高分子材料论文:高分子材料相关研究
- 格式:docx
- 大小:12.09 KB
- 文档页数:2
高分子材料的耐热性研究高分子材料是一类具有重要应用前景的新材料,它在诸多领域中得到了广泛的应用。
然而,由于高温环境的存在,高分子材料的耐热性一直是人们关注的焦点。
本文将探讨高分子材料的耐热性问题,并介绍一些相关的研究。
1. 耐热性的重要性高分子材料的耐热性对于其应用的稳定性和可靠性有着至关重要的影响。
随着科技的进步和工业的发展,许多应用场景中都需要高分子材料能够在高温环境下保持其性能。
例如,在航空航天领域中,飞机发动机高温部件的耐热性要求非常高。
另外,在电子产品生产中,高分子材料作为绝缘材料必须能够在高温下保持电性能。
2. 影响高分子材料耐热性的因素高分子材料的耐热性受多种因素的影响。
首先是分子结构的稳定性。
高分子材料中的化学键和键长决定了分子的稳定性,从而影响了其耐热性。
其次是材料的热分解温度。
高分子材料在高温下会发生热分解,而热分解温度则决定了材料能够承受的温度范围。
此外,材料的晶化程度、分子量以及添加剂的效果也会对耐热性产生影响。
3. 高分子材料的耐热性测试方法为了准确评估高分子材料的耐热性,科研人员采用了多种测试方法。
最常用的方法是热失重分析。
通过加热样品并测量样品质量的变化,可以得到材料的热分解特性。
此外,差热分析(DTA)和热重差热分析(TG-DTA)也是常用的方法。
这些测试方法可以揭示材料在高温下的热性质变化,从而评估其耐热性能。
4. 提高高分子材料耐热性的方法为了提高高分子材料的耐热性,科研人员采用了多种方法。
首先是合适的合成方法。
在高分子材料的合成过程中,可以通过选择合适的反应条件和催化剂,调节分子结构或提高分子量,从而增强材料的耐热性。
此外,添加剂的使用也是一种常见的方法。
例如,添加阻燃剂可以提高材料的热稳定性。
另外,改变材料的晶化程度和晶体结构也可以改善耐热性。
5. 高分子材料耐热性的研究进展当前,高分子材料耐热性研究取得了显著的进展。
许多创新性的方法和材料被提出并得到应用。
高分子材料的合成与改性高分子材料,作为现代科技领域的重要基础材料之一,在各个领域都具有广泛的应用前景。
其合成与改性技术是研究者们持续关注的热点之一。
本文将探讨高分子材料的合成与改性的研究进展,并讨论其在实际应用中的意义。
首先,关于高分子材料的合成方法,目前主要包括聚合法、开环聚合法和化学修饰法等几种。
聚合法是通过共价键将单体分子连接成高分子链,形成大分子聚合物。
在聚合过程中,可以选择不同的聚合方法,如自由基聚合、阴离子聚合和阳离子聚合等,从而控制聚合物的结构和性能。
开环聚合法则是通过环化反应将单体环化成高分子。
化学修饰法是在合成高分子材料的基础上,通过引入不同的官能团或发生化学反应,改变材料的性质。
这些方法各有优劣,可根据具体需求进行选择。
高分子材料的改性是为了改善材料的性能以满足特定的应用需求。
常用的改性方法主要包括添加剂改性、共混改性和界面改性等。
添加剂改性是通过向高分子材料中添加小分子化合物或其他聚合物,以改善材料的力学性能、热学性能、电学性能等。
共混改性是将两种或多种不同性质的高分子材料混合在一起,形成新的复合材料。
界面改性则是在高分子材料和其他材料接触的界面上进行修饰,使其界面的粘接性、相容性和交联性得到增强。
这些改性方法广泛应用于高分子材料的研究和工业生产中。
高分子材料的合成与改性对于材料的性能和应用具有重要意义。
