其中a 为常数. (1)若0=a ,求曲线)(x f y =在点))1(1(f ,处的切线方程;(2)讨论)(x f 的单调区间.【例11】(2018•新课标Ⅰ)已知函数x a x x x f ln 1)(+-=. (1)讨论)(x f 的单调性;【例12】(2020•新课标Ⅰ) 已知函数23)(k kx x x f +-=.(1)讨论)(x f 的单调性;【例13】(2017•新课标Ⅰ) 已知函数x a a e e x f x x 2)()(--=.(1)讨论)(x f 的单调性.【例14】(2020•马鞍山二模) 已知函数x e ae x f x x +-=-)()0(>a(1)讨论)(x f 的单调性;【例15】(2019•山东)已知212)ln ()(x x x x a x f -+-=,R a ∈. (1)讨论)(x f 的单调性.【例16】(2010•新课标) 设函数2()1x f x e x ax =---.(1)当0=a 时,讨论)(x f 的单调性.【例17】(2014•广东) 设函数3)2(2)2(1)(222-+++++=k x x k x x x f ,其中2-<k .(1)讨论)(x f 的定义域D (用区间表示);(2)讨论)(x f 在D 单调性.达标训练1.(2018•新课标Ⅰ)已知函数1ln )(--=x ae x f x .(1)设2=x 是)(x f 的极值点,求a ,并求)(x f 的单调区间.2.(2018•新课标Ⅰ)已知函数)1(31)(23++-=x x a x x f . (1)若3=a ,求)(x f 的单调区间.3.(2017•新课标Ⅱ)设函数x e x x f )1()(2-=.(1)讨论)(x f 的单调性.4.(2015•新课标Ⅱ)设函数)1(ln )(x a x x f -+=.(1)讨论)(x f 的单调性.5.(2016•山东)设函数x a ax x x x f )12(ln )(2-+-=,R a ∈.(1)令)()(x f x g '=,求)(x g 的单调区间.6.(2020•金安期中)已知函数x a x x f -=ln )(,R a ∈. (1)讨论)(x f 的单调性.7.(2017•全国Ⅱ)已知函数x x ax ax x f ln )(2--=,且0)(≥x f .求a 的值.8.(2012•新课标)设2)(--=ax e x f x .(1)求)(x f 的单调区间.9.(2020•镜湖模拟)设函数1)(--=ax e x f x ,R a ∈;(1)讨论)(x f 在)0(∞+,上的单调性.10.(2020•香坊月考)已知函数x a x x f ln 21)(2-=)(R a ∈. (1)讨论)(x f 的单调性.11.(2017•天津)设a ,R b ∈,|1|a ≤,已知函数b x a a x x x f +---=)4(36)(23.(1)讨论)(x f 的单调性.12.(2014•湖南)已知常数0>a ,函数22)1ln()(+-+=x x ax x f . (1)讨论)(x f 在区间)0(∞+,上的单调区间.13.(2018•新课标Ⅰ)已知函数x a x x x f ln 1)(+-=. (1)讨论)(x f 的单调性.14.(2015•山东•理)设函数)()1ln()(2x x a x x f -++=,其中R a ∈.(1)讨论函数)(x f 的单调性.15.(2019•江西)已知函数ax xe x a xf x+--=ln )(,R a ∈. (1)当0<a 时,讨论函数)(x f 的单调性.16.(2020•荔湾区月考)已知函数x f ax e x x f x )0()1()(2'---=,其中R a ∈,)(x f '为函数)(x f 的导数.(1)讨论函数)(x f 的单调性.17.(2020•南昌月考)已知函数x e ax x f -=)((R a ∈,e 为自然对数的底数).(1)讨论)(x f 的单调性.18.(2020•太和县月考)已知函数R a e a x x f x∈+-=(2)(2,)718.2 =e . (1)求)(x f 的单调区间.19.(2020•五华月考)已知函数12131)(23-++-=ax x x x f . (1)讨论函数的单调性.20.(2020•工农月考)已知函数x x x x f )ln 1)(1()(++=,)(ln )(R m mx x x g ∈-=. (1)求)(x g 的单调区间.21.(2020•江苏月考)已知函数)1(cos )(-+=x e a x x f .(1)当1=a 时,求)(x f 在)0(π,上的单调性.22.(2020•南岗期中)已知函数x ax x f ln )(-=.(1)讨论)(x f 的单调区间;23.(2020•金安期中)已知函数ax x f 1ln )(-=,R a ∈. (1)讨论)(x f 的单调区间.。
