高考数学(理科,天津课标版)二轮复习专题能力训练含答案11
- 格式:docx
- 大小:13.23 KB
- 文档页数:7
综合能力训练第Ⅰ卷(选择题,共40分)一、选择题(本大题共8小题,每小题5分,共40分)1.已知集合A=,B={x|y=lg(4x-x2)},则A∩B等于()A.(0,2]B.[-1,0)C.[2,4)D.[1,4)2.设直线x+y=1与抛物线y2=2px(p>0)交于A,B两点,若OA⊥OB,则△OAB的面积为()A.1B.C.D.23.已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<cB.c<b<aC.b<a<cD.b<c<a4.(2018浙江,3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.85.执行如图所示的程序框图.若输入n=3,则输出的S=()A.B.C.D.6.已知双曲线=1(a>0,b>0)被斜率为1的直线截得的弦的中点为(4,1),则该双曲线离心率的值是()A.B.C.D.27.已知函数f(x)=若f(1)+f(a)=2,则a的所有可能值为()A.1B.-C.1,-D.1,8.已知实数a,b,c.()A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B.若|a2+b+c|+|a2+b-c|≤1,则a2+b2+c2<100C.若|a+b+c2|+|a+b-c2|≤1,则a2+b2+c2<100D.若|a2+b+c|+|a+b2-c|≤1,则a2+b2+c2<100第Ⅱ卷(非选择题,共110分)二、填空题(本大题共6小题,每小题5分,共30分)9.已知a,b∈R,i是虚数单位,若(1+i)(1-b i)=a,则的值为.10.在(2x-1)5的展开式中,含x2的项的系数是.(用数字填写答案)11.已知两球O1和O2在棱长为1的正方体ABCD-A1B1C1D1的内部,且互相外切,若球O1与过点A的正方体的三个面相切,球O2与过点C1的正方体的三个面相切,则球O1和O2的表面积之和的最小值为.12.在极坐标系中,直线4ρcos+1=0与圆ρ=2sin θ的公共点的个数为.13.设变量x,y满足约束条件的最小值是.14.a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是.(填写所有正确结论的编号)三、解答题(本大题共6小题,共80分)15.(13分)△ABC的内角A,B,C的对边分别为a,b,c.已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.16.(13分)已知数列{a n}中,a1=2,且a n=2a n-1-n+2(n≥2,n∈N*).(1)求a2,a3,并证明{a n-n}是等比数列;(2)设b n=,求数列{b n}的前n项和S n.17.(13分)如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ.(2)是否存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.18.(13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.19.(14分)已知椭圆C:=1(a>b>0)的左、右焦点F1,F2与椭圆短轴的一个端点构成边长为4的正三角形.(1)求椭圆C的标准方程;(2)过椭圆C上任意一点P作椭圆C的切线与直线F1P的垂线F1M相交于点M,求点M的轨迹方程;(3)若切线MP与直线x=-2交于点N,求证:为定值.20.(14分)已知函数f(x)=ln(1+x)+x2-x(a≥0).(1)若f(x)>0对x∈(0,+∞)都成立,求a的取值范围;(2)已知e为自然对数的底数,证明:∀n∈N*,<e.##综合能力训练1.A解析∵A=[-1,2],B=(0,4),∴A∩B=(0,2].故选A.2.B解析设A(x1,y1),B(x2,y2),由x+y=1与抛物线y2=2px,得y2+2py-2p=0,解得y1=-p+,x1=1+p-,y2=-p-,x2=1+p+, 由OA⊥OB得,x1x2+y1y2=0,即[(1+p)2-(p2+2p)]+[p2-(p2+2p)]=0,化简得2p=1,从而A,B,OA2==5-2,OB2==5+2,△OAB的面积S=|OA||OB|=故选B.3.C解析∵f(x)是R上的奇函数,∴g(x)=xf(x)是R上的偶函数.∴g(-log25.1)=g(log25.1).∵奇函数f(x)在R上是增函数,∴当x>0时,f(x)>0,f'(x)>0.∴当x>0时,g'(x)=f(x)+xf'(x)>0恒成立,∴g(x)在区间(0,+∞)上是增函数.∵2<log25.1<3,1<20.8<2,∴20.8<log25.1<3.结合函数g(x)的性质得b<a<c.故选C.4.C解析由三视图可知该几何体为直四棱柱.∵S底=(1+2)×2=3,h=2,∴V=Sh=3×2=6.5.B解析由题意得,输出的S为数列的前3项和,而,即S n=故当输入n=3时,S3=,故选B.6.A解析设直线l与双曲线交于点A(x1,y1),B(x2,y2),则=0,即由弦的中点为(4,1),直线的斜率为1可知,x1+x2=8,y1+y2=2,=1,,e2=1+e=故选A.7.C解析∵f(1)=e1-1=1,∴f(a)=1.若a∈(-1,0),则sin(πa2)=1,∴a=-若a∈[0,+∞),则e a-1=1,∴a=1.因此a=1或a=-8.D解析 (举反例排除)选项A中,令a=b=10,c=-110,则|a2+b+c|+|a+b2+c|=|100+10-110|+|10+100-110|=0<1.而a2+b2+c2=100+100+1102=200+1102>100,故选项A不成立;选项B中,令a=10,b=-100,c=0,则|a2+b+c|+|a2+b-c|=0<1.而a2+b2+c2=100+1002+0>100,故选项B不成立;选项C中,令a=100,b=-100,c=0,则|a+b+c2|+|a+b-c2|=0<1.而a2+b2+c2=1002+1002+0>100,故选项C不成立;故选D.9.2解析 (1+i)(1-b i)=1+b+(1-b)i=a,则所以=2.故答案为2.10.-40解析 (2x-1)5的展开式的通项为T r+1=(2x)5-r(-1)r=(-1)r25-r x5-r.根据题意,得5-r=2,解得r=3.所以含x2项的系数为(-1)325-3=-22=-40.11.3(2-)π解析∵AO1=R1,C1O2=R2,O1O2=R1+R2,∴(+1)(R1+R2)=,R1+R2=,球O1和O2的表面积之和为4π()≥4π·2=2π(R1+R2)2=3(2-)π.12.2解析∵4ρcos+1=0,展开得2cos θ+2ρsin θ+1=0,∴直线的直角坐标方程为2x+2y+1=0.∵ρ=2sin θ两边同乘ρ得ρ2=2ρsin θ,∴圆的直角坐标方程为x2+y2-2y=0,圆心为(0,1),半径r=1.∴圆心到直线的距离d=<r=1.∴直线与圆相交.∴直线与圆公共点的个数为2.13.1解析由约束条件作出可行域如图,联立解得A(3,2),的几何意义为可行域内的动点与定点P(1,0)连线的斜率,则其最小值为k PA==1.14.②③解析由题意,AB是以AC为轴,BC为底面半径的圆锥的母线,由AC⊥a,AC⊥b,得AC⊥圆锥底面,在底面内可以过点B,作BD∥a,交底面圆C于点D,如图所示,连接DE,则DE⊥BD,∴DE∥b.连接AD,在等腰三角形ABD中,设AB=AD=,当直线AB与a成60°角时,∠ABD=60°,故BD=又在Rt△BDE中,BE=2,∴DE=,过点B作BF∥DE,交圆C于点F,连接AF,由圆的对称性可知BF=DE=,∴△ABF为等边三角形,∴∠ABF=60°,即AB与b成60°角,②正确,①错误.由最小角定理可知③正确;很明显,可以满足直线a⊥平面ABC,直线AB与a所成的最大角为90°,④错误.故正确的说法为②③.15.解 (1)由题设及A+B+C=π,得sin B=8sin2,故sin B=4(1-cos B).上式两边平方,整理得17cos2B-32cos B+15=0,解得cos B=1(舍去),cos B=(2)由cos B=得sin B=,故S△ABC=ac sin B=ac.又S△ABC=2,则ac=由余弦定理及a+c=6得b2=a2+c2-2ac cos B=(a+c)2-2ac(1+cos B)=36-2=4.所以b=2.16.解 (1)由已知a n=2a n-1-n+2(n≥2,n∈N*)得a2=4,a3=7.a n-n=2a n-1-2n+2,即a n-n=2[a n-1-(n-1)].=2(n≥2,n∈N*),且a1-1=1,∴{a n-n}是以1为首项,2为公比的等比数列.(2)由(1)得a n-n=(a1-1)·2n-1,即a n=2n-1+n,∴b n==1+设c n=,且前n项和为T n,则T n=+…+, ①T n=+…+, ②①-②,得T n=1++…+=2-故T n=4-,S n=n+4-17.解法一 (1)证明:如图①,连接AD1,由ABCD-A1B1C1D1是正方体,知BC1∥AD1.当λ=1时,P是DD1的中点,又F是AD的中点,所以FP∥AD1,所以BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)如图②,连接BD.因为E,F分别是AB,AD的中点,所以EF∥BD,且EF=BD.又DP=BQ,DP∥BQ,所以四边形PQBD是平行四边形,故PQ∥BD,且PQ=BD,从而EF∥PQ,且EF=PQ.在Rt△EBQ和Rt△FDP中,因为BQ=DP=λ,BE=DF=1,所以EQ=FP=,所以四边形EFPQ也是等腰梯形.同理可证四边形PQMN也是等腰梯形.分别取EF,PQ,MN的中点为H,O,G,连接OH,OG,则GO⊥PQ,HO⊥PQ,而GO∩HO=O,故∠GOH是平面EFPQ与平面PQMN所成的二面角的平面角.若存在λ使平面EFPQ与平面PQMN所成的二面角为直二面角,则∠GOH=90°.连接EM,FN,则由EF∥MN,且EF=MN知四边形EFNM是平行四边形.连接GH,因为H,G是EF,MN的中点,所以GH=ME=2.在△GOH中,GH2=4,OH2=1+λ2-=λ2+,OG2=1+(2-λ)2-=(2-λ)2+, 由OG2+OH2=GH2,得(2-λ)2++λ2+=4,解得λ=1±,故存在λ=1±,使平面EFPQ与平面PQMN所成的二面角为直二面角.解法二以D为原点,射线DA,DC,DD1分别为x,y,z轴的正半轴建立如图③所示的空间直角坐标系.由已知得B(2,2,0),C1(0,2,2),E(2,1,0),F(1,0,0),P(0,0,λ).=(-2,0,2),=(-1,0,λ),=(1,1,0).(1)证明:当λ=1时,=(-1,0,1).因为=(-2,0,2),所以=2,即BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)设平面EFPQ的一个法向量为n=(x,y,z),则由可得于是可取n=(λ,-λ,1).同理可得平面MNPQ的一个法向量为m=(λ-2,2-λ,1).若存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角,则m·n=(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±故存在λ=1±,使平面EFPQ与平面PQMN所成的二面角为直二面角.18.解 (1)由已知,有P(A)=所以,事件A发生的概率为(2)随机变量X的所有可能取值为0,1,2.P(X=0)=,P(X=1)=,P(X=2)=所以,随机变量X的分布列为随机变量X的数学期望E(X)=0+1+2=1.19.(1)解依题意,2c=a=4,∴c=2,b=2∴椭圆C的标准方程为=1.(2)解由(1)知F1(-2,0),设P(x0,y0),M(x,y),过椭圆C上点P的切线方程为=1, ①直线F1P的斜率,则直线MF1的斜率=-, 直线MF1的方程为y=-(x+2),即yy0=-(x0+2)(x+2), ②①②联立,解得x=-8,故点M的轨迹方程为x=-8.(3)证明依题意及(2),知点M,N的坐标可表示为M(-8,y M),N(-2,y N),点N在切线MP上,由①式得y N=,点M在直线MF1上,由②式得y M=,|NF1|2=,|MF1|2=[(-2)-(-8)]2+,故=, ③注意到点P在椭圆C上,即=1,于是,代入③式并整理得,故的值为定值20.(1)解∵f(x)=ln(1+x)+x2-x,其定义域为(-1,+∞),∴f'(x)=+ax-1=①当a=0时,f'(x)=-,当x∈(0,+∞)时,f'(x)<0,则f(x)在区间(0,+∞)内单调递减,此时,f(x)<f(0)=0,不符合题意.②当0<a<1时,令f'(x)=0,得x1=0,x2=>0,当x时,f'(x)<0,则f(x)在区间内单调递减,此时,f(x)<f(0)=0,不符合题意.③当a=1时,f'(x)=,当x∈(0,+∞)时,f'(x)>0,则f(x)在区间(0,+∞)内单调递增,此时,f(x)>f(0)=0,符合题意.④当a>1时,令f'(x)=0,得x1=0,x2=<0,当x∈(0,+∞)时,f'(x)>0,则f(x)在区间(0,+∞)内单调递增,此时,f(x)>f(0)=0,符合题意.综上所述,a的取值范围为[1,+∞).(2)证明由(1)可知,当a=0时,f(x)<0对x∈(0,+∞)都成立,即ln(1+x)<x对x∈(0,+∞)都成立,∴ln+ln+…+ln+…+,即ln…由于n∈N*,则=1.∴ln<1.<e.由(1)可知,当a=1时,f(x)>0对x∈(0,+∞)都成立,即x-x2<ln(1+x)对x∈(0,+∞)都成立,+…+<ln+ln+…+ln,即<ln,得<ln由于n∈N*,则<ln<e.。
专题能力训练7导数与函数的单调性、极值、最值一、能力突破训练1.已知函数f(x)的导函数为f'(x),且满足f(x)=af'(1)x+ln x,若f'=0,则a=()A.-1B.-2C.1D.2w3.若定义在R上的函数f(x)满足f(0)=-1,其导函数f'(x)满足f'(x)>k>1,则下列结论中一定错误的是()A.fB.fC.fD.f4.已知常数a,b,c都是实数,f(x)=ax3+bx2+cx-34的导函数为f'(x),f'(x)≤0的解集为{x|-2≤x≤3}.若f(x)的极小值等于-115,则a的值是()A.-B.C.2D.55.(2018全国Ⅲ,理14)曲线y=(ax+1)e x在点(0,1)处的切线的斜率为-2,则a=.6.在曲线y=x3+3x2+6x-1的切线中,斜率最小的切线方程为.7.设函数f(x)=a e x++b(a>0).(1)求f(x)在[0,+∞)上的最小值;(2)设曲线y=f(x)在点(2,f(2))处的切线方程为y=x,求a,b的值.8.设函数f(x)=x e a-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.9.(2018全国Ⅰ,理21)已知函数f(x)=-x+a ln x.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a-2.10.已知函数f(x)=x3+x2-ax-a,x∈R,其中a>0.(1)求函数f(x)的单调区间;(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;(3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值.二、思维提升训练11.已知定义在R上的函数f(x)的导函数为f'(x),对任意x∈R满足f(x)+f'(x)<0,则下列结论正确的是()A.e2f(2)>e3f(3)B.e2f(2)<e3f(3)C.e2f(2)≥e3f(3)D.e2f(2)≤e3f(3)12.已知f'(x)为定义在R上的函数f(x)的导函数,对任意实数x,都有f(x)<f'(x),则不等式f(m+1)<e m+1f的解集为.13.已知函数f(x)=.(1)求函数f(x)的单调区间;(2)当x>0时,若f(x)>恒成立,求整数k的最大值.14.已知函数f(x)=ln x-ax2+x,a∈R.(1)若f(1)=0,求函数f(x)的单调递减区间;(2)若关于x的不等式f(x)≤ax-1恒成立,求整数a的最小值;(3)若a=-2,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,求证:x1+x2≥.15.已知函数f(x)=x2+2cos x,g(x)=e x(cos x-sin x+2x-2),其中e≈2.718 28…是自然对数的底数.(1)求曲线y=f(x)在点(π,f(π))处的切线方程.(2)令h(x)=g(x)-af(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.专题能力训练7导数与函数的单调性、极值、最值一、能力突破训练1.D解析因为f'(x)=af'(1)+,所以f'(1)=af'(1)+1,易知a≠1,则f'(1)=,所以f'(x)=又因为f'=0,所以+2=0,解得a=2.故选D.2.D解析设导函数y=f'(x)的三个零点分别为x1,x2,x3,且x1<0<x2<x3.所以在区间(-∞,x1)和(x2,x3)上,f'(x)<0,f(x)是减函数,在区间(x1,x2)和(x3,+∞)上,f'(x)>0,f(x)是增函数,所以函数y=f(x)的图象可能为D,故选D.3.C解析构造函数F(x)=f(x)-kx,则F'(x)=f'(x)-k>0,∴函数F(x)在R上为单调递增函数.>0,∴F>F(0).∵F(0)=f(0)=-1,∴f>-1,即f-1=,∴f,故C错误.4.C解析依题意得f'(x)=3ax2+2bx+c≤0的解集是[-2,3],于是有3a>0,-2+3=-,-2×3=,则b=-,c=-18a.函数f(x)在x=3处取得极小值,于是有f(3)=27a+9b+3c-34=-115,则-a=-81,解得a=2.故选C.5.-3解析设f(x)=(ax+1)e x,可得f'(x)=a·e x+(ax+1)e x=(ax+a+1)e x,∴f(x)=(ax+1)e x在(0,1)处的切线斜率k=f'(0)=a+1=-2,∴a=-3.6.3x-y-2=0解析y'=3x2+6x+6=3(x+1)2+3≥3.当x=-1时,y'min=3;当x=-1时,y=-5.故切线方程为y+5=3(x+1),即3x-y-2=0.7.解(1)f'(x)=a e x-当f'(x)>0,即x>-ln a时,f(x)在区间(-ln a,+∞)内单调递增;当f'(x)<0,即x<-ln a时,f(x)在区间(-∞,-ln a)内单调递减.①当0<a<1时,-ln a>0,f(x)在区间(0,-ln a)内单调递减,在区间(-ln a,+∞)内单调递增,从而f(x)在区间[0,+∞)内的最小值为f(-ln a)=2+b;②当a≥1时,-ln a≤0,f(x)在区间[0,+∞)内单调递增,从而f(x)在区间[0,+∞)内的最小值为f(0)=a++b.(2)依题意f'(2)=a e2-,解得a e2=2或a e2=-(舍去).所以a=,代入原函数可得2++b=3,即b=故a=,b=8.解(1)因为f(x)=x e a-x+bx,所以f'(x)=(1-x)e a-x+b.依题设,解得a=2,b=e.(2)由(1)知f(x)=x e2-x+e x.由f'(x)=e2-x(1-x+e x-1)及e2-x>0知,f'(x)与1-x+e x-1同号.令g(x)=1-x+e x-1,则g'(x)=-1+e x-1.所以,当x∈(-∞,1)时,g'(x)<0,g(x)在区间(-∞,1)上单调递减;当x∈(1,+∞)时,g'(x)>0,g(x)在区间(1,+∞)上单调递增.故g(1)=1是g(x)在区间(-∞,+∞)上的最小值,从而g(x)>0,x∈(-∞,+∞).综上可知,f'(x)>0,x∈(-∞,+∞).故f(x)的单调递增区间为(-∞,+∞).9.(1)解f(x)的定义域为(0,+∞),f'(x)=--1+=-①若a≤2,则f'(x)≤0,当且仅当a=2,x=1时,f'(x)=0,所以f(x)在(0,+∞)内单调递减.②若a>2,令f'(x)=0,得x=或x=当x时,f'(x)<0;当x时,f'(x)>0.所以f(x)在内单调递减,在内单调递增.(2)证明由(1)知,f(x)存在两个极值点时,当且仅当a>2.因为f(x)的两个极值点x1,x2满足x2-ax+1=0,所以x1x2=1,不妨设x1<x2,则x2>1.由于=--1+a=-2+a=-2+a,所以<a-2等价于-x2+2ln x2<0.设函数g(x)=-x+2ln x,由(1)知,g(x)在(0,+∞)内单调递减,又g(1)=0,从而当x∈(1,+∞)时,g(x)<0.所以-x2+2ln x2<0,即<a-2.10.解(1)f'(x)=x2+(1-a)x-a=(x+1)(x-a).由f'(x)=0,得x1=-1,x2=a>0.当x变化时,f'(x),f(x)的变化情况如下表:x(-∞,-1)-1(-1,a)a(a,+∞)故函数f(x)的单调递增区间是(-∞,-1),(a,+∞);单调递减区间是(-1,a).(2)由(1)知f(x)在区间(-2,-1)内单调递增,在区间(-1,0)内单调递减,从而函数f(x)在区间(-2,0)内恰有两个零点当且仅当解得0<a<所以a的取值范围是(3)当a=1时,f(x)=x3-x-1.由(1)知f(x)在区间[-3,-1]上单调递增,在区间[-1,1]上单调递减,在区间[1,2]上单调递增.①当t∈[-3,-2]时,t+3∈[0,1],-1∈[t,t+3],f(x)在区间[t,-1]上单调递增,在区间[-1,t+3]上单调递减.因此f(x)在区间[t,t+3]上的最大值M(t)=f(-1)=-,最小值m(t)为f(t)与f(t+3)中的较小者.由f(t+3)-f(t)=3(t+1)(t+2)知,当t∈[-3,-2]时,f(t)≤f(t+3),则m(t)=f(t),所以g(t)=f(-1)-f(t).因为f(t)在区间[-3,-2]上单调递增,所以f(t)≤f(-2)=-故g(t)在区间[-3,-2]上的最小值为g(-2)=-②当t∈[-2,-1]时,t+3∈[1,2],且-1,1∈[t,t+3].下面比较f(-1),f(1),f(t),f(t+3)的大小.因为f(x)在区间[-2,-1],[1,2]上单调递增,所以f(-2)≤f(t)≤f(-1),f(1)≤f(t+3)≤f(2).因为f(1)=f(-2)=-,f(-1)=f(2)=-,从而M(t)=f(-1)=-,m(t)=f(1)=-所以g(t)=M(t)-m(t)=综上,函数g(t)在区间[-3,-1]上的最小值为二、思维提升训练11.A解析令g(x)=e x f(x),则g'(x)=e x(f(x)+f'(x))<0,所以g(x)在R上单调递减,所以g(2)>g(3),即e2f(2)>e3f(3).故选A.12.(-∞,-2)解析若g(x)=,则g'(x)=>0,所以g(x)在R上为增函数.又不等式f(m+1)<e m+1f等价于,即g(m+1)<g,所以m+1<,解得m<-2.13.解(1)由f(x)=,知x∈(-1,0)∪(0,+∞).所以f'(x)=-令h(x)=1+(x+1)ln(x+1),则h'(x)=1+ln(x+1).令h'(x)=0,得x=-1,易得h(x)在区间内单调递减,在区间内单调递增.所以h(x)min=h=1->0,∴f'(x)<0.故f(x)的单调递减区间为(-1,0),(0,+∞).(2)当x>0时,f(x)>恒成立,则k<(x+1)f(x).令g(x)=(x+1)f(x)=,则g'(x)=令φ(x)=1-x+ln(x+1)(x>0)⇒φ'(x)=-<0,所以φ(x)在区间(0,+∞)内单调递减.又φ(2)=ln 3-1>0,φ(3)=2ln 2-2<0,则存在实数t∈(2,3),使φ(t)=0⇒t=1+ln(t+1).所以g(x)在区间(0,t)内单调递减,在区间(t,+∞)内单调递增.所以g(x)min=g(t)==t+1∈(3,4),故k max=3.14.解(1)因为f(1)=1-=0,所以a=2.此时f(x)=ln x-x2+x,x>0.则f'(x)=-2x+1=(x>0).令f'(x)<0,则2x2-x-1>0.又x>0,所以x>1.所以f(x)的单调递减区间为(1,+∞).(2)(方法一)令g(x)=f(x)-(ax-1)=ln x-ax2+(1-a)x+1,则g'(x)=-ax+(1-a)=当a≤0时,因为x>0,所以g'(x)>0.所以g(x)在区间(0,+∞)内是增函数,又g(1)=ln 1-a×12+(1-a)+1=-a+2>0,所以关于x的不等式f(x)≤ax-1不能恒成立.当a>0时,g'(x)==-(x>0),令g'(x)=0,得x=所以当x时,g'(x)>0;当x时,g'(x)<0,因此函数g(x)在x内是增函数,在x内是减函数.故函数g(x)的最大值为g=ln a+(1-a)+1=-ln a.令h(a)=-ln a,因为h(1)=>0,h(2)=-ln 2<0,又h(a)在a∈(0,+∞)内是减函数,且a为整数, 所以当a≥2时,h(a)<0.所以整数a的最小值为2.