它们的研究和应用可以改善材料的力学性能、热学性能、电学性能等,从而实现更广泛的应用。
例如,在航空航天领域,通过合成和改性高分子材料,可以制备轻质、高强度、高耐高温的材料,以满足飞机、航天器等的结构需求。
在电子领域,通过合成和改性高分子材料,可以制备柔性显示器材料、导电高分子材料等,促进电子技术的发展。
在医疗领域,通过合成和改性高分子材料,可以制备生物相容性材料、药物缓释系统等,用于医疗器械和药物治疗。
因此,高分子材料的合成与改性在现代科技应用中具有广泛的前景和潜力。
综上所述,高分子材料的合成与改性是当前研究的热点,并在各个领域具有重要意义。
论文题目:注塑成型工艺——聚碳酸酯光盘生产技术课程名称聚合物加工姓名檀笑风学号0814121034专业08高分子材料与工程一班任课老师钱浩摘要:本文借助聚碳酸酯的光盘生产技术,对注塑加工工艺流程做了系统介绍。
从工艺特性、基材和注塑机的选取、工艺流程、工艺影响因素、常见问题和解决方案,几个角度作了清晰的介绍。
对今后的学习工作具有现实的指导意义。
关键词:光盘注塑工艺聚碳酸酯一、聚碳酸酯的工艺特性中文名称:2,2-(4-羟基苯基)丙烷聚碳酸酯英文名称:Polycarbonate化学结构:物化特性:①聚碳酸酯是一种无定型、无味、透明的热塑性工程塑料,其相对密度为1.20,具有良好的透光性,折光率为1.586;②聚碳酸酯主要特点是机械性能良好,既韧又刚、无缺口,冲击强度在热塑性塑料中名列前茅,接近玻璃纤维增强的酚醛或不饱和树脂,呈延性断裂。
成型的零件可达到很精密的公差,并在很宽的范围内保持尺寸稳定,优于聚酰胺ABS和聚甲醛;③热塑性好,热变性温度在135一145℃之间。
与其他塑料相比,聚碳酸酯的线胀系数低,且加人玻璃纤维后能降低l/3。
100℃以上长时间热处理,刚性稍有增加,弹性模量、弯曲强度、拉伸强度也随之增加,而抗冲值有所降低。
在100℃以上退火,可消除内应力;④聚碳酸酯具有良好的电性能,在较宽的湿度范围内,电绝缘性恒定,并耐电晕性。
聚碳酸酯体积电阻率和介电强度与聚酯薄膜相当。
另外还有自熄、易增强、阻燃、能着色等特性。
二、光盘制作对基材的要求在信息工业中,光盘生产已形成一项引人注目的高科技产业。
光盘基片由塑料加工而成,主要有两种加工方法:一种为刻录法,每片光盘先用4 种不同材料的塑料薄膜压制而成,然后用激光刻录。
这种方法生产速度慢、成本高,只适合于小批量生产。
另一种为注塑成型法,即通过塑料的注塑加工技术制作。
光盘主要通过塑料的精密注塑成型来完成。
注塑加工是光盘复制工艺过程的关键技术,在精密注塑过程中要将微小的凹槽精密地复制出来,不仅塑料基片的平面度要求很高,而且要求质量很均匀、残余应力很低,在进行检测时双折射要低。
高分子材料与工程专业导论课程论文1.高分子的定义高分子又称作聚合物,由小分子相互反应而形成,高分子与低分子的区别在于前者分子量很高。
通俗地说,高分子是一种许许多多原子由共价键连接而组成的相对分子质量很大的化合物。
更精确的描述是,高分子是指其分子主链上的原子都直接以共价键连接,且链上的成键原子都共享成键电子的化合物,这样组成的高分子链的键的类型,除了共价键外,还可以包括某些配位键和缺电子键,而金属键和离子键是被排除在外的。
我对高分子的分类总结如下:其中合成高分子,又可分为橡胶、纤维和塑料三大类,常称为三大合成材料,合成橡胶的主要品种有丁苯橡胶、顺丁橡胶和异戊橡胶等。