函数单调性演习题1.(1)已知函数f(x)=x 2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a 的取值规模是.(2)已知函数f(x)=x 2+2(a-1)x+2的递减区间是(-∞,4],则实数a 的取值规模是 .(3)已知x ∈[0,1],则函数的最大值为_______最小值为_________ 2.评论辩论函数f(x)=21x ax - (a≠0)在区间(-1,1)内的单调性.解:设-1<x 1<x 2<1,则f(x 1)-f(x 2)=2111x ax --2221x ax -=)1)(1()1)((22212121x x x x x x a --+- ∵x 1,x 2∈(-1,1),且x 1<x 2,∴x 1-x 2<0,1+x 1x 2>0,(1-x 21)(1-x 22)>0 于是,当a >0时,f(x 1)<f(x 2);当a <0时,f(x 1)>f(x 2).故当a >0时,函数在(-1,1)上是增函数;当a <0时,函数在(-1,1)上为减函数.3.断定函数f (x )=-x 3+1在(-∞,0)上是增函数照样减函数,并证实你的结论;假如x ∈(0,+∞),函数f (x )是增函数照样减函数?4.已知:f (x )是界说在[-1,1]上的增函数,且f (x -1)<f (x 2-1)求x 的取值规模.5.设y=f (x )的单增区间是(2,6),求函数y=f (2-x )的单调区间.6.函数21)(++=x ax x f 在区间(-2,+∞)上是增函数,那么a 的取值规模是( )A.210<<aB.21>a C.a<-1或a>1D.a>-2解:f (x )=ax +1x +2=a(x +2)+1-2a x +2=1-2ax +2+a .任取x 1,x 2∈(-2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=1-2a x1+2-1-2a x2+2=(1-2a)(x2-x1)(x1+2)(x2+2). ∵函数f (x )=ax +1x +2在区间(-2,+∞)上为增函数,∴f (x 1)-f (x 2)<0.∵x 2-x 1>0,x 1+2>0,x 2+2>0,∴1-2a <0,a >12.即实数a 的取值规模是⎝ ⎛⎭⎪⎪⎫12+∞.x x y --+=122上是单调递减的. ), (- 在 , 由复合函数单调性可知 是单减的, 上 在 又 ), (- ), ( 而 )上是增函数, , ( 在 则由已知得 解:令 0 4 )] ( [ ) 2 ( ) 0 , 4 ( 2 ) ( 0 4 6 2 2 ) ( 6 2 ) ( , 2 ) ( ∈ = - - ∈ - = ∈ ∴ ∈ - = ∈ - = x x t f x f x x x t x x x t t t f x x t ),的单减区间是(-04)2(x f -∴7.已知函数f (x )=⎩⎪⎨⎪⎧x2+4x x ≥04x -x2x<0.若f (2-a 2)>f (a ),则实数a 的取值规模是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)解析:f (x )=⎩⎨⎧x2+4x =(x +2)2-4x ≥04x -x2=-(x -2)2+4x<0由f (x )的图象可知f (x )在(-∞,+∞)上是单调递增函数,由f (2-a 2)>f (a )得2-a 2>a ,即a 2+a -2<0,解得-2<a <1.故选C. 8.已知f (x )在其界说域R +上为增函数,f (2)=1,f (xy )=f (x )+f (y ),解不等式f (x )+f (x -2) ≤39.已知界说在区间(0,+∞)上的函数f(x)知足f()21x x =f(x 1)-f(x 2),且当x >1时,f(x)<0. (1)求f(1)的值;(2)断定f(x )的单调性;(3)若f(3)=-1,解不等式f(|x|)<-2. (1)f(1) = f(1/1) = f(1) - f(1) = 0.(2)当0 < x < y 时,y/x > 1,所以f(y) - f(x) = f(y/x) < 0 .故f 单调减.