(方法二)由f(x)≤ax-1恒成立,得ln x-ax2+x≤ax-1在区间(0,+∞)内恒成立, 问题等价于a在区间(0,+∞)内恒成立.令g(x)=,因为g'(x)=,令g'(x)=0,得-x-ln x=0.设h(x)=-x-ln x,因为h'(x)=-<0,所以h(x)在区间(0,+∞)上单调递减,不妨设-x-ln x=0的根为x0.当x∈(0,x0)时,g'(x)>0;当x∈(x0,+∞)时,g'(x)<0,所以g(x)在x∈(0,x0)内是增函数;在x∈(x0,+∞)内是减函数.所以g(x)max=g(x0)=因为h=ln 2->0,h(1)=-<0,所以<x0<1,此时1<<2,即g(x)max∈(1,2).所以a≥2,即整数a的最小值为2.(3)证明:当a=-2时,f(x)=ln x+x2+x,x>0.由f(x1)+f(x2)+x1x2=0,得ln x1++x1+ln x2++x2+x1x2=0,从而(x1+x2)2+x1+x2=x1·x2-ln(x1·x2).令t=x1·x2(t>0),φ(t)=t-ln t,则φ'(t)=可知,φ(t)在区间(0,1)内单调递减,在区间(1,+∞)内单调递增.所以φ(t)≥φ(1)=1,所以(x1+x2)2+x1+x2≥1,因此x1+x2或x1+x2(舍去).15.解(1)由题意f(π)=π2-2,又f'(x)=2x-2sin x,所以f'(π)=2π,因此曲线y=f(x)在点(π,f(π))处的切线方程为y-(π2-2)=2π(x-π),即y=2πx-π2-2.(2)由题意得h(x)=e x(cos x-sin x+2x-2)-a(x2+2cos x),因为h'(x)=e x(cos x-sin x+2x-2)+e x(-sin x-cos x+2)-a(2x-2sin x)=2e x(x-sin x)-2a(x-sin x)=2(e x-a)(x-sin x),令m(x)=x-sin x,则m'(x)=1-cos x≥0,所以m(x)在R上单调递增.因为m(0)=0,所以当x>0时,m(x)>0;当x<0时,m(x)<0.①当a≤0时,e x-a>0,当x<0时,h'(x)<0,h(x)单调递减,当x>0时,h'(x)>0,h(x)单调递增,所以当x=0时h(x)取到极小值,极小值是h(0)=-2a-1;②当a>0时,h'(x)=2(e x-e ln a)(x-sin x),由h'(x)=0得x1=ln a,x2=0.(ⅰ)当0<a<1时,ln a<0,当x∈(-∞,ln a)时,e x-e ln a<0,h'(x)>0,h(x)单调递增;当x∈(ln a,0)时,e x-e ln a>0,h'(x)<0,h(x)单调递减;当x∈(0,+∞)时,e x-e ln a>0,h'(x)>0,h(x)单调递增.所以当x=ln a时h(x)取到极大值.极大值为h(ln a)=-a[ln2a-2ln a+sin(ln a)+cos(ln a)+2],当x=0时h(x)取到极小值,极小值是h(0)=-2a-1;(ⅱ)当a=1时,ln a=0,所以当x∈(-∞,+∞)时,h'(x)≥0,函数h(x)在区间(-∞,+∞)上单调递增,无极值;(ⅲ)当a>1时,ln a>0,所以当x∈(-∞,0)时,e x-e ln a<0,h'(x)>0,h(x)单调递增;当x∈(0,ln a)时,e x-e ln a<0,h'(x)<0,h(x)单调递减;当x∈(ln a,+∞)时,e x-e ln a>0,h'(x)>0,h(x)单调递增.所以当x=0时h(x)取到极大值,极大值是h(0)=-2a-1;当x=ln a时h(x)取到极小值,极小值是h(ln a)=-a[ln2a-2ln a+sin(ln a)+cos(ln a)+2].综上所述:当a≤0时,h(x)在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增,函数h(x)有极小值,极小值是h(0)=-2a-1;当0<a<1时,函数h(x)在区间(-∞,ln a)和区间(0,+∞)上单调递增,在区间(ln a,0)上单调递减,函数h(x)有极大值,也有极小值,极大值是h(ln a)=-a[ln2a-2ln a+sin(ln a)+cos(ln a)+2],极小值是h(0)=-2a-1;当a=1时,函数h(x)在区间(-∞,+∞)上单调递增,无极值;当a>1时,函数h(x)在区间(-∞,0)和(ln a,+∞)上单调递增,在区间(0,ln a)上单调递减,函数h(x)有极大值,也有极小值,极大值是h(0)=-2a-1,极小值是h(ln a)=-a[ln2a-2ln a+sin(ln a)+cos(ln a)+2].。
专题能力训练7导数与函数的单调性、极值、最值一、能力突破训练1.已知函数f(x)的导函数为f'(x),且满足f(x)=af'(1)x+ln x,若f'=0,则a=()A.-1B.-2C.1D.2w3.若定义在R上的函数f(x)满足f(0)=-1,其导函数f'(x)满足f'(x)>k>1,则下列结论中一定错误的是()A.fB.f-C.f--D.f--4.已知常数a,b,c都是实数,f(x)=ax3+bx2+cx-34的导函数为f'(x),f'(x)≤0的解集为{x|-2≤x≤3}.若f(x)的极小值等于-115,则a的值是()A.-B.C.2D.55.(2018全国Ⅲ,理14)曲线y=(ax+1)e x在点(0,1)处的切线的斜率为-2,则a=.6.在曲线y=x3+3x2+6x-1的切线中,斜率最小的切线方程为.7.设函数f(x)=a e x++b(a>0).(1)求f(x)在[0,+∞)上的最小值;(2)设曲线y=f(x)在点(2,f(2))处的切线方程为y=x,求a,b的值.8.设函数f(x)=x e a-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.9.(2018全国Ⅰ,理21)已知函数f(x)=-x+a ln x.(1)讨论f(x)的单调性;<a-2.(2)若f(x)存在两个极值点x1,x2,证明:--10.已知函数f(x)=x3+-x2-ax-a,x∈R,其中a>0.(1)求函数f(x)的单调区间;(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;(3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值.。
专题能力训练3平面向量与复数一、能力突破训练1.设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为()A.p1,p3B.p1,p4C.p2,p3D.p2,p42.设a,b是两个非零向量,则下列结论一定成立的为()A.若|a+b|=|a|-|b|,则a⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD.若存在实数λ,使得b=λa,则|a+b|=|a|-|b|3.(2018全国Ⅲ,理2)(1+i)(2-i)=()A.-3-iB.-3+iC.3-iD.3+i4.在复平面内,若复数z的对应点与的对应点关于虚轴对称,则z=()A.2-iB.-2-iC.2+iD.-2+i5.已知向量a=(1,-1),b=(-1,2),则(2a+b)·a=()A.-1B.0C.1D.2(i为虚数单位)的共轭复数是() 6.(2018浙江,4)复数-A.1+iB.1-iC.-1+iD.-1-i7.已知菱形ABCD的边长为a,∠ABC=60°,则=()A.-a2B.-a2C.a2D.a28.已知非零向量m,n满足4|m|=3|n|,cos<m,n>=.若n⊥(t m+n),则实数t的值为()A.4B.-4C.D.-9.如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=,I2=,I3=,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I310.(2018全国Ⅲ,理13)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),则λ=.11.在△ABC中,∠A=60°,AB=3,AC=2.若=2=λ(λ∈R),且=-4,则λ的值为.12.设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=.13.已知a,b∈R,(a+b i)2=3+4i(i是虚数单位),则a2+b2=,ab=.14.设D,E分别是△ABC的边AB,BC上的点,|AD|=|AB|,|BE|=|BC|.若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为.二、思维提升训练15.在△ABC中,已知D是AB边上一点,+λ,则实数λ=()A.-B.-C.D.16.已知,||=,||=t.若点P是△ABC所在平面内的一点,且,则的最大值等于()A.13B.15C.19D.2117.已知两点M(-3,0),N(3,0),点P为坐标平面内一动点,且||·||+=0,则动点P(x,y)到点M(-3,0)的距离d的最小值为()A.2B.3C.4D.618.已知向量a,b满足|a|=1,|b|=2,则|a+b|+|a-b|的最小值是,最大值是.19.在任意四边形ABCD中,E,F分别是AD,BC的中点,若=λ+μ,则λ+μ=.20.已知a∈R,i为虚数单位,若-为实数,则a的值为.专题能力训练3平面向量与复数一、能力突破训练1.B解析p1:设z=a+b i(a,b∈R),则-R,所以b=0,所以z∈R.故p1正确;p2:因为i2=-1∈R,而z=i∉R,故p2不正确;p3:若z1=1,z2=2,则z1z2=2,满足z1z2∈R,而它们实部不相等,不是共轭复数,故p3不正确;p4:实数的虚部为0,它的共轭复数是它本身,也属于实数,故p4正确.2.C解析设向量a与b的夹角为θ.对于A,可得cos θ=-1,因此a⊥b不成立;对于B,满足a⊥b时|a+b|=|a|-|b|不成立;对于C,可得cos θ=-1,因此成立,而D显然不一定成立.3.D解析(1+i)(2-i)=2+i-i2=3+i.=2+i所对应的点为(2,1),它关于虚轴对称的点为(-2,1),故z=-2+i.4.D解析--5.C解析∵2a+b=(1,0),又a=(1,-1),∴(2a+b)·a=1+0=1.=1+i,6.B解析--∴复数的共轭复数为1-i.-7.D解析如图,设=a,=b.则=()=(a+b)·a=a2+a·b=a2+a·a·cos 60°=a2+a2=a2.8.B解析由4|m|=3|n|,可设|m|=3k,|n|=4k(k>0),又n⊥(t m+n),所以n·(t m+n)=n·t m+n·n=t|m|·|n|cos<m,n>+|n|2=t×3k×4k+(4k)2=4tk2+16k2=0.所以t=-4,故选B.9.C解析由题图可得OA<AC<OC,OB<BD<OD,∠AOB=∠COD>90°,∠BOC<90°,所以I2=>0,I1=<0,I3=<0,且|I1|<|I3|,所以I3<I1<0<I2,故选C.10解析2a+b=2(1,2)+(2,-2)=(4,2),c=(1,λ),由c∥(2a+b),得4λ-2=0,得λ=11解析=2,)=又=,∠A=60°,AB=3,AC=2,=-4,=3×2=3,()=-4,即-=-4,4-9+-3=-4,即-5=-4,解得λ=12.-1解析∵(1+i)(a+i)=a-1+(a+1)i∈R,∴a+1=0,即a=-1.13.52解析由题意可得a2-b2+2ab i=3+4i,-解得则a2+b2=5,ab=2.则14解析由题意)=-,故λ1=-,λ2=,即λ1+λ2=二、思维提升训练15.D解析如图,D是AB边上一点,过点D作DE∥BC,交AC于点E,过点D作DF∥AC,交BC于点F,则因为+,所以=由△ADE∽△ABC,得,所以,故λ=16.A解析以点A为原点,所在直线分别为x轴、y轴建立平面直角坐标系,如图,则A(0,0),B,C(0,t),=(1,0),=(0,1),=(1,0)+4(0,1)=(1,4),∴点P的坐标为(1,4),--=(-1,t-4),=1--4t+16=-+17≤-4+17=13.当且仅当=4t,即t=时取“=”,的最大值为13.17.B解析因为M(-3,0),N(3,0),所以=(6,0),||=6,=(x+3,y),=(x-3,y).由||·||+=0,得6+6(x-3)=0,化简得y2=-12x,所以点M是抛物线y2=-12x的焦点,所以点P到M的距离的最小值就是原点到M(-3,0)的距离,所以d min=3.18.42解析设向量a,b的夹角为θ,由余弦定理得|a-b|=--,|a+b|=--则|a+b|+|a-b|=-令y=-,则y2=10+2-[16,20],据此可得(|a+b|+|a-b|)max==2,(|a+b|+|a-b|)min==4.即|a+b|+|a-b|的最小值是4,最大值是219.1解析如图,因为E,F分别是AD与BC的中点,所以=0,=0.又因为=0,所以①同理由①+②得,2+()+()=,所以).所以λ=,μ=所以λ+μ=1.20.-2解析-----i为实数,∴-=0,即a=-2.。
专题能力训练10 三角变换与解三角形一、能力突破训练1.(2018全国Ⅲ,理4)若sin α=13,则cos 2α=( ) A .8 B .7C .-7D .-82.已知cos (π-2α)sin α-π4=- 2,则sin α+cos α等于( )A.- 72B. 72C.12D.-123.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.若(a 2+c 2-b 2)tan B= 3ac ,则角B 的值为( ) A.π6 B.π3 C.π6或5π6D.π3或2π34.在△ABC 中,∠ABC=π4,AB= 2,BC=3,则sin ∠BAC 等于( ) A. 1010B. 105C.3 1010D. 555.已知在△ABC 中,内角A ,B ,C 对边分别为a ,b ,c ,C=120°,a=2b ,则tan A= .6.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A=45,cos C=513,a=1,则b= . 7.(2018全国Ⅱ,理15)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)= . 8.在△ABC 中,a 2+c 2=b 2+ 2ac. (1)求B 的大小;(2)求 2cos A+cos C 的最大值.9.在△ABC 中,∠A=60°,c=37a. (1)求sin C 的值;(2)若a=7,求△ABC的面积.10.设△ABC的内角A,B,C的对边分别为a,b,c,a=b tan A,且B为钝角.(1)证明:B-A=π2;(2)求sin A+sin C的取值范围.11.设f(x)=sin x cos x-cos2 x+π.(1)求f(x)的单调区间;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f A2=0,a=1,求△ABC面积的最大值.二、思维提升训练12.若0<α<π2,-π2<β<0,cosπ4+α =13,cosπ4-β2=33,则cos α+β2等于()A.3B.-3C.53D.-613.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足c sin A=a cos C.当3sin A-cos B+π取最大值时,角A的大小为()A.π3B.π4C.π6D.2π314.在△ABC中,边AB的垂直平分线交边AC于点D,若C=π3,BC=8,BD=7,则△ABC的面积为.15.已知sinπ4+α sinπ4-α =16,α∈π2,π ,则sin 4α的值为.16.在锐角三角形ABC中,若sin A=2sin B sin C,则tan A tan B tan C的最小值是.17.在△ABC中,三个内角A,B,C所对的边分别为a,b,c,π<C<π,且ba-b =sin2Csin A-sin2C.(1)判断△ABC的形状;(2)若|BA+BC|=2,求BA·BC的取值范围.专题能力训练10 三角变换与解三角形一、能力突破训练1.B 解析 cos 2α=1-2sin 2α=1-2× 12=7.2.D解析 cos (π-2α)sin α-π4 =-cos2αsin α-π4=sin 2α-π2sin α-π4=2cos α-π4 = 2cos α+ 2sin α=- 22,∴sin α+cos α=-12,故选D .3.D 解析 由(a 2+c 2-b2)tan B= 3ac ,得a 2+c 2-b22ac =32·cos Bsin B,即cos B=32·cos Bsin B,则sin B= 32.∵0<B<π,∴角B 为π3或2π3.故选D . 4.C 解析 在△ABC 中,由余弦定理,得AC 2=BA 2+BC 2-2BA·BC cos ∠ABC=( )2+32-2× ×3cos π=5.解得AC= 5.由正弦定理BC=AC,得sin ∠BAC=BC ·sin ∠ABC=3×sin π45=3× 22 5=3 10. 5.3解析 由正弦定理可得sin A=2sin B ,因为B=180°-A-120°=60°-A ,所以sin A=2sin(60°-A ),即sin A= 3cos A-sin A , 所以2sin A= 3cos A ,故tan A= 32.6.21 解析 因为cos A=4,cos C=5,且A ,C 为△ABC 的内角,所以sin A=35,sin C=1213,sin B=sin[π-(A+C )]=sin (A+C )=sin A cos C+cos A sin C=6365. 又因为a=b,所以b=a sin B=21. 7.-1解析 ∵(sin α+cos β)2+(cos α+sin β)2=1,∴sin 2α+cos 2β+cos 2α+sin 2β+2sin αcos β+2sin βcos α=1+1+2sin(α+β)=1. ∴sin(α+β)=-12.8.解 (1)由余弦定理及题设得cos B=a 2+c 2-b2= 2ac = 2.又因为0<B<π,所以B=π. (2)由(1)知A+C=3π4.2cos A+cos C= 2cos A+cos 3π4-A= 2cos A- 2cos A+ 2sin A= 22cos A+ 22sin A=cos A -π4 .因为0<A<3π4,所以当A=π时, cos A+cos C 取得最大值1. 9.解 (1)在△ABC 中,因为∠A=60°,c=37a ,所以由正弦定理得sin C=c sin A=3× 3=3 3.(2)因为a=7,所以c=3×7=3.由余弦定理a 2=b 2+c 2-2bc cos A 得72=b 2+32-2b×3×12,解得b=8或b=-5(舍). 所以△ABC 的面积S=1bc sin A=1×8×3×3=6 3.10.(1)证明 由a=b tan A 及正弦定理,得sin A=a=sin A,所以sin B=cos A ,即sin B=sin π+A .又B 为钝角,因此π2+A ∈ π2,π ,故B=π2+A ,即B-A=π2.(2)解 由(1)知,C=π-(A+B )=π- 2A +π=π-2A>0,所以A ∈ 0,π,于是sin A+sin C=sinA+sin π-2A =sin A+cos 2A=-2sin 2A+sin A+1=-2 sin A -12+9.因为0<A<π,所以0<sin A< 2, 因此 22<-2 sin A -14 2+98≤98.由此可知sin A+sin C 的取值范围是 2,9. 11.解 (1)由题意知f (x )=sin2x −1+cos 2x +π2 =sin2x −1-sin2x =sin 2x-1. 由-π2+2k π≤2x ≤π2+2k π,k ∈Z ,可得-π4+k π≤x ≤π4+k π,k ∈Z ;由π2+2k π≤2x ≤3π2+2k π,k ∈Z ,可得π4+k π≤x ≤3π4+k π,k ∈Z .所以f (x )的单调递增区间是 -π4+kπ,π4+kπ (k ∈Z );单调递减区间是 π+kπ,3π+kπ (k ∈Z ). (2)由f A2 =sin A-12=0,得sin A=12,由题意知A 为锐角,所以cos A= 3.由余弦定理a 2=b 2+c 2-2bc cos A , 得1+ 3bc=b 2+c 2≥2bc ,即bc ≤2+ 3,且当b=c 时等号成立. 因此12bc sin A ≤2+ 34. 所以△ABC 面积的最大值为2+ 34.二、思维提升训练12.C 解析 ∵cos π+α =1,0<α<π,∴sin π+α =2 2. 又cos π4-β2 = 33,-π2<β<0,∴sin π4-β2 =63,∴cos α+β2 =cos π4+α - π4-β2 =cos π4+α cos π4-β2 +sin π4+α sin π4-β2=1× 3+2 2× 6=5 3.13.A 解析 由正弦定理,得sin C sin A=sin A cos C.因为0<A<π,所以sin A>0,从而sin C=cos C. 又cos C ≠0,所以tan C=1,则C=π, 所以B=3π-A.于是 3sin A-cos B +π= 3sin A-cos(π-A )= 3sin A+cos A=2sin A +π. 因为0<A<3π4,所以π<A+π<11π,从而当A+π=π, 即A=π3时,2sin A +π6 取最大值2.故选A .14.20 3或24 3 解析 在△CDB 中,设CD=t ,由余弦定理得49=64+t 2-2×8t×cos π,即t 2-8t+15=0,解得t=3或t=5.。