合成纤维的主要品种有涤纶、腈纶、锦纶、维纶和丙纶。
塑料还可分为热塑性塑料和热固性塑料,前者为线性聚合物,受热可熔融流动,可多次重复加工成型,主要品种有聚乙烯、聚丙烯和聚苯乙烯;后者是网状聚合物,通常由线性聚合物或低聚物经交联得到,以后不能加热融化重复成型,主要品种有酚醛树脂、不饱和聚酯、环氧树脂等。
此外,聚合物还可作为涂料和粘合剂来使用,而且使用越来越广泛,也有人将他们单独列为两类,所以聚合物按应用分类,也应包括上述五大合成材料。
最近,着眼于聚合物所具有的特定的物理、化学、生物功能的功能高分子,也已成为新的重要一类。
天然高分子,也有有机高分子和无机高分子之分。
天然高分子,如人们所熟悉的石棉、石墨、金刚石、云母等,天然有机高分子,都是在生物体内制造出来的,储存能量的肝糖、淀粉,生物体外分泌物如蚕丝、蛛丝、植物的橡胶,还有储存遗传信息的核酸。
2.高分子材料科学的发展简史(以塑料的发展为例)从第一个塑料产品赛璐珞诞生算起,塑料工业迄今已有120年的历史。
其发展历史可分为三个阶段。
1.天然高分子加工阶段这个时期以天然高分子,主要是纤维素的改性和加工为特征。
1869年美国人J.W.海厄特发现在硝酸纤维素中加入樟脑和少量酒精可制成一种可塑性物质,热压下可成型为塑料制品,命名为赛璐珞。
高分子合成材料范文高分子合成材料是一种由化学合成而成的大分子化合物,通常具有高分子量、高强度和高导电性等特点。
高分子合成材料广泛应用于各个领域,如塑料、橡胶、纤维、涂料、胶黏剂等。
在本篇文章中,将会探讨高分子合成材料的特点、分类以及应用领域。
1.高分子量:高分子合成材料的分子量通常在10^4-10^6之间,因此具有较高的物理强度和化学稳定性。
2.可塑性:高分子合成材料具有较好的塑性,可以通过热加工、注塑等方法加工成不同形状的制品。
3.耐磨性:高分子合成材料通常具有较好的耐磨性能,可以用于制造耐磨部件,如轮胎、刷子等。
4.耐化学性:高分子合成材料通常具有较好的耐化学性,不易受到化学药品的侵蚀。
1.聚合物:聚合物是一种由同种或不同种化学单体通过聚合反应合成的高分子化合物,可以进一步分为塑料和橡胶。
塑料是一种具有可塑性的高分子合成材料,可以根据聚合单体的不同特性,如聚乙烯、聚丙烯、聚氯乙烯等分类。
橡胶是一种具有高弹性的高分子合成材料,可以根据其硬度和化学结构的不同,如天然橡胶、丁苯橡胶等。
2.高分子复合材料:高分子复合材料由高分子基质和增强材料组成,可以提高材料的力学性能。
常见的高分子复合材料包括聚合物基复合材料、纳米复合材料和纤维增强复合材料等。
3.高分子溶液:高分子溶液是指高分子化合物在溶剂中形成的溶液。
通过调整高分子溶液的浓度、溶剂的种类和温度等条件,可以使其具有不同的性质和应用前景。
1.医疗领域:高分子合成材料被广泛用于医疗器械的制造,如医用塑料制品、人工骨骼和人工器官等。
此外,高分子合成材料还被用于制造药物缓释系统和生物医学材料。
2.电子领域:高分子合成材料被广泛应用于电子器件的制造,如电子电缆、绝缘材料和电子芯片等。
3.环保领域:高分子合成材料被广泛应用于环保材料的研发和生产,如可降解塑料和水处理材料等。
4.能源领域:高分子合成材料被应用于太阳能电池板、燃料电池和锂离子电池等能源领域。
总之,高分子合成材料具有高分子量、可塑性、耐磨性和耐化学性等特点,广泛应用于医疗、电子、环保和能源等领域。