(3)f(3) = -1,f(3) = f(9/3) = f(9) - f(3),f(9) = -2而 f (|x |)<-2 = f(9),且f 单调减,所以| x | > 9 x >9或x <-910.函数f(x)对随意率性的a.b ∈R,都有f(a+b)=f(a)+f(b)-1,并且当x >0时,f(x)>1. (1)求证:f(x)是R 上的增函数; (2)若f(4)=5,解不等式f(3m 2-m-2)<3. (1)设x1,x2∈R ,且x1<x2,则x2-x1>0,∴f(x2-x1)>1.f(x2)-f(x1)=f((x2-x1)+x1)-f(x1) =f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1>0.3)2()4()8(2)2()2()4()()()(=+=∴=+=∴+=f f f f f f y f x f xy f 解:)2()2()(2x x f x f x f -=-+又)8()2(2f x x f ≤-由题意有⎪⎩⎪⎨⎧≤->->∴82020R )(2x x x x x f 上的增函数为+ (]42,解得∈x∴f (x2)>f(x1).即f(x)是R 上的增函数.(2)∵f (4)=f (2+2)=f (2)+f (2)-1=5,∴f (2)=3,∴原不等式可化为f(3m2-m-2)<f(2), ∵f(x)是R 上的增函数,∴3m2-m-2<2,解得-1<m < ,故解集为 .11.设f (x )的界说域为(0,+∞),且在(0,+∞)是递增的,)()()(y f x f y xf -=(1)求证:f (1)=0,f (xy )=f (x )+f (y );(2)设f (2)=1,解不等式2)31()(≤--x f x f .(1)证实:)()()(y f x f y xf -=,令x=y=1,则有:f (1)=f (1)-f (1)=0,)()()]()1([)()1()()1()(y f x f y f f x f y f x f y x f xy f +=--=-==.(2)解:∵)]3()1([)()31()(---=--x f f x f x f x f )3()3()(2x x f x f x f -=-+=, ∵2=2×1=2f (2)=f (2)+f (2)=f (4),∴2)31()(≤--x f x f 等价于:)4()3(2f x x f ≤-①, 且x>0,x-3>0[由f (x )界说域为(0,+∞)可得∵03)3(2>-=-x x x x ,4>0,又f (x )在(0,+∞)上为增函数, ∴①41432≤≤-⇒≤-⇔x x x .又x>3,∴原不等式解集为:{x|3<x ≤4}. 12.已知函数f (x )=3-axa -1(a ≠1). (1)若a >0,则f (x )的界说域是________;(2)若f (x )在区间(0,1]上是减函数,则实数a 的取值规模是________. 解析:34⎪⎭⎫ ⎝⎛-34,1(1)当a >0且a ≠1时,由3-ax ≥0得x ≤3a,即此时函数f (x )的界说域是⎝ ⎛⎦⎥⎥⎤-∞3a ;(2)当a -1>0,即a >1时,要使f (x )在(0,1]上是减函数,则需3-a ×1≥0,此时1<a ≤3. 当a -1<0,即a <1时,要使f (x )在(0,1]上是减函数,则需-a >0,此时a <0. 综上所述,所求实数a 的取值规模是(-∞,0)∪(1,3].13. 界说在R 上的函数()y f x =,(0)0f ≠,当0x >时,()1f x >,且对随意率性的a b R ∈、,有()()()f a b f a f b +=⋅.(1)求(0)f 的值;(2)求证:对随意率性的x R ∈,恒有()0f x >;(3)若2()(2)1f x f x x ⋅->,求x 的取值规模.解:(1)解:令0a b ==,则2(0)(0).f f = 又(0)0f ≠,(0)1f =. (2)证实:当0x <时,0x ->,∴()1f x ->∵(0)()()1f f x f x =⋅-=,∴1()0()f x f x =>- 又0x ≥时, ()10f x ≥>∴对随意率性的x R ∈,恒有()0f x >.(3)解:设12x x <,则210x x ->.∴21()1f x x ->. 又1()0f x >∴1212111211()()()[()]()()()f x f x f x f x x x f x f x x f x -=--+=--⋅=121()[1()]0f x f x x --<∴12()()f x f x <.∴()f x 是R 上的增函数. 