专题能力训练3平面向量与复数一、能力突破训练1.设有下面四个命题∈R,则z∈R;p1:若复数z满足1zp2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1z2∈R,则z1=z2;p4:若复数z∈R,则z∈R.其中的真命题为()A.p1,p3B.p1,p4C.p2,p3D.p2,p42.设a,b是两个非零向量,则下列结论一定成立的为()A.若|a+b|=|a|-|b|,则a⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD.若存在实数λ,使得b=λa,则|a+b|=|a|-|b|3.(2018全国Ⅲ,理2)(1+i)(2-i)=()A.-3-iB.-3+iC.3-iD.3+i的对应点关于虚轴对称,则z=()4.在复平面内,若复数z的对应点与5i1+2iA.2-iB.-2-iC.2+iD.-2+i5.已知向量a=(1,-1),b=(-1,2),则(2a+b)·a=()A.-1B.0C.1D.2(i为虚数单位)的共轭复数是() 6.(2018浙江,4)复数21-iA.1+iB.1-iC.-1+iD.-1-i7.已知菱形ABCD 的边长为a ,∠ABC=60°,则BD ⃗⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ = ( )A.-32a 2 B.-34a 2C.34a 2D.32a 28.已知非零向量m ,n 满足4|m |=3|n |,cos <m ,n >=13.若n ⊥(t m +n ),则实数t 的值为( ) A .4 B .-4C .94D .-949.如图,已知平面四边形ABCD ,AB ⊥BC ,AB=BC=AD=2,CD=3,AC 与BD 交于点O ,记I 1=OA ⃗⃗⃗⃗⃗ ·OB⃗⃗⃗⃗⃗ ,I 2=OB ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ ,I 3=OC ⃗⃗⃗⃗⃗ ·OD ⃗⃗⃗⃗⃗⃗ ,则( )A.I 1<I 2<I 3B.I 1<I 3<I 2C.I 3<I 1<I 2D.I 2<I 1<I 310.(2018全国Ⅲ,理13)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ= . 11.在△ABC 中,∠A=60°,AB=3,AC=2.若BD ⃗⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ (λ∈R ),且AD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =-4,则λ的值为 .12.设a ∈R ,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a= . 13.已知a ,b ∈R ,(a+b i)2=3+4i(i 是虚数单位),则a 2+b 2= ,ab= .14.设D ,E 分别是△ABC 的边AB ,BC 上的点,|AD|=12|AB|,|BE|=23|BC|.若DE⃗⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2的值为 .二、思维提升训练15.在△ABC 中,已知D 是AB 边上一点,CD ⃗⃗⃗⃗⃗ =1CA ⃗⃗⃗⃗⃗ +λCB ⃗⃗⃗⃗⃗ ,则实数λ=( ) A .-23B .-13C .13D .2316.已知AB ⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,|AB ⃗⃗⃗⃗⃗ |=1t,|AC ⃗⃗⃗⃗⃗ |=t.若点P 是△ABC 所在平面内的一点,且AP ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |+4AC ⃗⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗⃗ |,则PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ 的最大值等于( ) A.13B.15C.19D.2117.已知两点M (-3,0),N (3,0),点P 为坐标平面内一动点,且|MN ⃗⃗⃗⃗⃗⃗⃗ |·|MP ⃗⃗⃗⃗⃗⃗ |+MN ⃗⃗⃗⃗⃗⃗⃗ ·NP⃗⃗⃗⃗⃗⃗ =0,则动点P (x ,y )到点M (-3,0)的距离d 的最小值为( ) A.2 B.3C.4D.618.已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是 ,最大值是 . 19.在任意四边形ABCD 中,E ,F 分别是AD ,BC 的中点,若EF ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μDC ⃗⃗⃗⃗⃗ ,则λ+μ= . 20.已知a ∈R ,i 为虚数单位,若a -i2+i为实数,则a 的值为 .专题能力训练3 平面向量与复数一、能力突破训练1.B 解析 p 1:设z=a+b i(a ,b ∈R ),则1z=1a+bi=a -bi a 2+b2∈R ,所以b=0,所以z ∈R .故p 1正确;p 2:因为i 2=-1∈R ,而z=i ∉R ,故p 2不正确;p 3:若z 1=1,z 2=2,则z 1z 2=2,满足z 1z 2∈R ,而它们实部不相等,不是共轭复数,故p 3不正确; p 4:实数的虚部为0,它的共轭复数是它本身,也属于实数,故p 4正确.2.C 解析 设向量a 与b 的夹角为θ.对于A,可得cos θ=-1,因此a ⊥b 不成立;对于B,满足a ⊥b 时|a +b |=|a |-|b |不成立;对于C,可得cos θ=-1,因此成立,而D 显然不一定成立.3.D 解析 (1+i)(2-i)=2+i -i 2=3+i .4.D 解析5i 1+2i=5i (1-2i )(1+2i )(1-2i )=5(i+2)5=2+i 所对应的点为(2,1),它关于虚轴对称的点为(-2,1),故z=-2+i .5.C 解析 ∵2a +b =(1,0),又a =(1,-1),∴(2a +b )·a =1+0=1.6.B 解析 ∵21-i =2(1+i )(1-i )(1+i )=2(1+i )2=1+i, ∴复数21-i 的共轭复数为1-i .7.D解析 如图,设BA ⃗⃗⃗⃗⃗ =a ,BC ⃗⃗⃗⃗⃗ =b .则BD ⃗⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )·BA ⃗⃗⃗⃗⃗ =(a+b )·a =a 2+a ·b =a 2+a·a·cos 60°=a 2+12a 2=32a 2.8.B 解析 由4|m |=3|n |,可设|m |=3k ,|n |=4k (k>0),又n ⊥(t m +n ),所以n ·(t m +n )=n ·t m +n ·n =t|m |·|n |cos <m ,n >+|n |2=t×3k×4k ×13+(4k )2=4tk 2+16k 2=0.所以t=-4,故选B .9.C 解析 由题图可得OA<12AC<OC ,OB<12BD<OD ,∠AOB=∠COD>90°,∠BOC<90°,所以I 2=OB⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ >0,I 1=OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ <0,I 3=OC ⃗⃗⃗⃗⃗ ·OD ⃗⃗⃗⃗⃗⃗ <0,且|I 1|<|I 3|, 所以I 3<I 1<0<I 2,故选C .10.1解析 2a +b =2(1,2)+(2,-2)=(4,2),c =(1,λ),由c ∥(2a +b ),得4λ-2=0,得λ=12. 11.311解析 ∵BD ⃗⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,∴AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ )=23AC ⃗⃗⃗⃗⃗ +13AB ⃗⃗⃗⃗⃗ . 又AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ,∠A=60°,AB=3,AC=2,AD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =-4, ∴AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =3×2×12=3,(23AC ⃗⃗⃗⃗⃗ +13AB ⃗⃗⃗⃗⃗ )·(λAC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=-4, 即2λ3AC ⃗⃗⃗⃗⃗ 2−13AB ⃗⃗⃗⃗⃗ 2+(λ3-23)AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗=-4,∴2λ3×4-13×9+(λ3-23)×3=-4,即113λ-5=-4,解得λ=311. 12.-1 解析 ∵(1+i)(a+i)=a-1+(a+1)i ∈R ,∴a+1=0,即a=-1. 13.5 2 解析 由题意可得a 2-b 2+2ab i =3+4i,则{a 2-b 2=3,ab =2,解得{a 2=4,b 2=1,则a 2+b 2=5,ab=2. 14.12解析 由题意DE ⃗⃗⃗⃗⃗ =DB ⃗⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +23(BA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=-16AB ⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ ,故λ1=-16,λ2=23,即λ1+λ2=12.二、思维提升训练15.D 解析 如图,D 是AB 边上一点,过点D 作DE ∥BC ,交AC 于点E ,过点D 作DF ∥AC ,交BC 于点F ,则CD ⃗⃗⃗⃗⃗ =CE ⃗⃗⃗⃗⃗ +CF ⃗⃗⃗⃗⃗ . 因为CD ⃗⃗⃗⃗⃗ =13CA ⃗⃗⃗⃗⃗ +λCB ⃗⃗⃗⃗⃗ , 所以CE ⃗⃗⃗⃗⃗ =13CA ⃗⃗⃗⃗⃗ ,CF ⃗⃗⃗⃗⃗ =λCB ⃗⃗⃗⃗⃗ . 由△ADE ∽△ABC ,得DEBC=AE AC =23,所以ED⃗⃗⃗⃗⃗ =CF ⃗⃗⃗⃗⃗ =23CB ⃗⃗⃗⃗⃗ ,故λ=23. 16.A 解析 以点A 为原点,AB⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 所在直线分别为x 轴、y 轴建立平面直角坐标系,如图,则A (0,0),B (1t,0),C (0,t ), ∴AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |=(1,0),AC ⃗⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗⃗ |=(0,1), ∴AP⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |+4AC⃗⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗⃗ |=(1,0)+4(0,1)=(1,4), ∴点P 的坐标为(1,4),PB ⃗⃗⃗⃗⃗ =(1t -1,-4),PC ⃗⃗⃗⃗⃗ =(-1,t-4),∴PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ =1-1t -4t+16=-(1t +4t)+17≤-4+17=13.当且仅当1t =4t ,即t=12时取“=”, ∴PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ 的最大值为13. 17.B 解析 因为M (-3,0),N (3,0),所以MN ⃗⃗⃗⃗⃗⃗⃗ =(6,0),|MN ⃗⃗⃗⃗⃗⃗⃗ |=6,MP ⃗⃗⃗⃗⃗⃗ =(x+3,y ),NP ⃗⃗⃗⃗⃗⃗ =(x-3,y ).由|MN ⃗⃗⃗⃗⃗⃗⃗ |·|MP ⃗⃗⃗⃗⃗⃗ |+MN ⃗⃗⃗⃗⃗⃗⃗ ·NP⃗⃗⃗⃗⃗⃗ =0,得6√(x +3)2+y 2+6(x-3)=0,化简得y 2=-12x ,所以点M 是抛物线y 2=-12x 的焦点,所以点P 到M 的距离的最小值就是原点到M (-3,0)的距离,所以d min =3. 18.4 2√5 解析 设向量a ,b 的夹角为θ,由余弦定理得|a -b |=√12+22-2×1×2×cosθ=√5-4cosθ, |a +b |=√12+22=√5+4cosθ, 则|a +b |+|a -b |=√5+4cosθ+√5-4cosθ. 令y=√5+4cosθ+√5-4cosθ, 则y 2=10+2√25-16cos 2θ∈[16,20],据此可得(|a +b |+|a -b |)max =√20=2√5,(|a +b |+|a -b |)min =√16=4. 即|a +b |+|a -b |的最小值是4,最大值是2√5. 19.1 解析如图,因为E ,F 分别是AD 与BC 的中点,所以EA ⃗⃗⃗⃗⃗ +ED ⃗⃗⃗⃗⃗ =0,BF ⃗⃗⃗⃗⃗ +CF ⃗⃗⃗⃗⃗ =0.又因为AB ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗⃗ +FE ⃗⃗⃗⃗⃗ +EA ⃗⃗⃗⃗⃗ =0,所以EF ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗⃗ +EA ⃗⃗⃗⃗⃗ . ①同理EF ⃗⃗⃗⃗⃗ =ED ⃗⃗⃗⃗⃗ +DC⃗⃗⃗⃗⃗ +CF ⃗⃗⃗⃗⃗ .② 由①+②得,2EF ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ +(EA ⃗⃗⃗⃗⃗ +ED ⃗⃗⃗⃗⃗ )+(BF ⃗⃗⃗⃗⃗ +CF ⃗⃗⃗⃗⃗ )=AB ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ , 所以EF⃗⃗⃗⃗⃗ =1(AB ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ ).所以λ=1,μ=1. 所以λ+μ=1.20.-2 解析 ∵a -i=(a -i )(2-i )(2+i )(2-i )=2a -1−a+2i 为实数,∴-a+25=0,即a=-2.。
专题11离心率问题速解【命题规律】求椭圆或双曲线的离心率、与双曲线的渐近线有关的问题,多以选择、填空题的形式考查,难度中等.【核心考点目录】核心考点一:顶角为直角的焦点三角形求解离心率的取值范围问题核心考点二:焦点三角形顶角范围与离心率核心考点三:共焦点的椭圆与双曲线问题核心考点四:椭圆与双曲线的4a 通径体核心考点五:椭圆与双曲线的4a 直角体核心考点六:椭圆与双曲线的等腰三角形问题核心考点七:双曲线的4a 底边等腰三角形核心考点八:焦点到渐近线距离为b核心考点九:焦点到渐近线垂线构造的直角三角形核心考点十:以两焦点为直径的圆与渐近线相交问题核心考点十一:渐近线平行线与面积问题【真题回归】1.(2022·全国·统考高考真题)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为()A2B.2C .12D .13【答案】A【解析】[方法一]:设而不求设()11,P x y ,则()11,Q x y -则由14AP AQk k ⋅=得:21112211114AP AQ y y y k k x a x a x a ⋅=⋅==+-+-+,由2211221x y a b +=,得()2221212b a x y a -=,所以()2221222114b a x ax a -=-+,即2214b a =,所以椭圆C 的离心率c e a = A.[方法二]:第三定义设右端点为B ,连接PB ,由椭圆的对称性知:PB AQk k =-故14AP AQ PA AQ k k k k ⋅=⋅-=-,由椭圆第三定义得:22PA AQb k k a⋅=-,故2214b a =所以椭圆C 的离心率c e a = A.2.(2021·天津·统考高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为()A BC .2D .3【答案】A【解析】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c y a b -=,解得2b y a =±,所以22b AB a=,又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a =c =,所以222212a c b c =-=,所以双曲线的离心率ce a==故选:A.3.(2021·全国·统考高考真题)设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是()A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C【解析】设()00,P x y ,由()0,B b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32bb c-≤-,即22b c ≥时,22max 4PB b =,即max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即0e <≤;当32b b c ->-,即22b c <时,42222max b PB a b c=++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立.故选:C .4.(多选题)(2022·全国·统考高考真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A B .32C .2D .2【答案】AC【解析】[方法一]:几何法,双曲线定义的应用情况一M 、N 在双曲线的同一支,依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为B ,所以1OB F N ⊥,因为123cos 05F NF ∠=>,所以N 在双曲线的左支,OB a =,1OF c =,1FB b =,设12F NF α∠=,由即3cos 5α=,则4sin 5α=,235NA NF 22a a ==,21NF NF 2a-=532222a a b a ⎛⎫--= ⎪⎝⎭,2b e a =∴=,选A 情况二若M 、N 在双曲线的两支,因为123cos 05F NF ∠=>,所以N 在双曲线的右支,所以OB a =,1OF c =,1FB b =,设12F NF α∠=,由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α=,235NA NF 22a a ==,12NF NF 2a -=352222a b a a +-=,所以23b a =,即32b a =,所以双曲线的离心率2c e a ==选C[方法二]:答案回代法A e =选项特值双曲线())22121,F ,F 4x y -=∴,过1F 且与圆相切的一条直线为(y 2x =+,两交点都在左支,N ⎛∴ ⎝,2112NF 5,NF 1,FF ∴===则123cos 5F NF ∠=,C e =选项特值双曲线())2212x y 1,F ,F 49-=∴,过1F 且与圆相切的一条直线为(2y x 3=,两交点在左右两支,N 在右支,N ∴,2112NF 5,NF 9,FF ∴===则123cos 5F NF ∠=,[方法三]:依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,若,M N 分别在左右支,因为1OG NF ⊥,且123cos 05F NF ∠=>,所以N 在双曲线的右支,又OG a =,1OF c =,1GF b =,设12F NF α∠=,21F F N β∠=,在12F NF △中,有()212sin sin sin NF NF cβαβα==+,故()122sin NF NF cαββα-=+-即()sin sin sin a c αββα=+-,所以sin cos cos sin sin sin a cαβαββα=+-,而3cos 5α=,sin a c β=,cos b c β=,故4sin 5α=,代入整理得到23b a =,即32b a =,所以双曲线的离心率c e a ==若,M N 均在左支上,同理有()212sin sin sin NF NF c βαβα==+,其中β为钝角,故cos bcβ=-,故()212sin sin sin NF NF c βαβα-=-+即sin sin cos cos sin sin a cβαβαβα=--,代入3cos 5α=,sin a c β=,4sin 5α=,整理得到:1424a b a =+,故2a b =,故2e ==,故选:AC.5.(2022·全国·统考高考真题)已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE V 的周长是________________.【答案】13【解析】∵椭圆的离心率为12c e a ==,∴2a c =,∴22223b a c c =-=,∴椭圆的方程为222222213412043x y x y c c c+=+-=,即,不妨设左焦点为1F ,右焦点为2F ,如图所示,∵222AF a OF c a c ===,,,∴23AF O π∠=,∴12AF F △为正三角形,∵过1F 且垂直于2AF 的直线与C 交于D ,E 两点,DE 为线段2AF 的垂直平分线,∴直线DE 的斜率为3,斜率直线DE 的方程:x c -,代入椭圆方程22234120x y c +-=,整理化简得到:221390y c --=,判别式()22224139616c c ∆=+⨯⨯=⨯⨯,∴122264613cDE y =-=⨯⨯⨯⨯=,∴138c =,得1324a c ==,∵DE 为线段2AF 的垂直平分线,根据对称性,22AD DF AE EF ==,,∴ADE V 的周长等于2F DE △的周长,利用椭圆的定义得到2F DE △周长为22221121222413DF EF DE DF EF DF EF DF DF EF EF a a a ++=+++=+++=+==.故答案为:13.6.(2022·浙江·统考高考真题)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,过F 且斜率为4ba的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________.【解析】过F 且斜率为4ba 的直线:()4b AB y xc a =+,渐近线2:b l y x a=,联立()4b y x c a b y xa ⎧=+⎪⎪⎨⎪=⎪⎩,得,33c bc B a ⎛⎫ ⎪⎝⎭,由||3||FB FA =,得5,,99c bc A a ⎛⎫- ⎪⎝⎭而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a =,所以离心率e 4=.故答案为:4.7.(2022·全国·统考高考真题)记双曲线2222:1(0,0)x y C a b a b-=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值______________.【答案】2(满足1e <≤【解析】2222:1(0,0)x y C a b a b -=>>,所以C 的渐近线方程为b y x a =±,结合渐近线的特点,只需02b a <≤,即224b a≤,可满足条件“直线2y x =与C 无公共点”所以==c e a 又因为1e >,所以1e <≤故答案为:2(满足1e <≤皆可)【方法技巧与总结】求离心率范围的方法一、建立不等式法:1、利用曲线的范围建立不等关系.2、利用线段长度的大小建立不等关系.12,F F 为椭圆22221(0)x y a b a b +=>>的左、右焦点,P 为椭圆上的任意一点,[]1,PF a c a c ∈-+;12,F F 为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,P 为双曲线上的任一点,1PF c a ≥-.3、利用角度长度的大小建立不等关系.12,F F 为椭圆22221x y a b +=的左、右焦点,P 为椭圆上的动点,若12F PF θ∠=,则椭圆离心率e 的取值范围为sin12e θ≤<.4、利用题目不等关系建立不等关系.5、利用判别式建立不等关系.6、利用与双曲线渐近线的斜率比较建立不等关系.7、利用基本不等式,建立不等关系.【核心考点】核心考点一:顶角为直角的焦点三角形求解离心率的取值范围问题【典型例题】例1.(2022·全国·高二专题练习)已知椭圆()222210x y a b a b +=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎛⎫∈ ⎪⎝⎭,则该椭圆的离心率e 的取值范围是()A .12,23⎛⎫ ⎪⎝⎭B .2⎝⎭C .,23⎛ ⎝⎭D .23⎫⎪⎪⎝⎭【答案】B【解析】由题意椭圆22221x y a b+=()00a b >>,上一点A 关于原点的对称点为点B ,F 为其右焦点,设左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形.根据椭圆的定义:2AF AN a +=,由题∠ABF =α,则∠ANF =α,所以22cos 2sin a c c αα+=,利用2112sin cos 4c e a πααα===+⎛⎫+ ⎪⎝⎭,∵,124ππα⎛⎫∈ ⎪⎝⎭,∴342πππα<+<14πα<⎛⎫+ ⎪⎝⎭,即椭圆离心率e 的取值范围是23⎛⎫⎪ ⎪⎝⎭,故选B .例2.(2022春·辽宁葫芦岛·高二统考期中)已知点12F F ,分别是椭圆22221(0)x ya b a b+=>>的左、右焦点,点P 12PF F ∆是直角三角形的动点P 恰好有6个,则该椭圆的离心率为()A .12BC.2D【答案】C【解析】由题意知,椭圆的最大张角为090,所以b c =,所以a =,所以c e a ===,故应选C .例3.(2022秋·安徽·高二校联考开学考试)若P 是以1F ,2F 为焦点的椭圆22221(0)x y a b a b +=>>上的一点,且120PF PF ⋅= ,125tan 12PF F ∠=,则此椭圆的离心率为()AB .1517C .1315D .1317【答案】D【解析】因为120PF PF ⋅=,所以12PF PF ⊥,在12Rt PF F 中,设25PF m =(0m >),则112PF m =,1213F F m ==,所以213c m =,12217a PF PF m =+=,所以213217c e a ==.故选:D.核心考点二:焦点三角形顶角范围与离心率【典型例题】例4.(2022春·福建漳州·高二校联考期中)已知椭圆2222:1x y C a b+=(0a b >>),椭圆的左、右焦点分别为1F ,2F ,P 是椭圆C 上的任意一点,且满足120PF PF ⋅>,则椭圆C 的离心率e 的取值范围是()A .10,2⎛⎫ ⎪⎝⎭B .2⎛⎫ ⎪ ⎪⎝⎭C .122⎛⎫⎪ ⎪⎝⎭D .,12⎛⎫⎪ ⎪⎝⎭【答案】B【解析】由已知得1(,0)F c -,2(,0)F c ,设()00,P x y ,则()100,PF c x y =--- ,()200,PF c x y =--,因为120PF PF ⋅> ,所以()()0000,,0c x y c x y ---⋅-->,即222000c x y -++>,即22200x y c +>,因为点P 是椭圆上的任意一点,所以2200x y +表示椭圆上的点到原点的距离的平方,因为()22200minx y b +=,所以22b c >,所以222a c c ->,即2212c a <,所以2c e a ⎛⎫=∈ ⎪ ⎪⎝⎭,故选:B .例5.(2022春·北京·高二人大附中校考期末)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,若C 上存在一点P ,使得12120F PF ︒∠=,且12F PF △,则C 的离心率的取值范围是()A .⎛ ⎝⎦B .110,12⎛⎫⎪⎝⎭C .311212⎫⎪⎢⎣⎭D .11,112⎛⎫⎪⎝⎭【答案】C【解析】设12||2=F F c ,12F PF △内切圆的半径为r .因为12||+||2PF PF a =,所以()22212121212||||||2||||(1cos1204|||)|F F PF PF PF PF a PF PF ︒=+-+=-,则212||||4PF PF b =.