2018年重庆沙坪坝区八年级下期末数学试题含答案
- 格式:doc
- 大小:728.00 KB
- 文档页数:12
沙坪坝区2017—2018学年度第二学期期末调研测试八年级数学试题参考答案及评分意见一、选择题:题号123456789101112答案ADBADDCDCCBD二、填空题:13.2018-≠x ;14.10;15.5.1;16.88;17.48;18.257.三、解答题:19.解:(1)052=-x x 0)15(=-x x 0=x 或015=-x ∴=1x 0,512=x ----------------------------------------------------------------------4分(2)∵1,5,3-===c b a ,37)1(345422=-⨯⨯-=-ac b ----------------6分∴32375242⨯±-=-±-=a ac b b x 即63751+-=x ,63752--=x --------------------------------------------------8分20.解:(1)12+18+24+4+1+1=60答:参加降度明星大赛的孩子共有60人.----------------------------------------2分(2)由表可知:众数:300(度)中位数:2502300200=+(度)平均数:606005004004300242001810012++⨯+⨯+⨯+⨯=245(度)∴众数、中位数、平均数分别为300度、250度、245度.----------------------8分四、解答题:21.解:(1)∵□ABCD 中,ABC ∠=50°,∴︒==∠50ABC ADC ,--------------------------------------------------------------2分∵DF 平分ADC ∠,∴︒=∠=∠2521ADC FDC .----------------------------------------------------------4分(2)∵□ABCD ,∴AE ∥BC ,∴CBE AEB ∠=∠,∵BE 平分ABC ∠,∴AEB CBE ABE =∠=∠∴AB AE =----------------------------------------------------------6分又∵5=AB ∴5=AE ∵3=DE ,∴835=+=+=DE AE AD ----------------------------------------------------------8分∴C □ABCD .26)85(22=+=+=)(AD AB ----------------------------------------10分22.解:(1)∵点A 在反比例函数2y x =-的图象上,且点A 的纵坐标为4,∴42x =-.解得:2x =-∴A (2,4)-.-------------------------------------------------------------------------1分∵OB =6,∴B (6,0)-------------------------------------------------------------------------2分∵A (2,4)-、B (6,0)在y kx b =+的图象上∴2460k b k b -+=⎧⎨+=⎩解得:123k b ⎧=-⎪⎨⎪=⎩-----------------------------------------4分∴一次函数的解析式为:132y x =-+---------------------------------------5分(2)∵2y x =-向下平移3个单位的直线为:23y x =-----------------7分∴23132y x y x =--⎧⎪⎨=-+⎪⎩解得:45x y =-⎧⎨=⎩----------------------------------------------------------------9分∴(4,5)C -----------------------------------------------------------------------10分23.解:(1)设年平均增长率为x -----------------------------------------------------------------1分220(1)28.8x +=----------------------------------------------------------3分解得:10.220%x ==2 2.2x =-(舍)----------------------------------------4分答:年平均增长率为20%----------------------------------------------------------5分(2)设每碗售价定为y 元时,每天利润为6300元[](6)30030(25)6300y y -+-=--------------------------------------------------------7分解得:120y =221y =----------------------------------------------------------------9分∵每碗售价不得超过20元∴20y =答:当每碗售价定为20元时,店家才能实现每天利润6300元。
八年级下期末试题2018一、选择题(本大题共15小题,每小题3分,共45分)1.若a >b ,则下列各式中一定成立的是( )A .a +2<b +2B .a 一2<b 一2C .a 2>b2 D .-2a >-2b2.下面式子从左边到右边豹变形是因式分解的是( )A .x 2-x -2=x (x 一1)-2B .x 2—4x +4=(x 一2)2C .(x +1)(x —1)=x 2 - 1D .x -1=x (1-1x )3下列所培图形中·既是中心对称图形又是轴对称图形的是()A B C D 4.多项式x 2-1与多项式x 2一2x +1的公因式是( )A .x 一1B .x +1C .x 2一1D .(x -1)2 5己知一个多边形的内角和是360°,则这个多边形是( )A .四边形B .五边形C .六边形D .七边形 6. 下列多项式能用完全平方公式分解因式的有 ( )A .m 2-mn +n 2B .x 2+4x – 4 C. x 2-4x +4 D. 4x 2-4x +4 7.如图,将一个含30°角的直角三角板ABC 绕点A 旋转,得点B ,A ,C ′,在同一条直线上,则旋转角∠BAB ′的度数是( ) A .60° B .90° C .120°D .150°30°B'C 'CBA8.运用分式的性质,下列计算正确的是( )A .x 6x 2 =x 3 B .-x +y x -y =-1 C .a +x b +x =a b D .x +y x +y =09.如图,若平行四边形ABCD 的周长为40cm ,BC =23AB ,则BC =( )A .16crnB .14cmC .12cmD .8cmOCABD10.若分式方程x -3x -1=mx -1有增根,则m 等于( )A .-3B .-2C .3D .211.如图,△ABC 中,AB =AC =15,AD 平分∠BAC ,点E 为AC 的中点,连接DE ,若△CDE 的周长为24,则BC 的长为( )A .18B .14C .12D .6EDBCA12.如图,己知直线y 1=x +m 与y 2=kx —1相交于点P (一1,2),则关于x 的不等式x +m <kx —1的解集在数轴上表示正确的是( )xy2-1POA .B .C .D .13.如图,在菱形ABCD 中,对角线AC 、BD 相较于点O ,BD =8,BC =5,AE ⊥BC 于点E ,则AE 的长为( ) A .5B .125C .245D .185A DOBCE14.定义一种新运算:当a >b 时,a ○+b =ab +b ;当a <b 时,a ○+b =ab -b .若3○+(x +2)>0,则x 的取值范围是( )A .-1<x <1或x <-2B .x <-2或1<x <2C .-2<x <1或x >1D .x <-2或x >215.在平面直角坐标系xOy 中,有一个等腰直角三角形AOB ,∠OAB =90°,直角边AO 在x 轴上,且AO =1.将Rt △AOB 绕原点O 顺时针旋转90°得到等腰直角三角形A 1OB 1,且A 1O =2AO ,再将Rt △A 1OB 1绕原点O 顺时针旋转90°得到等腰三角形A 2OB 2,且A 2O =2A 1O ……,依此规律,得到等腰直角三角形A 2017OB 2017.则点B 2017的坐标( ) A .(22017,-22017) B .(22016,-22016) C .(22017,22017) D .(22016,22016)x y B 2A 2B 1A 1ABO二、填空题(本大题共5小题,每小题4分,共20分)16.若分式1x -1有意义,则x 的取值范围是_______________.17.若m =2,则m 2-4m +4的值是_________________.18.如图,已知∠AOB =30°,P 是∠AOB 平分线上一点,CP //OB ,交OA 于点C ,PD ⊥OB ,垂足为点D ,且PC =4,则PD 等于_____________.C D AOBP19.不等式组⎩⎨⎧x >4x >m(m ≠4)的解集是x>4,那么m的取值范围是_______________.20.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 方向平移2个单位后得到△DEF ,连接DC ,则DC 的长为________________.21.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG ≌△AFG ;②BG =CG ;③AG //CF ;④S △EFC =125.其中正确结论的是____________(只填序号).22.(本小题满分7分) (1)分解因式:ax 2-ay 2;(2)解不等式组⎩⎨⎧x -1<2 ①2x +3≥x -1 ②,并把不等式组的解集在数轴上表出来.23(本小题满分7分)(1)如图,在 ABCD 中,点E ,F 分别在AB ,CD 上,AE =CF .求证:DE =BF .(2)先化简,再求值:(1a +2-1a -2)÷1a -2,其中a =624.(本小题满分8分)在平面直角坐标系中,△ABC 的位置如图所示(每个小方格都是边长1个单位长度的正方形).(1)将△ABC 沿x 轴方向向左平移6个单位,画出平移后得到的△A 1B 1C 1; (2)将△ABC 绕着点A 顺时针旋转90°,画出旋转后得到的△AB 2C 2; (3)直接写出点B 2、C 2的坐标.25.(本小题满分8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同. (1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么,最多可购买多少件甲种商品?26.(本小题满分9分)探索发现:11×2=1-12;12×3=12-13;13×4=13-14……根据你发现的规律,回答下列问题: (1)14×5=___________,1n ×(n +1)=___________;(2)利用你发现的规律计算:11×2+12×3+13×4+……+1n ×(n +1)(3)灵活利用规律解方程: 1x (x +2)+1(x +2)(x +4)+……+1(x +98)(x +100)=1x +100.27.(本小最满分9分)如图1,已知四边形ABCD 是正方形,对角线AC 、BD 相交于点E ,以点E 为顶点作正方形EFGH .(1)如图1,点A 、D 分别在EH 和EF 上,连接BH 、AF ,直接写出BH 和AF 的数量关系:(2)将正方形EFGH 绕点E 顺时针方向旋转①如图2,判断BH 和 AF 的数量关系,并说明理由;②如果四边形ABDH 是平行四边形,请在备用图中不劝图形;如果四方形ABCD 的边长为\R (,2),求正方形EFGH 的边长.28.(本小题满分9分)如图,矩形ABCO 中,点C 在x 轴上,点A 在y 轴上,点B 的坐标是(一6,8).矩形ABCO 沿直线BD 折叠,使得点A 落在对角线OB 上的点E 处,折痕与OA 、x 轴分别交于点D 、F .(1)直接写出线段BO 的长: (2)求点D 的坐标;(3)若点N是平面内任一点,在x轴上是否存在点M,使咀M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标:若不存在,请说明理由.专业资料word格式可复制编辑。
2017-2018学年重庆市梁平县八年级(下)期末数学试卷一、选择题(本大题共12个小题每小题4分,共48分)在每个小题的下面都给出了代号为AB、cD的四个答案其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑1.(4分)代数式2x,,x+,中分式有()A.1个B.2个C.3个D.4个2.(4分)在平面直角坐标系中,点(﹣2,0)所在的位置是()A.y轴B.x轴C.原点D.二象限3.(4分)分式方程=1的解为()A.x=﹣2B.x=﹣3C.x=2D.x=34.(4分)如图,在矩形ABCD中对角线AC、BD相交于点O,∠ACB=60°,则∠AOB 的大小为()A.30°B.60°C.120°D.150°5.(4分)如图所示,由已知条件推出结论错误的是()A.由∠1=∠5,可以推出AB∥CDB.由AD∥BC,可以推出∠4=∠8C.由∠2=∠6,可以推出AD∥BCD.由AD∥BC,可以推出∠3=∠76.(4分)某班组织了一次读书活动,统计了10名同学在一周内的读书时间,他们一周内的读书时间累计如表,则这10名同学一周内累计读书时间的中位数是()一周内累计的读书时间(小时)581014人数(个)1432A.8B.7C.9D.107.(4分)将分式中的x,y的值同时扩大为原来的2015倍,则变化后分式的值()A.扩大为原来的2015倍B.缩小为原来的C.保持不变D.以上都不正确8.(4分)如图所示,下列结论中不正确的是()A.a组数据的最大数与最小数的差较大B.a组数据的方差较大C.b组数据比较稳定D.b组数据的方差较大9.(4分)有下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD.从中选取两个作为补充条件,使▱ABCD为正方形(如图).现有下列四种选法,其中错误的是()A.②③B.②④C.①②D.①③10.(4分)已知y与(x﹣2)成正比例,当x=1时,y=﹣2.则当x=3时,y的值为()A.2B.﹣2C.3D.﹣311.(4分)如果关于x的一次函数y=(a+1)x+(a﹣4)的图象不经过第二象限,且关于x的分式方程+2=有整数解,那么整数a值不可能是()A.0B.1C.3D.412.(4分)如图,四边形OABC是平行四边形,对角线OB在y轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A,C作x轴的垂线垂足分别为M和N,则有以下的结论:①ON=OM;②△OMA≌△ONC;③阴影部分面积是(k1+k2);④四边形OABC是菱形,则图中曲线关于y轴对称其中正确的结论是()A.①②④B.②③C.①③④D.①④二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.(4分)在某校举行的“汉字听写”大赛中,六名学生听写汉字正确的个数分别为:35,31,32,31,35,31,则这组数据的众数是.14.(4分)小数0.00002l用科学记数法表示为.15.(4分)如图,在△ABC中,∠A=∠B,D是AB边上任意一点DE∥BC,DF∥AC,AC =5cm,则四边形DECF的周长是.16.(4分)计算:=.17.(4分)中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化,如图,如果士所在位置的坐标为(﹣1,﹣2),相所在位置的坐标为(2,﹣2),那么将棋子炮右移一格后的位置的坐标为.18.(4分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AE,延长EF交边BC于点G,连结AG,CF,则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤S△FGC=;其中正确的结论有.三、解答题(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上19.(8分)如图,在▱ABCD中,AC为对角线,BF⊥AC,DE⊥AC,F、E为垂足,求证:BF=DE.20.(8分)在期末考试来临之际,同学们都进入紧张的复习阶段,为了了解同学们晚上的睡眠情况,现对年级部分同学进行了调查统计,并制成如下两幅不完整的统计图:(其中A代表睡眠时间8小时左右,B代表睡眠时间6小时左右,C代表睡眠时间4小时左右,D代表睡眠时间5小时左右,E代表睡眠时间7小时左右),其中扇形统计图中“E”的圆心角为90°,请你结合统计图所给信息解答下列问题:(1)共抽取了名同学进行调查,同学们的睡眠时间的中位数是小时左右,并将条形统计图补充完整;(2)请你估计年级每个学生的平均睡眠时间约多少小时?四、解答题:(本大题5个小題,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上21.(10分)某高速公路要对承建的工程进行招标,现在甲、乙两个工程队前来投标,根据两队的申报材料估计:若甲、乙两队合作,24天可以完成;若由甲队单独做20天后,余下的工程由乙队做,还需40天完成,求甲、乙两队单独完成这项工程各需多少天?22.(10分)下面是小明化简的过程解:=①=②=﹣③(1)小明的解答是否正确?如有错误,错在第几步?(2)求当x=时原代数式的值.23.