由2()(2)1f x f x x ⋅->,(0)1f =得 2(3)(0)f x x f ->.∴230x x ->,∴03x <<∴所求的x 的取值规模为(0,3)14.已知函数f (x )对于随意率性x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值.(1)解法一:∵函数f (x )对于随意率性x ,y ∈R 总有f (x )+f (y )=f (x +y ),∴令x =y =0,得f (0)=0.再令y =-x ,得f (-x )=-f (x ). 在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2).又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2).是以f (x )在R 上是减函数. 解法二:设x 1>x 2,则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2)=f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2).又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2),∴f (x )在R 上为减函数. (2)∵f (x )在R 上是减函数,∴f (x )在[-3,3]上也是减函数,∴f (x )在[-3,3]上的最大值和最小值分离为f(-3)与f(3).而f(3)=3f(1)=-2,f(-3)=-f(3)=2.∴f(x)在[-3,3]上的最大值为2,最小值为-2.。
函数单调性测试题及答案一、选择题1. 函数 \( f(x) = -x^2 + 2x \) 在区间 (-∞, 1] 上是单调递增的,那么在区间[1, +∞) 上是单调递减的,这种说法是否正确?A. 正确B. 错误2. 函数 \( g(x) = 3x^3 - 2x^2 + x \) 的导数 \( g'(x) \) 为:A. \( 9x^2 - 4x + 1 \)B. \( 9x^2 + 4x + 1 \)C. \( -9x^2 + 4x - 1 \)D. \( -9x^2 - 4x - 1 \)3. 如果 \( h(x) \) 是一个在区间(0, +∞) 上单调递增的函数,且\( h(2) = 4 \),那么 \( h(4) \) 一定:A. 大于 4B. 等于 4C. 小于 4D. 无法确定二、填空题4. 函数 \( f(x) = x^3 - 6x^2 + 9x + 2 \) 的导数 \( f'(x) \)为 \( ________ \)。
5. 若 \( k \) 为正常数,函数 \( y = kx \) 在整个定义域上是单调递增的,那么 \( k \) 的取值范围是 \( ________ \)。
三、解答题6. 已知函数 \( f(x) = \frac{2}{x} \),请讨论其在区间 (-∞, 0) 和(0, +∞) 上的单调性,并证明。
7. 函数 \( g(x) = x^4 - 4x^3 + 4x^2 \),请找出其在定义域上的极值点,并判断其单调性。
四、证明题8. 证明函数 \( h(x) = x^3 - 3x \) 在区间 (-∞, 1) 上是单调递减的。
答案:1. A2. A3. A4. \( f'(x) = 3x^2 - 12x + 9 \)5. \( k > 0 \)6. 函数 \( f(x) = \frac{2}{x} \) 在区间 (-∞, 0) 上单调递增,在区间(0, +∞) 上单调递减。
一、选择题1.下列函数中,在区间(-∞,0)上是减函数的是( ) A .y =1-x 2 B .y =x 2+x C .y =--x D .y =xx -1[答案] D[解析] y =1-x 2在(-∞,0)上为增函数,y =x 2+x 在(-∞,0)上不单调,y =--x 在(-∞,0)上为增函数,故选D.2.已知f (x )是R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫1x >f (1)的x 的取值范围是( )A .(-∞,1)B .(1,+∞)C .(-∞,0)∪(0,1)D .(-∞,0)∪(1,+∞) [答案] D[解析] ∵f (x )在R 上单调递减且f (1x )>f (1), ∴1x <1,∴x <0或x >1.3.