由等面积法可得)22211(22)4sin12022a c rb ac ︒+=⨯⨯=-,整理得)r a c =-,又12r a >故1112c a <.又12120F PF ︒∠=,所以16900F PO ︒∠≤≤则c a ≥11212e ≤<.故选:C例6.(2022春·新疆乌鲁木齐·高二乌市八中校考阶段练习)已知1F ,2F 是椭圆()222210x y a b a b+=>>的两个焦点,若存在点P 为椭圆上一点,使得1260F PF ∠=︒,则椭圆离心率e 的取值范围是().A .,12⎫⎪⎪⎣⎭B .2⎛⎫⎪ ⎪⎝⎭C .1,12⎡⎫⎪⎢⎣⎭D .122⎡⎫⎢⎣⎭【答案】C 【解析】如图,当动点P 在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P 对两个焦点的张角12F PF ∠渐渐增大,当且仅当P 点位于短轴端点0P 处时,张角12F PF ∠达到最大值.由此可得:存在点P 为椭圆上一点,使得1260F PF ∠=︒,012P F F ∴△中,10260F P F ∠≥︒,可得02Rt P OF △中,0230OP F ∠≥︒,所以02P O ,即b ≤,其中c =2223a c c ∴-≤,可得224a c ≤,即2214c a ≥椭圆离心率ce a=,且0a c >>112e ∴≤<故选:C例7.(2022春·吉林辽源·高三辽源市第五中学校校考期中)已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且ππ[,]64α∈,则该椭圆离心率e 的最大值为___________.1-【解析】已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B 、F 为其右焦点,设椭圆的左焦点为N ,连接,,,AF AN BF BN ,所以四边形AFBN为长方形,根据椭圆的定义2AF AN a +=,且ABF α∠=,则ANF α∠=,所以22cos 2sin a c c αα=+,又由离心率的公式得211π2sin cos )4c e a ααα==++,由ππ[,]64α∈,则5πππ1242α≤+≤,所以112)π4α≤≤+1-.1例8.(2022春·黑龙江佳木斯·高二建三江分局第一中学校考期中)已知椭圆22221(0)x y a b a b +=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,63ππα⎡⎤∈⎢⎣⎦,则该椭圆的离心率e 的取值范围是___________.【答案】2,312⎡⎤-⎢⎥⎣⎦【解析】椭圆上点A 关于原点的对称点为点B ,F 为其右焦点,设左焦点为1F ,连接11AF AF BF BF ,,,,则四边形1AFF B 为矩形.根据椭圆的定义:12AF AF a ABF α+=∠=,,则1BAF α∠=.∴1||2c sin ||2cos 22cos 2AF AF c a c c sin αααα=⋅=⋅=⋅+⋅,,椭圆的离心率2112sin cos 2sin 4c e a πααα===+⎛⎫+ ⎪⎝⎭,64ππα⎡⎤∈⎢⎥⎣⎦,∴51242πππα≤+≤,则2(31)sin 144πα+⎛⎫≤+≤ ⎪⎝⎭,∴213122sin()4πα≤≤-+,∴椭圆离心率e 的取值范围2312⎡⎤-⎢⎥⎣⎦,.故答案为:2312⎡⎤-⎢⎥⎣⎦,例9.(2022·高二单元测试)椭圆2222:1(0)x y C a b a b +=>>上一点A 关于原点的对称点为B ,F 为其右焦点,若AF BF ⊥,设ABF θ∠=,且5,412ππθ⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率的取值范围为________.【答案】2623⎢⎣⎦【解析】记椭圆C 的左焦点为F ',连AF ',BF ',由椭圆的对称性和性质知BF AF '=,2AF B AFB π∠∠==',由2AF BF a +=,可得2cos 2sin 2c c a θθ+=,得11sin cos 4c e a πθθθ===+⎛⎫+ ⎪⎝⎭,由5,412ππθ⎡⎤∈⎢⎥⎣⎦,可得2,423πππθ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦sin 14πθ⎛⎫≤+≤ ⎪⎝⎭,所以23e ≤≤.故答案为:2⎢⎣⎦.核心考点三:共焦点的椭圆与双曲线问题【典型例题】例10.(2022春·江苏苏州·高二江苏省苏州第十中学校校考阶段练习)已知椭圆和双曲线有共同的焦点12,,,F F P Q 分别是它们在第一象限和第三象限的交点,且260QF P ∠=,记椭圆和双曲线的离心率分别为12,e e ,则221231e e +等于_______.【答案】4【解析】设椭圆长半轴长为1a ,双曲线实半轴长为2a ,()1,0F c -,()2,0F c ,P 为两曲线在第一象限的交点,Q 为两曲线在第三象限的交点.由椭圆和双曲线定义知:1212+=PF PF a ,1222-=PF PF a ,112PF a a ∴=+,212=-PF a a ,由椭圆和双曲线对称性可知:四边形12PF QF 为平行四边形,260QF P ∠= ,12120F PF ∴∠= ,222121212122cos F F PF PF PF PF F PF ∴=+-∠,即()()()()22222121212121243c a a a a a a a a a a =++-++-=+,22122222123314a a e e c c∴+=+=.故答案为:4.例11.(2022春·山东青岛·高二统考期末)已知椭圆1C 和双曲线2C 有共同的焦点1F ,2F ,P 是它们的一个交点,且1223F PF π∠=,记椭圆1C 和双曲线2C 的离心率分别为1e ,2e ,则2212484w e e =+的最小值为()A .24B .37C .49D .52【答案】C【解析】设椭圆的长半轴长为1a ,双曲线的实半轴长2a ,焦距2c ,则1212+=PF PF a ,1222-=PF PF a ,解得112=+PF a a ,212=-PF a a,如图在△F1PF2中,根据余弦定理可得:()()()22212121222cos3F F PF PF PF PF π=+-⋅,整理得2221243c a a =+,即2212314e e +=,所以()2222222112122222121231213148448437494e e w e e e e e e e e ⎛⎫=+=⨯+⨯+=++≥ ⎪⎝⎭,当且仅当1242e e ==时,取等号.故选:C.例12.(2022春·广西·高三校联考阶段练习)已知椭圆和双曲线有共同的焦点1F ,2F ,P 是它们的一个交点,且12π3F PF ∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则12e e ⋅的最小值为()A2B .34CD .3【答案】A【解析】如图,设椭圆的长半轴为1a ,双曲线的实半轴长为2a ,则根据椭圆及双曲线的定义:1211222,2PF PF a PF PF a +=-=,所以112212,PF a a PF a a =+=-,设122F F c =,因为12π3F PF ∠=,则在12PF F △中,由余弦定理得:22212121212π4()()2()()cos3c a a a a a a a a =++--+-,化简得:2221234a a c +=,即2212134e e +=,从而有2212134e e =+≥整理得12e e ⋅≥=(当且仅当122e e =时等号成立)故选:A.例13.(2022春·辽宁沈阳·高二沈阳市第三十一中学校考阶段练习)已知椭圆和双曲线有共同的焦点1F ,2F ,P 是它们的一个交点,且123F PF π∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则当121e e 取最大值时,1e ,2e 的值分别是()A2,2B .12C.3D.4【答案】A【解析】不妨设椭圆与双曲线的标准方程分别为:()222210x y a b a b+=>>,c =2222111x y a b -=,c =设1PF m =,2PF n =.m n >.则2m n a +=,12m n a -=,∴1m a a =+,1n a a =-.因为123F PF π∠=,所以()22221cos322m n c mnπ+-==,即()()()()22211114a a a a c a a a a ++--=+-.∴2221340a a c +-=,∴2221314e e +=,∴4≥,则121e e ≤12e =2e =时取等号.故选:A .例14.(2022·河南洛阳·校联考模拟预测)已知椭圆1C :()222210x y a b a b +=>>和双曲线2C :()222210,0x y m n m n-=>>有共同的焦点1F ,2F ,P 是它们在第一象限的交点,当1260F PF ∠=︒时,1C 与2C 的离心率互为倒数,则双曲线2C 的离心率是()ABC .2D【答案】B【解析】设1C ,2C 的离心率分别为1e ,2e ,焦距为2c ,因为122PF PF a +=,122PF PF m -=,所以1PF a m =+,2PF a m =-,由余弦定理,得222121212122cos F F PF PF PF PF F PF =+-⋅∠,即()()()()22242cos 60c a m a m a m a m =++--+-︒,化简,得22243c a m =+,两边同除以2c ,得2212134e e =+.又121e e =,所以222234=+e e .又21e >,所以2e =.故选:B核心考点四:椭圆与双曲线的4a 通径体【典型例题】例15.(2022·广西南宁·南宁市第八中学校考一模)已知椭圆()222210x y a b a b+=>>的左、右焦点分别为12,F F ,过1F 且与x 轴垂直的直线交椭圆于,A B 两点,直线2AF 与椭圆的另一个交点为C ,若222=AF F C ,则椭圆的离心率为()ABCD【答案】A【解析】过点C 作CD x ⊥轴于D ,则122~ AF F CDF ,由222=AF F C ,则122||2||=F F F D ,12AF CD =,所以点22,2⎛⎫⎪⎝⎭b C c a ,由点C 在椭圆上,所以有222222(2)1b ac a b ⎛⎫⎪⎝⎭+=,即225c a =,所以e ==c a 故选:A.例16.(2022·全国·高三专题练习)已知椭圆22221(0)x y C a b a b+=>>:的左、右焦点分别为1F ,2F ,过2F 直线与椭圆C 交于M ,N 两点,设线段1NF 的中点D ,若10MD NF ⋅=,且12//MF DF,则椭圆C 的离心率为()A .13BC .12D【答案】B【解析】因为10MD NF ⋅=,所以1MD NF ⊥,又D 是1NF 中点,所以1MF MN =,因为12//MF DF,所以2F 是MN 中点,则22MF NF =,因此MN x ⊥轴,设2MF m =,则12MF m =,1232MF MF m a +==,23a m =,在12MF F △中,由勾股定理得22242(((2)33m m c +=,变形可得3c e a ==.故选:B .例17.(2022春·云南·高三校联考阶段练习)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点为1F ,2F ,过1F 且垂直于x 轴的直线交C 于M ,N 两点,若22MF NF ⊥,则C 的离心率为()A 1+B .2CD【答案】A【解析】由题可得:MN x c =-,代入双曲线2222:1(0,0)x y C a b a b -=>>,解得2b y a=±,又22MF NF ⊥,∴112F M F F =,即22bc a=,222c a ac ∴-=,2210e e ∴--=,1e ∴=1e > ,1e ∴.故选:A例18.(2022春·江苏宿迁·高三校考阶段练习)如图,已知A ,B ,C 是双曲线22221(0,0)x y a b a b -=>>上的三个点,AB 经过原点O ,AC 经过右焦距F ,若BF AC ⊥且2CF FA =,则该双曲线的离心率等于_____.【答案】3【解析】若E 是左焦点,连接,,AE BE EC ,设||BF m =,||AF n =,∴由双曲线的对称性且BF AC ⊥知:AEBF 是矩形,则||AE m =,||BE n =,又2CF FA =,即||2FC n =,则||2||22EC a FC a n =+=+,∴在Rt EAC △中,222||||||AE AC EC +=,即22294()m n a n +=+,而2m n a -=,∴23an =,83a m =,∵在Rt EAF V 中,2224m n c +=,即226849a c =,可得3e =..核心考点五:椭圆与双曲线的4a 直角体【典型例题】例19.(2022春·福建福州·高二福建省福州格致中学校考阶段练习)已知1F ,2F 是双曲线()2222:10,0x y E a b a b-=>>的左、右焦点,过1F l ,l 分别交y 轴和双曲线右支于点M ,P ,且212F F PM F M -=uuu u r uuu r uuuu r,则E 的离心率为______.【答案】2【解析】因为212F F PM F M -=uuu u r uuu r uuuu r ,所以1MF PM =uuu r uuu r,即M 为1PF 的中点.又O 为1F 2F 的中点,所以OM 为中位线.所以2//OM PF ,即2PF x ⊥轴.因为直线l 过1F 122F F c =,所以212PF F ==,11224PF F F c ==.由双曲线的定义可得:122PF PF a -=,即42c a -=,解得:2c a ==心率为2e =故答案为:2例20.(2022·全国·高三专题练习)如图所示,双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F ,过1F 的直线与双曲线C 的两条渐近线分别交于A 、B 两点,A 是1F B 的中点,且12F B F B ⊥,则双曲线C 的离心率e =()AB .2CD1【答案】B【解析】 A 是1F B 的中点,AO ∴为△12F F B 的中位线,12F B F B ⊥,所以1OA F B ⊥,所以1OB F O c ==.设1(B x ,1)y ,2(A x ,2)y ,点B 在渐近线by x a=上,∴2221111x y c b y x a ⎧+=⎪⎪⎨⎪=⎪⎩,得11x a y b =⎧⎨=⎩.又A 为1F B 的中点,∴2222c a x b y -+⎧=⎪⎪⎨⎪=⎪⎩,A 在渐近线by x a=-上,∴22b b a c a -=-⋅,得2c a =,则双曲线的离心率2c e a==.故选:B例21.(2022·天津·统考一模)设12,F F 分别是双曲线22221(0,0)x y a b a b -=>>的左、右焦点,O 为坐标原点,过左焦点1F 作直线1F P 与圆222x y a +=切于点E ,与双曲线右支交于点P ,且满足()112OE OP OF =+,OE =()A .221612x y -=B .22169x y -=C .22136x y -=D .221312x y -=【答案】D【解析】∵E 为圆222x y a +=上的点,OE a ∴==()112OE OP OF =+,∴E 是1PF 的中点,又O 是12F F 的中点,222PF OE a ∴===,且2//PF OE ,又12124PF PF a PF a -==∴==1PF 是圆的切线,121,OE PF PF PF ∴⊥∴⊥,又222222212122460,15,12F F c c PF PF c b c a =∴=+=∴=∴=-=,,∴双曲线方程为221312x y -=.故选:D例22.(2022·四川广元·统考三模)设1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过2F 的直线交椭圆于A ,B 两点,且120AF AF ⋅= ,222AF F B =,则椭圆E 的离心率为()A .23B .34C D 【答案】C【解析】因为222AF F B =,不妨令()22220B AF F m m ==>,过2F 的直线交椭圆于A ,B 两点,由椭圆的定义可得,122AF AF a +=,122BF BF a +=,则12BF a m =-,122AF a m =-,又120AF AF ⋅=,所以12AF AF ⊥,则12AF F △和1AF B △都是直角三角形,则22211AF AB BF +=,即()()2222292a m m a m -+=-,解得3a m =,所以143AF a =,223AF a =,又122F F c =,2221212AF AF F F +=,所以222164499a a c +=,因此2259c a =,所以椭圆E 的离心率为c a =故选:C.例23.(2022春·江西抚州·高二江西省临川第二中学校考阶段练习)如图,已知1F ,2F 为双曲线E :22221(0,0)x y a b a b-=>>的左、右焦点,过点1F ,2F 分别作直线1l ,2l 交双曲线E 于A ,B ,C ,D 四点,使得四边形ABCD 为平行四边形,且以AD 为直径的圆过1F ,11DF AF =,则双曲线E 的离心率为()A BC .52D .2【答案】D【解析】设11DF AF x ==,则22DF x a =-,由双曲线的对称性和平行四边形的对称性可知:21CF AF x ==,连接1CF ,则有1222CF CF x a =+=+,2222DC DF CF x a=+=-由于1F 在以AD 为直径的圆周上,11DF AF ∴⊥,∵ABCD 为平行四边形,//AB CD ,1DF DC ∴⊥,在直角三角形1CDF 中,22211CF DF CD =+,()()222222x a x x a +=+-,解得:3x a =,123,DF a DF a ==;在直角三角形12F F D 中,2221212DF DF F F +=,()()22232a a c +=,得2252a c =,c e a =,故选:D.核心考点六:椭圆与双曲线的等腰三角形问题【典型例题】例24.(2022春·陕西西安·高二期末)设1F ,2F 是椭圆E :()222210x y a b a b+=>>的左、右焦点,过点()2,0F c 且倾斜角为60°的直线l 与直线2a x c=相交于点P ,若12PF F △为等腰三角形,则椭圆E 的离心率e 的值是()A2B .13C.3D.2【答案】A【解析】直线l的方程为)y x c =-,由)2y x c a x c ⎧=-⎪⎨=⎪⎩解得2y c =,则2a P c ⎛ ⎝⎭,由于12PF F △为等腰三角形,所以21cos 6022a c c c -︒==,222212,,22c c a c a a ===.故选:A例25.(2022·全国·高三专题练习)已知双曲线22221x y a b-=的左焦点为1F ,过1F 作一倾斜角为15 的直线交双曲线右支于P 点,且满足1POF △(O 为原点)为等腰三角形,则该双曲线离心率e 为()A.e =B .2e =C.e =D.12e =【答案】C【解析】记右焦点为2F ,由题意知,1215PF F ∠=,且1POF △为等腰三角形,则只能是1OF OP =,所以212230POF PF F ∠∠==,OP c =,所以直线OP的方程为y x =,由2222331y x x y a b ⎧=⎪⎪⎨⎪-=⎪⎩,得2222222222333P Pa b x b a a b y b a ⎧=⎪⎪-⎨⎪=⎪-⎩所以222222222333a b a b c b a b a+=--,整理,得42243840c a c a -+=,即423840e e -+=,解得22e =或23(舍去),所以2e =.故选:C .例26.(2022·河南鹤壁·鹤壁高中校考模拟预测)已知12F F 、是椭圆22221(0)x y a b a b+=>>的左、右焦点,点P 为抛物线28(0)y ax a =->准线上一点,若12F PF △是底角为15︒的等腰三角形,则椭圆的离心率为()A .31-B .21-C .312-D .212-【答案】A【解析】如图,抛物线的准线与x 轴的交点为M因为12,F F 是椭圆22221(0)x y a b a b+=>>的左、右焦点,所以12(,0),(,0)F c F c -抛物线28(0)y ax a =->准线为:直线2x a =,所以(2,0)M a 因为12F PF △是底角为15︒的等腰三角形,则1212==15PF F F PF ∠∠︒则22122=30,==2PF M F F PF c ∠︒则222223cos ===22F M a c PF M PF c -∠,整理得:2=(3+1)a c 所以离心率23131c e a==+.故答案为:A.例27.(2022·全国·高三专题练习)已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P 为等腰三角形,则椭圆C 的离心率的取值范围是()A .111,,1322⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭B .110,,132⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】A【解析】法一:显然,P 是短轴端点时,12PF PF =,满足12F F P 为等腰三角形,因此由对称性,还有四个点在四个象限内各有一个,设(,)P x y 是第一象限内使得12F F P 为等腰三角形的点,若112PF F F =,则222212x y a b c ⎧+=⎪=,又222a b c =+,消去y 整理得:222224240c x a cx a c a +-+=,解得22a ac x c --=(舍去)或22a acx c -+=,由0x a <<得220a aca c-+<<,所以112c a <<,即112e <<,若212PF F F =,则222212x y a b c ⎧+=⎪=,又222a b c =+,消去y 整理得:222224240c x a cx a c a --+=,解得22a ac x c -=或22a ac x c +=,22a aca c +>舍去.所以220a aca c-<<,所以1132c a <<,即1132e <<,12e =时,2a c =,12PF F △是等边三角形,P 只能是短轴端点,只有2个,不合题意.综上,e 的范围是111(,)(,1)322⋃.法二:①当点P 与短轴的顶点重合时,12F F P 构成以12F F 为底边的等腰三角形,此种情况有2个满足条件的12F F P ;②当12F F P 构成以12F F 为一腰的等腰三角形时,根据椭圆的对称性,只要在第一象限内的椭圆上恰好有一点P 满足12F F P 为等腰三角形即可,则1122PF F F c ==或2122PF F F c ==当12PF c =时,则2c a >,即12c e a =>,则112e <<,当22PF c =时,则有22c a c c a>-⎧⎨<⎩,则1132e <<,综上所述,椭圆的离心率取值范围是111,,1322⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭.故选:A.核心考点七:双曲线的4a 底边等腰三角形【典型例题】例28.(2022·全国·高三专题练习)已知1F ,2F 是双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点,过点1F作斜率为2的直线l 与双曲线的左,右两支分别交于M ,N 两点,以2F 为圆心的圆过M ,N ,则双曲线C 的离心率为()ABC .2D【答案】B【解析】取MN 中点A ,连AF 2,由已知令22||||MF NF m ==,则2AF MN ⊥,如图:因点M ,N 为双曲线左右两支上的点,由双曲线定义得12||||22MF MF a m a =-=-,12||||22NF NF a m a =+=+,则11||||||4,||2MN NF MF a MA a =-==,令双曲线半焦距为c ,12Rt AF F △中,12||,||AF m AF =2Rt AMF中,2||AF=22222m a c =+,因直线l的斜率为2,即12tan 2AF F ∠=,而2121||tan ||AF AF F AF ∠=,即21||||AF AF =,2221||1||2AF AF =,于是有2222221222c a c a -=+,c =,==c e a ,所以双曲线C故选:B例29.(2022·全国·高三专题练习)设双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F ,过点1Fl 与双曲线C 的左、右两支分别交于,M N 两点,且()220F M F N MN +⋅=,则双曲线C 的离心率为()ABCD .2【答案】A【解析】如图,设D 为MN 的中点,连接2F D .易知2222F M F N F D +=,所以()22220F M F N MN F D MN +⋅=⋅= ,所以2F D MN ⊥.