(10分)如图,一次函数y=﹣x+4的图象与x轴y轴分别交于点A、点B,与正比例函数y=x的图象交于点C,将点C向右平移1个单位,再向下平移6个单位得点D.(1)求△OAB的周长;(2)求经过D点的反比例函数的解析式;24.(10分)如图,在正方ABCD中,E是AB边上任一点,BG⊥CE,垂足为O,交AC于点F,交AD于点G.(1)证明:BE=AG;(2)E位于什么位置时,∠AEF=∠CEB?说明理由.25.(10分)阅读下列材料解决问题两个多位数整数,若它们各数位上的数字之和相等,则称这两个多位数互为“调和数”,例如37和82,它们各数位上的数字之和分别为3+7和8+2,显然3+7=8+2=10故37和82互为“调和数”.(1)下列说法错误的是A.123和51互为调和数”B.345和513互为“调和数C.2018和8120互为“调和数”D.两位数和互为“调和数”(2)若A、B是两个不等的两位数,A=,B=,A和B互为“调和数”,且A与B之和是B与A之差的3倍,求满足条件的两位数A.五、解答题:(本大题12分)解答时必须给出必要的演算过程或推理步骤请将解答书写在答题卡中对应的位置上26.(12分)2018年5月,某城遭遇暴雨水灾,武警战士乘一冲锋舟从A地逆流而上,前往C地营救受困群众,途经B地时,由所携带的救生艇将B地受困群众运回A地,冲锋舟继续前进,到C地接到群众后立刻返回A地,途中曾与救生艇相遇,冲锋舟和救生艇距A地的距离y(千米)和冲锋舟出发后所用时间x(分)之间的函数图象如图所示,假设群众上下冲锋舟和救生艇的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.(1)冲锋舟从A地到C地的时间为分钟,冲锋舟在静水中的速度为千米/分,水流的速度为千米/分.(2)冲锋舟将C地群众安全送到A地后,又立即去接应救生艇,已知救生艇与A地的距离y(千米)和冲锋舟出发后所用时间x(分钟)之间的函数关系式为y=kx+b,若冲锋舟在距离A地千米处与救生艇第二次相遇,求k、b的值.2017-2018学年重庆市梁平县八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题每小题4分,共48分)在每个小题的下面都给出了代号为AB、cD的四个答案其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑1.【解答】解:代数式2x,,x+,中分式有:.故选:A.2.【解答】解:点P(﹣2,0)在x轴上.故选:B.3.【解答】解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解,故选:B.4.【解答】解:∵矩形ABCD的对角线AC,BD相交于点O,∴OB=OC,∴∠OBC=∠ACB=60°,∴∠AOB=∠OBC+∠ACB=60°+60°=120°.故选:C.5.【解答】解:A、由∠1=∠5,可以推出AB∥CD,故本选项正确;B、由AB∥CD,可以推出∠4=∠8,故本选项错误;C、由∠2=∠6,可以推出AD∥BC,故本选项正确;D、由AD∥BC,可以推出∠3=∠7,故本选项正确.故选:B.6.【解答】解:∵共有10名同学,∴第5名和第6名同学的读书时间的平均数为中位数,则中位数为:=9.故选:C.7.【解答】解:∵分式中的x,y的值同时扩大为原来的2015倍,∴原式变为:==∴缩小为原来的故选:B.8.【解答】解:A、a组数据的最大数与最小数的差为30﹣10=20,b组数据的最大数与最小数的差是20﹣10=10,所以a组数据的最大数与最小数的差较大,故选项A正确;B、由图中可以看出,a组数据最大数与最小数的差较大,不稳定,所以a组数据的方差较大,故选项B正确;C和D、b组数据比较稳定,即其方差较小.故选项C正确,选项D的说法错误;故选:D.9.【解答】解:根据正方形的判断方法可知:满足条件①②或①③或②④或③④时,四边形ABCD是正方形,故选:A.10.【解答】解:∵y与(x﹣2)成正比例,∴设y=k(x﹣2),由题意得,﹣2=k(1﹣2),解得,k=2,则y=2x﹣4,当x=3时,y=2×3﹣4=2,故选:A.11.【解答】解:∵关于x的一次函数y=(a+1)x+(a﹣4)的图象不经过第二象限,∴,解得﹣1<a≤4.∵+2=,∴x=,∵关于x的分式方程+2=有整数解,∴整数a=0,1,3,4,∵a=1时,x=2是增根,∴a=0,3,4综上,可得,满足题意的a的值有2个:0,3,4,∴整数a值不可能是1.故选:B.12.【解答】解:如图,过点A作AD⊥y轴于D,过点C作CE⊥y轴E,∵AM⊥x轴,CM⊥x轴,OB⊥MN,∴四边形ONCE和四边形OMAD是矩形,∴ON=CE,OM=AD,∵OB是▱OABC的对角线,∴△BOC≌△OBA,∴S△BOC=S△OBA,∵S△BOC=OB×CE,S△BOA=OB×AD,∴CE=AD,∴ON=OM,故①正确;在Rt△CON和Rt△AOM中,ON=OM,∵四边形OABC是平行四边形,∴OA与OC不一定相等,∴△CON与△AOM不一定全等,故②错误;∵第二象限的点C在双曲线y=上,∴S△CON=|k1|=﹣k1,∵第一象限的点A在双曲线y=上,S△AOM=|k2|=k2,∴S阴影=S△CON+S△AOM=﹣k1+k2=(k2﹣k1),故③错误;∵四边形OABC是菱形,∴AC⊥OB,AC与OB互相平分,∴点A和点C的纵坐标相等,点A与点C的横坐标互为相反数,∴点A与点C关于y轴对称,故④正确,∴正确的有①④,故选:D.二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.【解答】解:这组数据的众数为31.故答案为31.14.【解答】解:小数0.00002l用科学记数法表示为2.1×10﹣5.故答案为:2.1×10﹣5.15.【解答】解:∵∠A=∠B,∴BC=AC=5cm,∵DF∥AC,∴∠A=∠BDF,∵∠A=∠B,∴∠B=∠BDF,∴DF=BF,同理AE=DE,∴四边形DECF的周长为:CF+DF+DE+CE=CF+BF+AE+CE=BC+AC=5cm+5cm=10cm,故答案为:10cm.16.【解答】解:=====4,故答案为4.17.【解答】解:平面直角坐标系如图所示:炮的位置(﹣3,1),向右平移一格后的坐标为(﹣2,1),故答案为(﹣2,1).18.【解答】解:解:∵四边形ABCD是正方形,∴AB=AD=DC=6,∠B=D=90°,∵CD=3DE,∴DE=2,∵△ADE沿AE折叠得到△AFE,∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,∴AF=AB,∵在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL).∴①正确;∵Rt△ABG≌Rt△AFG,∴BG=FG,∠AGB=∠AGF.设BG=x,则CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2.在Rt△ECG中,由勾股定理得:CG2+CE2=EG2.∵CG=6﹣x,CE=4,EG=x+2,∴(6﹣x)2+42=(x+2)2,解得:x=3.∴BG=GF=CG=3.∴②正确;∵CG=GF,∴∠CFG=∠FCG.∵∠BGF=∠CFG+∠FCG,∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF.∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG.∴AG∥CF.∴③正确;∵S△EGC=×3×4=6,S△AEF=S△ADE=×6×2=6,∴S△EGC=S△AFE;∴④正确,∵△CFG和△CEG中,分别把FG和GE看作底边,则这两个三角形的高相同.∴==,∵S△GCE=6,∴S△CFG=×6=3.6,∴⑤正确;故答案为①②③④⑤.三、解答题(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上19.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,∠DAE=∠BCF,∵DE⊥AC于E,BF⊥AC于F,∴∠DEA=∠BFC=90°.在△AED和△BFC中,,∴△AED≌△CFB,∴BF=DE.20.【解答】解:(1)共抽取的同学人数=6÷30%=20(人),睡眠时间7小时左右的人数=20×=5(人),睡眠时间8小时左右的人数=20﹣6﹣2﹣3﹣5=4(人),按照睡眠时间从小到大排列,各组人数分别为2,3,6,5,4,睡眠时间分别为4,5,6,7,8,共有20个数据,第10个和第11个数据都是6小时,它们的平均数也是6小时,∴同学们的睡眠时间的中位数是6小时左右;故答案为:20,6;将条形统计图补充完整如图所示:(2)∵平均数为(4×8+6×6+2×4+3×5+5×7)=6.3(小时),∴估计年级每个学生的平均睡眠时间约6.3小时.四、解答题:(本大题5个小題,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上21.【解答】解:设甲队独做需a天,乙队独做需b天.建立方程组,解得.经检验a=30,b=120是原方程的解.答:甲队独做需30天,乙队独做需120天.22.【解答】解:(1)小明的解答不正确,错在第①步;(2)==,当x=时,原式==.23.【解答】解:(1)∵一次函数y=﹣x+4的图象与x轴y轴分别交于点A、点B,∴A(8,0),B(0,4)∴OA=8,OB=4在Rr△AOB中,AB==4∴△OAB的周长=4+8+4=12+4(2)∵∴∴C点坐标为(2,3)∵将点C向右平移1个单位,再向下平移6个单位得点D.∴D(3,﹣3)设过D点的反比例函数解析式y=∴k=3×(﹣3)=﹣9∴反比例函数解析式y=24.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠1+∠3=90°.∵BG⊥CE,∴∠BOC=90°.∴∠2+∠3=90°.∴∠1=∠2.在△GAB和△EBC中,∵∠GAB=∠EBC=90°,AB=BC,∠1=∠2,∴△GAB≌△EBC(ASA).∴AG=BE.(2)解:当点E位于线段AB中点时,∠AEF=∠CEB.理由如下:当点E位于线段AB中点时,AE=BE;由(1)知,AG=BE,∴AG=AE;∵四边形ABCD是正方形,∴∠GAF=∠EAF=45°;又∵AF=AF,∴△GAF≌△EAF(SAS);∴∠AGF=∠AEF;由(1)知,△GAB≌△EBC;∴∠AGF=∠CEB;∴∠AEF=∠CEB.25.【解答】解:(1)根据调和数的定义,通过计算各位数之和,易知B选项错误故答案选B(2)∵A=,B=,A、B互为“调和数”∴x+y=m+n①∵A与B之和是B与A之差的3倍∴∴∴10m+n=20x+2y②由①②得,∵m为两位数的十位数字∴1≤m≤9∴∴9≤19x+y≤81,且19x+y是9的倍数∴19x+y=18或27或36或45或54或63或72或81则或或或或或或或∵x,y分别为A的十位和个位,∴1≤x≤9,0≤y≤9∴计算可得,仅当时满足,此时x=1,y=8,故A为18故满足A的值为18五、解答题:(本大题12分)解答时必须给出必要的演算过程或推理步骤请将解答书写在答题卡中对应的位置上26.【解答】解:(1)由图象可得,冲锋舟从A地到C地的时间为12×(20÷10)=24(分钟),设冲锋舟在静水中的速度为a千米/分钟,水流的速度为b千米/分钟,,解得,,故答案为:24,,;(2)冲锋舟在距离A地千米时,冲锋舟所用时间为:=8(分钟),∴救生艇与A地的距离y(千米)和冲锋舟出发后所用时间x(分钟)之间的函数关系式为y=kx+b过点(12,10),(52,),,解得,,即k、b的值分别是,11.。
2018-2019学年重庆八中八年级(下)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(本大题10个小题,每小题4分,共40分)1.反比例函数y=(k≠0)的图象过点(﹣1,3),则k的值为()A.3 B.C.﹣3 D.﹣2.若△ABC∽△DEF,若∠A=50°,则∠D的度数是()A.50°B.60°C.70°D.80°3.分式有意义,则x的取值范围为()A.x≠0 B.x≠2C.x≠0且x≠2 D.x为一切实数4.六边形的内角和等于()A.180°B.360°C.540°D.720°5.方程x2=3x的解是()A.x=3 B.x=﹣3 C.x=0 D.x=3或x=06.下列命题是真命题的是()A.方程3x2﹣2x﹣4=0的二次项系数为3,一次项系数为﹣2B.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D.对角线相等的四边形是矩形7.如果关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,那么k的取值范围是()A.k<4 B.k>4 C.k<0 D.k>08.菱形周长为20,它的一条对角线长6,则菱形的另一条对角线长为()A.2 B.4 C.6 D.89.某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,问二、三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程()A.20(1+x)2=90B.20+20(1+x)2=90C.20(1+x)+20+(1+x)2=90D.20+20(1+x)+20(1+x)2=9010.函数y=kx+b与y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.二、填空题(本大题6个小题,每小题4分,共24分)11.若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为.12.一组数据10,9,10,12,9的中位数是.13.关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,则另一个根为x=.14.若=3,则=.15.已知一元二次方程x2﹣9x+18=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为.16.双曲线y1=,y2=在第一象限的图象如图,过y1上的任意一点A,作y轴的平行线交y2于点B,交x轴于点C,若S△AOB=1,则k的值为.三、解答题(17题8分,18题8分,19题10分,20题10分)17.(8分)解方程(1)x2+x﹣1=0;(2)(x+2)(x+3)=2018.(8分)先化简,再求值:(﹣a+1+)÷,其中a=3.19.(10分)近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作A、B、C、D;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:(1)本次调查的学生总数为人;(2)在扇形统计图中,B所对应扇形的圆心角是度,并将条形统计图补充完整;(3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.20.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣1|+b中,当x=1时,y=3,当x=0时,y=4.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣1|+b≥的解集.B卷(50分)一、填空题:(本大题共5个小题,每小题4分,共20分)21.因式分解:x3﹣2x2y+xy2=.22.如图,在反比例函数y=﹣(x<0)与y=(x>0)的图象上分别有一点E,F,连接E,F交y轴于点G,若E(﹣1,1)且2EG=FG,则OG=.23.若关于x的一元一次不等式组所有整数解的和为﹣9,且关于y的分式方程1﹣=有整数解,则符合条件的所有整数a为.24.2019年6月12日,重庆直达香港高铁的车票正式开售,据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时.该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北.重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高.在此之前技术部门做了大量测试,在一次测试中一高铁列车从A地出发,匀速驶向B地,到达B 地停止;同时一普快列车从B地出发,匀速驶向A地,到达A地停止.且A,B两地之间有一C地,其中AC =2BC,如图①,两列车与C地的距离之和y(千米)与普快列车行驶时间x(小时)之间的关系如图②所示.则高铁列车到达B地时,普快列车离A地的距离为千米.25.为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品件.二、解答题(本大题共3个小题,每题10分,共30分)26.(10分)为了准备“欢乐颂﹣﹣创意市场”,初2020级某同学到批发市场购买了A、B两种原材料,A 的单价为每件6元,B的单价为每件3元,该同学的创意作品需要B材料的数量是A材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.(1)该同学最多购买多少件B材料;(2)在该同学购买B材料最多的前提下,用所购买的A,B两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高2a%(a>0)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了a%,求a的值.27.(10分)如图,▱ABCD中,点E为BC边上一点,过点E作EF⊥AB于F,已知∠D=2∠AEF.(1)若∠BAE=70°,求∠BEA的度数;(2)连接AC,过点E作EG⊥AC于G,延长EG交AD于点H,若∠ACB=45°,求证:AH=AF+AC.28.(10分)如图,平面直角坐标系中,点A,B在x轴上,AO=BO,点C在x轴上方,AC⊥BC,∠CAB=30°,线段AC交y轴于点D,DO=2,连接BD,BD平分∠ABC,过点D作DE∥AB交BC于E.