《高分子材料与人们的生活》摘要:高分子材料作为新时期的全新全能型材料,是现代人类发展的重要支柱,是发展高新科技的基础与先导,高分子材料的应用将会使人类支配改造自然的能力和社会生产力的发展带到一个新的水平,对人类的发展将会出现前所未有的促进。
本文将从高分子材料的定义、主要种类、应用和以塑料为例介绍与人类生活息息相关的高分子材料的相关常识。
关键词:高分子材料塑料新型高分子材料高分子材料的定义高分子材料:以高分子化合物为基础的材料,高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。
高分子材料按来源分类高分子材料按来源分,可分为天然高分子材料、半合成高分子材料和合成高分子材料。
天然高分子材料包括纤维素、蛋白质、蚕丝、橡胶、淀粉等。
合成高分子材料以及以高聚物为基础的,如各种塑料,合成橡胶,合成纤维、涂料与粘接剂等。
生活中的高分子材料生活中的高分子材料很多,如蚕丝、棉、麻、毛、玻璃、橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。
生活中的高分子材料种类繁多,主要组成成分有以下几种:1、聚乙烯乙烯(代号PE)是由乙烯聚合而成的高分子化合物,由于生产工艺中所用的压力不同,可分为高压、中压、低压聚乙烯,它们的密度和分子量不同,性能和用途也有所不同。
随着石油工业的发展,乙烯来源越来越充沛,目前聚乙烯塑料已成为世界上产量最大的塑料品种。
聚乙烯是一种无色、无味的热塑性塑料,因为其不像聚氯乙烯塑料分子中含有氯元素以及一般有毒性的添加剂,所以聚乙烯塑料是无毒性的。
因此,日常生活中使用的塑料茶杯、塑料碗、塑料水壶、食品包装袋等,都是用聚乙烯塑料制成。
聚乙烯塑料的电绝缘性强而吸水率极低,所以可用来制造各种高频电缆、海底电缆的绝缘层和保护层。
聚乙烯塑料具有耐晒、耐水的性能,聚乙烯薄膜可用于温室大棚;聚乙烯拉成丝可织渔网,既轻便牢固,又不易腐烂。
高分子材料与工程论文
高分子材料是一种具有高分子化学结构的材料,具有独特的物理性能和化学性质。
在工程领域中,高分子材料的应用日益广泛,涉及到塑料、橡胶、纤维等多个领域。
本文将就高分子材料的特性、应用及未来发展方向进行探讨。
首先,高分子材料具有良好的加工性能,可以通过热塑性或热固性工艺进行成型。
其次,高分子材料具有较高的强度和韧性,可以用于制造各种结构件和零部件。
此外,高分子材料还具有良好的耐腐蚀性能和绝缘性能,适用于化工、电气等领域。
另外,高分子材料还具有较好的可塑性和可回收性,有利于环保和资源循环利用。
在工程领域中,高分子材料被广泛应用于汽车制造、航空航天、建筑材料、电
子产品等多个领域。
例如,汽车制造中的塑料零部件、航空航天中的复合材料结构件、建筑材料中的隔热材料、电子产品中的绝缘材料等,都离不开高分子材料的应用。
高分子材料的应用不仅可以降低产品成本,提高产品性能,还可以减轻产品重量,节约能源,有利于推动工程技术的发展。
未来,随着科学技术的不断进步,高分子材料的研究和应用将迎来新的发展机遇。
例如,纳米材料、生物可降解材料、功能性高分子材料等将成为研究热点,为工程领域提供更多的新材料和新技术。
同时,高分子材料的再生利用和循环利用将成为未来发展的趋势,有助于推动工程领域的可持续发展。
综上所述,高分子材料在工程领域中具有重要的地位和作用,其特性和应用对
工程技术的发展起着重要的推动作用。
未来,高分子材料的研究和应用将继续深入,为工程领域带来更多的创新和发展机遇。