因为D 为MN 的中点,所以22F M F N =.设22F M F N t ==,因为212MF MF a -=,所以12MF t a =-.因为122NF NF a -=,所以12NF t a =+.所以114MN NF MF a =-=.因为D 是MN 的中点,11F D F M MD =+,所以12,MD ND a F D t ===.在Rt 12F F D中,2F D =;在Rt 2MF D中,2F D ==22222t a c =+.所以21F D F D t ===因为直线l所以2121tan F D DF F F D ∠===,所以2222221,23c a c a a c -==+,c =,所以离心率为ca=故选:A核心考点八:焦点到渐近线距离为b 【典型例题】例30.(2022·全国·模拟预测)设1F ,2F 分别是双曲线C :()222210,0x ya b a b-=>>的左、右焦点,O 为坐标原点,过右焦点2F 作双曲线的一条渐近线的垂线,垂足为A .若12212AF F S OF =△,则双曲线C 的离心率为()AB .2C D 【答案】D【解析】根据对称性,不妨取双曲线C 的一条渐近线的方程为by x a=,即0bx ay -=,点()2,0F c b =.因为2OF c =,所以AO a =,所以122124422AF F AOF S S ab ab ==⨯=△△.由题意知2222ab c a b ==+,所以a b =,离心率e ==,故选:D.例31.(2022·全国·高三专题练习)设1F ,2F 是双曲线2222:1(0,0)x yC a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1||||PF OP ,则C 的离心率为()AB .2CD【答案】B【解析】不妨设双曲线的一条渐近线方程为b y x a=,则2b c a PF b ⨯==,2OF c =,PO a ∴=,1|||PF OP ==在2Rt POF △中,222cos PF b PF O OF c∠==, 在12Rt PF F 中,22221212212cos 2PF F F PF b PF O PF F F c∠+-==,b c=,即224c a =,e=2,故选:B .例32.(2022·全国·高三专题练习)设1F ,2F 是双曲线2222:1(0,0)x y C a b u b -=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P,若1PF ,则C 的离心率为()A.B .2CD【答案】C【解析】双曲线2222:1(0,0)x y C a b a b -=>>的渐近线为b y x a =±,焦点()2,0F c 到直线b y x a=的距离d b ==,所以2PF b =,由勾股定理得OP a =,所以2cos a POF c ∠=,在1POF △中,()122cos cos cos aPOF POF POF cπ∠=-∠=-∠=-,因为1PF 由余弦定理可得22211112cos PF OP OF OP OF POF =+-⋅∠,即)2222a a c ac c ⎛⎫=+-- ⎪⎝⎭,即222a c =,所以离心率c e a ==故选:C例33.(多选题)(2022秋·广东·高二校联考阶段练习)过双曲线2222:1x y C a b-=(0a >,0b >)的右焦点F 引C 的一条渐近线的垂线,垂足为A ,交另一条渐近线于点B .若FB AF λ=,23λ≤≤,则C 的离心率可以是()A B C .2D .2【答案】BC【解析】右焦点(c,0)F ,设一渐近线OA 的方程为b y x a=,则另一渐近线OB 的方程为b y x a=-,由FA 与OA 垂直可得FA 的方程为()a y x c b=--,联立方程2222()b y x a c a ax a a b c y x c b ⎧=⎪⎪⇒==⎨+⎪=--⎪⎩,可得A 的横坐标为2a c,联立方程()2222222b y x a c ca ax a a b a c y x c b ⎧=-⎪⎪⇒==⎨--⎪=--⎪⎩可得B 的横坐标为2222ca a c-.因为FB AF λ= ,所以()2222222222()22c c a ca a c a c c a c c a c cλλ---=-⇒=⨯--,可得2222222c e a c e λ==--,因为23λ≤≤,所以22322e e ≤-≤,即22222340432*******2e e e e e e ⎧-≥⎪⎪-⇒≤≤⇒≤⎨-⎪≤⎪-⎩,BC 满足题意,AD 不合题意,故选:BC.核心考点九:焦点到渐近线垂线构造的直角三角形【典型例题】例34.(2022·陕西西安·西安中学校考模拟预测)已知双曲线:C 22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,过2F 作双曲线C 的一条渐近线的垂线l ,垂足为H ,直线l 与双曲线C 的左支交于E 点,且H 恰为线段2EF 的中点,则双曲线C 的离心率为()ABC .2D【答案】D【解析】连结1EF ,因为点,O H 分别为12F F 和2EF 的中点,所以1//OH EF ,且12EF EF ⊥设点()2,0F c 到一条渐近线by x a=的距离d b ==,所以22EF b =,又212EF EF a -=,所以122EF b a =-,12Rt EF F 中,满足()2222244b a b c -+=,整理为:2b a =,双曲线的离心率ce a===故选:D例35.(2022秋·安徽·高二校联考期中)已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为1F ,2F ,以1OF 为直径的圆与双曲线的一条渐近线交于点M (异于坐标原点O ),若线段1MF 交双曲线于点P ,且2//MF OP 则该双曲线的离心率为()ABCD【答案】A【解析】不妨设渐近线的方程为by x a=-,因为2//MF OP ,O 为12F F 的中点,所以P 为1MF 的中点,将直线OM ,1MF 的方程联立()b y x aa y x cb ⎧=-⎪⎪⎨⎪=+⎪⎩,可得2,a ab M c c ⎛⎫- ⎪⎝⎭,又()1,0F c -,所以2,22a c cab P c ⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎪ ⎪ ⎪⎝⎭即22,22a c ab P c c ⎛⎫+- ⎪⎝⎭,又P 点在双曲线上,所以()2222222144c ac a a c+-=,解得c a =故选:A.例36.(2022·全国·高三专题练习)已知双曲线2222:1(0,0)x y E a b a b-=>>的左焦点为1F ,过点1F 的直线与两条渐近线的交点分别为M N 、两点(点1F 位于点M 与点N 之间),且112MF F N =,又过点1F 作1F P OM ⊥于P (点O 为坐标原点),且||||ON OP =,则双曲线E 的离心率e =()ABCD .62【答案】C【解析】不妨设M 在第二象限,N在第三象限,如下图所示:因为ON OP =,11F OP F ON ∠=∠,所以11F OP F ON ≅ ,所以1190F PO F NO ∠=∠=︒,11F P F N =,又()1:,,0OM bl y x F c a=--,所以11F F N b ==,所以ON OP a ==,所以1122MF F N b ==,因为113tan ,tan tan 2b b F OP MON F OP a a∠=∠=∠=,所以22231bba b a a =-,所以222222113b c a e a a -==-=,所以e =故选:C.例37.(2022·全国·统考模拟预测)设F 是双曲线22221(0)x y b a a b-=>>的一个焦点,过F 作双曲线的一条渐近线的垂线,与两条渐近线分别交于,P Q 两点.若2FP FQ =,则双曲线的离心率为()A BC .2D .5【答案】C【解析】不妨设(,0)F c -,过F 作双曲线一条渐近线的垂线方程为()ay x c b=+,与b y x a =-联立可得2a x c =-;与b y x a =联立可得222a cx b a=-,∵2FP FQ = ,∴22222a ca c cb ac ⎛⎫+=-+ ⎪-⎝⎭,整理得,22222c b a =-,即224c a =,∵1e >,∴2e =.故选:C .核心考点十:以两焦点为直径的圆与渐近线相交问题【典型例题】例38.(2022春·四川宜宾·高二四川省宜宾市第四中学校校考阶段练习)已知F 是双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,O 为坐标原点,过F 的直线与C 的两条渐近线的交点分别为,M N ,若0OM MF ⋅= ,||MN b =,则C 的离心率为________.【答案】2【解析】因为0OM MF ⋅= ,所以OM MF ⊥,即⊥OM MF所以MF 为点(),0F c 到渐近线0bx ay -=的距离,bcMF b c===,所以MF MN b ==,可得点M 为NF 的中点,又因为⊥OM MF ,所以ON OF c ==,所以222OM c b a =-=,设双曲线的左焦点为1F ,1F ON θ∠=,(),N x y 则()tan tan tan b FON FON aθπ=-∠=-∠=,因为222c a b =+,所以cos a c θ=,sin b cθ=所以cos a x ON c a c θ=-=-⋅=-,sin by ON c b cθ==⋅=,所以(),N a b -,因为M 为NF 中点,所以,22a M c b -⎛⎫⎪⎝⎭,222222c a b OMa -⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,将222b c a =-代入整理可得:()22224c a c a a -+-=即222240c ac a --=,所以220e e --=,可得()()210e e -+=,解得:2e =或1e =-(舍),故答案为:2例39.(2022·山西运城·统考模拟预测)已知双曲线E :()222210,0x y a b a b-=>>的左焦点为1F ,过点1F 的直线与两条渐近线的交点分别为M ,N 两点(点1F 位于点M 与点N 之间),且13MN F N =,又过点1F 作1F P OM ⊥于P (点О为坐标原点),且ON OP =,则双曲线E 的离心率e 为__________.【解析】双曲线E :()222210,0x y a b a b-=>>的渐近线方程为b y x a =±,如图所示,设11,b M x x a ⎛⎫- ⎪⎝⎭,22,b N x x a ⎛⎫⎪⎝⎭,()1,0F c -,。
专题能力训练11等差数列与等比数列一、能力突破训练1.在等差数列{a n}中,a4+a10+a16=30,则a18-2a14的值为()A.20B.-20C.10D.-102.在各项均为正数的等比数列{a n}中,若log2(a2·a3·a5·a7·a8)=5,则a1·a9=()A.4B.5C.2D.253.设{a n}是等比数列,S n是{a n}的前n项和.对任意正整数n,有a n+2a n+1+a n+2=0,又a1=2,则S101的值为()A.2B.200C.-2D.04.已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>05.已知数列{a n}满足,且a2=2,则a4等于()A.-B.23C.12D.116.已知各项均为正数的等差数列{a n}的前n项和为S n,S10=40,则a3·a8的最大值为.7.设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为.8.设x,y,z是实数,若9x,12y,15z成等比数列,且成等差数列,则=.9.已知S n为数列{a n}的前n项和,且a2+S2=31,a n+1=3a n-2n(n∈N*).(1)求证:{a n-2n}为等比数列;(2)求数列{a n}的前n项和S n.10.(2018全国Ⅱ,理17)记S n为等差数列{a n}的前n项和,已知a1=-7,S3=-15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.11.已知数列{a n}是等比数列.设a2=2,a5=16.(1)若a1+a2+…+a2n=t(+…+),n∈N*,求实数t的值;(2)若在与之间插入k个数b1,b2,…,b k,使得,b1,b2,…,b k,成等差数列,求k的值.二、思维提升训练12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.11013.若数列{a n}为等比数列,且a1=1,q=2,则T n=+…+等于()A.1-B.-C.1-D.-14.已知等比数列{a n}的首项为,公比为-,其前n项和为S n,若A≤S n-≤B对n∈N*恒成立,则B-A的最小值为.15.无穷数列{a n}由k个不同的数组成,S n为{a n}的前n项和,若对任意n∈N*,S n∈{2,3},则k的最大值为.16.等比数列{a n}的各项均为正数,且2a1+3a2=1,=9a2a6.(1)求数列{a n}的通项公式;(2)设b n=log3a1+log3a2+…+log3a n,求数列的前n项和.17.若数列{a n}是公差为正数的等差数列,且对任意n∈N*有a n·S n=2n3-n2.(1)求数列{a n}的通项公式.(2)是否存在数列{b n},使得数列{a n b n}的前n项和为A n=5+(2n-3)2n-1(n∈N*)?若存在,求出数列{b n}的通项公式及其前n项和T n;若不存在,请说明理由.专题能力训练11等差数列与等比数列一、能力突破训练1.D解析因为a4+a10+a16=30,所以3a10=30,即a10=10,所以a18-2a14=-a10=-10.故选D.2.A解析由题意得log2(a2·a3·a5·a7·a8)=log2=5log2a5=5,所以a5=2.所以a1·a9==4.故选A.3.A解析设公比为q,∵a n+2a n+1+a n+2=0,∴a1+2a2+a3=0,∴a1+2a1q+a1q2=0,∴q2+2q+1=0,∴q=-1.又a1=2,∴S101=----=2.4.B解析设{a n}的首项为a1,公差为d,则a3=a1+2d,a4=a1+3d,a8=a1+7d.∵a3,a4,a8成等比数列,∴(a1+3d)2=(a1+2d)(a1+7d),即3a1d+5d2=0.∵d≠0,∴a1d=-d2<0,且a1=-d.∵dS4==2d(2a1+3d)=-d2<0,故选B.5.D解析由已知得=2,则{a n+1}是公比为2的等比数列,所以a4+1=(a2+1)·22=12.所以a4=11.故选D.6.16解析因为S10==40⇒a1+a10=a3+a8=8,a3>0,a8>0,所以a3·a8=16,当且仅当a3=a8=4时取等号.7.64解析由已知a1+a3=10,a2+a4=a1q+a3q=5,两式相除得,解得q=,a1=8,所以a1a2…a n=8n …--,抛物线f(n)=-n2+n的对称轴为n=--=3.5,又n∈N*,所以当n=3或4时,a1a2…a n取最大值为-=26=64. 8解析由题意知解得xz=y2=y2,x+z=y,从而--2=-2=9.(1)证明由a n+1=3a n-2n可得a n+1-2n+1=3a n-2n-2n+1=3a n-3·2n=3(a n-2n).又a2=3a1-2,则S2=a1+a2=4a1-2,得a2+S2=7a1-4=31,得a1=5,则a1-21=3≠0.故{a n-2n}为等比数列.(2)解由(1)可知a n-2n=3n-1(a1-2)=3n,∴a n=2n+3n,∴S n=----=2n+1+10.解(1)设{a n}的公差为d,由题意得3a1+3d=-15.由a1=-7得d=2.所以{a n}的通项公式为a n=2n-9.(2)由(1)得S n=n2-8n=(n-4)2-16.所以当n=4时,S n取得最小值,最小值为-16.11.解设等比数列{a n}的公比为q,由a2=2,a5=16,得q=2,a1=1.(1)∵a1+a2+…+a2n=t(+…+),--=t--,即--=t--对n∈N*都成立,∴t=3.(2)=1,,且,b1,b2,…,b k,成等差数列,∴公差d==-,且=(k+1)d,即-1=(k+1)-,解得k=13.二、思维提升训练12.A解析设数列的首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推,设第n组的项数为n,则前n组的项数和为第n组的和为--=2n-1,前n组总共的和为---n=2n+1-2-n.由题意,N>100,令>100,得n≥14且n∈N*,即N出现在第13组之后.若要使最小整数N满足:N>100且前N项和为2的整数幂,则S N-应与-2-n互为相反数,即2k-1=2+n(k∈N*,n≥14),所以k=log2(n+3),解得n=29,k=5.所以N=+5=440,故选A.13.B解析因为a n=1×2n-1=2n-1,所以a n a n+1=2n-1·2n=22n-1=2×4n-1,所以-所以是等比数列.故T n=+…+---14解析易得S n=1--,因为y=S n-在上单调递增(y≠0),所以y-[A,B],因此B-A的最小值为-15.4解析要满足数列中的条件,涉及最多的项的数列可以为2,1,-1,0,0,0,…,所以最多由4个不同的数组成.16.解(1)设数列{a n}的公比为q.由=9a2a6得=9,所以q2=由条件可知q>0,故q=由2a1+3a2=1得2a1+3a1q=1,所以a1=故数列{a n}的通项公式为a n=(2)b n=log3a1+log3a2+…+log3a n=-(1+2+…+n)=-故=-=-2-,+…+=-2--+…+-=-所以数列的前n项和为-17.解(1)设等差数列{a n}的公差为d,则d>0,a n=dn+(a1-d),S n=dn2+-n.对任意n∈N*,恒有a n·S n=2n3-n2,则[dn+(a1-d)]-=2n3-n2,即[dn+(a1-d)]-=2n2-n.∵d>0,a n=2n-1.(2)∵数列{a n b n}的前n项和为A n=5+(2n-3)·2n-1(n∈N*),∴当n=1时,a1b1=A1=4,∴b1=4,当n≥2时,a n b n=A n-A n-1=5+(2n-3)2n-1-[5+(2n-5)2n-2]=(2n-1)2n-2.∴b n=2n-2.假设存在数列{b n}满足题设,且数列{b n}的通项公式b n=-∴T1=4,当n≥2时,T n=4+---=2n-1+3,当n=1时也适合,∴数列{b n}的前n项和为T n=2n-1+3.。
综合能力训练第Ⅰ卷(选择题,共40分)一、选择题(本大题共8小题,每小题5分,共40分)1.已知集合A=-,B={x|y=lg(4x-x2)},则A∩B等于()A.(0,2]B.[-1,0)C.[2,4)D.[1,4)2.设直线x+y=1与抛物线y2=2px(p>0)交于A,B两点,若OA⊥OB,则△OAB的面积为()A.1B.C.D.23.已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<cB.c<b<aC.b<a<cD.b<c<a4.(2018浙江,3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.85.执行如图所示的程序框图.若输入n=3,则输出的S=()A.B.C.D.6.已知双曲线=1(a>0,b>0)被斜率为1的直线截得的弦的中点为(4,1),则该双曲线离心率的值是()A.B.C.D.27.已知函数f(x)=--若f(1)+f(a)=2,则a的所有可能值为()A.1B.-C.1,-D.1,8.已知实数a,b,c.()A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B.若|a2+b+c|+|a2+b-c|≤1,则a2+b2+c2<100C.若|a+b+c2|+|a+b-c2|≤1,则a2+b2+c2<100D.若|a2+b+c|+|a+b2-c|≤1,则a2+b2+c2<100第Ⅱ卷(非选择题,共110分)二、填空题(本大题共6小题,每小题5分,共30分)9.已知a,b∈R,i是虚数单位,若(1+i)(1-b i)=a,则的值为.10.在(2x-1)5的展开式中,含x2的项的系数是.(用数字填写答案)11.已知两球O1和O2在棱长为1的正方体ABCD-A1B1C1D1的内部,且互相外切,若球O1与过点A的正方体的三个面相切,球O2与过点C1的正方体的三个面相切,则球O1和O2的表面积之和的最小值为.12.在极坐标系中,直线4ρcos-+1=0与圆ρ=2sin θ的公共点的个数为.13.设变量x,y满足约束条件--则-的最小值是.14.a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是.(填写所有正确结论的编号)三、解答题(本大题共6小题,共80分)15.(13分)△ABC的内角A,B,C的对边分别为a,b,c.已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.16.(13分)已知数列{a n}中,a1=2,且a n=2a n-1-n+2(n≥2,n∈N*).(1)求a2,a3,并证明{a n-n}是等比数列;(2)设b n=,求数列{b n}的前n项和S n.-17.(13分)如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ.(2)是否存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.18.(13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.19.(14分)已知椭圆C:=1(a>b>0)的左、右焦点F1,F2与椭圆短轴的一个端点构成边长为4的正三角形.(1)求椭圆C的标准方程;(2)过椭圆C上任意一点P作椭圆C的切线与直线F1P的垂线F1M相交于点M,求点M的轨迹方程;(3)若切线MP与直线x=-2交于点N,求证:为定值.20.(14分)已知函数f(x)=ln(1+x)+x2-x(a≥0).(1)若f(x)>0对x∈(0,+∞)都成立,求a的取值范围;(2)已知e为自然对数的底数,证明:∀n∈N*,<e.##综合能力训练1.A解析∵A=[-1,2],B=(0,4),∴A∩B=(0,2].故选A.2.B解析设A(x1,y1),B(x2,y2),由x+y=1与抛物线y2=2px,得y2+2py-2p=0,解得y1=-p+,x1=1+p-,y2=-p-,x2=1+p+,由OA⊥OB得,x1x2+y1y2=0,即[(1+p)2-(p2+2p)]+[p2-(p2+2p)]=0,化简得2p=1,从而A--,B--,OA2==5-2,OB2==5+2,△OAB的面积S=|OA||OB|=故选B.3.C解析∵f(x)是R上的奇函数,∴g(x)=xf(x)是R上的偶函数.∴g(-log25.1)=g(log25.1).∵奇函数f(x)在R上是增函数,∴当x>0时,f(x)>0,f'(x)>0.∴当x>0时,g'(x)=f(x)+xf'(x)>0恒成立,∴g(x)在区间(0,+∞)上是增函数.∵2<log25.1<3,1<20.8<2,∴20.8<log25.1<3.结合函数g(x)的性质得b<a<c.故选C.4.C解析由三视图可知该几何体为直四棱柱.∵S底=(1+2)×2=3,h=2,∴V=Sh=3×2=6.5.B解析由题意得,输出的S为数列-的前3项和,而---,即S n=-故当输入n=3时,S3=,故选B.6.A解析设直线l与双曲线交于点A(x1,y1),B(x2,y2),则--=0,即--由弦的中点为(4,1),直线的斜率为1可知,x1+x2=8,y1+y2=2,--=1,,e2=1+e=故选A.7.C解析∵f(1)=e1-1=1,∴f(a)=1.若a∈(-1,0),则sin(πa2)=1,∴a=-若a∈[0,+∞),则e a-1=1,∴a=1.因此a=1或a=-8.D解析(举反例排除)选项A中,令a=b=10,c=-110,则|a2+b+c|+|a+b2+c|=|100+10-110|+|10+100-110|=0<1.而a2+b2+c2=100+100+1102=200+1102>100,故选项A不成立;选项B中,令a=10,b=-100,c=0,则|a2+b+c|+|a2+b-c|=0<1.而a2+b2+c2=100+1002+0>100,故选项B不成立;选项C中,令a=100,b=-100,c=0,则|a+b+c2|+|a+b-c2|=0<1.而a2+b2+c2=1002+1002+0>100,故选项C不成立;故选D.9.2解析(1+i)(1-b i)=1+b+(1-b)i=a,则-所以即=2.故答案为2.10.-40解析(2x-1)5的展开式的通项为T r+1=(2x)5-r(-1)r=(-1)r25-r x5-r.根据题意,得5-r=2,解得r=3.