(1)点C的坐标为;(2)将△ADO沿线段DE向右平移得△A′D'O',当点D'与E重合时停止运动,记△A'D'O′与△DEB的重叠部分面积为S,点P为线段BD上一动点,当S=时,求CD'+D'P+PB的最小值.(3)当△A'D'O'移动到点D'与E重合时,将△A'D'O'绕点E旋转一周,旋转过程中,直线BD分别与直线A'D'、直线D'O'交于点G、点H,作点D关于直线A'D'的对称点D0,连接D0、G、H.当△GD0H为直角三角形时,直接写出线段D0H的长.参考答案与试题解析一、选择题1.【解答】解:把(﹣1,3)代入反比例函数y=(k≠0),得3=,解得:k=﹣3.故选:C.2.【解答】解:∵△ABC∽△DEF,∠A=50°,∴∠D=∠A=50°.故选:A.3.【解答】解:分式有意义,则x﹣2≠0,解得:x≠2.故选:B.4.【解答】解:六边形的内角和是(6﹣2)×180°=720°.故选:D.5.【解答】解:x2﹣3x=0,x(x﹣3)=0,x=0或x﹣3=0,所以x1=0,x2=3.6.【解答】解:A、正确.B、错误,对应边不一定成比例.C、错误,不一定中奖.D、错误,对角线相等的四边形不一定是矩形,故选:A.7.【解答】解:∵关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,∴b2﹣4ac=16﹣4k>0,解得:k<4.故选:A.8.【解答】解:如图,∵菱形ABCD的周长为20,对角线AC=6,∴AB=5,AC⊥BD,OA=AC=3,∴OB==4,∴BD=2OB=8,即菱形的另一条对角线长为8.故选:D.9.【解答】解:设月平均增长率的百分数为x,20+20(1+x)+20(1+x)2=90.故选:D.10.【解答】解:在函数y=kx+b(k≠0)与y=(k≠0)中,当k>0时,图象都应过一、三象限;当k<0时,图象都应过二、四象限.故选:D.二、填空题11.【解答】解:∵△ABC∽△DEF,△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的周长比为1:2.故答案为:1:2.12.【解答】解:将数据按从小到大排列为:9,9,10,10 12,处于中间位置也就是第3位的是10,因此中位数是10,故答案为:10.13.【解答】解:∵a=1,b=m,c=﹣4,∴x1•x2==﹣4.∵关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,∴另一个根为﹣4÷(﹣1)=4.故答案为:4.14.【解答】解:根据比例的合比性质,原式=;15.【解答】解:x2﹣9x+18=0(x﹣3)(x﹣6)=0解得x1=3,x2=6.由三角形的三边关系可得:腰长是6,底边是3,所故周长是:6+6+3=15.故答案为:15.16.【解答】解:由题意得:S△AOC﹣S△BOC=S△AOB,﹣=1,解得,k=3,故答案为:3.三、解答题17.【解答】解:(1)x2+x﹣1=0,b2﹣4ac=12﹣4×1×(﹣1)=5,x=,x1=,x2=;(2)(x+2)(x+3)=20,整理得:x2+5x﹣14=0,(x+7)(x﹣2)=0,x+7=0,x﹣2=0,x1=﹣7,x2=2.18.【解答】解:原式=,=,=.当a=3时,原式=.19.【解答】解:(1)本次调查的学生总数为:15÷30%=50(人);故答案为:50;(2)在扇形统计图中,B所对应扇形的圆心角是360°×=144°;“中”等级的人数是:50﹣15﹣20﹣5=10(人),补图如下:故答案为:10;(3)“优秀”和“良”的分别用A1,A2,和B1,B2表示,则画树状图如下:共有12种情况,所选的两位同学测试成绩恰好都为“良”的有2种,则所选的两位同学测试成绩恰好都为“良”的概率是=.20.【解答】解:(1)∵在函数y=|kx﹣1|+b中,当x=1时,y=3;当x=0时,y=4,∴,得,∴这个函数的表达式是y=|x﹣1|+3;(2)∵y=|x﹣1|+3,∴y=,∴函数y=x+2过点(1,3)和点(4,6);函数y=﹣x+4过点(0,4)和点(﹣2,6);该函数的图象如图所示:(3)由函数图象可得,不等式|kx﹣1|+b≥的解集是x≥2或x<0.B卷一、填空题21.【解答】解:原式=x(x2﹣2xy+y2)=x(x﹣y)2,故答案为:x(x﹣y)222.【解答】解:过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图:∴EM∥GO∥FN∵2EG=FG∴根据平行线分线段成比例定理得:NO=2MO∵E(﹣1,1)∴MO=1∴NO=2∴点F的横坐标为2∵F在y=(x>0)的图象上∴F(2,2)又∵E(﹣1,1)∴由待定系数法可得:直线EF的解析式为:y=当x=0时,y=∴G(0,)∴OG=故答案为:23.【解答】解:,不等式组整理得:﹣4≤x<a,由不等式组所有整数解的和为﹣9,得到﹣2<a≤﹣1,或1<a≤2,即﹣6<a≤﹣3,或3<a≤6,分式方程1﹣=,去分母得:y2﹣4+2a=y2+(a+2)y+2a,解得:y=﹣,经检验y=﹣为方程的解,得到a≠﹣2,∵1﹣有整数解,则符合条件的所有整数a为﹣3,﹣4(舍去).故答案为:﹣3.24.【解答】解:∵图象过(4.5,0)∴高铁列车和普快列车在C站相遇∵AC=2BC,∴V高铁=2V普快,BC之间的距离为:360×=240千米,全程为AB=240+240×2=720千米,此时普快离开C站360×=120千米,当高铁列车到达B站时,普快列车距A站的距离为:720﹣120﹣240=360千米,故答案为:360.25.【解答】解:设第一次购进后库存总数量为m件,第一次购进A种纪念品8x件,则第一次购进B种纪念品7x件,第一次购进C种纪念品9x件,设第二次购进后A种纪念品9y件,则第二次购进后B种纪念品10y件,第二次购进后C种纪念品10y件,设第三次购进后A种纪念品7z件,则第三次购进后B种纪念品6z件,第三次购进后C种纪念品6z件,依题意有,则24x=29y﹣200=19z﹣370=m,∵0<m≤1000,∴0<x≤41,6<y≤41,19<z≤72,∵x,y、z均为正整数,∴1≤x≤41,7≤y≤41,20≤z≤72,24x=29y﹣200化为:x=y﹣8+,∴5y﹣8=24n(n为正整数),∴5y=8+24n=8(1+3n),∴y=8k(k为正整数),5k=3n+1,∴7≤8k≤41,n=k+,∴1≤k≤5,1≤2k﹣1≤9,∵2k﹣1必为奇数且是3的整数倍.∴2k﹣1=3或2k﹣1=9,∴k=2或k=5,当k=2时,y=16,x=11,z=33(舍)∴k只能为5,∴y=40,x=40,z=70.∴8x=8×40=320.答:第一次购进A种纪念品320件.故答案为:320.二、解答题26.【解答】解:(1)设该同学购买x件B种原材料,则购买x件A种原材料,根据题意得:6×x+3×x≤480,解得:x≤80,∴x最大值为80,答:该同学最多可购买80件B种原材料.(2)设y=a%,根据题意得:(520+480)×(1+2y)(1﹣y)=(520+480)×(1+y),整理得:4y2﹣y=0,解得:y=0.25或y=0(舍去),∴a%=0.25,a=25.答:a的值为25.27.【解答】(1)解:作BJ⊥AE于J.∵BF⊥AB,∴∠ABJ+∠BAJ=90°,∠AEF+∠EAF=90°,∴∠ABJ=∠AEF,∵四边形ABCD是平行四边形,∴∠D=∠ABC,∵∠D=2∠AEF,∴∠ABE=2∠AEF=2∠ABJ,∴∠ABJ=∠EBJ,∵∠ABJ+∠BAJ=90°,∠EBJ+∠BEJ=90°,∴∠BAJ=∠BEJ,∵∠BAE=70°,∴∠BEA=70°.(2)证明:作EM⊥AD于M,CN⊥AD于N,连接CH.∵AD∥BC,∴∠DAE=∠BEA,∵∠BAE=∠BEA,∴∠BAE=∠DAE,∵EF⊥AB,EM⊥AD,∴EF=EM,∵EA=EA,∠AFE=∠AME=90°,∴Rt△AEF≌Rt△AEM(HL),∴AF=AM,∵EG⊥CG,∴∠EGC=90°,∵∠ECG=45°,∠GCE=45°,∴GE=CG,∵AD∥BC,∴∠GAH=∠ECG=45°,∠GHA=∠CEG=45°,∴∠GAH=∠GHA,∴GA=GH,∵∠AGE=∠CGH,∴△AGE≌△HGC(SAS),∴EA=CH,∵EM=CN,∠AME=∠CNH=90°,∴Rt△EMA≌Rt△CNH(HL),∴AM=NH,∴AN=HM,∵△ACN是等腰直角三角形,∴AC=AN,即AN=AC,∴AH=AM+HM=AF+AC.28.【解答】解:(1)如图1中,在Rt△AOD中,∵∠AOD=90°,∠OAD=30°,OD=2,∴OA=OD=6,∠ADO=60°,∴∠ODC=120°,∵BD平分∠ODC,∴∠ODB=∠ODC=60°,∴∠DBO=∠DAO=30°,∴DA=DB=4,OA=OB=6,∴A(﹣6,0),D(0,2),B(6,0),∴直线AC的解析式为y=x+2,∵AC⊥BC,∴直线BC的解析式为y=﹣x+6,由,解得,∴C(3,3).(2)如图2中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.∵∠FD′G=∠D′GF=60°,∴△D′FG是等边三角形,∵S△D′FG=•D′G2=,∴D′G=,∴DD′=GD′=2,∴D′(2,2),∵C(3,3),∴CD′==2,在Rt△PHB中,∵∠PHB=90°,∠PBH=30°,∴PH=PB,∴CD'+D'P+PB=2+D′P+PH≤2+D′O′=2+2,∴CD'+D'P+PB的最小值为2+2.(3)如图3﹣1中,当D0H⊥GH时,连接ED0.∵ED=ED0,EG=EG.DG=D0G,∴△EDG≌△ED0G(SSS),∴∠EDG=∠ED0G=30°,∠DEG=∠D0EG,∵∠DEB=120°,∠A′EO′=60°,∴∠DEG+∠BEO′=60°,∵∠D0EG+∠D0EO′=60°,∴∠D0EO′=∠BEO′,∵ED0=EB,EH=EH,∴△EHD0≌△EHB(SAS),∴∠ED0H=∠EBH=30°,HD0=HB,∴∠CD0H=60°,∵∠D0HG=90°,∴∠D0GH=30°,设HD0=BH=x,则DG=GD0=2x,GH=x,∵DB=4,∴2x+x+x=4,∴x=2﹣2.如图3﹣2中,当∠D0GH=90°时,同法可证∠D0HG=30°,易证四边形DED0H是等腰梯形,∵DE=ED0=DH=4,可得D0H=4+2×4×cos30°=4+4.如图3﹣3中,当D0H⊥GH时,同法可证:∠D0GH=30°,在△EHD0中,由∠D0HE=45°,∠HD0E=30°,ED0=4,可得D0H=4×+4×=2+2,如图3﹣4中,当D0G⊥GH时,同法可得∠D0HG=30°,设DG=GD0=x,则HD0=BH=2x,GH=x,∴3x+x=4,∴x=2﹣2,∴D0H=2x=4﹣4.如图3﹣5中,当D0H⊥GH时,同法可得D0H=2﹣2.如图3﹣6中,当D0G⊥GH时,同法可得D0H=4+4.如图3﹣7中,如图当D0H⊥HG时,同法可得D0H=2+2.如图3﹣8中,当D0G⊥GH时,同法可得HD0=4﹣4.综上所述,满足条件的D0H的值为2﹣2或2+2或4﹣4或4+4。
八年级数学试题卷 第 1 页 共6页重庆市2018—2019学年度下期八年级期末考试数 学 试 题(考试时间:120分钟,满分:150分)一、选择题:(本大题12个小题,每小题4分,共48分)1.用下面各组数据为边,能构成直角三角形的是( ).A.1,2,3B.2,3,4C.3,4,5D. 4,5,62.如图,若四边形ABCD 是平行四边形,则下列结论正确的是( ).第1题图 第12题图A.12∠∠B.23∠∠C.1∠∠4D.24∠∠3.下列各点在函数1-=x y 的图象上的是( ).A .(-3,-5)B . (1,1)C . (0,1)D . (2,1)4..一组数据7,8,10,12,13的平均数是( ).A .7B .9C .10D .125. 如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b应满足的条件是( ).A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <06.将一次函数y=2x ﹣3的图象沿y 轴向上平移8个单位长度,所得直线的解析式为( ).A .y=2x ﹣5B .y=2x+5C .y=2x+8D .y=2x ﹣87.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h 与注水时间t 之间的函数关系图象可能是( ).A. B. C. D.8.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为().A.8B.4C.6D.无法计算9.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示.成绩/m 1.50 1.60 1.65 1.70 1.75 1 .80人数 2 3 2 3 4 1则这些运动员成绩的中位数,众数分别为().A.1.65,1.70 B.1.65,1.75C.1.70,1.75 D.1.70,1.7010.关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是().A.k>﹣1 B.k>﹣1且k≠0 C.k<﹣1 D.k<﹣1或k=0 11.若13x2﹣2x+c=0的一个根,则c的值为(A)+A.﹣2 B.432 C.33 D.1312.如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为().A.7+1B.7-1C.27D.27-1二、填空题(本大题共6小题,每小题4分,共计24分)13.已知矩形的对角线AC与BD相交于点O,若AO=1,那么BD= .八年级数学试题卷第2页共6页第13题图第14题图14.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C所走的路程为______.15.一元二次方程220-=的根是 .x x16.已知一组数据:3,2,5,7,8则它的方差是___________.17.甲、乙两动点分别从线段AB的两端点同时出发,甲从点A出发,向终点B运动,乙从点B出发,向终点A运动.已知线段AB长为90cm,甲的速度为2.5cm/s.设运动时间为x(s),甲、乙两点之间的距离为y(cm),y与x的函数图象如图所示,则图中点E的坐标为.90第17题图第18题图18. 如图,四边形ABCD是矩形,边AB长为6,∠ABD=60º,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD,CD于G,F两点,若M,N分别是DG,CE的中点,则MN的长为 .三、解答题(每小题8分,共16分)19. 已知:如图,E,F为平行四边形ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.八年级数学试题卷第3页共6页八年级数学试题卷 第 4 页 共6页20.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了 名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为 度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.四. 解答题(每小题10分,共50分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡...中对应的位置上. 21.(1)解方程:01452=--x x(2)用待定系数法求一次函数的解析式:已知一次函数b kx y +=的图象经过两点A (0,3),B (1,1),求该函数的解析式。
八年级数学试卷参考答案及评分标准(2018.7)三、解答题(本大题有7题, 其中17题10分,18题6分,19题6分,20题6分,21题6分,22题9分,23题9分,共52分) 17.(10分)(1)解:2763x −=27(9)x − ………………………1分7(3)(3)x x =+− ………………………3分(2)方程两边同乘以(x -2)约去分母,得4)2(24−=−−x x …………………………4分 化简整理,得 2x =―8解得 4−=x …………………………5分 检验:把4−=x 代入x -2≠0所以4−=x 是原方程的解 …………………… 6分(3) ⎩⎨⎧<−≤−②142①32x x由①得1x ≥−………………………7分 由②得 2.5x <………………………8分∴不等式租的解集为 1 2.5x −≤<………………………9分 不等式组的解集在数轴上表示为:………………………10分18.(6分)233(1)11x x xx x x −−−+÷++ABDED'D'EDA=3(1)111(1)x x x x x x −+⎡⎤−+⨯⎢⎥+−⎣⎦………………………2分 =13(1)1(1)(1)1(1)x x x x x x x x x +−+−⨯+⨯−+−………………………3分 =13x x x +−=2x x−………………………4分 当x 的值为-1、0、1时分式无意义, 当x =2时原式=0222=−……………………6分 (也可取x =-2代入,值为2) 19.(6分)每个图3分20. (6分)证明:由已知,AF =FC ,∠AFE =∠CFE , …………………1分 在□ABCD 中,AE //FC ,∴∠AEF =∠CFE …………………2分 ∴∠AFE =∠CFE∴∠AFE =∠AEF∴AF =AE …………………4分 ∴AE =FC ∴四边形AFCE 为平行四边形.……………6分 21.(6分)(1)解:由442222-a b a c b c =−得 2222222)()()a b a b a b c −+=−(222222222222)()-()=0)()0a b a b a b c a b a b c −+−−+−=((…………………2分则022=−b a 或2220a b c +−= 若2220a b c +−=,则222=a b c +∴ △ABC 是直角三角形…………………3分 若022=−b a ,则=a b∴△ABC 是等腰三角形…………………4分T SDM EA综上所述,△ABC 是直角三角形或等腰三角形。