希望本文能够对高分子材料及工程领域的相关研究和应用提供一定的参考和借鉴。
高分子材料的可持续发展与循环利用研究随着全球环境问题的日益严重,可持续发展和资源循环利用成为了全球范围内的热议话题。
在这个背景下,高分子材料可持续发展和循环利用的研究显得特别重要。
本文将探讨高分子材料的可持续发展和循环利用,并提出一些相关研究的观点和建议。
一、可持续发展的背景和重要性可持续发展是指在满足当前需求的同时,不影响未来世代满足其需求的能力。
在过去的几十年里,人们对于资源的过度开采、能源的过度消耗和环境污染等问题导致了严重的环境破坏和生态危机。
为了改变这种状况,可持续发展的理念被提出,并逐渐在全球范围内推广。
高分子材料是一类重要的工程材料,广泛应用于汽车、建筑、电子等领域。
然而,高分子材料的生产和使用过程中常常伴随着大量的资源消耗和环境污染,这与可持续发展的理念相冲突。
因此,研究高分子材料的可持续发展和循环利用,既是迫切需要解决的问题,也是推进可持续社会发展的一种重要途径。
二、高分子材料的循环利用高分子材料的循环利用是指将废弃的高分子制品进行再生、回收和再利用,以减少资源消耗和环境压力。
目前,高分子材料的循环利用主要包括物理回收、化学回收和能源回收三种方式。
1. 物理回收物理回收是指通过物理方法将废弃的高分子制品进行分离和纯化,以获得高质量的再生材料。
常见的物理回收方法包括筛选、干燥、磨粉等。
物理回收的优点是操作简单,能够保持高分子材料的原有性能,但对于一些复杂的高分子制品,物理回收效果可能不佳。
2. 化学回收化学回收是指利用化学方法将废弃的高分子制品进行降解和转化,获得可再利用的化合物。
化学回收常常通过热解、溶解和重聚等过程来实现。
化学回收的优点是可以处理复杂的高分子制品,并能够得到高纯度的再生材料,但需要消耗较多的能量和化学试剂。
3. 能源回收能源回收是指将废弃的高分子制品通过焚烧等方式转化为能源,如热能和电能。
能源回收的优点是能够最大限度地利用资源,并减少废弃物的排放,但焚烧过程中可能产生有毒气体和固体废物,对环境造成二次污染。
高分子材料论文3000字近年来,高分子材料处于不断变化发展中,并且随着它的不断发展,已经渗透到人类生活中的方方面面。
因此,高分子材料在日常生活中的生产和生活活动中发挥着重要作用。
高分子材料又称之为聚合物材料,主要是由无数个小分子化合物通过化学键,进而形成的大分子化合物,称之为聚合物材料。
在日常的生产生活中常见的高分子材料主要有合成橡胶、合成纤维、合成塑料等,并且在新中国成立之后,上述高分子材料在日常生活中得到了广泛应用,例如服装业、日用品,以及各种工业材料中,满足了各行业对高分子材料的需求。
此外,在未来高分子材料将会运用于纳米高分子材料复合应用、生物可降解高分子材料、高分子材料功能化,以及航空航天领域。
二、高分子材料的发展高分子材料是一种聚合物大分子化学品,其组成主要是由半人工和人工合成的高分子材料,与其他化合物的主要区别是高分子材料在化学性质和物理性质上均能发生较大变化,可以有一些特殊功能,例如光学、电学等功能。
此外,随着科学技术的不断进步,新能源开发、微电子和生物医药的不断发展,高分子材料得到了更广泛的应用,其作用主要表现在以下结果方面。
其一,使用高分子材料设计合成新能物质,并且具有新功能,例如研制出的新型非晶质光盘,具有较好的耐腐蚀性,几乎不会被腐蚀,这一特性主要是来自于非晶质合金表面生成的耐腐性保护膜。