所以含x2项的系数为(-1)325-3=-22=-40.11.3(2-)π解析∵AO1=R1,C1O2=R2,O1O2=R1+R2,∴(+1)(R1+R2)=,R1+R2=,球O1和O2的表面积之和为4π()≥4π·2=2π(R1+R2)2=3(2-π.12.2解析∵4ρcos-+1=0,展开得2cos θ+2ρsin θ+1=0,∴直线的直角坐标方程为2x+2y+1=0.∵ρ=2sin θ两边同乘ρ得ρ2=2ρsin θ,∴圆的直角坐标方程为x2+y2-2y=0,圆心为(0,1),半径r=1.∴圆心到直线的距离d=<r=1.∴直线与圆相交.∴直线与圆公共点的个数为2.13.1解析由约束条件--作出可行域如图,联立-解得A(3,2),-的几何意义为可行域内的动点与定点P(1,0)连线的斜率,则其最小值为k PA=--=1.14.②③解析由题意,AB是以AC为轴,BC为底面半径的圆锥的母线,由AC⊥a,AC⊥b,得AC⊥圆锥底面,在底面内可以过点B,作BD∥a,交底面圆C于点D,如图所示,连接DE,则DE⊥BD,∴DE∥b.连接AD,在等腰三角形ABD中,设AB=AD=当直线AB与a成60°角时,∠ABD=60°,故BD=又在Rt△BDE中,BE=2,∴DE=,过点B作BF∥DE,交圆C于点F,连接AF,由圆的对称性可知BF=DE=,∴△ABF为等边三角形,∴∠ABF=60°,即AB与b成60°角,②正确,①错误.由最小角定理可知③正确;很明显,可以满足直线a⊥平面ABC,直线AB与a所成的最大角为90°,④错误.故正确的说法为②③.15.解(1)由题设及A+B+C=π,得sin B=8sin2,故sin B=4(1-cos B).上式两边平方,整理得17cos2B-32cos B+15=0,解得cos B=1(舍去),cos B=(2)由cos B=得sin B=,故S△ABC=ac sin B=ac.又S△ABC=2,则ac=由余弦定理及a+c=6得b2=a2+c2-2ac cos B=(a+c)2-2ac(1+cos B)=36-2=4.所以b=2.16.解(1)由已知a n=2a n-1-n+2(n≥2,n∈N*)得a2=4,a3=7.a n-n=2a n-1-2n+2,即a n-n=2[a n-1-(n-1)].----=2(n≥2,n∈N*),且a1-1=1,∴{a n-n}是以1为首项,2为公比的等比数列.(2)由(1)得a n-n=(a1-1)·2n-1,即a n=2n-1+n,∴b n=-=1+-设c n=-,且前n项和为T n,则T n=+…+-,①T n=+…+,②①-②,得T n=1++…+---=2-故T n=4--,S n=n+4--17.解法一(1)证明:如图①,连接AD1,由ABCD-A1B1C1D1是正方体,知BC1∥AD1.当λ=1时,P是DD1的中点,又F是AD的中点,所以FP∥AD1,所以BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)如图②,连接BD.因为E,F分别是AB,AD的中点,所以EF∥BD,且EF=BD.又DP=BQ,DP∥BQ,所以四边形PQBD是平行四边形,故PQ∥BD,且PQ=BD,从而EF∥PQ,且EF=PQ.在Rt△EBQ和Rt△FDP中,因为BQ=DP=λ,BE=DF=1,所以EQ=FP=所以四边形EFPQ也是等腰梯形.同理可证四边形PQMN也是等腰梯形.分别取EF,PQ,MN的中点为H,O,G,连接OH,OG,则GO⊥PQ,HO⊥PQ,而GO∩HO=O,故∠GOH是平面EFPQ与平面PQMN所成的二面角的平面角.若存在λ使平面EFPQ与平面PQMN所成的二面角为直二面角,则∠GOH=90°.连接EM,FN,则由EF∥MN,且EF=MN知四边形EFNM是平行四边形.连接GH,因为H,G是EF,MN的中点,所以GH=ME=2.在△GOH中,GH2=4,OH2=1+λ2-=λ2+,OG2=1+(2-λ)2-=(2-λ)2+,由OG2+OH2=GH2,得(2-λ)2++λ2+=4,解得λ=1±,故存在λ=1±,使平面EFPQ与平面PQMN所成的二面角为直二面角.解法二以D为原点,射线DA,DC,DD1分别为x,y,z轴的正半轴建立如图③所示的空间直角坐标系.由已知得B(2,2,0),C1(0,2,2),E(2,1,0),F(1,0,0),P(0,0,λ).=(-2,0,2),=(-1,0,λ),=(1,1,0).(1)证明:当λ=1时,=(-1,0,1).因为=(-2,0,2),所以=2,即BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)设平面EFPQ的一个法向量为n=(x,y,z),于是可取n=(λ,-λ,1).则由可得-同理可得平面MNPQ的一个法向量为m=(λ-2,2-λ,1).若存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角,则m·n=(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±故存在λ=1±,使平面EFPQ与平面PQMN所成的二面角为直二面角.18.解(1)由已知,有P(A)=所以,事件A发生的概率为(2)随机变量X的所有可能取值为0,1,2.P(X=0)=,P(X=1)=,P(X=2)=所以,随机变量X的分布列为随机变量X的数学期望E(X)=0+1+2=1.19.(1)解依题意,2c=a=4,∴c=2,b=2∴椭圆C的标准方程为=1.(2)解由(1)知F1(-2,0),设P(x0,y0),M(x,y),过椭圆C上点P的切线方程为=1,①直线F1P的斜率,则直线MF1的斜率=-,直线MF1的方程为y=-(x+2),即yy0=-(x0+2)(x+2),②①②联立,解得x=-8,故点M的轨迹方程为x=-8.(3)证明依题意及(2),知点M,N的坐标可表示为M(-8,y M),N(-2,y N),点N在切线MP上,由①式得y N=,点M在直线MF1上,由②式得y M=,|NF1|2=,|MF1|2=[(-2)-(-8)]2+,故=,③注意到点P在椭圆C上,即=1,于是-,代入③式并整理得,故的值为定值20.(1)解∵f(x)=ln(1+x)+x2-x,其定义域为(-1,+∞),∴f'(x)=+ax-1=-①当a=0时,f'(x)=-,当x∈(0,+∞)时,f'(x)<0,则f(x)在区间(0,+∞)内单调递减,此时,f(x)<f(0)=0,不符合题意.②当0<a<1时,令f'(x)=0,得x1=0,x2=->0,当x-时,f'(x)<0,则f(x)在区间-内单调递减,此时,f(x)<f(0)=0,不符合题意.③当a=1时,f'(x)=,当x∈(0,+∞)时,f'(x)>0,则f(x)在区间(0,+∞)内单调递增,此时,f(x)>f(0)=0,符合题意.④当a>1时,令f'(x)=0,得x1=0,x2=-<0,当x∈(0,+∞)时,f'(x)>0,则f(x)在区间(0,+∞)内单调递增,此时,f(x)>f(0)=0,符合题意.综上所述,a的取值范围为[1,+∞).(2)证明由(1)可知,当a=0时,f(x)<0对x∈(0,+∞)都成立,即ln(1+x)<x对x∈(0,+∞)都成立,∴ln+ln+…+ln+…+,即ln…由于n∈N*,则=1.∴ln<1.<e.由(1)可知,当a=1时,f(x)>0对x∈(0,+∞)都成立,即x-x2<ln(1+x)对x∈(0,+∞)都成立,+…+<ln+ln+…+ln, 即<ln,得--<ln由于n∈N*,则----<ln<e.。
专题能力训练1集合与常用逻辑用语一、能力突破训练1.若命题p:∀x∈R,cos x≤1,则p为()A.∃x0∈R,cos x0>1B.∀x∈R,cos x>1C.∃x0∈R,cos x0≥1D.∀x∈R,cos x≥12.(2018全国Ⅲ,理1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}3.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数4.已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=()A.(-1,2)B.(0,1)C.(-1,0)D.(1,2)5.设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,6}D.{x∈R|-1≤x≤5}6.(2018天津,理4)设x∈R,则“”是“x3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7.已知集合A={x||x-2|>1},B={x|y=},则()A.A∩B=⌀B.A⊆BC.B⊆AD.A=B8.设m∈R,命题“若m>0,则关于x的方程x2+x-m=0有实根”的逆否命题是()A.若关于x的方程x2+x-m=0有实根,则m>0B.若关于x的方程x2+x-m=0有实根,则m≤0C.若关于x的方程x2+x-m=0没有实根,则m>0D.若关于x的方程x2+x-m=0没有实根,则m≤09.已知命题p:“∃x0∈R,+2ax0+a≤0”为假命题,则实数a的取值范围是()A.(0,1)B.(0,2)C.(2,3)D.(2,4)10.已知条件p:|x+1|>2,条件q:x>a,且 p是 q的充分不必要条件,则a的取值范围是()A.a≥1B.a≤1C.a≥-1D.a≤-311.下列命题正确的是()A.∃x0∈R,+2x0+3=0B.∀x∈N,x3>x2C.x>1是x2>1的充分不必要条件D.若a>b,则a2>b212.已知命题p:∃x0∈R,x0-2>lg x0,命题q:∀x∈R,e x>1,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∧(q)是真命题D.命题p∨(q)是假命题13.命题“若x>0,则x2>0”的否命题是()A.若x>0,则x2≤0B.若x2>0,则x>0C.若x≤0,则x2≤0D.若x2≤0,则x≤014.已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为.15.设p:<0,q:0<x<m,若p是q成立的充分不必要条件,则m的取值范围是.16.已知集合A={y|y=log2x,x>1},B=,则A∩B=.17.设a,b∈R,集合{1,a+b,a}=,则b-a=.18.已知集合A={(x,y)|y=},B={(x,y)|y=x+m},且A∩B≠⌀,则实数m的取值范围是.二、思维提升训练19.设函数y=的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=()A.(1,2)B.(1,2]C.(-2,1)D.[-2,1)20.已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)21.命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x222.已知p:函数f(x)=|x+a|在区间(-∞,-1)内是单调函数,q:函数g(x)=log a(x+1)(a>0,且a≠1)在区间(-1,+∞)内是增函数,则p成立是q成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件23.设全集U=R,集合M={x|y=},N={y|y=3-2x},则图中阴影部分表示的集合是()A.B.C.D.24.(2018浙江,6)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件25.“对任意x∈,k sin x cos x<x”是“k<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件26.下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“若x=y,则sin x=sin y”的逆否命题为真命题D.命题“∃x0∈R,使得+x0+1<0”的否定是“∀x∈R,均有x2+x+1<0”27.下列命题中的真命题是()A.∃x0∈R,使得≤0B.sin2x+≥3(x≠kπ,k∈Z)C.函数f(x)=2x-x2有两个零点D.“a>1,b>1”是“ab>1”的充分不必要条件28.设A,B是非空集合,定义A B={x|x∈A∪B,且x∉A∩B},已知M={y|y=-x2+2x,0<x<2},N={y|y=2x-1,x>0},则M N=.29.下列命题正确的是.(填序号)①若f(3x)=4x log23+2,则f(2)+f(4)+…+f(28)=180;②函数f(x)=tan 2x图象的对称中心是(k∈Z);③“∀x∈R,x3-x2+1≤0”的否定是“∃x0∈R,+1>0”;④设常数a使方程sin x+cos x=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.30.设p:关于x的不等式a x>1的解集为{x|x<0},q:函数y=lg(ax2-x+a)的定义域为R,若p∨q为真命题,p∧q为假命题,则a的取值范围是.专题能力训练1集合与常用逻辑用语一、能力突破训练1.A解析由全称命题的否定得, p:∃x0∈R,cos x0>1,故选A.2.C解析由题意得A={x|x≥1},B={0,1,2},∴A∩B={1,2}.3.B4.A解析取P,Q的所有元素,得P∪Q={x|-1<x<2},故选A.5.B解析∵A={1,2,6},B={2,4},∴A∪B={1,2,4,6}.∵C={x∈R|-1≤x≤5},∴(A∪B)∩C={1,2,4}.故选B.6.A解析由,可得0<x<1.由x3<1,可得x<1.所以是“x3<1”的充分而不必要条件.故选A.7.A解析由|x-2|>1,得x-2<-1或x-2>1,即x<1或x>3;由得1≤x≤3,因此A={x|x<1或x>3},B={x|1≤x≤3},A∩B=⌀,故选A.8.D解析原命题的逆否命题是将条件和结论分别否定,作为新命题的结论和条件,所以其逆否命题为“若关于x的方程x2+x-m=0没有实根,则m≤0”.9.A解析由p为假命题知,∀x∈R,x2+2ax+a>0恒成立,∴Δ=4a2-4a<0,∴0<a<1,故选A.10.A解析因为条件p:x>1或x<-3,所以p:-3≤x≤1;因为条件q:x>a,所以q:x≤a.因为p是q的充分不必要条件,所以a≥1,故选A.11.C解析+2x0+3=(x0+1)2+2>0,选项A错;x3-x2=x2(x-1)不一定大于0,选项B错;若x>1,则x2>1成立,反之不成立,选项C正确;取a=1,b=-2,满足a>b,但a2>b2不成立,选项D错.故选C.12.C解析因为命题p:∃x0∈R,x0-2>lg x0是真命题,而命题q:∀x∈R,e x>1是假命题,所以由命题的真值表可知命题p∧(q)是真命题,故选C.13.C解析命题的条件的否定为x≤0,结论的否定为x2≤0,则该命题的否命题是“若x≤0,则x2≤0”,故选C.14.1解析由已知得1∈B,2∉B,显然a2+3≥3,所以a=1,此时a2+3=4,满足题意,故答案为1.15.(2,+∞)解析由<0,得0<x<2.∵p是q成立的充分不必要条件,∴(0,2)⫋(0,m),∴m>2.16解析由已知,得A={y|y>0},B=,则A∩B=17.2解析∵1≠0,∴a+b和a中必有一个为0,当a=0时,无意义,故a+b=0,∴两个集合分别为{1,0,a},{0,-1,b}.∴a=-1,b=1,b-a=2.18.[-7,7]解析集合A表示以原点为圆心,7为半径的圆在x轴及其上方的部分,A∩B≠⌀,表示直线y=x+m与圆有交点,作出示意图(图略)可得实数m的取值范围是[-7,7].二、思维提升训练19.D解析由4-x2≥0,得A=[-2,2],由1-x>0,得B=(-∞,1),故A∩B=[-2,1).故选D.20.B解析∵Q={x∈R|x2≥4}={x∈R|x≤-2或x≥2},∴∁R Q={x∈R|-2<x<2}.∴P∪(∁R Q)={x∈R|-2<x≤3}=(-2,3].故选B.21.D解析由含量词命题的否定格式,可知首先改写量词,而n≥x2的否定为n<x2.故选D.22.C解析由p成立,得a≤1,由q成立,得a>1,所以 p成立时a>1, p成立是q成立的充要条件.故选C.23.B解析M=,N={y|y<3},故阴影部分N∩(∁U M)={x|x<3}24.A解析当m⊄α,n⊂α时,由线面平行的判定定理可知,m∥n⇒m∥α;但反过来不成立,即m∥α不一定有m∥n,m与n还可能异面.故选A.25.B解析当x时,sin x<x,且0<cos x<1,∴sin x cos x<x.∴k<1时有k sin x cos x<x.反之不成立.如当k=1时,对任意的x,sin x<x,0<cos x<1,∴k sin x cos x=sin x cos x<x成立,这时不满足k<1,故应为必要不充分条件.26.C解析否命题应同时否定条件与结论,选项A错;若x=-1,则x2-5x-6=0成立,反之不成立,选项B 错;因为原命题为真命题,所以其逆否命题为真命题,选项C正确;特称命题的否定为全称命题,同时否定结论,选项D错,故选C.27.D解析对任意的x∈R,e x>0恒成立,A错误;当sin x=-1时,sin2x+=-1,B错误;f(x)=2x-x2有三个零点(x=2,4,还有一个小于0),C错误;当a>1,b>1时,一定有ab>1,但当a=-2,b=-3时,ab=6>1也成立,故D正确.28(1,+∞)解析M={y|y=-x2+2x,0<x<2}=(0,1],N={y|y=2x-1,x>0}=,M∪N=(0,+∞),M∩N=,所以M N=(1,+∞).29.③④解析因为f(3x)=4x log23+2,令3x=t⇒x=log3t,则f(t)=4log3t·log23+2=4log2t+2,所以f(2)+f(4)+…+f(28)=4(log22+log222+…+log228)+16=4×(1+2+…+8)+16=4×36+16=160,故①错;函数f(x)=tan 2x图象的对称中心是(k∈Z),故②错;由全称命题的否定是特称命题知③正确;f(x)=sinx+cos x=2sin,要使sin x+cos x=a在闭区间[0,2π]上恰有三个解,则a=,x1=0,x2=,x3=2π,故④正确.30[1,+∞)解析当p真时,0<a<1;当q真时,ax2-x+a>0对x∈R恒成立,则即a>若p∨q为真,p∧q为假,则p,q应一真一假.①当p真q假时,0<a;②当p假q真时,a≥1.综上,a[1,+∞).。
综合能力训练第Ⅰ卷(选择题,共40分)一、选择题(本大题共8小题,每小题5分,共40分)1.已知集合A={x||x-12|≤32},B={x|y=lg(4x-x2)},则A∩B等于()A.(0,2]B.[-1,0)C.[2,4)D.[1,4)2.设直线x+y=1与抛物线y2=2px(p>0)交于A,B两点,若OA⊥OB,则△OAB的面积为()A.1B.√52C.√5D.23.已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<cB.c<b<aC.b<a<cD.b<c<a4.(2018浙江,3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.85.执行如图所示的程序框图.若输入n=3,则输出的S=( ) A.67 B.37 C.89 D.496.已知双曲线x 22−y 2b2=1(a>0,b>0)被斜率为1的直线截得的弦的中点为(4,1),则该双曲线离心率的值是( ) A .√52B .√62C .√103D .27.已知函数f (x )={sin (πx 2),-1<x <0,e x -1,x ≥0,若f (1)+f (a )=2,则a 的所有可能值为( )A .1B .-√2C .1,-√2D .1,√28.已知实数a ,b ,c.( )A .若|a 2+b+c|+|a+b 2+c|≤1,则a 2+b 2+c 2<100B .若|a 2+b+c|+|a 2+b-c|≤1,则a 2+b 2+c 2<100C .若|a+b+c 2|+|a+b-c 2|≤1,则a 2+b 2+c 2<100D .若|a 2+b+c|+|a+b 2-c|≤1,则a 2+b 2+c 2<100第Ⅱ卷(非选择题,共110分)二、填空题(本大题共6小题,每小题5分,共30分)9.已知a,b∈R,i是虚数单位,若(1+i)(1-b i)=a,则ab的值为.10.在(2x-1)5的展开式中,含x2的项的系数是.(用数字填写答案)11.已知两球O1和O2在棱长为1的正方体ABCD-A1B1C1D1的内部,且互相外切,若球O1与过点A的正方体的三个面相切,球O2与过点C1的正方体的三个面相切,则球O1和O2的表面积之和的最小值为.12.在极坐标系中,直线4ρcos(θ-π6)+1=0与圆ρ=2sin θ的公共点的个数为.13.设变量x,y满足约束条件{y≤3x-2,x-2y+1≤0,2x+y≤8,则yx-1的最小值是.14.a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是.(填写所有正确结论的编号)三、解答题(本大题共6小题,共80分)15.(13分)△ABC的内角A,B,C的对边分别为a,b,c.已知sin(A+C)=8sin2B.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.16.(13分)已知数列{a n}中,a1=2,且a n=2a n-1-n+2(n≥2,n∈N*).(1)求a2,a3,并证明{a n-n}是等比数列;(2)设b n=a n2n-1,求数列{b n}的前n项和S n.17.(13分)如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ.(2)是否存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.18.(13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.19.(14分)已知椭圆C:x 2a2+y2b2=1(a>b>0)的左、右焦点F1,F2与椭圆短轴的一个端点构成边长为4的正三角形.(1)求椭圆C的标准方程;(2)过椭圆C上任意一点P作椭圆C的切线与直线F1P的垂线F1M相交于点M,求点M的轨迹方程;(3)若切线MP与直线x=-2交于点N,求证:|NF1||MF1|为定值.20.(14分)已知函数f(x)=ln(1+x)+a2x2-x(a≥0).(1)若f(x)>0对x∈(0,+∞)都成立,求a的取值范围;(2)已知e为自然对数的底数,证明:∀n∈N*,√e<(1+1n2)(1+2n2)…(1+nn2)<e.##综合能力训练1.A解析∵A=[-1,2],B=(0,4),∴A∩B=(0,2].故选A.2.B解析设A(x1,y1),B(x2,y2),由x+y=1与抛物线y2=2px,得y2+2py-2p=0,解得y1=-p+√p2+2p,x1=1+p-√p2+2p,y2=-p-√p2+2p,x2=1+p+√p2+2p, 由OA⊥OB得,x1x2+y1y2=0,即[(1+p)2-(p2+2p)]+[p2-(p2+2p)]=0,化简得2p=1,从而A(3-√52,-1+√52),B(3+√52,-1-√52),OA2=x12+y12=5-2√5,OB2=x22+y22=5+2√5,△OAB的面积S=1|OA||OB|=√5.故选B.3.C解析∵f(x)是R上的奇函数,∴g(x)=xf(x)是R上的偶函数.∴g(-log25.1)=g(log25.1).∵奇函数f(x)在R上是增函数,∴当x>0时,f(x)>0,f'(x)>0.∴当x>0时,g'(x)=f(x)+xf'(x)>0恒成立,∴g(x)在区间(0,+∞)上是增函数.∵2<log25.1<3,1<20.8<2,∴20.8<log25.1<3.结合函数g(x)的性质得b<a<c.故选C.4.C解析由三视图可知该几何体为直四棱柱.∵S底=12×(1+2)×2=3,h=2,∴V=Sh=3×2=6.5.B 解析 由题意得,输出的S 为数列{1(2n -1)(2n+1)}的前3项和,而1(2n -1)(2n+1)=12(12n -1-12n+1),即S n =12(1-12n+1)=n2n+1.故当输入n=3时,S 3=37,故选B .6.A 解析 设直线l 与双曲线交于点A (x 1,y 1),B (x 2,y 2),则(x 1+x 2)(x 1-x 2)a 2−(y 1+y 2)(y 1-y 2)b2=0,即y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 2).由弦的中点为(4,1),直线的斜率为1可知,x 1+x 2=8,y 1+y 2=2,y 1-y 2x 1-x 2=1, ∴b 2a 2=14,e 2=1+b 2a2=54.∴e=√52.故选A .7.C 解析 ∵f (1)=e 1-1=1,∴f (a )=1.若a ∈(-1,0),则sin(πa 2)=1, ∴a=-√22.若a ∈[0,+∞),则e a-1=1, ∴a=1.因此a=1或a=-√22.8.D 解析 (举反例排除)选项A 中,令a=b=10,c=-110,则|a 2+b+c|+|a+b 2+c|=|100+10-110|+|10+100-110|=0<1. 而a 2+b 2+c 2=100+100+1102=200+1102>100,故选项A 不成立; 选项B 中,令a=10,b=-100,c=0,则|a 2+b+c|+|a 2+b-c|=0<1. 