2018-2019学年重庆八中八年级(下)期末数学试卷一、选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卡中对应的表格内.1.(4分)反比例函数y=(k≠0)的图象过点(﹣1,3),则k的值为()A.3B.C.﹣3D.﹣2.(4分)若△ABC∽△DEF,若∠A=50°,则∠D的度数是()A.50°B.60°C.70°D.80°3.(4分)分式有意义,则x的取值范围为()A.x≠0B.x≠2C.x≠0且x≠2D.x为一切实数4.(4分)六边形的内角和等于()A.180°B.360°C.540°D.720°5.(4分)方程x2=3x的解是()A.x=3B.x=﹣3C.x=0D.x=3或x=0 6.(4分)下列命题是真命题的是()A.方程3x2﹣2x﹣4=0的二次项系数为3,一次项系数为﹣2B.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D.对角线相等的四边形是矩形7.(4分)如果关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,那么k的取值范围是()A.k<4B.k>4C.k<0D.k>08.(4分)菱形周长为20,它的一条对角线长6,则菱形的另一条对角线长为()A.2B.4C.6D.89.(4分)某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,问二、三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程()A.20(1+x)2=90B.20+20(1+x)2=90C.20(1+x)+20+(1+x)2=90D.20+20(1+x)+20(1+x)2=9010.(4分)函数y=kx+b与y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.11.(4分)若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为.12.(4分)一组数据10,9,10,12,9的中位数是.13.(4分)关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,则另一个根为x=.14.(4分)若=3,则=.15.(4分)已知一元二次方程x2﹣9x+18=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为.16.(4分)双曲线y1=,y2=在第一象限的图象如图,过y1上的任意一点A,作y轴的平行线交y2于点B,交x轴于点C,若S△AOB=1,则k的值为.三、解答题(17题8分,18题8分,19题10分,20题10分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上,17.(8分)解方程(1)x2+x﹣1=0;(2)(x+2)(x+3)=2018.(8分)先化简,再求值:(﹣a+1+)÷,其中a=3.19.(10分)近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作A、B、C、D;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:(1)本次调查的学生总数为人;(2)在扇形统计图中,B所对应扇形的圆心角是度,并将条形统计图补充完整;(3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.20.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣1|+b中,当x=1时,y=3,当x=0时,y=4.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣1|+b≥的解集.四、填空题:(本大题共5个小题,每小题4分,共20分)请将每小題的答案直接填在答题卡中对应的横线上.21.(4分)因式分解:x3﹣2x2y+xy2=.22.(4分)如图,在反比例函数y=﹣(x<0)与y=(x>0)的图象上分别有一点E,F,连接E,F交y轴于点G,若E(﹣1,1)且2EG=FG,则OG=.23.(4分)若关于x的一元一次不等式组所有整数解的和为﹣9,且关于y的分式方程1﹣=有整数解,则符合条件的所有整数a为.24.(4分)2019年6月12日,重庆直达香港高铁的车票正式开售,据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时.该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北.重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高.在此之前技术部门做了大量测试,在一次测试中一高铁列车从A地出发,匀速驶向B地,到达B地停止;同时一普快列车从B地出发,匀速驶向A地,到达A地停止.且A,B两地之间有一C 地,其中AC=2BC,如图①,两列车与C地的距离之和y(千米)与普快列车行驶时间x(小时)之间的关系如图②所示.则高铁列车到达B地时,普快列车离A地的距离为千米.25.(4分)为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C 三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C 三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品件.五、解答题(本大题共3个小题,每题10分,共30分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上.26.(10分)为了准备“欢乐颂﹣﹣创意市场”,初2020级某同学到批发市场购买了A、B 两种原材料,A的单价为每件6元,B的单价为每件3元,该同学的创意作品需要B材料的数量是A材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.(1)该同学最多购买多少件B材料;(2)在该同学购买B材料最多的前提下,用所购买的A,B两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高2a%(a>0)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了a%,求a的值.27.(10分)如图,▱ABCD中,点E为BC边上一点,过点E作EF⊥AB于F,已知∠D=2∠AEF.(1)若∠BAE=70°,求∠BEA的度数;(2)连接AC,过点E作EG⊥AC于G,延长EG交AD于点H,若∠ACB=45°,求证:AH=AF+AC.28.(10分)如图,平面直角坐标系中,点A,B在x轴上,AO=BO,点C在x轴上方,AC⊥BC,∠CAB=30°,线段AC交y轴于点D,DO=2,连接BD,BD平分∠ABC,过点D作DE∥AB交BC于E.(1)点C的坐标为;(2)将△ADO沿线段DE向右平移得△A′D'O',当点D'与E重合时停止运动,记△A'D'O′与△DEB的重叠部分面积为S,点P为线段BD上一动点,当S=时,求CD'+D'P+PB的最小值.(3)当△A'D'O'移动到点D'与E重合时,将△A'D'O'绕点E旋转一周,旋转过程中,直线BD分别与直线A'D'、直线D'O'交于点G、点H,作点D关于直线A'D'的对称点D0,连接D0、G、H.当△GD0H为直角三角形时,直接写出线段D0H的长.。
沙坪坝区2019—20佃学年度第二学期期末调研测试八年级数学试题(全卷共五个大题,满分150分,考试时间120分钟)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1 .在平面直角坐标系中,点P(:,0)在A . x轴上B. y轴上 C .第三象限D.第四象限2 .七名学生的鞋号分别是:20 , 21, 21, 22 , 22, 22, 23 .则这组数据的众数是A. 20B. 21C. 22D. 233 .在口ABCD中,/ A=2 / B,则/ B的度数是A. 30 °B. 60 °C. 90 °D. 120 °4 .用配方法解方程x2-8x V =0时,原方程可变形为2 2 2 2A. (x — 4)=9 B . (x -4)=7 C. (x — 4)=-9 D. (x—4)=-75. 平行四边形、矩形、菱形、正方形都具有的性质是A .对角线互相平分B .对角线互相垂直C.对角线相等 D .对角线互相垂直平分且相等6. 某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y与x之间的函数关系式为1 1A .错误!未找到引用源。
y = _—x B. y=-x C. y = -2x D . y = 2x2 27. 菱形ABCD的周长是20,对角线AC= 8,则菱形ABCD的面积是A . 12B . 24C . 40D . 48m —28 .己知反比例函数y (m为常数),当x 0时,y随x的增大而增大,则m的取值范围是xA . m> 0B . m> 2C . m< 0D . m< 29. 一辆小轿车匀速从甲地开往乙地,但行至途中汽车出了故障,只好停下修车,修好后,为了按时到达乙地,司机适当加快了匀速行驶的速度.下面能反映小轿车行驶路程S(千米)与时间t(小时)的函数关系的大致图象10. 如图,□ ABCD 错误!未找到引用源。
2018年重庆八年级下学期期末考试数学试题(本试卷满分150分,考试时间120分钟)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了 代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将各小题所选答案的标号填入对应的表格内.1.若分式011=+-x x ,则的值是( ) A . 1=x B .1-=x C .0=x D .1-≠x 2.下列分解因式正确的是( )A .)1(23-=-x x x xB .)1)(1(12-+=-x x xC .2)1(22+-=+-x x x xD .22)1(12-=-+x x x3.下列图形中,是中心对称图形,但不是轴对称图形的是( )A. B . C . D . 4.方程x x 32=的解是( )A .3=xB .3-=xC .0=xD . 3=x 或0=x 5.根据下列表格的对应值:判断方程012=-+x x 一个解的取值范围是( )A .61.059.0<<xB .61.060.0<<xC .62.061.0<<xD .63.062.0<<x6.将点P (-3,2)向右平移2个单位后,向下平移3个单位得到点Q ,则点Q 的坐标为( ) A .(-5,5) B .(-1,-1) C .(-5,-1) D .(-1,5)7.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率. 设平均每次降价的百分率为,可列方程为( )A .100)1(1202=-xB .120)1(1002=-xC .120)1(1002=+xD .100)1(1202=+x8.如图,在平行四边形ABCD 中,E 是AB 的中点,CE 和BD 交于点O ,若2=∆BOE S ,则DOC S ∆是( ) A .4B .6C .8D .99.已知0=x 是关于的一元二次方程012)1(22=-++-k x x k的根,则常数的值为( ) A .0或1 B .1 C .-1 D .1或-1 10.如图,菱形ABCD 中,对角线AC 、BD 交于点O ,菱形ABCD 周长为32,点P 是边CD 的中点,则线段OP 的长为( ) A .3 B .5 C .8 D .411.如图,以下各图都是由同样大小的图形①按一定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,……,则第⑦个图形中完整菱形的个数为( )A .83B .84C .85D .86 12.如图,□ABCD 中,∠B =70°,点E 是BC 的中点,点F 在 AB 上,且BF=BE ,过点F 作FG ⊥CD 于点G ,则∠EGC 的度数 为( )A .35°B .45°C .30°D .55°二.填空题(本大题6个小题,每小题4分,共24分)请将正确答案填入对应的表格内. 题号 13 14 15 16 17 18 答案13.已知23=y x ,则yy x + = . 14.已知点C 是线段AB 的黄金分割点,且AC >BC ,AB =2,CO PA BD第10题图第12题图第8题图①④ ③ ② F G A EB C D 3-=kx y xybx y +=24-6O POEDCB A则AC 的长为 .15.如图,已知函数b x y +=2与函数3-=kx y 的图象交于点P ,则不等式b x kx +>-23的解集是 .16. 已知一元二次方程01892=+-x x 的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为 .17. 关于的方程15=+x m的解是负数,则的取值范围是 . 18. 如图,矩形ABCD 中,AD=10,AB=8,点P 在边CD 上,且BP=BC ,点M 在线段BP 上,点N 在线段BC的延长线上,且PM=CN ,连接MN 交BP 于点F ,过 点M 作ME ⊥CP 于E ,则EF= .三.解答题(本大题3个小题,19题12分,20,21题各6分,共24分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.19.解方程: (1) 121=--xx x (2) 01322=-+x x20. 解不等式组: ()⎪⎩⎪⎨⎧-≥-+<-42211513x x x xP B DNA MC F E 第18题图 第15题图21. 如图,矩形ABCD 中,点E 在CD 边的延长线上,且∠EAD =∠CAD . 求证:AE=BD .四.解答题(本大题3个小题,每小题10分,共30分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.22.先化简,再求值:41)2122(216822+-+--÷++-x x x xx x x ,其中满足0342=-+x x .BC D EA 第21题图23.某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.(1)第一次所购该蔬菜的进货价是每千克多少元?(2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有2% 的损耗,第二次购进的蔬菜有3% 的损耗,若该蔬菜店售完这些蔬菜获利不低于944元,则该蔬菜每千克售价至少为多少元?24.在正方形ABCD 中,点F 是BC 延长线上一点,过点B 作BE ⊥DF 于点E ,交CD 于点G ,连接CE . (1)若正方形ABCD 边长为3,DF =4,求CG 的长; (2)求证:EF+EG =2CE .第24题图GEA BCDF五.解答题(本大题2个小题,每小题12分,共24分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.25. 为深化“携手节能低碳,共建碧水蓝天”活动,发展“低碳经济”,某单位进行技术革新,让可再生资源重新利用.今年1月份,再生资源处理量为40吨,从今年1月1日起,该单位每月再生资源处理量每一个月将提高10吨.月处理成本(元)与月份之间的关系可近似地表示为:450100502++=x x p ,每处理一吨再生资源得到的新产品的售价定为100元. 若该单位每月再生资源处理量为(吨),每月的利润为(元). (1)分别求出与,与的函数关系式; (2)在今年内....该单位哪个月获得利润达到5800元? (3)随着人们环保意识的增加,该单位需求的可再生资源数量受限.今年三月的再生资源处理量比二月份减少了%,该新产品的产量也随之减少,其售价比二月份的售价增加了m 6.0%.四月份,该单位得到国家科委的技术支持,使月处理成本比二月份的降低了20%.如果该单位四月份在保持三月份的再生资源处理量和新产品售价的基础上,其利润比二月份的利润减少了60元,求的值.26. 如图1,菱形ABCD 中,AB =5,AE ⊥BC 于E ,AE =4.一个动点P 从点B 出发,以每秒个单位长度的速度沿线段BC 方向运动,过点P 作PQ ⊥BC ,交折线段BA-AD 于点Q ,以PQ 为边向右作正方形PQMN ,点N 在射线BC 上,当P 点到达C 点时,运动结束.设点P 的运动时间为秒(0t >). (1)求出线段BD 的长,并求出当正方形PQMN 的边PQ 恰好经过点A 时,运动时间的值; (2)在整个运动过程中,设正方形PQMN 与△BCD 的重合部分面积为S ,请直接写出S 与之间的函数关系式和相应的自变量的取值范围;(3)如图2,当点M 与点D 重合时,线段PQ 与对角线BD 交于点O ,将△BPO 绕点O 逆时针旋转︒α (1800<<α),记旋转中的△BPO 为△O P B '',在旋转过程中,设直线P B ''与直线BC 交于G ,与直线BD 交于点H ,是否存在这样的G 、H 两点,使△BGH 为等腰三角形?若存在,求出此时2OH 的值;若不存在,请说明理由.第26题图1第26题图2CABDOQ PB 'P 'E P NCBD MQA2018年重庆八年级下学期期末考试数学试题参考答案一、选择题(每小题4分,共48分)ABCD CBAC CDCD二、填空题(每小题4分,共24分)13. 14.15- 15. 4<x 16.15 17.5<m 且0≠m 18. 52 19. (1)解:方程两边同乘以)1(-x x ,得)1()1(22-=--x x x x ……………… 3分∴02=+-x ……………… 4分 ∴2=x . ……………… 5分 经检验2=x 是原方程的解.