下列函数中,在区间(0,2)上为增函数的是( ) A .y =3-x B .y =x 2+1 C .y =1x D .y =-|x |[答案] B[解析] y =3-x ,y =1x ,y =-|x |在(0,2)上都是减函数,y =x 2+1在(0,2)上是增函数.4.若y=f(x)是R上的减函数,对于x1<0,x2>0,则()A.f(-x1)>f(-x2)B.f(-x1)<f(-x2)C.f(-x1)=f(-x2)D.无法确定[答案] B[解析]由于x1<0,x2>0,所以x1<x2,则-x1>-x2,因为y=f(x)是R 上的减函数,所以f(-x1)<f(-x2),故选B.5.函数f(x)=-x2+6x+7的单调增区间为()A.(-∞,3] B.[3,+∞)C.[-1,3] D.[3,7][答案] C[解析]方程-x2+6x+7=0的两根为x1=-1,x2=7,又y=-x2+6x+7对称轴为x=3,如图知选C.6.函数y=1-1x-1() A.在(-1,+∞)内单调递增B.在(-1,+∞)内单调递减C.在(1,+∞)内单调递增D.在(1,+∞)内单调递减[答案] C[解析]因为函数y=1-1x-1可视作函数y=-1x的图象向右平移一个单位,再向上平移一个单位得到的,所以y =1-1x -1在(-∞,1)和(1,+∞)内都是增函数,故选C.7.已知函数y =f (x )的定义域是数集A ,若对于任意a ,b ∈A ,当a <b 时都有f (a )<f (b ),则方程f (x )=0的实数根( )A .有且只有一个B .一个都没有C .至多有一个D .可能会有两个或两个以上 [答案] C[解析] 由条件知f (x )在A 上单调增,故f (x )的图象与x 轴至多有一个交点,故选C.8.如果函数f (x )=x 2+bx +c 对任意实数t ,都有f (2+t )=f (2-t ),则( ) A .f (2)<f (1)<f (4) B .f (1)<f (2)<f (4) C .f (2)<f (4)<f (1) D .f (4)<f (2)<f (1) [答案] A[解析] 由条件知,二次函数f (x )=x 2+bx +c 的对称轴为x =2,其图象开口向上,∵2-1<4-2,∴f (4)>f (1)>f (2).[点评] 当二次函数的图象开口向上时,与对称轴距离越远,对应的函数值越大;开口向下时恰好相反.9.(09·天津文)设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是()A.(-3,1)∪(3,+∞)B.(-3,1)∪(2,+∞)C.(-1,1)∪(3,+∞)D.(-∞,-3)∪(1,3)[答案] A[解析]∵f(1)=3,∴当x≥0时,由f(x)>f(1)得x2-4x+6>3,∴x>3或x<1.又x≥0,∴x∈[0,1)∪(3,+∞).当x<0时,由f(x)>f(1)得x+6>3∴x>-3,∴x∈(-3,0).综上可得x∈(-3,1)∪(3,+∞),故选A.10.设(c,d)、(a,b)都是函数y=f(x)的单调减区间,且x1∈(a,b),x2∈(c,d),x1<x2,则f(x1)与f(x2)的大小关系是()A.f(x1)<f(x2) B.f(x1)>f(x2)C.f(x1)=f(x2) D.不能确定[答案] D[解析]函数f(x)在区间D和E上都是减函数(或都是增函数),但在D∪E 上不一定单调减(或增).如图,f(x)在[-1,0)和[0,1]上都是增函数,但在区间[-1,1]上不单调.二、填空题11.考察单调性,填增或减函数y =1-x 在其定义域上为________函数; 函数y =1x 在其定义域上为________函数.[答案] 减 减12.若f (x )=⎩⎪⎨⎪⎧(x -1)2 x ≥0x +1 x <0,则f (x )的单调增区间是________,单调减区间是________.[答案] 增区间为(-∞,0]、[1,+∞),减区间[0,1] [解析] 画出f (x )=⎩⎨⎧(x -1)2 (x ≥0)x +1 (x <0)的图象如图,可知f (x )在(-∞,0]和[1,+∞)上都是增函数,在[0,1]上是减函数.13.已知函数f (x )=4x 2-mx +1,在(-∞,-2)上递减,在[-2,+∞)上递增,则f (1)=________.[答案] 21[解析] 由已知得--m2×4=-2,解得m =-16∴f (x )=4x 2+16x +1,则f (1)=21. 三、解答题14.设f (x )在定义域内是减函数,且f (x )>0,在其定义域内判断下列函数的单调性(1)y =f (x )+a (2)y =a -f (x ) (3)y =[f (x )]2.