而a 2+b 2+c 2=100+1002+0>100,故选项B 不成立;选项C 中,令a=100,b=-100,c=0,则|a+b+c 2|+|a+b-c 2|=0<1. 而a 2+b 2+c 2=1002+1002+0>100,故选项C 不成立;故选D .9.2 解析 (1+i)(1-b i)=1+b+(1-b )i =a ,则{1+b =a ,1-b =0,所以{a =2,b =1,即a b =2.故答案为2.10.-40 解析 (2x-1)5的展开式的通项为T r+1=C 5r (2x )5-r (-1)r =(-1)r C 5r 25-r x 5-r.根据题意,得5-r=2,解得r=3.所以含x 2项的系数为(-1)3C 5325-3=-22C 52=-40.11.3(2-√3)π 解析 ∵AO 1=√3R 1,C 1O 2=√3R 2,O 1O 2=R 1+R 2,∴(√3+1)(R 1+R 2)=√3,R 1+R 2=√3√3+1,球O 1和O 2的表面积之和为4π(R 12+R 22)≥4π·2(R 1+R 22)2=2π(R 1+R 2)2=3(2-√3)π.12.2 解析 ∵4ρcos (θ-π6)+1=0,展开得2√3ρcos θ+2ρsin θ+1=0,∴直线的直角坐标方程为2√3x+2y+1=0.∵ρ=2sin θ两边同乘ρ得ρ2=2ρsin θ,∴圆的直角坐标方程为x 2+y 2-2y=0,圆心为(0,1),半径r=1. ∴圆心到直线的距离d=|2√3×0+2×1+1|√(2√3)+2=34<r=1.∴直线与圆相交.∴直线与圆公共点的个数为2.13.1 解析 由约束条件{y ≤3x -2,x -2y +1≤0,2x +y ≤8作出可行域如图,联立{x -2y +1=0,2x +y =8,解得A (3,2),yx -1的几何意义为可行域内的动点与定点P (1,0)连线的斜率,则其最小值为k PA =2-03-1=1.14.②③ 解析 由题意,AB 是以AC 为轴,BC 为底面半径的圆锥的母线,由AC ⊥a ,AC ⊥b ,得AC ⊥圆锥底面,在底面内可以过点B ,作BD ∥a ,交底面圆C 于点D ,如图所示,连接DE ,则DE ⊥BD ,∴DE ∥b.连接AD ,在等腰三角形ABD 中,设AB=AD=√2,当直线AB 与a 成60°角时,∠ABD=60°,故BD=√2.又在Rt △BDE 中,BE=2,∴DE=√2,过点B 作BF ∥DE ,交圆C 于点F ,连接AF ,由圆的对称性可知BF=DE=√2,∴△ABF 为等边三角形,∴∠ABF=60°,即AB 与b 成60°角,②正确,①错误.由最小角定理可知③正确;很明显,可以满足直线a ⊥平面ABC ,直线AB 与a 所成的最大角为90°,④错误.故正确的说法为②③.15.解 (1)由题设及A+B+C=π,得sin B=8sin 2B 2,故sin B=4(1-cos B ).上式两边平方,整理得17cos 2B-32cos B+15=0, 解得cos B=1(舍去),cos B=1517. (2)由cos B=1517得sin B=817,故S △ABC =12ac sin B=417ac. 又S △ABC =2,则ac=172. 由余弦定理及a+c=6得 b 2=a 2+c 2-2ac cos B =(a+c )2-2ac (1+cos B ) =36-2×172×(1+1517)=4. 所以b=2.16.解 (1)由已知a n =2a n-1-n+2(n ≥2,n ∈N *)得a 2=4,a 3=7.a n -n=2a n-1-2n+2,即a n -n=2[a n-1-(n-1)]. ∵a n -na n -1-(n -1)=2(n ≥2,n ∈N *),且a 1-1=1,∴{a n -n }是以1为首项,2为公比的等比数列.(2)由(1)得a n -n=(a 1-1)·2n-1, 即a n =2n-1+n ,∴b n =a n2n -1=1+n2n -1.设c n =n2n -1,且前n 项和为T n ,则T n =12+221+322+…+n2n -1,① 12T n =121+222+323+…+n2n ,②①-②,得12T n =1+(12+122+123+…+12n -1)−n2n=1-12n1-12−n 2n =2-2+n 2n . 故T n =4-2+n 2n -1,S n =n+4-2+n 2n -1.17.解法一 (1)证明:如图①,连接AD 1,由ABCD-A 1B 1C 1D 1是正方体,知BC 1∥AD 1.当λ=1时,P 是DD 1的中点,又F 是AD 的中点,所以FP ∥AD 1,所以BC 1∥FP. 而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ.(2)如图②,连接BD.因为E ,F 分别是AB ,AD 的中点,所以EF ∥BD ,且EF=12BD.又DP=BQ ,DP ∥BQ ,所以四边形PQBD 是平行四边形,故PQ ∥BD ,且PQ=BD ,从而EF ∥PQ ,且EF=12PQ.在Rt △EBQ 和Rt △FDP 中,因为BQ=DP=λ,BE=DF=1, 所以EQ=FP=√1+λ2,所以四边形EFPQ 也是等腰梯形. 同理可证四边形PQMN 也是等腰梯形.分别取EF ,PQ ,MN 的中点为H ,O ,G ,连接OH ,OG , 则GO ⊥PQ ,HO ⊥PQ ,而GO ∩HO=O ,故∠GOH 是平面EFPQ 与平面PQMN 所成的二面角的平面角.若存在λ使平面EFPQ 与平面PQMN 所成的二面角为直二面角,则∠GOH=90°. 连接EM ,FN ,则由EF ∥MN ,且EF=MN 知四边形EFNM 是平行四边形. 连接GH ,因为H ,G 是EF ,MN 的中点,所以GH=ME=2. 在△GOH中,GH 2=4,OH 2=1+λ2-(√22)2=λ2+12,OG 2=1+(2-λ)2-(√22)2=(2-λ)2+12,由OG 2+OH 2=GH 2,得(2-λ)2+12+λ2+12=4,解得λ=1±√22,故存在λ=1±√22,使平面EFPQ 与平面PQMN 所成的二面角为直二面角.解法二 以D 为原点,射线DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴建立如图③所示的空间直角坐标系.由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ).BC 1⃗⃗⃗⃗⃗⃗⃗ =(-2,0,2),FP ⃗⃗⃗⃗⃗ =(-1,0,λ),FE ⃗⃗⃗⃗⃗ =(1,1,0).(1)证明:当λ=1时,FP ⃗⃗⃗⃗⃗ =(-1,0,1). 因为BC 1⃗⃗⃗⃗⃗⃗⃗ =(-2,0,2),所以BC 1⃗⃗⃗⃗⃗⃗⃗ =2FP ⃗⃗⃗⃗⃗ ,即BC 1∥FP.而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ. (2)设平面EFPQ 的一个法向量为n =(x ,y ,z ), 则由{FE⃗⃗⃗⃗⃗ ·n =0,FP⃗⃗⃗⃗⃗ ·n =0可得{x +y =0,-x +λz =0.于是可取n =(λ,-λ,1).同理可得平面MNPQ 的一个法向量为m =(λ-2,2-λ,1).若存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角, 则m ·n =(λ-2,2-λ,1)·(λ,-λ,1)=0, 即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±√22.故存在λ=1±√22,使平面EFPQ 与平面PQMN 所成的二面角为直二面角. 18.解 (1)由已知,有P (A )=C 31C 41+C 32C 102=13.所以,事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2. P (X=0)=C 32+C 32+C 42C 102=415, P (X=1)=C 31C 31+C 31C 41C 102=715,P (X=2)=C 31C 41C 102=415. 所以,随机变量X 的分布列为随机变量X 的数学期望E (X )=0×415+1×715+2×415=1. 19.(1)解 依题意,2c=a=4,∴c=2,b=2√3.∴椭圆C 的标准方程为x 216+y 212=1.(2)解 由(1)知F 1(-2,0),设P (x 0,y 0),M (x ,y ),过椭圆C 上点P 的切线方程为x 0x 16+y 0y12=1, ①直线F 1P 的斜率k F 1P =y 0x 0+2,则直线MF 1的斜率k MF 1=-x 0+2y 0, 直线MF 1的方程为y=-x 0+2y 0(x+2), 即yy 0=-(x 0+2)(x+2),②①②联立,解得x=-8,故点M 的轨迹方程为x=-8.(3)证明 依题意及(2),知点M ,N 的坐标可表示为M (-8,y M ),N (-2,y N ),点N 在切线MP 上,由①式得y N =3(x 0+8)2y 0,点M 在直线MF 1上,由②式得y M =6(x 0+2)y 0, |NF 1|2=y N2=9(x 0+8)24y 02,|MF 1|2=[(-2)-(-8)]2+y M 2=36[y 02+(x 0+2)2]y 02,故|NF 1|2|MF 1|2=9(x 0+8)24y 02·y 0236[y 02+(x 0+2)2]=116·(x 0+8)2y 02+(x 0+2)2, ③注意到点P 在椭圆C 上,即x 0216+y 0212=1,于是y 02=48-3x 024,代入③式并整理得|NF 1|2|MF 1|2=14,故|NF 1||MF 1|的值为定值12. 20.(1)解 ∵f (x )=ln(1+x )+a2x 2-x ,其定义域为(-1,+∞),∴f'(x )=11+x +ax-1=x (ax+a -1)1+x. ①当a=0时,f'(x )=-x1+x ,当x ∈(0,+∞)时,f'(x )<0,则f (x )在区间(0,+∞)内单调递减,此时,f (x )<f (0)=0,不符合题意.②当0<a<1时,令f'(x )=0,得x 1=0,x 2=1-aa>0, 当x ∈(0,1-aa )时,f'(x )<0,则f (x )在区间(0,1-aa )内单调递减, 此时,f (x )<f (0)=0,不符合题意.③当a=1时,f'(x )=x 21+x ,当x ∈(0,+∞)时,f'(x )>0,则f (x )在区间(0,+∞)内单调递增,此时,f (x )>f (0)=0,符合题意.④当a>1时,令f'(x )=0,得x 1=0,x 2=1-aa<0,当x ∈(0,+∞)时,f'(x )>0,则f (x )在区间(0,+∞)内单调递增,此时,f (x )>f (0)=0,符合题意. 综上所述,a 的取值范围为[1,+∞).(2)证明 由(1)可知,当a=0时,f (x )<0对x ∈(0,+∞)都成立,即ln(1+x )<x 对x ∈(0,+∞)都成立,∴ln (1+1n 2)+ln (1+2n 2)+…+ln (1+n n 2)<1n 2+2n 2+…+n n 2,即ln [(1+1n 2)(1+2n 2)·…·(1+nn 2)]<1+2+…+nn 2=n+12n . 由于n ∈N *,则n+12n =12+12n ≤12+12×1=1.∴ln [(1+1n 2)(1+2n 2)…(1+nn 2)]<1.∴(1+1n 2)(1+2n 2)…(1+nn 2)<e .由(1)可知,当a=1时,f (x )>0对x ∈(0,+∞)都成立, 即x-12x 2<ln(1+x )对x ∈(0,+∞)都成立, ∴(1n 2+2n 2+…+n n 2)−12(12n 4+22n 4+…+n 2n 4)<ln (1+1n 2)+ln (1+2n 2)+…+ln (1+n n 2),即n (n+1)2n 2−12[n (n+1)(2n+1)6n 4]<ln [(1+1n 2)(1+2n 2)…(1+nn 2)], 得6n 3+4n 2-3n -112n 3<ln [(1+1n 2)(1+2n 2)…(1+n n2)]. 由于n ∈N *,则6n 3+4n 2-3n -112n 3=6n 3+(3n 2-3n )+(n 2-1)12n 3≥6n 312n 3=12.∴12<ln [(1+1n 2)(1+2n 2)…(1+nn 2)].∴√e <(1+1n 2)(1+2n 2)…(1+nn2).∴√e <(1+1n 2)(1+2n 2)…(1+nn 2)<e .。
专题能力训练2不等式、线性规划一、能力突破训练1.已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.B.ln(x2+1)>ln(y2+1)C.sin x>sin yD.x3>y32.已知函数f(x)=(x-2)(ax+b)为偶函数,且在区间(0,+∞)内单调递增,则f(2-x)>0的解集为()A.{x|x>2或x<-2}B.{x|-2<x<2}C.{x|x<0或x>4}D.{x|0<x<4}3.不等式组--的解集为()A.(0,)B.(,2)C.(D.(2,4)4.若x,y满足则x+2y的最大值为()A.1B.3C.5D.95.已知函数f(x)=(ax-1)(x+b),若不等式f(x)>0的解集是(-1,3),则不等式f(-2x)<0的解集是()A.--B.-C.--D.-6.已知实数x,y满足则的取值范围是()A. B.[3,11]C. D.[1,11]7.已知变量x,y满足约束条件--若z=2x-y的最大值为2,则实数m等于()A.-2B.-1C.1D.28.已知变量x,y满足约束条件-若x+2y≥-5恒成立,则实数a的取值范围为()A.(-∞,-1]B.[-1,+∞)C.[-1,1]D.[-1,1)9.(2018全国Ⅱ,理14)若x,y满足约束条件---则z=x+y的最大值为.10.(2018浙江,12)若x,y满足约束条件-则z=x+3y的最小值是,最大值是.11.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.12.设不等式组---表示的平面区域为D,若指数函数y=a x的图象上存在区域D上的点,则a的取值范围是.二、思维提升训练13.已知x,y满足约束条件----若z=y-ax取得最大值的最优解不唯一,则实数a的值为()A.或-1B.或2C.1或2D.-1或214.设对任意实数x>0,y>0,若不等式x+≤a(x+2y)恒成立,则实数a的最小值为()A.B.C.D.15.设x,y满足约束条件---若目标函数z=ax+by(a>0,b>0)的最大值为8,则ab的最大值为.16.已知x,y∈(0,+∞),2x-3=,则的最小值为.17.若函数f(x)=-·lg x的值域为(0,+∞),则实数a的最小值为.18.已知存在实数x,y满足约束条件----则R的最小值是.专题能力训练2不等式、线性规划一、能力突破训练1.D解析由a x<a y(0<a<1)知,x>y,故x3>y3,选D.2.C解析∵f(x)=ax2+(b-2a)x-2b为偶函数,∴b-2a=0,即b=2a,∴f(x)=ax2-4a.∴f'(x)=2ax.又f(x)在区间(0,+∞)上单调递增,∴a>0.由f(2-x)>0,得a(x-2)2-4a>0,∵a>0,∴|x-2|>2,解得x>4或x<0.3.C解析由|x-2|<2,得0<x<4;由x2-1>2,得x>或x<-,取交集得<x<4,故选C.4.D解析由题意画出可行域(如图).设z=x+2y,则z=x+2y表示斜率为-的一组平行线,当过点C(3,3)时,目标函数取得最大值z max=3+2×3=9.故选D.5.A解析由f(x)>0,得ax2+(ab-1)x-b>0.∵其解集是(-1,3),∴a<0,且---解得a=-1或a=(舍去),∴a=-1,b=-3.∴f(x)=-x2+2x+3,∴f(-2x)=-4x2-4x+3,由-4x2-4x+3<0,得4x2+4x-3>0,解得x>或x<-,故选A.6.C解析=1+其中表示两点(x,y)与(-1,-1)所确定直线的斜率,由图知,k min=k PB=----,k max=k PA=----=5,所以的取值范围是的取值范围是故选C.7.C解析画出约束条件-的可行域,如图,作直线2x-y=2,与直线x-2y+2=0交于可行域内一点A(2,2),由题知直线mx-y=0必过点A(2,2),即2m-2=0,得m=1.故选C.8.C解析设z=x+2y,要使x+2y≥-5恒成立,即z≥-5.作出不等式组对应的平面区域如图阴影部分所示,要使不等式组成立,则a≤1,由z=x+2y,得y=-x+,平移直线y=-x+,由图象可知当直线经过点A时,直线y=-x+的截距最小,此时z最小,即x+2y=-5,由--解得--即A(-1,-2),此时a=-1,所以要使x+2y≥-5恒成立,则-1≤a≤1,故选C.9.9解析由题意,作出可行域如图.要使z=x+y取得最大值,当且仅当过点(5,4)时,z max=9.10.-2 8 解析 由约束条件 -画出可行域,如图所示的阴影部分.由z=x+3y , 可知y=-x+由题意可知,当目标函数的图象经过点B 时,z 取得最大值,当目标函数的图象经过点C 时,z 取得最小值.由 得此时z 最大=2+3×2=8, 由 得 - 此时z 最小=4+3×(-2)=-2.11.216 000 解析 设生产产品A x 件,生产产品B y 件,由题意得∈即∈目标函数z=2 100x+900y ,画出约束条件对应的可行域(如图阴影部分中的整数点所示),作直线y=-x,当直线过5x+3y=600与10x+3y=900的交点时,z取最大值,由解得所以z max=2 100×60+900×100=216 000.12.1<a≤3解析作出平面区域D如图阴影部分所示,联系指数函数y=a x的图象,当图象经过区域的边界点C(2,9)时,a可以取到最大值3,而显然只要a大于1,图象必然经过区域内的点,则a的取值范围是1<a≤3.二、思维提升训练13.D解析在平面直角坐标系内作出不等式组所表示的平面区域,如图所示的△ABC,目标函数z=y-ax可变形为y=ax+z,z的几何意义为直线y=ax+z在y轴上的截距.因为z=y-ax取得最大值的最优解不唯一,所以直线y=ax+z与区域三角形的某一边平行,当直线y=ax+z与边线x+y-2=0平行时,a=-1符合题意;当直线y=ax+z与边线x-2y-2=0平行时,a=不符合题意;当直线y=ax+z与边线2x-y-2=0平行时,a=2符合题意,综上所述,实数a的值为-1或2.故选D.14.A解析原不等式可化为(a-1)x-+2ay≥0,两边同除以y,得(a-1)+2a≥0,令t=,则(a-1)t2-t+2a≥0,由不等式恒成立知,a-1>0,Δ=1-4(a-1)·2a≤0,解得a,a min=,故选A.15.2解析画出可行域如图阴影部分所示,目标函数变形为y=-x+,由已知,得-<0,且纵截距最大时,z取到最大值,故当直线l过点B(2,4)时,目标函数取到最大值,即2a+4b=8,因为a>0,b>0,由基本不等式,得2a+4b=8≥4,即ab≤2(当且仅当2a=4b=4,即a=2,b=1时取“=”),故ab的最大值为2.16.3解析由2x-3=,得x+y=3,故(x+y)(5+4)=3,当且仅当即(x,y∈(0,+∞))时等号成立.17.-2解析函数f(x)的定义域为(0,1)∪(1,+∞),由>0及函数f(x)的值域为(0,+∞)知x2+ax+1>0对-∀x∈{x|x>0,且x≠1}恒成立,即a>-x-在定义域内恒成立,而-x-<-2(当x≠1时等号不成立),因此a≥-2.作出可行域如图中阴影部分所示.由存在实数x,y满18.2解析根据前三个约束条件---足四个约束条件,得图中阴影部分与以(0,1)为圆心、半径为R的圆有公共部分,因此当圆与图中阴影部分相切时,R最小.由图可知R的最小值为2.。
专题能力训练10三角变换与解三角形一、能力突破训练1.(2018全国Ⅲ,理4)若sin α=,则cos 2α=()A.B.C.-D.-2.已知-=-,则sin α+cos α等于()-A.-B.C.D.-3.在△ABC中,角A,B,C的对边分别为a,b,c.若(a2+c2-b2)tan B=ac,则角B的值为()A. B.C.或D.或4.在△ABC中,∠ABC=,AB=,BC=3,则sin∠BAC等于()A. B. C. D.5.已知在△ABC中,内角A,B,C对边分别为a,b,c,C=120°,a=2b,则tan A=.6.△ABC的内角A,B,C的对边分别为a,b,c,若cos A=,cos C=,a=1,则b=.7.(2018全国Ⅱ,理15)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=.8.在△ABC中,a2+c2=b2+ac.(1)求B的大小;(2)求cos A+cos C的最大值.9.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.10.设△ABC的内角A,B,C的对边分别为a,b,c,a=b tan A,且B为钝角.(1)证明:B-A=;(2)求sin A+sin C的取值范围.11.设f(x)=sin x cos x-cos2.(1)求f(x)的单调区间;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f=0,a=1,求△ABC面积的最大值.二、思维提升训练12.若0<α<,-<β<0,cos,cos-,则cos等于()A. B.- C. D.-13.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足c sin A=a cos C.当sin A-cos取最大值时,角A的大小为()A. B. C. D.14.在△ABC中,边AB的垂直平分线交边AC于点D,若C=,BC=8,BD=7,则△ABC的面积为.15.已知sin sin-,α∈,则sin 4α的值为.16.在锐角三角形ABC中,若sin A=2sin B sin C,则tan A tan B tan C的最小值是.17.在△ABC中,三个内角A,B,C所对的边分别为a,b,c,<C<,且.--(1)判断△ABC的形状;(2)若||=2,求的取值范围.专题能力训练10三角变换与解三角形一、能力突破训练1.B解析cos 2α=1-2sin2α=1-22.D解析--=----=2cos-cos α+sin α=-,∴sin α+cos α=-,故选D.3.D解析由(a2+c2-b2)tan B=ac,得-,即cos B=,则sin B=∵0<B<π,∴角B为或故选D.4.C解析在△ABC中,由余弦定理,得AC2=BA2+BC2-2BA·BC cos∠ABC=()2+32-23cos=5.解得AC=由正弦定理,得sin∠BAC=5解析由正弦定理可得sin A=2sin B,因为B=180°-A-120°=60°-A,所以sin A=2sin(60°-A),即sin A=cos A-sin A,所以2sin A=cos A,故tan A=6解析因为cos A=,cos C=,且A,C为△ABC的内角,所以sin A=,sin C=,sin B=sin[π-(A+C)]=sin (A+C)=sin A cos C+cos A sin C=又因为,所以b=7.-解析∵(sin α+cos β)2+(cos α+sin β)2=1,∴sin2α+cos2β+cos2α+sin2β+2sin αcos β+2sin βcos α=1+1+2sin(α+β)=1.∴sin(α+β)=-8.解(1)由余弦定理及题设得cos B=-又因为0<B<π,所以B=(2)由(1)知A+C=cos A+cos C=cos A+cos-=cos A-cos A+sin A=cos A+sin A=cos-因为0<A<,所以当A=时,cos A+cos C取得最大值1.9.解(1)在△ABC中,因为∠A=60°,c=a,所以由正弦定理得sin C=(2)因为a=7,所以c=7=3.由余弦定理a2=b2+c2-2bc cos A得72=b2+32-2b×3,解得b=8或b=-5(舍).所以△ABC的面积S=bc sin A=8×3=610.(1)证明由a=b tan A及正弦定理,得,所以sin B=cos A,即sin B=sin又B为钝角,因此+A,故B=+A,即B-A=(2)解由(1)知,C=π-(A+B)=π--2A>0,所以A,于是sin A+sin C=sinA+sin-=sin A+cos 2A=-2sin2A+sin A+1=-2-因为0<A<,所以0<sin A<,因此<-2-由此可知sin A+sin C的取值范围是11.解(1)由题意知f(x)=-=sin 2x-由-+2kπ≤2x+2kπ,k∈Z,可得-+kπ≤x+kπ,k∈Z;由+2kπ≤2x+2kπ,k∈Z,可得+kπ≤x+kπ,k∈Z.所以f(x)的单调递增区间是-(k∈Z);单调递减区间是(k∈Z).(2)由f=sin A-=0,得sin A=,由题意知A为锐角,所以cos A=由余弦定理a2=b2+c2-2bc cos A,得1+bc=b2+c2≥2bc,即bc≤2+,且当b=c时等号成立.因此bc sin A所以△ABC面积的最大值为二、思维提升训练12.C解析∵cos,0<α<,∴sin又cos-,-<β<0,∴sin-,∴cos=cos--=cos cos-+sin sin-=13.A解析由正弦定理,得sin C sin A=sin A cos C.因为0<A<π,所以sin A>0,从而sin C=cos C.又cos C≠0,所以tan C=1,则C=,所以B=-A.于是sin A-cos sin A-cos(π-A)=sin A+cos A=2sin因为0<A<,所以<A+,从而当A+,即A=时,2sin取最大值2.故选A.14.20或24解析在△CDB中,设CD=t,由余弦定理得49=64+t2-2×8t×cos,即t2-8t+15=0,解得t=3或t=5.当t=3时,CA=10,△ABC的面积S=10×8×sin=20;当t=5时,CA=12,△ABC的面积S=12×8×sin=24故△ABC的面积为20或2415.-解析因为sin=sin--=cos-,所以sin sin-=sin-cos-sin-=cos 2α=,所以cos 2α=因为<α<π,所以π<2α<2π.所以sin 2α=--=-所以sin 4α=2sin 2αcos 2α=-=-16.8解析sin A=sin(B+C)=2sin B sin C⇒tan B+tan C=2tan B tan C,,因为tan A=-tan(B+C)=--所以tan A tan B tan C=tan A+tan B+tan C=tan A+2tan B tan C.因为△ABC为锐角三角形,所以tan A>0,tan B tan C>0,所以tan A+2tan B tan C≥2,当且仅当tan A=2tan B tan C时,等号成立,即tan A tan B tan C≥2,解得tan A tan B tan C≥8,即最小值为8.17.解(1)由及正弦定理,得sin B=sin 2C,∴B=2C或B+2C=π.--若B=2C,<C<,<B<π,B+C>π(舍去).若B+2C=π,又A+B+C=π,∴A=C,∴△ABC为等腰三角形.(2)∵||=2,∴a2+c2+2ac cos B=4.又由(1)知a=c,∴cos B=-而cos B=-cos 2C,<cos B<1,∴1<a2<=ac cos B=a2cos B,且cos B=-, ∴a2cos B=2-a2。