∴原方程的解为2=x . ……………… 6分(2)解:∵2=a ,3=b ,1-=c∴17)1(24942=-⨯⨯-=-ac b ……………… 2分∴4173±-=x ……………… 5分 ∴41731+-=x ,41732--=x . ……………… 6分20. 解:解不等式①得: 2->x ……………… 2分 解不等式②得: 37≤x ……………… 4分 ∴原不等式组的解集为:372≤<-x……………… 6分21..证明:∵四边形ABCD 是矩形∴∠CDA =∠EDA =90°,AC=BD . ……………… 3分∵∠CAD=∠EAD ,AD=AD∴△ADC ≌△ADE . ……………… 5分 ∴AC =AE. 分∴BD=AE . ……………… 6分22. 解:原式=41216)2()4(22+-+-÷+-x x x x x x ··················· 3分=41)4)(4(2)2()4(2+--++⋅+-x x x x x x x ················· 4分=41)4(4+-+-x x x x ························ 5分 =)4(4+-x x=xx 442+-. ························· 6分∵0342=-+x x∴342=+x x . ························ 8分∴原式=34-. ························· 10分 23.解:(1)设第一次所购该蔬菜的进货价是每千克元,根据题意得5.07002400-=⋅x x …………………………3分 解得4=x .经检验4=x 是原方程的根,∴第一次所购该蔬菜的进货价是每千克4元; ············· 5分 (2)由(1)知,第一次所购该蔬菜数量为400÷4=100第二次所购该蔬菜数量为100×2=200 设该蔬菜每千克售价为元,根据题意得[100(1-2%)+200(1-3%)]944700400≥--y . ··········· 8分 ∴7≥y . ···························· 9分∴该蔬菜每千克售价至少为7元. ················ 10分24. (1)∵四边形ABCD 是正方形∴∠BCG =∠DCB=∠DCF=90°,BC=DC .∵BE ⊥DF∴∠CBG+∠F=∠CDF+∠F .∴∠CBG=∠CDF . ……………………………………2分 ∴△CBG ≌△CDF .∴BG=DF=4. ……………………………………3分∴在Rt △BCG 中,222BG BC CG =+∴CG =73422=-. …………………………4分 (2)过点C 作CM ⊥CE 交BE 于点M∵∠BCG=∠MCE =∠DCF =90°M∴∠BCM=∠DCE ,∠MCG=∠ECF ∵BC=DC ,∠CBG=∠CDF∴△CBM ≌△CDE ……………………………………6分 ∴CM=CE∴△CME 是等腰直角三角形 ……………………………………7分 ∴ME=CE 2 ,即MG+EG=CE 2又∵△CBG ≌△CDF ∴CG=CF∴△CMG ≌△FCE ……………………………………9分 ∴MG=EF∴EF+EG =2CE ……………………………………10分25. (1)3010+=x y ……………………………………2分 p y w -=100255090050)45010050()3010(10022++-=++-+=x x x x x ……………………………………4分(2)由58002550900502=++-x x 得 ……………………………………6分065182=+-x x∴131=x ,52=x∵12≤x ∴5=x . ……………………………………8分 ∴在今年内....该单位第5个月获得利润达到5800元. (3)二月份再生资源处理量为:40+10=50(吨)二月份月处理成本为:85045021002502=+⨯+⨯=p (元)50(1-%)×100(1+m 6.0%)-850×(1-20%)=50×100-850-60………10分 设%=,则023*******=-+t t∴30131060067600200±-=±-=t ∵0>t ,∴1.0=t∴%=0.1,即10=m . ……………………………………12分26.(1)过点D 作DK ⊥BC 延长线于K∴Rt △DKC 中,CK =3.∴Rt △DBK 中,BD=544)35(22=-+ ……………………2分在Rt △ABE 中,AB =5,AE =4, . ∴BE =3,∴当点Q 与点A 重合时,3=t . …………3分(2)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<+-≤<++-≤<-+-≤<=)54(1041)43(31031032)3715(35091402768)7150(9102222t t t t t t t t t t S …………8分(3)当点M 与点D 重合时,BP=QM=4,∠BPO=∠MQO ,∠BOP=∠MOQ∴△BPO ≌△MQO ∴PO=2,BO=52 若HB=HG 时,∠HBC=∠HGB=∠O B H ' ∴B O '∥BG ∴HO=B H '∴设HO=B H '=222)4(2x x -+=, ∴25=x ∴4252=OH . ……………………………………9分 若GB=GH 时, ∠GBH=∠GHB∴此时,点G 与点C 重合,点H 与点D 重合∴20)52(222===OD OH . ……………………………………10分 当BH=BG 时, ∠BGH=∠BHG∵∠HBG=∠B ', ∴∠B OH B HO '∠='∴B O B H '='=52,∴P H '=452-.∴51640)452(2222-=-+=OH . 或∠BGH=∠HA P 'BB 'O CDHGA BC D OP 'B '(G)(H)ABC DOB 'P 'GH P 'GHBADOCB '∴∠OBG=∠H P B O ∠=''2 ∴∠H B HO ∠='∴B O B H '='=52, ∴P H '=452+.∴51640)452(2222+=++=OH . ……………………………………12分 综上所述,当4252=OH 、20、51640-、51640+时,△BGH 为等腰三角形.。
2018年重庆市八年级下学期期末考试数学试卷1、若分式,则x的值是()A.B.C.D.【答案】A.【解析】试题分析:根据题意知:x-1=0且x+1≠0解得:x=1故选A.考点:分式值为0的条件.2、下列分解因式正确的是()A.B.C.D.【答案】B.【解析】试题分析:A.,故该选项错误;B.,该选项正确;C.,该选项错误;D.,该选项错误.故选B.考点:因式分解.3、下列图形中,是中心对称图形,但不是轴对称图形的是()C.D.A.B.【答案】C.【解析】试题分析:根据中心对称图形和轴对称图形的定义可知:A、既是中心对称图形,又是轴对称图形,故该选项错误;B、既是中心对称图形,又是轴对称图形,故该选项错误;C、是中心对称图形,但不是轴对称图形,故该选项正确;D、是轴对称图形,但不是中心对称图形,故该选项错误.故选C.考点:1.中心对称图形;2.轴对称图形.4、方程的解是()A.B.C.D.或【答案】D.【解析】试题分析:∵∴x2-3x=0∴x(x-3)=0即:x=0,x-3=0解得:x1=0,x2=3故选D.考点:一元二次方程的解法----因式分解法.5、根据下列表格的对应值:判断方程一个解的取值范围是()A.B.C.D.【答案】C.【解析】试题分析:根据题意易知方程一个解的取值范围是0.61<x<0.62.故选C.考点:一元二次方程的解.6、将点P(-3,2)向右平移2个单位后,向下平移3个单位得到点Q,则点Q的坐标为()A.(-5,5) B.(-1,-1) C.(-5,-1) D.(-1,5)【答案】B.【解析】试题分析::∵点P(-3,2)向右平移2个单位,再向下平移3个单位得到点Q,∴点Q的横坐标为-3+2=-1,纵坐标为2-3=-1,即点Q的坐标为:(-1,-1).故选B.考点:坐标与图形变化-平移.7、某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为,可列方程为()A.B.C.D.【答案】A.【解析】试题分析::∵某种商品原价是120元,平均每次降价的百分率为x,∴第一次降价后的价格为:120×(1-x),∴第二次降价后的价格为:120×(1-x)×(1-x)=120×(1-x)2,∴可列方程为:120(1-x)2=100,故选A.考点:由实际问题抽象出一元二次方程.8、如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,若,则是()A.4 B.6 C.8 D.9【答案】C.【解析】试题分析:易证△BOE∽△DOC∴∴S△DOC =4S△BOE=4×2=8.故选C.考点:1.相似三角形的判定与性质;2.平行四边形的性质.9、已知是关于的一元二次方程的根,则常数的值为()A.0或1 B.1 C.-1 D.1或-1【答案】C.【解析】试题分析:把x=0代入到方程得:解得:k=±1又1-k≠0解得:k≠1∴k=-1故选C.考点:1.一元二次方程根的定义;2.一元二次方程成立的条件.10、如图,菱形ABCD 中,对角线AC、BD交于点O,菱形ABCD周长为32,点P是边CD的中点,则线段OP的长为()A.3 B.5 C.8 D.4【答案】D.【解析】试题分析::∵菱形ABCD的周长为32,∴AD=8,AC⊥BD,∵P是AD的中点,∴OP=AD=4.故选D.考点:1.菱形的性质;2.三角形中位线定理.11、如图,以下各图都是由同样大小的图形①按一定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,……,则第⑦个图形中完整菱形的个数为()A.83 B.84 C.85 D.86【答案】C.【解析】试题分析:第①个图形中共有1个完整菱形,S1=1,第②个图形中共有5个完整菱形,S2-S1=5-1=4,第③个图形中共有13个完整菱形,S3-S2=13-5=8=4×2,第④个图形中共有25个完整菱形,S4-S3=25-13=12=4×3,依此类推,Sn -Sn-1=4(n-1),所以,S1+S2-S1+S3-S2+S4-S3+…+Sn-Sn-1=1+4+4×2+4×3+…+4(n-1),所以,Sn=1+4[1+2+3+…+(n-1)]=1+4×=2n2-2n+1,即Sn=2n2-2n+1,当n=7时,S7=2×72-2×7+1=85.故选C.考点:规律型:图形的变化类.12、如图,矩形ABCD中,E、G为AB、CD边上的点,F为BC的中点,且BE=1,CG=4,BC=4,EF⊥FG,则EG的长为()A.5 B.10 C.D.【答案】A.【解析】试题分析:在直角三角形EBF和直角三角形CFG中,利用勾股定理分别求出EF和FG的长度,再利用勾股定理求出EG的长度即可.试题解析::∵四边形ABCD是矩形,∴∠B=∠C=90°,∵F为BC的中点,BC=4,∴BF=CF=2,∴EF2=BE2+BF2=5,FG2=CF2+CG2=20,∵EF⊥FG,∴EG2=EF2+FG2=25,∴EG=5,故选A.考点:勾股定理.13、已知,则= .【答案】.【解析】试题分析:把变形为,代入即可求值.试题解析:∵∴∴.考点:分式求值.14、已知点C是线段AB的黄金分割点,且AC>BC,AB=2,则AC的长为 . 【答案】.【解析】试题分析:根据黄金分割点的定义,知AC为较长线段;则AC=AB,代入数据即可得出AC的值.试题解析:由于C为线段AB=2的黄金分割点,且AC>BC,AC为较长线段;则AC=2×.考点:黄金分割.15、如图,已知函数与函数的图象交于点P,则不等式的解是.【答案】x<4.【解析】试题分析:把P分别代入函数y=2x+b与函数y=kx-3求出k,b的值,再求不等式kx-3>2x+b 的解集.试题解析:把P(4,-6)代入y=2x+b得,-6=2×4+b解得,b=-14把P(4,-6)代入y=kx-3解得,k=-把b=-14,k=-代入kx-3>2x+b得,-x-3>2x-14解得:x<4.考点:一次函数与一元一次不等式.16、已知一元二次方程的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为.【答案】15.【解析】试题分析:用因式分解法可以求出方程的两个根分别是3和6,根据等腰三角形的三边关系,腰应该是6,底是3,然后可以求出三角形的周长.试题解析:x2-9x+18=0(x-3)(x-6)=0解得x1=3,x2=6.由三角形的三边关系可得:腰长是6,底边是3,所故周长是:6+6+3=15.考点:1.等腰三角形的性质;2.解一元二次方程-因式分解法;3.三角形三边关系.17、关于的方程的解是负数,则的取值范围是.【答案】m<5且m≠0.【解析】试题分析:求出分式方程的解x=m-5,得出m-5<0,求出m的范围,根据分式方程得出n-2≠-5,求出n,即可得出答案.试题解析:,解方程得:x=m-5,∵关于x的方程的解是负数,∴m-5<0,解得:m<5,又∵原方程有意义的条件为:x≠-5,∴m-5≠-5,即m≠0.∴m<5且m≠0.考点:分式方程的解.18、如图,矩形ABCD中,AD=10,AB=8,点P在边CD上,且BP=BC,点M在线段BP上,点N 在线段BC的延长线上,且PM=CN,连接MN交BP于点F,过点M作ME⊥CP于E,则EF= .【答案】.【解析】试题分析:通过作平行线构造全等,然后运用三角形全等及等腰三角形的性质即可推出EF是PB的一半,只需求出PB长就可以求出EF长.试题解析:作MQ∥AN,交PB于点Q,如图.∵AP=AB,MQ∥AN,∴∠APB=∠ABP,∠ABP=∠MQP.∴∠APB=∠MQP.∴MP=MQ.∵MP=MQ,ME⊥PQ,∴PE=EQ=PQ.∵BN=PM,MP=MQ,∴BN=QM.∵MQ∥AN,∴∠QMF=∠BNF.在△MFQ和△NFB中,∴△MFQ≌△NFB.∴QF=BF.∴QF=QB.∴EF=EQ+QF=PQ+QB=PB.易求:PC=4,BC=8,∠C=90°.∴PB=.∴EF=PB=.考点:1.全等三角形的判定与性质;2.等腰三角形的判定与性质;3.勾股定理;4.矩形的性质19、解方程:(1) (2)【答案】(1)x=2.(2),.【解析】试题分析:(1)按照解分式方程的一般步骤求解,即可求出方程的解,最后要注意验根;(2)利用求根公式即可求出方程的解.试题解析:(1)解:方程两边同乘以x(x-1),得∴-x+2=0∴x=2.经检验是原方程的解.∴原方程的解为.(2)解:∵,,∴∴∴,.考点:1.解分式方程;2.一元二次方程的解法---公式法.20、解不等式组:【答案】-2<x≤.【解析】试题分析:先求出每一个不等式的解集,再取它们的公共部分,即可确定不等式组的解集.试题解析:解不等式①得:x>-2;解不等式②得:x≤;∴原不等式组的解集为:-2<x≤.考点:解一元一次不等式组.21、如图,矩形ABCD中,点E在CD边的延长线上,且∠EAD=∠CAD.求证:AE=BD.【答案】证明见解析.【解析】试题分析:根据矩形的性质和全等三角形的判定方法证明可证明△ADC≌△ADE,由全等三角形的性质即可得到AE=BD.试题解析::∵四边形ABCD是矩形,∴∠CDA=∠EDA=90°,AC=BD.在△ADC和△ADE中.∵∠EAD=∠CADAD="AD"∠ADE=∠ADC,∴△ADC≌△ADE(ASA).∴AC=AE.∴BD=AE.考点:1.矩形的性质;2.全等三角形的判定与性质.22、先化简,再求值:,其中满足.【答案】.【解析】试题分析:去括号化简表达式,再化简已知等式,即可得解试题解析:===∵x2+4x-3=0∴x2+4x=3∴原式=.考点:分式的化简求值.23、某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.(1)第一次所购该蔬菜的进货价是每千克多少元?(2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有2% 的损耗,第二次购进的蔬菜有3% 的损耗,若该蔬菜店售完这些蔬菜获利不低于944元,则该蔬菜每千克售价至少为多少元?【答案】(1)4;(2)7.【解析】试题分析:(1)设第一次所购该蔬菜的进货价是每千克x元,则第二次购进时的价格为(x-0.5)元,根据两次购买的数量之间的关系建立方程求出其解即可;(2)先根据(1)的结论分别求出两次购买的数量,设该蔬菜每千克售价为y元,由销售问题的数量关系建立不等式求出其解即可.试题解析:(1)设第一次所购该蔬菜的进货价是每千克x元,则第二次购进时的价格为(x-0.5)元,根据题意,得,解得:x=4.经检验x=4是原方程的根,答:第一次所购该蔬菜的进货价是每千克4元;(2)由(1)知,第一次所购该蔬菜数量为:400÷4=100第二次所购该蔬菜数量为:100×2=200设该蔬菜每千克售价为y元,根据题意,得[100(1-2%)+200(1-3%)]y-400-700≥944.解得:y≥7.答:该蔬菜每千克售价至少为7元.考点:1.分式方程的应用;2.一元一次不等式的应用.24、在正方形ABCD 中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE.(1)若正方形ABCD边长为3,DF=4,求CG的长;(2)求证:EF+EG=CE.【答案】(1) ;(2)证明见解析.【解析】试题分析:(1)根据正方形的性质可得∠BCG=∠DCB=∠DCF=90°,BC=DC,再根据同角的余角相等求出∠CBG=∠CDF,然后利用“角边角”证明△CBG和△CDF全等,根据全等三角形对应边相等可得BG=DF,再利用勾股定理列式计算即可得解;(2)过点过点C作CM⊥CE交BE于点M,根据全等三角形对应边相等可得CG=CF,全等三角形对应角相等可得∠F=∠CGB,再利用同角的余角相等求出∠MCG=∠ECF,然后利用“角边角”证明△MCG和△ECF全等,根据全等三角形对应边相等可得MG=EF,CM=CE,从而判断出△CME是等腰直角三角形,再根据等腰直角三角形的性质证明即可.