吉布斯---亥姆霍兹方程精品课件
- 格式:ppt
- 大小:262.50 KB
- 文档页数:10
吉布斯-亥姆霍兹方程
吉布斯─亥姆霍兹方程,是对计算系统的吉布斯自由能变化的有用热力学公式。
为一温度函数。
此方程式以约西亚·吉布斯与赫尔曼·冯·亥姆霍兹来命名。
亥姆霍兹方程通常出现在涉及同时存在空间和时间依赖的偏微分方程的物理问题的研究中。
例如,考虑波动方程;在假定u(r,t) 是可分离变量情况下分离变量。
其结果是,当且仅当等式两边都等于恒定值时,该方程在一般情况下成立。
从这一观察中,可以得到两个方程,一个是对A(r) 的,另一个是对T(t) 的。
研究
1847年,亥姆霍兹出版了《力量的守恒》(Erhaltung der Kraft)一书,阐明了能量守恒的原理,亥姆霍兹自由能即以他来命名。
他也研究过电磁学,他的研究预测了麦克斯韦方程组中的电磁辐射,相关的方程式以他来命名。
除了物理,亥姆霍兹也对感知的研究作出贡献。
他发明了检眼镜,以及以他命名的共鸣器(Helmholtz-Resonator),他两部光学和声学的著作,《作为乐理的生理学基础的音调感受的研究》(Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik)、《生理光学手册》(Handbuch der Physiologischen Optik),对后世影响很大。
《论音调的感觉》,亥姆霍兹(Hermann von Helmholtz)大师1863年作品。
主要从物理学的角度论述了各音调给人的感觉,同时具有很高的美学价值。
亥姆霍兹函数和吉布斯函数姓名 班级 电话 邮箱摘要:主要介绍了亥姆霍兹函数和吉布斯函数的引入、推导过程、计算方法及应用——亥姆霍兹函数判据和吉布斯函数判据,还有对亥姆霍兹函数和吉布斯函数的理解关键词:亥姆霍兹函数 吉布斯函数 推导过程 应用 理解热力学第二定律导出了熵这个状态函数,但用熵作为判据时,体系必须是隔离系统,也就是对于系统和环境组成的隔离系统,不仅需要计算系统的熵变还要计算环境的熵变,才能判断过程的可能性。
而在化学化工生产中,通常反应总是恒温恒容或恒温恒压且非体积功为零的过程,有没有更为方便的判据呢?引入新的热力学函数——亥姆霍兹函数和吉布斯函数及相应的判据,利用体系自身状态函数的变化,判断自发变化的方向和限度,即只需要计算系统的变化,从而避免了计算环境熵变的麻烦。
对于亥姆霍兹函数,根据熵判据公式:在恒温、恒容及非体积功为零的条件下:A=(U-TS )是状态函数的组合,仍然具有状态函数的性质,定义它为一个新的辅助状态函数——亥姆霍兹函数,又曾被称为亥姆霍兹自由能或自由能,也曾用F 表示。
亥姆霍兹能(Helmholtz energy) 是广度性质的状态函数,具有能量单位,绝对值无法确定。
恒温可逆过程:即:恒温可逆过程系统亥姆霍兹函数变化等于过程的可逆功,又称恒温过程系统的亥姆霍兹函数变化表示了系统发生恒温变化时具有的作功能力。
恒温恒容可逆过程:0sys amb dS dS >⎛⎫+≥ ⎪=⎝⎭不可逆可逆/0sys amb ambdS Q T δ>⎛⎫+≥ ⎪=⎝⎭不可逆可逆/0dS dU T >⎛⎫-≥ ⎪=⎝⎭自发平衡0d U TS <⎛⎫-≤ ⎪=⎝⎭自发()平衡⇒T rA W ∆=/,T V rA W∆=即:恒温恒容可逆过程系统亥姆霍兹函数变化等于过程的可逆非体积功,又称恒温恒容过程系统的亥姆霍兹函数变化表示了系统发生恒温恒容变化时具有的作非体积的功能力。