其二,高分子材料利用特别的加工方式来增加磁疗的特殊功能,如利用高分子膜和塑料光纤使高分子材料更加容易加工成型,并且降低其加工成本。
其三,使用两种或者两种以上性能不同的高分子材料,经过复合化学反应形成新的高分子材料,如屏蔽导电、塑料以及复合层的复合填料。
当前,随着高分子材料在生产生活中的应用日益加深,其与众不同之处逐渐凸显出来,它可以代替日常生产生活中的许多材料,并且可以通过高分子材料来改善其他材料的功能和性能,使他们成为一种全新材料,进而更好的发挥他们的功能。
进而,我国也对高分子材料这一领域的研究较为重视,在自我研发的基础上,不断加强了国际研究领域的沟通交流。
高分子材料论文:
高分子材料相关研究
摘要:包括塑料、橡胶、纤维、薄膜、胶粘剂和涂料等。
其中,被称为现代高分子三大合成材料的塑料、合成纤维和合成橡胶已经成为国民经济建设与人民日常生活所必不可少的重要材料。
关键词:高分子材料化学分子
高分子材料:macromolecular material,以高分子化合物为基础的材料。
高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。
所有的生命体都可以看作是高分子的集合。
一、按特性分析高分子材料
高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。
①橡胶是一类线型柔性高分子聚合物。
其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。
有天然橡胶和合成橡胶两种。
②高分子纤维分为天然纤维和化学纤维。
前者指蚕丝、棉、麻、毛等。
后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。
纤维的次价力大、形变能力小、模量高,一般为结晶聚合物。
③塑料是以合成树脂或化学改性的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。
其分子间次价力、模量和形变量等介于橡胶和纤维之间。
通常按合成树脂的特性分为热固性塑料和热塑性塑料;按用途又分为通用塑料和工程塑料。
④高分子胶粘剂是以合成天然高分子化合物为主体制成的胶粘材料。
分为天然和合成胶粘剂两种。
应用较多的是合成胶粘剂。
⑤高分子涂料是以聚合物为主要成膜物质,添加溶剂和各种添加剂制得。
根据成膜物质不同,分为油脂涂料、天然树脂涂料和合成树脂涂料。
⑥高分子基复合材料是以高分子化合物为基体,添加各种增强材料制得的一种复合材料。
它综合了原有材料的性能特点,并可根据需要进行材料设计。
二、现代新型高分子材料
高分子材料包括塑料,尽管高分子材料因普遍具有许多金属和无机材料所无法取代的优点而获得迅速的发展,但目前业已大规模生产的还是只能寻常条件下使用的高分子物质,即
所谓的通用高分子,它们存在着机械强度和刚性差、耐热性低等缺点。
而现代工程技术的发展,则向高分子材料提出了更高的要求,因而推动了高分子材料向高性能化、功能化和生物化方向发展,这样就出现了许多产量低、价格高、性能优异的新型高分子材料。
1.高分子分离膜
高分子分离膜是用高分子材料制成的具有选择性透过功能的半透性薄膜。
采用这样的半透性薄膜,以压力差、温度梯度、浓度梯度或电位差为动力,使气体混合物、液体混合物或有机物、无机物的溶液等分离技术相比,具有省能、高效和洁净等特点,因而被认为是支撑新技术革命的重大技术。