[解析] (1)y =f (x )+a 是减函数,(2)y =a -f (x )是增函数.证明从略. (3)设x 2>x 1,f 2(x 2)-f 2(x 1)=[f (x 2)+f (x 1)][f (x 2)-f (x 1)]<0,∴y =f 2(x )是减函数.15.画出函数y =|x 2-x -6|的图象,指出其单调区间.[解析] 函数解析式变形为y =⎩⎨⎧-x 2+x +6(-2≤x ≤3)x 2-x -6(x <-2或x >3)画出该函数图象如图,由图知函数的增区间为[-2,12]和[3,+∞);减区间为(-∞,-2)和[12,3].16.讨论函数y =1-x 2在[-1,1]上的单调性.[解析] 设x 1、x 2∈[-1,1]且x 1<x 2,即-1≤x 1<x 2≤1,则f (x 1)-f (x 2)=1-x 21-1-x 22=(x 2-x 1)(x 2+x 1)1-x 21+1-x 22当1>x 1≥0,1≥x 2>0,x 1<x 2时,f (x 1)>f (x 2),∴f (x )在[0,1]上为减函数,当-1≤x 1<0,-1<x 2≤0,x 1<x 2时,f (x 1)<f (x 2),∴f (x )在[-1,0]上为增函数. 17.求证:函数f (x )=x +a 2x (a >0),在区间(0,a ]上是减函数. [解析] 设0<x 1<x 2≤a ,f (x 2)-f (x 1)=(x 2+a 2x 2)-(x 1+a 2x 1)=(x 2-x 1)+a 2(x 1-x 2)x 1x 2=(x 2-x 1)(x 1x 2-a 2)x 1x2. ∵0<x 1<x 2≤a ,∴0<x 1x 2<a 2, ∴(x 2-x 1)(x 1x 2-a 2)x 1x2<0,∴f (x 2)<f (x 1), ∴f (x )=x +a 2x (a >0)在(0,a ]上是减函数.18.已知f (x )在R 上是增函数,且f (2)=0,求使f (|x -2|)>0成立的x 的取值范围.[解析] 不等式f (|x -2|)>0化为 f (|x -2|)>f (2),∵f (x )在R 上是增函数, ∴|x -2|>2,∴x >4或x <0.。
函数的单调性练习一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 11.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( ) A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x x x18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数. 20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。
函 数 单 调 性一、 选择题1.已知函数y =f (x )是定义在R 上的增函数,则f (x )=0的根 A .有且只有一个 B .有2个 C .至多有一个 D .以上均不对2.若函数f (x )=x 2+(a 2-4a +1)x +2在区间(-∞,1]上是减函数,则a 的取值范围是 A .[-3,-1] B .(-∞,-3]∪[-1,+∞)C .[1,3] D .(-∞,1]∪[3,+∞) 3.已知f (x )=⎩⎨⎧≥<+-)1(log )1(4)13(x xx a x a a 是(-∞,+∞)上的减函数,那么a 的取值范围是 A .(0,1) B .(0,31) C .[71,31) D .[71,1)4.函数f (x )在R 上是增函数,若a +b ≤0,则有( )A .f (a )+f (b )≤-f (a )-f (b )B .f (a )+f (b )≥-f (a )-f (b )C .f (a )+f (b )≤f (-a )+f (-b )D .f (a )+f (b )≥f (-a )+f (-b )5.下列四个函数:①y =x x -1;②y =x 2+x ;③y =-(x +1)2;④y =x1-x+2.其中在(-∞,0)上为减函数的是( ) A .① B .④ C .①④ D .①②④ 6.函数y =-x 2的单调减区间是( )A .[0,+∞)B .(-∞,0]C .(-∞,0)D .(-∞,+∞)7若函数f (x )定义在[-1,3]上,且满足f (0)<f (1),则函数f (x )在区间[-1,3]上的单调性是( ) A .单调递增 B .单调递减 C .先减后增 D .