试题解析:(1)解:∵四边形ABCD是正方形,∴∠BCG=∠DCB=∠DCF=90°,BC=DC,∵BE⊥DF,∴∠CBG+∠F=∠CDF+∠F,∴∠CBG=∠CDF,在△CBG和△CDF中,,∴△CBG≌△CDF(ASA),∴BG=DF=4,∴在Rt△BCG中,CG2+BC2=BG2,∴CG=;(2)证明:如图,过点C作CM⊥CE交BE于点M,∵△CBG≌△CDF,∴CG=CF,∠F=∠CGB,∵∠MCG+∠DCE=∠ECF+∠DCE=90°,∴∠MCG=∠ECF,在△MCG和△ECF中,,∴△MCG≌△ECF(SAS),∴MG=EF,CM=CE,∴△CME是等腰直角三角形,∴ME=CE,又∵ME=MG+EG=EF+EG,∴EF+EG=CE.考点:1.正方形的性质;2.全等三角形的判定与性质;3.勾股定理;4.等腰直角三角形.25、为深化“携手节能低碳,共建碧水蓝天”活动,发展“低碳经济”,某单位进行技术革新,让可再生资源重新利用.今年1月份,再生资源处理量为40吨,从今年1月1日起,该单位每月再生资源处理量每一个月将提高10吨.月处理成本(元)与月份之间的关系可近似地表示为:,每处理一吨再生资源得到的新产品的售价定为100元.若该单位每月再生资源处理量为y(吨),每月的利润为w(元).(1)分别求出y与x,w与x的函数关系式;(2)在今年内该单位哪个月获得利润达到5800元?(3)随着人们环保意识的增加,该单位需求的可再生资源数量受限.今年三月的再生资源处理量比二月份减少了m%,该新产品的产量也随之减少,其售价比二月份的售价增加了%.四月份,该单位得到国家科委的技术支持,使月处理成本比二月份的降低了%.如果该单位四月份在保持三月份的再生资源处理量和新产品售价的基础上,其利润比二月份的利润减少了60元,求m的值.【答案】(1) y=10x+30,w=-50x2+900x+2550;(2)5;(3)10.【解析】试题分析:(1)首先根据表格求出y与x的函数关系式,然后利用已知条件即可得到P与x 的函数关系式;(2)根据(1)所求可以进而得到利润与x之间的函数关系式,即可求解;(3)首先根据已知条件可以分别求出:二月处理量、二月成本、二月利润,接着利用已知条件即可列出方程100×50(1-m%)(1+0.6m%)-850×(1-20%)=50×100-850-60,解方程即可解决问题.试题解析::解:(1)将(1,40),(2,50)代入y=kx+b,得:,解得:故每月再生资源处理量y(吨)与x月份之间的关系式为:y=10x+30,w=100y-p=100(10x+30)-(50x2+100x+450)=-50x2+900x+2550(2)由-50x2+900x+2550=5800得:x2-18x+65=0∴x1=13,x2=5∵x≤12,∴x=5∴在今年内该单位第5个月获得利润达到5800元. (3)二月份再生资源处理量:40+10=50吨,二月成本:P=50×22+100×2+450=850元,100×50(1-m%)(1+0.6m%)-950×(1-20%)=4050,令m%=t,则300t2+200t-23=0∴∵t>0∴t=0.1∴m%=0.1,即m=10.考点:二次函数的应用.26、如图1,梯形ABCD中,AD∥BC,AB=AD=DC=5,BC=11.一个动点P从点B出发,以每秒1个单位长度的速度沿线段BC方向运动,过点P作PQ⊥BC,交折线段BA-AD于点Q,以PQ为边向右作正方形PQMN,点N在射线BC上,当Q点到达D点时,运动结束.设点P的运动时间为t秒(t>0).(1)当正方形PQMN的边MN恰好经过点D时,求运动时间t的值;(2)在整个运动过程中,设正方形PQMN与△BCD的重合部分面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)如图2,当点Q在线段AD上运动时,线段PQ与对角线BD交于点E,将△DEQ沿BD翻折,得到△DEF,连接PF.是否存在这样的t,使△PEF是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.【答案】(1)t=4;(2)S=;(3)存在,当t=4、或时,△PEF是等腰三角形.【解析】试题分析:(1)作AG⊥BC,DH⊥BC,垂足分别为G、H,可以得出四边形AGHD为矩形,根据矩形的性质及相关条件可以得出△ABG≌△DCH,可以求出BG=CH的值,再由勾股定理就可以求出AG=DH的值,就可以求出BP的值,即可以求出结论t的值;(2)运用求分段函数的方法,分四种情况,当0<t≤3,当3<t≤4,4<t≤7,7<t≤8时,运用梯形的面积公式和三角形的面积公式就可以求出S的值;(3)先由条件可以求出EF=EQ=PQ-EP=4-t,分为三种情况:EF=EP时可以求出t值,当FE=FP时,作FR⊥EP,垂足为R,可以求出t值,当FE=FP时,作FR⊥EP,垂足为R,可以求出t 值,当PE=PF时,作PS⊥EF,垂足为S,可以求出t值.试题解析:(1)如图2,作AG⊥BC,DH⊥BC,垂足分别为G、H,∴四边形AGHD为矩形.∵梯形ABCD,AB=AD=DC=5,∴△ABG≌△DCH,∴BG=(BC-AD)=3,AG=4,∴当正方形PQMN的边MN恰好经过点D时,点M与点D重合,此时MQ=4,∴GP=AQ=AD-DQ=1,BP=BG+GP=4,∴t=4,即4秒时,正方形PQMN的边MN恰好经过点D;(2)如图1,当0<t≤3时,BP=t,∵tan∠DBC=,tan∠C=tan∠ABC=,∴GP=t,PQ=t,BN=t+t=t,∴NR=t,∴S=;如图3,当3<t≤4时,BP=t,∴GP=t,PQ=4,BN=t+4,∴NR=t+2,∴S==2t+4;如图4,当4<t≤7时,BP=t,∴GP=t,PQ=4,PH=8-t,BN=t+4,HN=t+4-8=t-4,∴CN=3-(t-4)=7-t,∴NR=,∴S=;如图5,当7<t≤8时,BP=t,∴GP=t,PQ=4,PH=8-t,∴S=∴S=;(3)∵∠PEF+∠QEF=180°=∠QDF+∠QEF,∴∠PEF=∠QDF=2∠ADB=∠ABC,∴cos∠ABC=cos∠PEF=,由(1)可知EP=BP=t,则EF=EQ=PQ-EP=4-t,①如图6,当EF=EP时,4-t=t,∴t=4;②如图7,当FE=FP时,作FR⊥EP,垂足为R,∴ER=EP=EF,∴t=(4-t),∴t=;③如图8,当PE=PF时,作PS⊥EF,垂足为S,∵ES=EF=PE,∴(4-t) =×t,∴t=.∴当t=4、或时,△PEF是等腰三角形.考点:相似形综合题.。
沙坪坝区 2017—2018 学年度第二学期期末调研测试八年级数学试题(全卷共五个大题,满分 150 分,考试时间 120 分钟) 注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答.一、选择题:(本大题 12 个小题,每小题 4 分,共 48 分)在每个小题的下面,都给出了代号为 A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确 答案标号涂黑.1.在□ABCD 中,∠A =70°,则∠B 的度数为A .110°B .100°C .70°D .20°2.已知23x y=,那么下列式子中一定成立的是 A . x + y = 5 B. 2 x = 3 yC .32x y =D .23x y =3.刘师傅要检验一个零件是否是平行四边形,用下列方法不能检验的是A .AB ∥CD ,AB =CDB .AB ∥CD ,AD =BCC .AB =CD ,AD = BCD .AB ∥CD ,AD ∥BC4.下列方程中是一元二次方程的是A . x 2- 1 = 0 B . y = 2 x 2+ 1 C . x +1x= 0 D .x 2 + y 2 = 15.在四边形 A BCD 中,两对角线交于点 O ,若 O A =OB =OC =OD ,则这个四边形A. 可能不是平行四边形B .一定是菱形C .一定是正方形D .一定是矩形6.如图,平面直角坐标系中,已知点 B (-3,2) , 若将△ABO 绕点 O 沿顺时针方向旋转 90°后得 到△A 1B 1O ,则点 B 的对应点 B 1 的坐标是 A .(3,1)B .(3,2)C .(1,3)D .(2,3)7. 已知 x = 2 是关于 x 的一元二次方程 x 2 - x - 2a = 0 的一个解,则 a 的值为A .0B .﹣1C .1D .28. 如图,正方形 A BCD 中,DC =3DF ,连接 A F 交对角线BD 于点 E ,那么 S △DEF :S △AEB =A .1 : 2B .1 : 3C .1 : 4D .1 : 9(第 8 题图)9. 体育课上,某班两名同学分别进行了 5 次实心球投掷训练,要判断哪一名同学的成绩比较稳定,通常需要比较两名同学成绩的A .平均数B .众数C .方差D .中位数10.如图,菱形 A BCD 中,对角线 B D 与 A C 交于点 O ,BD =8cm ,AC =6cm ,过点 O 作 O H ⊥CB 于点 H ,则 O H 的长为A .5cmB .52cm C .125cm D .245cm (第 10 题图)11.在一幅长 200cm ,宽 160cm 的硅藻泥风景画的四周,增添一宽度相同的装饰纹边,制 成一幅客厅装饰画,使得硅藻泥风景画的面积是整个客厅装饰画面积的 78%,设装饰 纹边的宽度为 x cm ,则可列方程为 A .(200+x )(160+x )×78%=200×160B .(200+2x )(160+2x )×78%=200×160C .(200+2x )(160+x )×78%=200×160D .(200+x )(160+2x )×78%=200×16012.如图,Rt △ABO 中,∠AOB =90°,AO =3BO ,点B 在反比例函数 y =2x的图象上,OA 交反比例函数 y =k x( k ≠ 0 )的图象于点 C ,且 O C =2CA ,则 k 的值为A. -2 B . -4 C .-6 D . -8二、填空题:(本大题6 个小题,每小题4分,共24 分)请将每小题的答案直接填在答题卡中对应的横线上.13.函数y=12018x+自变量的取值范围是.14.如图,□ABCD 的周长为20cm,AC 与B D 相交于点O,OE⊥AC 交A D 于E,则△CDE 的周长为cm.15.如图,一同学在广场边的一水坑里看到一棵树,他目测出自己与树的距离约为20m,树的顶端在水中的倒影距自己约5m 远,该同学的身高为1.7m,则树高约为m.(第14 题图)(第15 题图)16.某高校的自主招生测试分为笔试和面试,其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90 分.面试成绩为85 分,那么小明的总成绩为分.17.甲、乙两家人,相约周末前往中梁国际慢城度周末,甲、乙两家人分别从上桥和童家桥驾车同时出发,匀速前进,且甲途经童家桥,并以相同的线路前往中梁国际慢城. 已知乙的车速为30 千米/小时,设两车之间的里程为y(千米),行驶时间为x(小时),图中的折线表示从两家人出发至甲先到达终点的过程中y(千米)与x(小时)的函数关系,根据图中信息,甲的车速为千米/小时.(第17 题图)(第18 题图)18.如图,在正方形A BCD 中,点E是对角线B D 上一点,连接A E,将D E 绕D点逆时针方向旋转90°到DF,连接BF,交DC 于点G,若DG=3,CG=2,则线段AE 的长为.三、解答题:(本大题2 个小题,每小题8分,共16 分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19. 解下列方程:(1)5x2 =x ;(2)3x2 + 5x -1=0.20. 在生活与工作都离不开手机和电脑的今天,青少年近视、散光等眼问题日趋严重,为宣传2018 全国爱眼日(6 月6日),增强大众近视防控意识,某青少年视力矫正中心举办了主题为“永康降度还您一双明亮的眼睛”的降度明星大赛,现根据大赛公布的结果,将所有参赛孩子双眼降度之和(含近视和散光)情况绘制成了如下的统计表:(1)求参加降度明星大赛的孩子共有多少人?(2)求出所有参赛孩子所降度数的众数、中位数和平均数.(本大题5 个小题,每小题10 分,共50 分)解答时每小题必须给出必要的演算四、解答题:过程或推理步骤,请将解答书写在答题卡中对应的位置上.21. 如图,□ABCD 中,∠ABC 的角平分线B E 交A D 于点E,∠ADC 的角平分线D F 交B C于点F,A B =5,D E =3,∠ABC =50°.(1)求∠FDC 的度数;(2)求□ABCD 的周长.(第21 题图)22. 如图,一次函数y = kx +b(k≠0 )的图象与正比例函数y =-2x的图象交于A点,与x轴交于B点,且点A的纵坐标为4,OB=6.(1)求一次函数的解析式;(2)将正比例函数y=-2x的图象向下平移3个单位与直线A B 交于C点,求点C的坐标.(第22 题图)23. 因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018 年五一长假期间,接待游客达20 万人次,预计在2020 年五一长假期间,接待游客将达28.8 万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6 元,借鉴以往经验:若每碗卖25 元,平均每天将销售300 碗,若价格每降低1 元,则平均每天多销售30 碗.(1)求出2018 至2020 年五一长假期间游客人次的年平均增长率;(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20 元,则当每碗售价定为多少元时,店家才能实现每天利润6300 元?24.如图,在矩形A BCD 中,点E为A D 上一点,连接B E、CE,∠ABE=45°.(1)如图1,若B E = ,BC=4,求E C 的长.(2)如图2,点P是E C 的中点,连接BP 并延长交C D 于F,H 为AD 上一点,连接HF,且∠DHF=∠CBF,求证:BP=PF+FH.图1图2(第24 题图)25. 对于实数a、b,定义一种新运算“※”为:a※b=(2)2a bb a++-例如:1※3=1(32)27=312⨯++-,(-1) ※(-2) =1(22)2=-2(2)(1)-⨯-++---(1) 化简:( x -4)※x .(2) 若关于x的方程( mx +1)※(2x-1) =1 有两个相等的实数根,求实数m的值.五、解答题:(本大题1 个小题,共12 分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.26. 如图,在直角坐标系x Oy 中,OB=3,OA,H 是线段A B 上靠近点B的三等分点.(1)求点H的坐标;(2)若点M是y轴上的一动点,连接M B、MH,当M B+MH 的值最小时,求出M的坐标及MB+MH 的最小值;(3)如图2,过点O作∠AOP =30︒,交A B 于点P,再将△AOP 绕点O作顺时针方向旋转,旋转角度为α((0︒<α≤180︒),记旋转中的三角形为△A'O P',在旋转过程中,直线O P' 与直线A B 的交点为S,直线O A'与直线A B 交于点T,当△OST 为等腰三角形时,请直接写出α的值.图1图2(第26 题图)。
下期期末考试八年级数学试卷(全卷共六个大题,满分150分 考试时间:120分钟)一、选择题(本题共10个小题,每小题4分,共40分),在每小题给出的四个选项中,只有一个是正确的,请将所选答案填写在后面的答题卷上. 1.下列式子中表示分式的是A .13B .3bC .ab πD .ba c+2.将数0.0000205用科学记数法表示为A .40.20510⨯B .52.0510-⨯C .42.0510-⨯D .52.0510⨯ 3.某班抽取6名同学进行体育达标测试,成绩如下:80,90,75,80,75,80. 下列关于对这组数据的描述错误的是A 众数是80B .平均数是80C .中位数是75D .极差是15 4、正方形具备菱形不具备的性质是A .四条边都相等B .四个角都是直角C .对角线互相垂直平分 D5.已知反比例函数(0)ky k x=<的图象上有两点11(,)A x y ,22(,)B x y ,且120x x <<,则下列结论正确的是A .120y y >>B .120y y >>C .210y y >>D .210y y >> 6.△ABC 的三边长分别为a 、b 、c ,下列条件:①∠A=∠B -∠C ;②∠A :∠B :∠C=3:4:5;③))((2c b c b a -+=;④13:12:5::=c b a ,其中能判断△ABC 是直角三角形的个数有A .1个B .2个C .3个D .4个 7.如图,在三角形纸片ABC 中,AC=6,∠A=30º,∠C=90º,将∠A 沿DE 折叠,使点A 与点B 重合,则折痕DE 的长为A .1B .2C .3D .27题图 第8题图AB OyxABCDE8.如图,已知点A 是函数y= x 与y=x4的图象在第一象限内的交点,点B 在x 轴负半轴上,且OA=OB ,则△AOB 的面积为A .2B .2C .22D .4 9.有一长、宽、高分别是5cm ,4cm ,3cm 的长方体木块,一只蚂蚁要从长方体的一个顶点A 处沿长方体的表面爬到长方体上和A 相对的顶点B 处,则需要爬行的最短路径长为A.C..第9题图 第10题图10.如图,在梯形ABCD 中,∠ABC=90º,AE ∥CD 交BC 于E ,O 是AC 的中点,AB=3,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB ;③S △ADC =2S △ABE ;④BO ⊥CD ,其中正确的是A .①②③B .②③④C .①③④D .①②③④二、填空题(本题共6个小题,每个小题4分,共24分)请将每空的答案填写在后面的答题卷上.11.若函数1m y x -=是反比例函数,则m = . 12.计算b a a b b a+--的结果为 . 13. 已知一组数据为10,10,12,8.则这组数的方差是 . 14.符号“a b c d ”称为二阶行列式,规定它的运算法则为:a bad bc c d=-,请你根据上述法则,则方程2111111xx =--的解是 .ABCEDO15.如图,正方形ABCD 边长为5,它的两条对角线交于点1O ,以AB ,1AO 为相邻两边作平行四边形11O ABC ,平行四边形11O ABC 的对角线交于点2O ,同样以AB ,2AO 为两邻边作平行四边形22O ABC …….,以此类推,则平行四边形n n O ABC 的面积为 .第15题图 第16题图16.已知直角坐标系中,四边形OABC 是矩形,点A (10,0),点C (0,4),点D 是OA 的中点,点P 是BC 边上的一个动点,当△POD 是等腰三角形时,点P 的坐标为____________________________.......O 2O 1C 2C 1DCBA下期期末考试八年级数学答题卷(此卷必须交)一、选择题:(本大题共10个小题,每小题4分,共40分)二、填空题:(本大题共6个小题,每小题4分,共24分)11. 12. 13. 14 15. 16. . 三、解答题(本大题共4个小题,共24分) 请写出文字说明、计算或证明过程.17.(本小题共6分)解分式方程:011)1(222=-+-+xx x x18.(本小题共6分)先化简,再求值:2132446222--+-∙+-+a a a a a a a ,其中31=a .19.(6分)小军八年级上学期的数学成绩如下表所示:(2)如果学期总评成绩按扇形图所示的权重计算,问小军上学期的总评成绩是多少分?20.(本小题共6分) 如图,P 是正方形ABCD 对角线BD 上一点,PE ⊥DC ,PF ⊥BC ,E 、F 分别为垂足,若CF=3,CE=4,求AP 的长.四、解答题(本大题共4个小题,共34分) 请写出文字说明、计算或证明过程. 21.(本小题共8分)已知,如图四边形ABCD 是菱形,过AB 的中点E 作AC 的垂线EF ,交AD 于点M ,交CD 的延长线于点F ,垂足为O . 求证:M 是AD 的中点; (2)DF=21CD. .22.(本小题共8分)在某市人民政府组织的“争创全国卫生城市”的中小学生百科知识竞赛中,成绩分为A、B、C、D四个等级,其中相应等级平均得分依次记为100分、90分、80分、70分。