综合能力训练第Ⅰ卷(选择题,共40分)一、选择题(本大题共8小题,每小题5分,共40分)1.已知集合A=-,B={x|y=lg(4x-x2)},则A∩B等于()A.(0,2]B.[-1,0)C.[2,4)D.[1,4)2.设直线x+y=1与抛物线y2=2px(p>0)交于A,B两点,若OA⊥OB,则△OAB的面积为()A.1B.C.D.23.已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<cB.c<b<aC.b<a<cD.b<c<a4.(2018浙江,3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.85.执行如图所示的程序框图.若输入n=3,则输出的S=()A.B.C.D.6.已知双曲线=1(a>0,b>0)被斜率为1的直线截得的弦的中点为(4,1),则该双曲线离心率的值是()A.B.C.D.27.已知函数f(x)=--若f(1)+f(a)=2,则a的所有可能值为()A.1B.-C.1,-D.1,8.已知实数a,b,c.()A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B.若|a2+b+c|+|a2+b-c|≤1,则a2+b2+c2<100C.若|a+b+c2|+|a+b-c2|≤1,则a2+b2+c2<100D.若|a2+b+c|+|a+b2-c|≤1,则a2+b2+c2<100第Ⅱ卷(非选择题,共110分)二、填空题(本大题共6小题,每小题5分,共30分)9.已知a,b∈R,i是虚数单位,若(1+i)(1-b i)=a,则的值为.10.在(2x-1)5的展开式中,含x2的项的系数是.(用数字填写答案)11.已知两球O1和O2在棱长为1的正方体ABCD-A1B1C1D1的内部,且互相外切,若球O1与过点A的正方体的三个面相切,球O2与过点C1的正方体的三个面相切,则球O1和O2的表面积之和的最小值为.12.在极坐标系中,直线4ρcos-+1=0与圆ρ=2sin θ的公共点的个数为.13.设变量x,y满足约束条件--则-的最小值是.14.a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是.(填写所有正确结论的编号)三、解答题(本大题共6小题,共80分)15.(13分)△ABC的内角A,B,C的对边分别为a,b,c.已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.16.(13分)已知数列{a n}中,a1=2,且a n=2a n-1-n+2(n≥2,n∈N*).(1)求a2,a3,并证明{a n-n}是等比数列;(2)设b n=,求数列{b n}的前n项和S n.-17.(13分)如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ.(2)是否存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.18.(13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.19.(14分)已知椭圆C:=1(a>b>0)的左、右焦点F1,F2与椭圆短轴的一个端点构成边长为4的正三角形.(1)求椭圆C的标准方程;(2)过椭圆C上任意一点P作椭圆C的切线与直线F1P的垂线F1M相交于点M,求点M的轨迹方程;(3)若切线MP与直线x=-2交于点N,求证:为定值.20.(14分)已知函数f(x)=ln(1+x)+x2-x(a≥0).(1)若f(x)>0对x∈(0,+∞)都成立,求a的取值范围;(2)已知e为自然对数的底数,证明:∀n∈N*,<e.##综合能力训练1.A解析∵A=[-1,2],B=(0,4),∴A∩B=(0,2].故选A.2.B解析设A(x1,y1),B(x2,y2),由x+y=1与抛物线y2=2px,得y2+2py-2p=0,解得y1=-p+,x1=1+p-,y2=-p-,x2=1+p+,由OA⊥OB得,x1x2+y1y2=0,即[(1+p)2-(p2+2p)]+[p2-(p2+2p)]=0,化简得2p=1,从而A--,B--,OA2==5-2,OB2==5+2,△OAB的面积S=|OA||OB|=故选B.3.C解析∵f(x)是R上的奇函数,∴g(x)=xf(x)是R上的偶函数.∴g(-log25.1)=g(log25.1).∵奇函数f(x)在R上是增函数,∴当x>0时,f(x)>0,f'(x)>0.∴当x>0时,g'(x)=f(x)+xf'(x)>0恒成立,∴g(x)在区间(0,+∞)上是增函数.∵2<log25.1<3,1<20.8<2,∴20.8<log25.1<3.结合函数g(x)的性质得b<a<c.故选C.4.C解析由三视图可知该几何体为直四棱柱.∵S底=(1+2)×2=3,h=2,∴V=Sh=3×2=6.5.B解析由题意得,输出的S为数列-的前3项和,而---,即S n=-故当输入n=3时,S3=,故选B.6.A解析设直线l与双曲线交于点A(x1,y1),B(x2,y2),则--=0,即--由弦的中点为(4,1),直线的斜率为1可知,x1+x2=8,y1+y2=2,--=1,,e2=1+e=故选A.7.C解析∵f(1)=e1-1=1,∴f(a)=1.若a∈(-1,0),则sin(πa2)=1,∴a=-若a∈[0,+∞),则e a-1=1,∴a=1.因此a=1或a=-8.D解析(举反例排除)选项A中,令a=b=10,c=-110,则|a2+b+c|+|a+b2+c|=|100+10-110|+|10+100-110|=0<1.而a2+b2+c2=100+100+1102=200+1102>100,故选项A不成立;选项B中,令a=10,b=-100,c=0,则|a2+b+c|+|a2+b-c|=0<1.而a2+b2+c2=100+1002+0>100,故选项B不成立;选项C中,令a=100,b=-100,c=0,则|a+b+c2|+|a+b-c2|=0<1.而a2+b2+c2=1002+1002+0>100,故选项C不成立;故选D.9.2解析(1+i)(1-b i)=1+b+(1-b)i=a,则-所以即=2.故答案为2.10.-40解析(2x-1)5的展开式的通项为T r+1=(2x)5-r(-1)r=(-1)r25-r x5-r.根据题意,得5-r=2,解得r=3.所以含x2项的系数为(-1)325-3=-22=-40.11.3(2-)π解析∵AO1=R1,C1O2=R2,O1O2=R1+R2,∴(+1)(R1+R2)=,R1+R2=,球O1和O2的表面积之和为4π()≥4π·2=2π(R1+R2)2=3(2-π.12.2解析∵4ρcos-+1=0,展开得2cos θ+2ρsin θ+1=0,∴直线的直角坐标方程为2x+2y+1=0.∵ρ=2sin θ两边同乘ρ得ρ2=2ρsin θ,∴圆的直角坐标方程为x2+y2-2y=0,圆心为(0,1),半径r=1.∴圆心到直线的距离d=<r=1.∴直线与圆相交.∴直线与圆公共点的个数为2.13.1解析由约束条件--作出可行域如图,联立-解得A(3,2),-的几何意义为可行域内的动点与定点P(1,0)连线的斜率,则其最小值为k PA=--=1.14.②③解析由题意,AB是以AC为轴,BC为底面半径的圆锥的母线,由AC⊥a,AC⊥b,得AC⊥圆锥底面,在底面内可以过点B,作BD∥a,交底面圆C于点D,如图所示,连接DE,则DE⊥BD,∴DE∥b.连接AD,在等腰三角形ABD中,设AB=AD=当直线AB与a成60°角时,∠ABD=60°,故BD=又在Rt△BDE中,BE=2,∴DE=,过点B作BF∥DE,交圆C于点F,连接AF,由圆的对称性可知BF=DE=,∴△ABF为等边三角形,∴∠ABF=60°,即AB与b成60°角,②正确,①错误.由最小角定理可知③正确;很明显,可以满足直线a⊥平面ABC,直线AB与a所成的最大角为90°,④错误.故正确的说法为②③.15.解(1)由题设及A+B+C=π,得sin B=8sin2,故sin B=4(1-cos B).上式两边平方,整理得17cos2B-32cos B+15=0,解得cos B=1(舍去),cos B=(2)由cos B=得sin B=,故S△ABC=ac sin B=ac.又S△ABC=2,则ac=由余弦定理及a+c=6得b2=a2+c2-2ac cos B=(a+c)2-2ac(1+cos B)=36-2=4.所以b=2.16.解(1)由已知a n=2a n-1-n+2(n≥2,n∈N*)得a2=4,a3=7.a n-n=2a n-1-2n+2,即a n-n=2[a n-1-(n-1)].----=2(n≥2,n∈N*),且a1-1=1,∴{a n-n}是以1为首项,2为公比的等比数列.(2)由(1)得a n-n=(a1-1)·2n-1,即a n=2n-1+n,∴b n=-=1+-设c n=-,且前n项和为T n,则T n=+…+-,①T n=+…+,②①-②,得T n=1++…+---=2-故T n=4--,S n=n+4--17.解法一(1)证明:如图①,连接AD1,由ABCD-A1B1C1D1是正方体,知BC1∥AD1.当λ=1时,P是DD1的中点,又F是AD的中点,所以FP∥AD1,所以BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)如图②,连接BD.因为E,F分别是AB,AD的中点,所以EF∥BD,且EF=BD.又DP=BQ,DP∥BQ,所以四边形PQBD是平行四边形,故PQ∥BD,且PQ=BD,从而EF∥PQ,且EF=PQ.在Rt△EBQ和Rt△FDP中,因为BQ=DP=λ,BE=DF=1,所以EQ=FP=所以四边形EFPQ也是等腰梯形.同理可证四边形PQMN也是等腰梯形.分别取EF,PQ,MN的中点为H,O,G,连接OH,OG,则GO⊥PQ,HO⊥PQ,而GO∩HO=O,故∠GOH是平面EFPQ与平面PQMN所成的二面角的平面角.若存在λ使平面EFPQ与平面PQMN所成的二面角为直二面角,则∠GOH=90°.连接EM,FN,则由EF∥MN,且EF=MN知四边形EFNM是平行四边形.连接GH,因为H,G是EF,MN的中点,所以GH=ME=2.在△GOH中,GH2=4,OH2=1+λ2-=λ2+,OG2=1+(2-λ)2-=(2-λ)2+,由OG2+OH2=GH2,得(2-λ)2++λ2+=4,解得λ=1±,故存在λ=1±,使平面EFPQ与平面PQMN所成的二面角为直二面角.解法二以D为原点,射线DA,DC,DD1分别为x,y,z轴的正半轴建立如图③所示的空间直角坐标系.由已知得B(2,2,0),C1(0,2,2),E(2,1,0),F(1,0,0),P(0,0,λ).=(-2,0,2),=(-1,0,λ),=(1,1,0).(1)证明:当λ=1时,=(-1,0,1).因为=(-2,0,2),所以=2,即BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)设平面EFPQ的一个法向量为n=(x,y,z),于是可取n=(λ,-λ,1).则由可得-同理可得平面MNPQ的一个法向量为m=(λ-2,2-λ,1).若存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角,则m·n=(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±故存在λ=1±,使平面EFPQ与平面PQMN所成的二面角为直二面角.18.解(1)由已知,有P(A)=所以,事件A发生的概率为(2)随机变量X的所有可能取值为0,1,2.P(X=0)=,P(X=1)=,P(X=2)=所以,随机变量X的分布列为随机变量X的数学期望E(X)=0+1+2=1.19.(1)解依题意,2c=a=4,∴c=2,b=2∴椭圆C的标准方程为=1.(2)解由(1)知F1(-2,0),设P(x0,y0),M(x,y),过椭圆C上点P的切线方程为=1,①直线F1P的斜率,则直线MF1的斜率=-,直线MF1的方程为y=-(x+2),即yy0=-(x0+2)(x+2),②①②联立,解得x=-8,故点M的轨迹方程为x=-8.(3)证明依题意及(2),知点M,N的坐标可表示为M(-8,y M),N(-2,y N),点N在切线MP上,由①式得y N=,点M在直线MF1上,由②式得y M=,|NF1|2=,|MF1|2=[(-2)-(-8)]2+,故=,③注意到点P在椭圆C上,即=1,于是-,代入③式并整理得,故的值为定值20.(1)解∵f(x)=ln(1+x)+x2-x,其定义域为(-1,+∞),∴f'(x)=+ax-1=-①当a=0时,f'(x)=-,当x∈(0,+∞)时,f'(x)<0,则f(x)在区间(0,+∞)内单调递减,此时,f(x)<f(0)=0,不符合题意.②当0<a<1时,令f'(x)=0,得x1=0,x2=->0,当x-时,f'(x)<0,则f(x)在区间-内单调递减,此时,f(x)<f(0)=0,不符合题意.③当a=1时,f'(x)=,当x∈(0,+∞)时,f'(x)>0,则f(x)在区间(0,+∞)内单调递增,此时,f(x)>f(0)=0,符合题意.④当a>1时,令f'(x)=0,得x1=0,x2=-<0,当x∈(0,+∞)时,f'(x)>0,则f(x)在区间(0,+∞)内单调递增,此时,f(x)>f(0)=0,符合题意.综上所述,a的取值范围为[1,+∞).(2)证明由(1)可知,当a=0时,f(x)<0对x∈(0,+∞)都成立,即ln(1+x)<x对x∈(0,+∞)都成立,∴ln+ln+…+ln+…+,即ln…由于n∈N*,则=1.∴ln<1.<e.由(1)可知,当a=1时,f(x)>0对x∈(0,+∞)都成立,即x-x2<ln(1+x)对x∈(0,+∞)都成立,+…+<ln+ln+…+ln, 即<ln,得--<ln由于n∈N*,则----<ln<e.。
题型练4大题专项(二)数列的通项、求和问题1.设数列{a n}的前n项和为S n,满足(1-q)S n+qa n=1,且q(q-1)≠0.(1)求{a n}的通项公式;(2)若S3,S9,S6成等差数列,求证:a2,a8,a5成等差数列.2.已知等差数列{a n}的首项a1=1,公差d=1,前n项和为S n,b n=.(1)求数列{b n}的通项公式;(2)设数列{b n}前n项和为T n,求T n.3.(2018浙江,20)已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1-b n)a n}的前n项和为2n2+n.(1)求q的值;(2)求数列{b n}的通项公式.4.已知等差数列{a n}的前n项和为S n,公比为q的等比数列{b n}的首项是,且a1+2q=3,a2+4b2=6,S5=40.(1)求数列{a n},{b n}的通项公式a n,b n;(2)求数列的前n项和T n.5.已知数列{a n}满足a1=,且a n+1=a n-(n∈N*).(1)证明:1≤≤2(n∈N*);(2)设数列{}的前n项和为S n,证明:(n∈N*).6.已知数列{a n}的首项为1,S n为数列{a n}的前n项和,S n+1=qS n+1,其中q>0,n∈N*.(1)若2a2,a3,a2+2成等差数列,求数列{a n}的通项公式;.(2)设双曲线x2-=1的离心率为e n,且e2=,证明:e1+e2+…+e n>--题型练4大题专项(二)数列的通项、求和问题1.(1)解当n=1时,由(1-q)S1+qa1=1,a1=1.当n≥2时,由(1-q)S n+qa n=1,得(1-q)S n-1+qa n-1=1,两式相减,得a n=qa n-1.又q(q-1)≠0,所以{a n}是以1为首项,q为公比的等比数列,故a n=q n-1.(2)证明由(1)可知S n=--,又S3+S6=2S9,所以------,化简,得a3+a6=2a9,两边同除以q,得a2+a5=2a8.故a2,a8,a5成等差数列.2.解(1)∵在等差数列{a n}中,a1=1,公差d=1,∴S n=na1+-d=,∴b n=(2)b n==2-,∴T n=b1+b2+b3+…+b n=2+…+=2-+…+=2-故T n=3.解(1)由a4+2是a3,a5的等差中项,得a3+a5=2a4+4,所以a3+a4+a5=3a4+4=28,解得a4=8.由a3+a5=20,得8=20,解得q=2或q=,因为q>1,所以q=2.(2)设c n=(b n+1-b n)a n,数列{c n}前n项和为S n,由c n=--解得c n=4n-1.由(1)可知a n=2n-1,所以b n+1-b n=(4n-1)-故b n-b n-1=(4n-5)-,n≥2,b n-b1=(b n-b n-1)+(b n-1-b n-2)+…+(b3-b2)+(b2-b1)=(4n-5)-+(4n-9)-+…+7+3.设T n=3+7+11+…+(4n-5)-,n≥2,T n=3+7+…+(4n-9)-+(4n-5)-,所以T n=3+4+4+ (4)-(4n-5)-,因此T n=14-(4n+3)-,n≥2,又b1=1,所以b n=15-(4n+3)-4.解(1)设{a n}公差为d,由题意得解得故a n=3n-1,b n=(2)--+22n+1,∴T n=--+…+-----(22n+3-8)=-5.证明(1)由题意得a n+1-a n=-0,即a n+1≤a n,故a n由a n=(1-a n-1)a n-1,得a n=(1-a n-1)(1-a n-2) (1)a1)a1>0.由0<a n,得--[1,2],即12.(2)由题意得=a n-a n+1,所以S n=a1-a n+1.①由和12,得12,所以n2n,因此a n+1(n∈N*).②由①②得(n∈N*).6.(1)解由已知,S n+1=qS n+1,S n+2=qS n+1+1,两式相减得到a n+2=qa n+1,n≥1.又由S2=qS1+1得到a2=qa1,故a n+1=qa n对所有n≥1都成立.所以,数列{a n}是首项为1,公比为q的等比数列.从而a n=q n-1.由2a2,a3,a2+2成等差数列,可得2a3=3a2+2,即2q2=3q+2,则(2q+1)(q-2)=0,由已知,q>0,故q=2.所以a n=2n-1(n∈N*).(2)证明由(1)可知,a n=q n-1.所以双曲线x2-=1的离心率e n=-由e2=,解得q=因为1+q2(k-1)>q2(k-1),所以->q k-1(k∈N*).于是e1+e2+…+e n>1+q+…+q n-1=-,-故e1+e2+…+e n>--。
[推荐]高考数学(理科,天津课标版)二轮复习专题能力训练含答案13一、能力突破训练1.(2018北京,理5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A.1B.2C.3D.42.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是( )A.+1B.+3C.+1D.+33.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是( )A.17πB.18πC.20πD.28π4.已知平面α截球O的球面得圆M,过圆心Μ的平面β与α的夹角为,且平面β截球O的球面得圆N.已知球Ο的半径为5,圆M的面积为9π,则圆N的半径为( )A.3B.C.4D.5.在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,).若S1,S2,S3分别是三棱锥D-ABC 在xOy,yOz,zOx坐标平面上的正投影图形的面积,则( )A.S1=S2=S3B.S2=S1,且S2≠S3C.S3=S1,且S3≠S2D.S3=S2,且S3≠S16.(2018全国Ⅰ,理7)某圆柱的高为2,底面周长为16,其三视图如下图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( )A.2B.2C.3D.27.在四面体ABCD中,AB=CD=6,AC=BD=4,AD=BC=5,则四面体ABCD的外接球的表面积为.8.由一个长方体和两个圆柱构成的几何体的三视图如图,则该几何体的体积为.9.(2018全国Ⅱ,理16)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°.若△SAB的面积为5,则该圆锥的侧面积为.10.下列三个图中,左面是一个正方体截去一个角后所得多面体的直观图.右面两个是其正视图和侧视图.(1)请按照画三视图的要求画出该多面体的俯视图(不要求叙述作图过程);(2)求该多面体的体积(尺寸如图).11.如图,在长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.二、思维提升训练。
高考数学(理科,天津课标版)二轮复习专题能力训练含答案
11
一、能力突破训练
1.在等差数列{an}中,a4+a10+a16=30,则a18-2a14的值为( )
A.20
B.-20
C.10
D.-10
2.在各项均为正数的等比数列{an}中,若log2(a2·a3·a5·a7·a8)=5,则a1·a9=()
A.4
B.5
C.2
D.25
3.设{an}是等比数列,Sn是{an}的前n项和.对任意正整数n,有
an+2an+1+an+2=0,又a1=2,则S101的值为( )
A.2
B.200
C.-2
D.0
4.已知{an}是等差数列,公差d不为零,前n项和是Sn,若a3,a4,a8成等比数列,则( )
A.a1d>0,dS4>0
B.a1d<0,dS4<0
C.a1d>0,dS4<0
D.a1d<0,dS4>0
5.已知数列{an}满足,且a2=2,则a4等于( )
A.-
B.23
C.12
D.11
6.已知各项均为正数的等差数列{an}的前n项和为Sn,S10=40,则a3·a8的最大值为.
7.设等比数列{an}满足a1+a3=10,a2+a4=5,则a1a2…an的最大值
为.
8.设x,y,z是实数,若9x,12y,15z成等比数列,且成等差数列,则
= .
9.已知Sn为数列{an}的前n项和,且a2+S2=31,an+1=3an-2n(n∈N*).
(1)求证:{an-2n}为等比数列;
(2)求数列{an}的前n项和Sn.
10.(2018全国Ⅱ,理17)记Sn为等差数列{an}的前n项和,已知a1=-
7,S3=-15.
(1)求{an}的通项公式;
(2)求Sn,并求Sn的最小值.
11.已知数列{an}是等比数列.设a2=2,a5=16.
(1)若a1+a2+…+a2n=t(+…+),n∈N*,求实数t的值;
(2)若在之间插入k个数b1,b2,…,bk,使得,b1,b2,…,bk,成等差数列,求k的值.
二、思维提升训练
12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列
1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )
A.440
B.330
C.220
D.110
13.若数列{an}为等比数列,且a1=1,q=2,则Tn=+…+等于( )
A.1-
B.
C.1-
D.
14.已知等比数列{an}的首项为,公比为-,其前n项和为Sn,若A≤Sn-≤B 对n∈N*恒成立,则B-A的最小值为.。