无法判断 8设函数f (x )在(-∞,+∞)上为减函数,则( )A .f (a )>f (2a )B .f (a 2)<f (a )C .f (a 2+a )<f (a )D .f (a 2+1)<f (a ) 9.下列说法中正确的有( )①若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数;②函数y =x 2在R 上是增函数;③函数y =-1x 在定义域上是增函数; ④y =1x的单调递减区间是(-∞,0)∪(0,+∞).A .0个B .1个C .2个D .3个二、填空题10已知y =f (x )是定义在(-2,2)上的增函数,若f (m -1)<f (1-2m ),则m 的取值范围是 .11.已知下列四个命题:①若f (x )为减函数,则-f (x )为增函数;②若f (x )为增函数,则函数g (x )=)(1x f 在其定义域内为减函数;③若f (x )与g (x )均为(a ,b )上的增函数,则f (x )·g (x )也是区间(a ,b )上的增函数;④若f (x )与g (x )在(a ,b )上分别是递增与递减函数,且g (x )≠0,则)()(x g x f 在(a ,b )上是递增函数.其中正确命题的序号是 .12若函数f (x )=4x 2-kx -8在[5,8]上是单调函数,则k 的取值范围是________. 13已知函数f (x )是区间(0,+∞)上的减函数,那么f (a 2-a +1)与f (34)的大小关系为 函 数 性 质(一)一选择题1函数()412x xf x +=的图象A. 关于原点对称B. 关于直线y=x 对称C. 关于x 轴对称D. 关于y 轴对称2设()f x 为定义在R 上的奇函数,当0x ≥时,()22xf x x b =++(b 为常数),则(1)f -= (A )-3 (B )-1 (C )1 (D)33给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,在(0,1)上单调递减的函数序号是(A )①② (B )②③ (C )③④ (D )①④ 4若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则A .f (x )与g (x )均为偶函数 B. f (x )为偶函数,g (x )为奇函数 C .f (x )与g (x )均为奇函数 D. f (x )为奇函数,g (x )为偶函数 5已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是 (A )(13,23) (B) [13,23) (C)(12,23) (D) [12,23) 6定义在R 上的偶函数()f x 满足:对任意的1212,[0,)()x x x x ∈+∞≠,有2121()()0f x f x x x -<-.则(A)(3)(2)(1)f f f <-< (B) (1)(2)(3)f f f <-< (C) (2)(1)(3)f f f -<< (D)(3)(1)(2)f f f <<-7函数22xy x =-的图像大致是8下列命题中,真命题是(A)m R,f x x mx x R ∃∈+∈2使函数()=()是偶函数 (B)m R,f x x mx x R ∃∈+∈2使函数()=()是奇函数 (C)m R,f x x mx x R ∀∈+∈2使函数()=()都是偶函数 (D)m R,f x x mx x R ∀∈+∈2使函数()=()都是奇函数函 数 的 性 质(二)一选择题1.若函数y f x x R =∈()()是奇函数,则下列坐标表示的点一定在函数y f x =()图象上的是( )A . (())a f a ,-B . (())--a f a ,C . (())---a f a ,D .(())a f a ,-2如果奇函数)(x f 在[]7,3上是增函数,且最小值是5,那么)(x f 在[]3,7--上是( )A .增函数,最小值是-5B .增函数,最大值是-5C .减函数,最小值是-5D .减函数,最大值是-53已知函数)(1222)(R x a a x f x x ∈+-+⋅=是奇函数,则a 的值为( )A .1-B .2-C .1D .24.已知偶函数)(x f 在],0[π上单调递增,则下列关系式成立的是( )A .)2()2()(f f f >->-ππ B .)()2()2(ππ->->f f fC .)2()2()(ππ->>-f f f D .)