沙坪坝区 2017—2018 学年度第二学期期末调研测试八年级数学试题(全卷共五个大题. 满分 150 分 . 考试时间 120 分钟) 注:所有试题的答案必须答在答题卡上. 不得在试卷上直接作答.一、选择题:(本大题 12 个小题 . 每小题 4 分 . 共 48 分)在每个小题的下面 . 都给出了代号为 A 、B 、C 、D 的四个答案 . 其中只有一个是正确的 . 请将答题卡上对应题目的正确答案标号涂黑.1.在□ABCD 中. ∠ =70°. 则∠ B 的度数为AA . 110°B . 100°C . 70°D . 20°2.已知xy. 那么下列式子中一定成立的是2 33 y C .x 3D .x 2A . xy5B.2 xy 2 y 33.刘师傅要检验一个零件是否是平行四边形. 用下列方法不能检验的是A . AB ∥ CD .AB =CD B . AB ∥ CD . AD =BCC . AB =CD . AD = BCD . AB ∥CD . AD ∥ BC4.下列方程中是一元二次方程的是A . x2x2C .x1 D . x 2y21 0 B . y2 1 01x5.在四边形 ABCD 中 . 两对角线交于点 O . 若 OA =OB =OC =OD .则这个四边形A. 可能不是平行四边形B .一定是菱形C .一定是正方形D .一定是矩形6.如图 . 平面直角坐标系中 . 已知点 B ( 3,2) . 若将△ ABO 绕点 O 沿顺时针方向旋转90°后得 到△ A 1 B 1O . 则点 B 的对应点 B 1 的坐标是A (. 3.1 )B .(3.2 )C (. 1.3 )D .( 2.3 )(第 6 题图)7.已知x2是关于 x 的一元二次方程x2x 2 a0 的一个解.则 a 的值为A. 0B.﹣ 1C. 1D. 28.如图 . 正方形ABCD中 . DC=3DF. 连接AF交对角线BD 于点 . 那么 S△DEF:S △AEB= EA.1:2B.1: 3C.1:4D.1: 9(第 8 题图)9.体育课上 . 某班两名同学分别进行了 5 次实心球投掷训练. 要判断哪一名同学的成绩比较稳定 . 通常需要比较两名同学成绩的A.平均数B.众数C.方差D.中位数10.如图 . 菱形ABCD中 . 对角线BD与AC交于点O.BD=8cm.AC=6cm.过点 O 作 OH⊥ CB 于点 H.则OH 的长为A. 5cm B.5cm 2C.12cm D.24cm(第 10题图)5511.在一幅长 200cm.宽 160cm 的硅藻泥风景画的四周 . 增添一宽度相同的装饰纹边.制成一幅客厅装饰画 . 使得硅藻泥风景画的面积是整个客厅装饰画面积的78%.设装饰纹边的宽度为 x cm.则可列方程为A.( 200+x)( 160+x)× 78%=200× 160B.( 200+2x)( 160+2x)× 78%=200× 160 C.( 200+2x)( 160+x)× 78%=200× 160D.( 200+x)( 160+2x)× 78%=200× 160 12.如图 .Rt △ABO中 . ∠AOB=90° . AO=3BO.点B 在反比例函数y=2的图象上 .交反比例函x OAk数 y =)的图象于点 C.且 OC=2CA.(k 0x则k 的值为A.- 2 B.4C.- 6 D.8(第 12 题图)二、填空题:(本大题 6 个小题 . 每小题 4 分. 共 24 分)请将每小题的答案直接填在答题卡中对应的横线上.13.函数y1自变量的取值范围是.2018x14.如图 . □ABCD的周长为 20cm.AC与BD相交于点 O.OE⊥AC交AD于E.则△CDE 的周长为cm.15.如图 .一同学在广场边的一水坑里看到一棵树.他目测出自己与树的距离约为20m.树的顶端在水中的倒影距自己约 5m 远 . 该同学的身高为 1.7m. 则树高约为m.(第 14 题图)(第15题图)16.某高校的自主招生测试分为笔试和面试. 其中笔试按60%、面试按 40%计算加权平均数作为总成绩.小明笔试成绩为90 分.面试成绩为 85 分 .那么小明的总成绩为分.17.甲、乙两家人 . 相约周末前往中梁国际慢城度周末. 甲、乙两家人分别从上桥和童家桥驾车同时出发 . 匀速前进 . 且甲途经童家桥. 并以相同的线路前往中梁国际慢城. 已知乙的车速为 30 千米 / 小时 . 设两车之间的里程为y(千米).行驶时间为 x(小时).图中的折线表示从两家人出发至甲先到达终点的过程中y(千米)与 x(小时)的函数关系.根据图中信息.甲的车速为(第 17 题图)(第 18题图)18.如图 . 在正方形ABCD 中. 点E 是对角线BD上一点 . 连接. 将DE绕D点逆时针方向旋转AE90°到DF. 连接BF. 交DC于点G. 若DG=3. CG=2. 则线段AE的长为.千米/ 小时.三、解答题:(本大题 2 个小题 . 每小题 8 分. 共16 分)解答时每小题必须给出必要的演算过程或推理步骤. 请将解答书写在答题卡中对应的位置上.19.解下列方程:( 1)5 x2x ;(2)3x2 5 x 1 0 .20. 在生活与工作都离不开手机和电脑的今天. 青少年近视、散光等眼问题日趋严重.为宣传2018 全国爱眼日( 6月 6 日).增强大众近视防控意识. 某青少年视力矫正中心举办了主题为“永康降度还您一双明亮的眼睛”的降度明星大赛. 现根据大赛公布的结果 .将所有参赛孩子双眼降度之和(含近视和散光)情况绘制成了如下的统计表:所降度数(度)100200300400500600人数(人)121824411(1)求参加降度明星大赛的孩子共有多少人?(2)求出所有参赛孩子所降度数的众数、中位数和平均数.四、解答题:(本大题 5 个小题 . 每小题 10 分 . 共 50 分)解答时每小题必须给出必要的演算过程或推理步骤. 请将解答书写在答题卡中对应的位置上.21.如图 .□ABCD中 . ABC的角平分线BE交AD 于点E. ADC的角平分线DF交BC于点F . AB 5 . DE 3 .ABC=50°.(1)求FDC的度数;(2)求□ABCD的周长.(第 21 题图)22.如图 .一次函数y = kx + b(k≠ 0 )的图象与正比例函数y = - 2x的图象交于A点. 与x轴交于 B 点.且点 A 的纵坐标为 4. OB=6.(1)求一次函数的解析式;(2)将正比例函数y = - 2 x的图象向下平移 3 个单位与直线 AB 交于 C 点.求点 C 的坐标.(第 22 题图)23.因魔幻等与众不同的城市特质. 以及抖音等新媒体的传播 . 重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间 . 接待游客达 20 万人次 . 预计在 2020 年五一长假期间 . 接待游客将达28.8万人次.在磁器口老街. 美食无数 . 一家特色小面店希望在五一长假期间获得好的收益. 经测算知 .该小面成本价为每碗6 元 . 借鉴以往经验:若每碗卖 25元 . 平均每天将销售 300碗. 若价格每降低 1 元 . 则平均每天多销售 30 碗.( 1)求出 2018 至 2020 年五一长假期间游客人次的年平均增长率;( 2)为了更好地维护重庆城市形象.店家规定每碗售价不得超过 20 元 .则当每碗售价定为多少元时 . 店家才能实现每天利润 6300 元 ?24.如图 . 在矩形ABCD中. 点E为AD上一点 . 连接BE、CE. ∠ABE=45°.(1)如图 1. 若BE = 3 2 . BC=4. 求EC的长.(2)如图 2. 点P是EC的中点 . 连接BP并延长交CD于 F. H 为 AD上一点.连接 HF.且∠DHF=∠ CBF.求证: BP=PF+FH.图1图2(第 24 题图)25. 对于实数a、b. 定义一种新运算“※”为:a(b2)2 a※ b=b a例如: 1※ 3= 1 (32) 2 = 7. (1) ※( 2)=1(22)2=-23 12(2) (1)(1)化简: (x 4 )※ x .(2)若关于 x的方程 ( mx1)※ (2 x1) =1有两个相等的实数根. 求实数m的值.五、解答题:(本大题 1 个小题 . 共 12 分)解答时每小题必须给出必要的演算过程或推理步骤 . 请将解答书写在答题卡中对应的位置上.26. 如图 . 在直角坐标系 xOy 中 . OB =3. OA =3 3 . H 是线段 AB 上靠近点 B 的三等分点 .( 1)求点 H 的坐标;( 2)若点 M 是 y 轴上的一动点 . 连接 MB 、MH .当 MB +MH 的值最小时 . 求出 M 的坐标 及MB +MH 的最小值;( 3)如图 2.过点 O作 AOP 30 .交AB 于点 P .再将△ AOP 绕点 O 作顺时针方向旋转 . 旋转角度180 ).记旋转中的三角形为△ '' '与直线 AB 的为 α(αAOP .在旋转过程中 .直线 OP '与直线 AB 交于点 T . 当△ OST 为等腰三角形时 . 请直接写 出α 的值 .交点为 S . 直线 OA 图1图2(第26 题图)。
文档根源为:从网络采集整理.word版本可编写.支持. 2017-2018学年度第二学期期末教课一致检测初二数学一、选择题(此题共30分,每题3分)下边各题均有四个选项,此中只有一个..是切合题意的.以下函数中,正比率函数是A.y =x2B.y=2C.y=xD.y=x1x22以下四组线段中,不可以作为直角三角形三条边的是A.3cm,4cm,5cmB.2cm ,2cm,2 2cmC.2cm ,5cm,6cmD.5cm,12cm,13cm 以下图中,不是函数图象的是A BC D平行四边形所拥有的性质是A. 对角线相等B. 邻边相互垂直C. 每条对角线均分一组对角D. 两组对边分别相等5.下表记录了甲、乙、丙、丁四名同学近来几次数学考试成绩的均匀数与方差:1甲乙丙丁均匀数(分)92959592方差要选择一名成绩好且发挥稳固的同学参加数学竞赛,应当选择A.甲B.乙C.丙D.丁6.若x=﹣2是对于x的一元二次方程x23ax a20的一个根,则a的值为2A.1或﹣4B.﹣1或﹣4C.﹣1或4D.1或47.将正比率函数y 2x的图象向下平移2个单位长度,所得图象对应的函数分析式是A.y2x 1B.y2x 2C.y2x 2D.y 2x18.在一次为某位身患大病的小朋友募捐过程中,某年级有50师生经过微信平台奉献了爱心.小东对他们的捐钱金额进行统计,并绘制了以下统计图.师生捐钱金额的均匀数和众数分别是A.20,20B.,30C.,20D.20,309.若对于x的一元二次方程k 1x24x 1 0有实数根,则k的取值范围是A.k≤5 B.k≤5,且k≠1C.k<5,且k≠1D.k<5210.点(x ,y )在第一象限内,且 x+y=6,点A 的坐标为( 4,0).设△ 的面积为 ,POPAS则以下图象中,能正确反应S 与x 之间的函数关系式的是SSS S12126x6O 6xO6x12xO 4OAB C D二、填空题(此题共 24分,每题3分)11.请写出一个过点( 0,1),且y 跟着x 的增大而减小的一次函数分析式.12. 在湖的双侧有 A ,B 两个消防栓,为测定它们之间的距离,小明在岸上任选一点C ,并 量取了AC 中点D 和BC 中点E 之间的距离为 16米,则A ,B 之间的距离应为米.3文档根源为:从网络采集整理 .word 版本可编写.支持 .如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则对于x 的不等式kx +6>x +b的解集是_____________.14. 在菱形ABCD 中,∠A =60°,其所对的对角线长为 4,则菱形ABCD 的面积是.15. 《九章算术》是中国传统数学最重要的著作, 确立了中国传统数学的基本框架,书中的算法系统到现在仍在推进着计算机的发展和应用 .《九章算术》中记录:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短 . 横放,竿比门宽长出 4尺;竖 放,竿比门高长出 2尺;斜放,竿与门对角线恰巧相等 .问门高、宽、对角线长分别是多 少?若设门对角线长为 x 尺,则可列方程为 .16.方程x 28x150的两个根分别是一个直角三角形的两条边长,则直角三角形的第三条边长是.17. 已知直线y2x 2与x 轴、y 轴分别交于点A ,B .若将直线y 1x 向上平移n 个2单位长度与线段AB 有公共点,则n 的取值范围是.在一节数学课上,老师部署了一个任务:已知,如图 1,在Rt △ABC 中,∠B =90°,用尺规作图作矩形ABCD .4文档根源为:从网络采集整理.word版本可编写.支持.图1图2同学们开动脑筋,想出了好多方法,此中小亮作了图2,他向同学们分享了作法:①分别以点A,C为圆心,大于1AC长为半径画弧,两弧分别交于点E,F,连结EF2交AC于点O;作射线BO,在BO上取点D,使ODOB;③连结AD,CD.则四边形ABCD就是所求作的矩形.老师说:“小亮的作法正确.”小亮的作图依照是.三、解答题(此题共46分,第19—21,24题,每题4分,第22,23,25-28题,每题5分)19.用配方法解方程:x26x120.如图,正方形ABCD的边长为9,将正方形折叠,使极点D落在BC边上的点E处,折痕为GH.若BE:EC 2:1,求线段EC,CH的长.5文档根源为:从网络采集整理.word版本可编写.支持.21. 已知对于x的一元二次方程m1x2m1x20,此中m1.1)求证:此方程总有实根;2)若此方程的两根均为正整数,求整数m的值2017年5月5日,国产大飞机C919首飞圆满成功.C919大型客机是我国初次依照国际适航标准研制的150座级干线客机,首飞成功标记着我国大型客机项目获得重要打破,是我公民用航空工业发展的重要里程碑.当前,C919大型客机已有国内外多家客户预定六百架表1是此中20家客户的订单状况.表1客户订单(架)客户订单(架)中国国际航空20工银金融租借有限企业45中国东方航空20安全国际融资租借企业50中国南方航空20交银金融租借有限企业306文档根源为:从网络采集整理.word版本可编写.支持.海南航空20中国飞机租借有限企业20四川航空15中银航空租借个人有限20企业河北航空20农银金融租借有限企业45幸福航空20建信金融租借股份有限50企业国银金融租借有限企业15招银金融租借企业30美国通用租借企业GECAS20兴业金融租借企业20泰国都市航空10德国普仁航空企业7依据表1所供给的数据补全表2,并求出这组数据的中位数和众数.表2订单(架)71015203050客户(家)11222(1)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延伸线于F,且AF=BD,连结BF.(2)(3)求证:点D是线段BC的中点;(4)(5)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.7文档根源为:从网络采集整理.word版本可编写.支持.8文档根源:从网采集整理.word 版本可.迎下支持 .24.有一个:研究函数y1 的象与性.1x小明依据学一次函数的,函数y1 1的象与性行了研究.x下边是小明的研究程,充完好:(1)函数y1 ;1的自量x 的取范是x(2)下表是 y 与x 的几.x⋯ -4 -3 -2-1 -m m 1 2 3 4 ⋯3 2 1 345 y ⋯320-1323⋯424求出m 的;(3)如,在平面直角坐系xOy 中,描出了以表中各坐的点.依据描出的点,画出函数的象;9文档根源为:从网络采集整理.word版本可编写.支持.(4)写出该函数的一条性质.已知:如图,平行四边形ABCD的对角线订交于点O,点E在边BC的延伸线上,且OE=OB,联络DE.求证:DE⊥BE;(2)设CD与OE交于点F,若OF2FD2OE2,CE3,DE 4,求线段CF长.10文档根源为:从网络采集整理.word版本可编写.支持.26.如图,在平面直角坐标系中,已知点A(﹣,0),B(0,3),C(0,-1)三点.1)求线段BC的长度;2)若点D在直线AC上,且DB=DC,求点D的坐标;3)在(2)的条件下,直线BD上应当存在点P,使以A,B,P三点为极点的三角形是等腰三角形.