膜分离过程主要有反渗透、超滤、微滤、电渗析、压渗析、气体分离、渗透汽化和液膜分离等。
用来制备分离、渗透汽化和液膜分离等。
用来制备分离膜的高分子材料有许多种类。
现在用的较多的是聚枫、聚烯烃、纤维素脂类和有机硅等。
膜的形式也有多种,一般用的是平膜和空中纤维。
推广应用高分子分离膜能获得巨大的经济效益和社会效益。
例如,利用离子交换膜电解食盐可减少污染、节约能源:利用反渗透进行海水淡化和脱盐、要比其它方法消耗的能量都小;利用气体分离膜从空气中富集氧可大大提高氧气回收率等。
2.高分子磁性材料
高分子磁性材料,是人类在不断开拓磁与高分子聚合物的新应用领域的同时,而赋予磁
与高分子的传统应用以新的涵义和内容的材料之一。
早期磁性材料源于天然磁石,以后才利用磁铁矿(铁氧体)烧结或铸造成磁性体,现在工业常用的磁性材料有三种,即铁氧体磁铁、稀土类磁铁和铝镍钴合金磁铁等。
它们的缺点是既硬且脆,加工性差。
为了克服这些缺陷,将磁粉混炼于塑料或橡胶中制成的高分子磁性材料便应运而生了。
这样制成的复合型高分子磁性材料,因具有比重轻、容易加工成尺寸精度高和复杂形状的制品,还能与其它元件一体成型等特点。
3.光功能高分子材料
光功能高分子材料,是指能够对光进行透射、吸收、储存、转换的一类高分子材料。
目前,这一类材料已有很多,主要包括光导材料、光记录材料、光加工材料、光学用塑料、光转换系统材料等。
光功能高分子材料在整个社会材料对光的透射,可以制成品种繁多的线性光学材料,又可以开发出非线性光学元件,如储存元件兴盘的基本材料就是高性能的有机玻璃
和聚碳酸脂。
此外,利用高分子材料的光化学反应,可以开发出在电子工业和印刷工业上得到广泛使用的感光树脂、光固化涂料及粘合剂;利用高分子材料的能量转换特性,可制成光导电材料和光致变色材料;利用某些高分子材料的折光率随机械应力而变化的特性,可开发出光
弹材料,用于研究力结构材料内部的应力分布等。
4.高分子复合材料
高分子材料和另外不同组成、不同形状、不同性质的物质复合粘结而成的多相材料。
高分子复合材料最大优点是博各种材料之长,如高强度、质轻、耐温、耐腐蚀、绝热、绝缘等性质,根据应用目的,选取高分子材料和其他具有特殊性质的材料,制成满足需要的复合材料。
高分子复合材料分为两大类:高分子结构复合材料和高分子功能复合材料。
以前者为主。
高分子结构复合材料包括两个组分:①增强剂。
为具有高强度、高模量、耐温的纤维及织物,如玻璃纤维、氮化硅晶须、硼纤维及以上纤维的织物。
②基体材料。
主要是起粘合作用的胶粘剂,如不饱合聚酯树脂、环氧树脂、酚醛树脂、聚酰亚胺等热固性树脂及苯乙烯、聚丙烯等热塑性树脂,这种复合材料的比强度和比模量比金属还高,是国防、尖端技术方面不可缺少的材料。
三、高分子材料的合成与加工
高分子材料在加工之前,要先进行合成,把单体合成为聚合物进行造粒,然后才进行熔融加工。
高分子材料的合成方法有本体聚合、悬浮聚合、乳液聚合和溶液聚合。
这其中引发剂起了很重要的作用,偶氮引发剂和过氧类引发剂都是常用的引发剂,高分子材料助剂往往对
高分子材料性能的改进和成本的降低也有很明显的作用。
成型过程中,聚合物有可能受温度、压强、应力及作用时间等变化的影响,导致高分子降解、交联以及其他化学反应,使聚合物的聚集态结构和化学结构发生变化。
因此加工过程不仅决定高分子材料制品的外观形状和质量,而且对材料超分子结构和织态结构甚至链结构有重要影响。