()2()2(ππ->>-f f f5已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx 是A.奇函数B.偶函数C.既奇且偶函数D.非奇非偶函数6下面四个结论中,正确命题的个数是 ①偶函数的图象一定与y 轴相交 ②奇函数的图象一定通过原点 ③偶函数的图象关于y 轴对称 ④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R )A.1B.2C.3D.4二、填空题7若函数)(x f y =是奇函数,3)1(=f ,则)1(-f 的值为____________ .8.若函数)(x f y =)(R x ∈是偶函数,且)3()1(f f <,则)3(-f 与)1(-f 的大小关系为_______________9已知f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则a =___________,b =___________. 10给定函数:①y =x1(x ≠0);②y =x 2+1;③y =2x ;④y =log 2x ;⑤y =log 2(x +12+x ). 在这五个函数中,奇函数是_________,偶函数是_________,非奇非偶函数是__________.11已知分段函数)(x f 是奇函数,当),0[+∞∈x 时的解析式为2x y =,则这个函数在区间)0,(-∞上的解析式为 .。
函数的单调性专题训练
一、选择题
1. 下列函数中,在区间
上为增函数的是( ).
A .
B .
C .
D .
2.函数
的增区间是( )。
A .
B .
C .
D .
3.
在
上是减函数,则a 的取值范围是( )。
A .
B .
C .
D .
4.若函数)(x f 在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数)(x f 在区间(a ,c )上( )
(A )必是增函数 (B )必是减函数 (C )是增函数或是减函数
(D )无法确定增减性
5.设偶函数)(x f 的定义域为R ,当[)+∞∈,0x 时,)(x f 是增函数,则),2(-f )(πf ,
)3(-f 的大小关系是 ( )
A )2()3()(->->f f f π
B )3()2()(->->f f f π
C )2()3()(-<-<f f f π
D )3()2()(-<-<f f f π
6.已知偶函数()f x 在区间[0,)+∞单调递增,则满足(21)f x -<1
()3
f 的x 取值范围是 A .(
13,23) B .(∞-,23) C .(12,23) D .⎪⎭
⎫ ⎝⎛+∞,32 7.已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2
)<0,a 的取
值范围是( ) A.(22,3) B.(3,10) C.(22,4)
D.(-2,3)
8.若(31)41()log 1a a x a
x f x x x -+≤⎧=⎨
>⎩
是R 上的减函数,那么a 的取值范围是( )
A.(0,1)
B.1(0,)3
C.11[,)73
D.1[,1)7
9.已知函数f (x )=⎩
⎪⎨
⎪⎧
a x
, x <0,
(a -3)x +4a , x ≥0.满足对任意x 1≠x 2,都有
f (x 1)-f (x 2)
x 1-x 2
<0成立,
则a 的取值范围是
( )
A .(0,3)
B .(1,3)
C .(0,1
4
]
D .(-∞,3)
二、填空题
1.函数
,当
时,是增函数,当
时是减函数,则
f(1)=_____________
2.已知 在定义域内是减函数,且
,在其定义域内判断下列函数的单调性:
① ( 为常数)是___________;
②
( 为常数)是___________;
③ 是____________;
④
是__________.
3.函数f (x ) = ax 2
+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ .
三、解答题
1.求函数 的单调递减区间.
2.证明函数x x x f 3)(3
+=在),(+∞-∞上是增函数
3.讨论函数322+-=ax x f(x)在(-2,2)内的单调性。
4.函数f(x)对任意的a 、b ∈R,都有f(a+b)=f(a)+f(b)-1,并且当x >0时,f(x)>1. (1)求证:f(x)是R
(2)若f(4)=5,解不等式f(3m 2
-m-2)<3.。