请利用尺规作图作出全部的点P,并直接写出此中随意一个点P的坐标.(保存作图印迹)如图,在△ABD中,AB=AD,将△ABD沿BD翻折,使点A翻折到点C.E是BD上一点,且BE>DE,连结CE并延伸交AD于F,连结AE.1)依题意补全图形;2)判断∠DFC与∠BAE的大小关系并加以证明;3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.A AB DB D11文档根源为:从网络采集整理.word版本可编写.支持.备用图28.在平面直角坐标系xOy中,已知点M a,b及两个图形W1和W2,若对于图形W1上任意一点Px,y,在图形W2上总存在点P x,y,使得点P是线段PM的中点,则称点P是点P对于点M的关系点,图形W2是图形W1对于点M的关系图形,此时三个点的坐标x a y b 知足x,y2.2(1)点P2,2是点P对于原点O的关系点,则点P的坐标是;(2)已知,点A 4,1,B 2,1,C 2,1,D 4,1以及点M3,0①画出正方形ABCD对于点M的关系图形;12文档根源为:从网络采集整理.word版本可编写.支持.②在y轴上能否存在点N,使得正方形ABCD对于点N 的关系图形恰巧被直线y x分红面积相等的两部分?若存在,求出点N的坐标;若不存在,说明原因.132018学年度第二学期期末一初二数学参照答案及分准一、(本共30分,每小3分)号12345678910答案C C B D B A C B B B二、填空(本共24分,每小3分)11.y=-x+1等,答案不独一.12.3213.X<314.8315.x2x42x2216.4或许3417.1≤n≤2 2到段两头距离相等的点在段的垂直均分上,角相互均分的四形是平行四形,有一个角是直角的平行四形是矩形.三、解答题(此题共46分,第19—21,24题,每题4分,第22,23,25-28题,每题5分)19.解:x32⋯⋯⋯⋯⋯⋯2分10,解得x1 3 10,x23 10.⋯⋯⋯⋯⋯⋯4分20.解:∵BC 9,BE:EC 2:1,∴EC 3.⋯⋯⋯⋯⋯⋯1分CHx,DH 9 x.⋯⋯⋯⋯⋯⋯2分由折叠可知EH DH 9x.14在Rt△△ECH中,C=90,∴EC2CH2EH2.即32x22⋯⋯⋯⋯⋯⋯3分9x.解得x4.∴CH 4.⋯⋯⋯⋯⋯⋯4分(1)明:由意m1.2m142m1⋯⋯⋯⋯⋯⋯1分m26m92m32∵m 3≥0恒建立,∴方程m 1x2m 1x 2 0有根;⋯⋯⋯⋯⋯⋯2分(2)解:解方程m1x2m1x20,得x112.,x2m1∵方程m1x2m1x20的两根均正整数,且m是整数, m11,或m12.∴m 2,或m 3.⋯⋯⋯⋯⋯⋯4分15(架)710152030455022.解:客(家)11210222⋯⋯⋯⋯⋯⋯3分中位数是20,众数是20.⋯⋯⋯⋯⋯⋯5分23.(1)明:∵点E是AD的中点,∴AE=DE.∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.∴△EAF≌△EDC.⋯⋯⋯⋯⋯⋯1分∴AF=DC.∵AF=BD,∴=,即D 是的中点.⋯⋯⋯⋯⋯⋯2分BD DC BC(2)解:∵AF∥BD,AF=BD,∴四形AFBD是平行四形.⋯⋯⋯⋯⋯⋯3分∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC.⋯⋯⋯⋯⋯⋯4分在Rt△ABD中,由勾股定理可求得AD=12,∴矩形AFBD的面BD AD 60.⋯⋯⋯⋯⋯⋯5分24.解:(1)x≠0;⋯⋯⋯⋯⋯⋯1分16文档根源:从网采集整理.word版本可.迎下支持.(2)令113,m∴m1;⋯⋯⋯⋯⋯⋯2分2(3)如⋯⋯⋯⋯⋯⋯3分(4)答案不独一,可参照以下的角度:⋯⋯⋯⋯⋯⋯4分①函数没有最大或函数没有最小;②函数在不等于1;③增减性(1)明:∵平行四形ABCD,∴OB=OD.∵OB=OE,∴OE=OD.∴∠OED=∠ODE.⋯⋯⋯⋯⋯⋯1分∵OB=OE,17∴∠1=∠2.∵∠1+∠2+∠ODE+∠OED=180°,∴∠2+∠OED=90°.∴DE⊥BE;⋯⋯⋯⋯⋯⋯2分(2)解:∵OE=OD,OF2FD2OE2,∴OF2FD2 OD2.∴△OFD直角三角形,且∠OFD=90°.⋯⋯⋯⋯⋯⋯3分在Rt△中,∠CED=90°,CE=3,DE4,CED∴CD2CE2 DE2.∴CD5.⋯⋯⋯⋯⋯⋯4分又∵1CD EF1CEDE, 2212.∴EF5在Rt△CEF中,∠CFE=90°,CE=3,EF12,5依据勾股定理可求得9⋯⋯⋯⋯⋯⋯5分CF.5解:(1)∵B(0,3),C(0,1).∴BC=4.⋯⋯⋯⋯⋯⋯1分(2)直AC的分析式y=kx+b,把A(,0)和C(0,1)代入y=kx+b,18∴.解得:,∴直AC的分析式:y=x 1.⋯⋯⋯⋯⋯⋯2分∵DB=DC,∴点D在段BC的垂直均分上.∴D的坐 1.把y=1代入y=x 1,解得x= 2,∴D的坐(2,1).⋯⋯⋯⋯⋯⋯3分(3)⋯⋯⋯⋯⋯⋯4分当A、B、P三点点的三角形是等腰三角形,点P的坐(3,0),(,2),(3,3),(3,3+),写出此中随意一个即可.⋯⋯⋯⋯⋯⋯5分27.28.29.30.31.解:(1)AFB E D19C⋯⋯⋯⋯⋯⋯1分(2)判断:∠DFC=∠BAE.⋯⋯⋯⋯⋯⋯2分明:∵将△ABD沿BD翻折,使点A翻折到点C.∴BC=BA=DA=CD.∴四形ABCD菱形.∴∠ABD=∠CBD,AD∥BC.又∵BE=BE,∴△ABE≌△CBE(SAS).∴∠BAE=∠BCE.∵AD∥BC,∴∠DFC=∠BCE.∴∠DFC=∠BAE.⋯⋯⋯⋯⋯⋯3分3)CG,AC.由P4,4称可知,EA+EG=EC+EG,CG就是EA+EG的最小.⋯⋯⋯⋯⋯⋯4分∵∠BAD=120°,四形ABCD菱形,∴∠CAD=60°.∴△ACD2的等三角形.20可求得CG=3.EA+EG的最小3.⋯⋯⋯⋯⋯⋯5分解:(1)∵P(-4,4).⋯⋯⋯⋯⋯⋯1分(2)①接AM,并取中点A′;同理,画出B′、C′、D′;∴正方形A′B′C′D′所求作.-----------------------------3分②不如N(0,n).∵关正方形被直y=-x分红面相等的两部分,∴中心Q落在直y=-x上.-------------------------------------4分∵正方形ABCD的中心E(-3,0),21文档根源为:从网络采集整理.word版本可编写.支持.22。
重庆市2018-2019学年度八年级(下)期末数学试卷(满分:150分.120分钟完卷)一、选择题(本大题12个小题,每小题4发,共48分。
)1.下列式子中,属于最简二次根式的是()A.B.C.D.2.下列根式中,不能与合并的是()A.B.C.D.3.下列函数:①y=﹣2x,②y=﹣3x2+1,③y=x﹣2,其中一次函数的个数有()A.0个B.1个C.2个D.3个4.2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:队员1队员2队员3队员4平均数(秒)51505150方差s2(秒2) 3.5 3.514.515.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.队员2B.队员1C.队员4D.队员35.点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1>y2>0C.y1<y2D.y1=y26.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,,B.3,4,5C.5,12,13D.2,2,37.实数k、b满足kb﹥0,不等式kx<b的解集是那么函数y=kx+b的图象可能是()A. B. C. D.8.下列条件中,能判定四边形为平行四边形的是()A.∥,B.,C.,D.,9.如图,在直角△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段AN的长为A.6B.5C.4D.310.2016年,某市发生了严重干旱,该市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图,则关于这10户家庭的月用水量,下列说法错误的是()A.众数是6B.中位数是6C.平均数是6D.方差是411.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则8min时容器内的水量为()A.20L B.25L C.27L D.30L12.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC 于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB ⊥OC ,OM=CM ;②△EOB ≌△CMB ;③四边形EBFD 是菱形;④MB :OE=3:2.其中正确结论的个数是()A .1B .2C .3D .4二、填空题(本大题6个小题,每小题4分,共24分。
沙坪坝区 2017—2018 学年度第二学期期末调研测试八年级数学试题(全卷共五个大题,满分 150 分,考试时间 120 分钟) 注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答.一、选择题:(本大题 12 个小题,每小题 4 分,共 48 分)在每个小题的下面,都给出了代号为 A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确 答案标号涂黑.1.在□ABCD 中,∠A =70°,则∠B 的度数为A .110°B .100°C .70°D .20°2.已知23x y=,那么下列式子中一定成立的是 A . x + y = 5 B. 2 x = 3 y C .32x y =D .23x y =3.刘师傅要检验一个零件是否是平行四边形,用下列方法不能检验的是A .AB ∥CD ,AB =CDB .AB ∥CD ,AD =BCC .AB =CD ,AD = BCD .AB ∥CD ,AD ∥BC4.下列方程中是一元二次方程的是A . x 2- 1 = 0 B . y = 2 x 2+ 1 C . x +1x= 0 D .x 2 + y 2 = 15.在四边形 A BCD 中,两对角线交于点 O ,若 O A =OB =OC =OD ,则这个四边形A. 可能不是平行四边形B .一定是菱形C .一定是正方形D .一定是矩形6.如图,平面直角坐标系中,已知点 B (-3,2) , 若将△ABO 绕点 O 沿顺时针方向旋转 90°后得 到△A 1B 1O ,则点 B 的对应点 B 1 的坐标是 A .(3,1)B .(3,2)C .(1,3)D .(2,3)7. 已知 x = 2 是关于 x 的一元二次方程 x 2 - x - 2a = 0 的一个解,则 a 的值为A .0B .﹣1C .1D .28. 如图,正方形 A BCD 中,DC =3DF ,连接 A F 交对角线BD 于点 E ,那么 S △DEF :S △AEB =A .1 : 2B .1 : 3C .1 : 4D .1 : 9(第 8 题图)9. 体育课上,某班两名同学分别进行了 5 次实心球投掷训练,要判断哪一名同学的成绩比较稳定,通常需要比较两名同学成绩的A .平均数B .众数C .方差D .中位数10.如图,菱形 A BCD 中,对角线 B D 与 A C 交于点 O ,BD =8cm ,AC =6cm ,过点 O 作 O H ⊥CB 于点 H ,则 O H 的长为A .5cmB .52cm C .125cm D .245cm (第 10 题图)11.在一幅长 200cm ,宽 160cm 的硅藻泥风景画的四周,增添一宽度相同的装饰纹边,制 成一幅客厅装饰画,使得硅藻泥风景画的面积是整个客厅装饰画面积的 78%,设装饰 纹边的宽度为 x cm ,则可列方程为 A .(200+x )(160+x )×78%=200×160B .(200+2x )(160+2x )×78%=200×160C .(200+2x )(160+x )×78%=200×160D .(200+x )(160+2x )×78%=200×16012.如图,Rt △ABO 中,∠AOB =90°,AO =3BO ,点B 在反比例函数 y =2x的图象上,OA 交反比例函数 y =k x( k ≠ 0 )的图象于点 C ,且 O C =2CA ,则 k 的值为A. -2 B . -4 C .-6 D . -8二、填(本大题 6 个小题,每小题 4 分,共 24 分)请将每小题的答案直接填在答题卡中对应的横线上. 13.函数 y =12018x +自变量的取值范围是 . 14.如图,□ABCD 的周长为 20cm ,AC 与 B D 相交于点 O ,OE ⊥AC 交 A D 于 E ,则△CDE的周长为cm.15.如图,一同学在广场边的一水坑里看到一棵树,他目测出自己与树的距离约为 20m ,树 的顶端在水中的倒影距自己约 5m 远,该同学的身高为 1.7m ,则树高约为m .(第 14 题图)(第 15 题图)16.某高校的自主招生测试分为笔试和面试,其中笔试按 60%、面试按 40%计算加权平均 数作为总成绩.小明笔试成绩为 90 分.面试成绩为 85 分,那么小明的总成绩为分.17.甲、乙两家人,相约周末前往中梁国际慢城度周末,甲、乙两家人分别从上桥和童家桥 驾车同时出发,匀速前进,且甲途经童家桥,并以相同的线路前往中梁国际慢城. 已知 乙的车速为 30 千米/小时,设两车之间的里程为 y (千米),行驶时间为 x (小时),图中 的折线表示从两家人出发至甲先到达终点的过程中 y (千米)与 x (小时)的函数关系, 根据图中信息,甲的车速为千米/小时.(第 17 题图) (第 18 题图)18.如图,在正方形 A BCD 中,点 E 是对角线 B D 上一点,连接 A E ,将 D E 绕 D 点逆时针 方向旋转 90°到 DF ,连接 BF ,交 DC 于点 G ,若 DG =3,CG =2,则线段 AE 的长 为 .三、解(本大题 2 个小题,每小题 8 分,共 16 分)解答时每小题必须给出必要的演算 过程或推理步骤,请将解答书写在答题卡中对应的位置上. 19. 解下列方程:(1) 5x 2 = x ; (2) 3x 2 + 5x - 1 = 0 .20. 在生活与工作都离不开手机和电脑的今天,青少年近视、散光等眼问题日趋严重,为 宣传 2018 全国爱眼日(6 月 6 日),增强大众近视防控意识,某青少年视力矫正中心举 办了主题为“永康降度还您一双明亮的眼睛”的降度明星大赛,现根据大赛公布的结果, 将所有参赛孩子双眼降度之和(含近视和散光)情况绘制成了如下的统计表:(1)求参加降度明星大赛的孩子共有多少人?(2)求出所有参赛孩子所降度数的众数、中位数和平均数.四、解答题:(本大题 5 个小题,每小题 10 分,共 50 分)解答时每小题必须给出必要的演 算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21. 如图,□ABCD 中,∠ABC 的角平分线 B E 交 A D 于点 E ,∠ADC 的角平分线 D F 交 B C于点 F , A B = 5 , D E = 3 , ∠ABC =50°.(1)求 ∠FDC 的度数;(2)求□ABCD 的周长.(第 21 题图)22. 如图,一次函数 y = kx + b ( k ≠0 )的图象与正比例函数 y = -2x 的图象交于 A 点,与 x轴交于 B 点,且点 A 的纵坐标为 4,OB =6.(1)求一次函数的解析式;(2)将正比例函数 y = -2x 的图象向下平移 3 个单位与直线 A B 交于 C 点,求点 C 的坐标.(第 22 题图)23. 因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018 年五一长假期间,接待游客达20 万人次,预计在2020 年五一长假期间,接待游客将达28.8 万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6 元,借鉴以往经验:若每碗卖25 元,平均每天将销售300 碗,若价格每降低1 元,则平均每天多销售30 碗.(1)求出2018 至2020 年五一长假期间游客人次的年平均增长率;(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20 元,则当每碗售价定为多少元时,店家才能实现每天利润6300 元?24.如图,在矩形A BCD 中,点E为A D 上一点,连接B E、CE,∠ABE=45°.(1)如图1,若B E = ,BC=4,求E C 的长.(2)如图2,点P是E C 的中点,连接BP 并延长交C D 于F,H 为AD 上一点,连接HF,且∠DHF=∠CBF,求证:BP=PF+FH.图1图2(第24 题图)25. 对于实数a、b,定义一种新运算“※”为:a※b=(2)2a bb a++-例如:1※3=1(32)27=312⨯++-,(-1) ※(-2) =1(22)2=-2(2)(1)-⨯-++---(1) 化简:( x -4)※x .(2) 若关于x的方程( mx +1)※(2x-1) =1 有两个相等的实数根,求实数m的值.五、解(本大题 1 个小题,共 12 分)骤,请将解答书写在答题卡中对应的位置上.26. 如图,在直角坐标系 x Oy 中,OB =3,OA ,H 是线段 A B 上靠近点 B 的三等分点.(1)求点 H 的坐标;(2)若点 M 是 y 轴上的一动点,连接 M B 、MH ,当 M B +MH 的值最小时,求出 M 的坐标 及 MB +MH 的最小值;(3)如图 2,过点O作 ∠AOP = 30︒ ,交 A B 于点 P ,再将△AOP 绕点 O 作顺时针方向旋转, 旋转角度为α((0︒ <α ≤ 180︒),记旋转中的三角形为△ A ' O P ' ,在旋转过程中,直线 O P ' 与直线 A B 的交点为 S ,直线 O A ' 与直线 A B 交于点 T ,当△OST 为等腰三角形时,请直接写 出α 的值.图 1图 2(第 26 题图)。