一元一次不等式组
- 格式:ppt
- 大小:745.50 KB
- 文档页数:21
第6讲 一元一次不等式组知识点1.一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组;注意:ab >0 ⇔0b a>⇔⎩⎨⎧>>0b 0a 或⎩⎨⎧<<0b 0a ;ab <0 ⇔0b a <⇔⎩⎨⎧<>0b 0a 或⎩⎨⎧><0b 0a ;ab=0 ⇔ a=0或b=0; ⎩⎨⎧≤≥ma ma ⇔ a=m . 2.一元一次不等式组的解集与解法:所有这些一元一次不等式解集的公共部分,叫做这个一元一次不等式组的解集;解一元一次不等式时,应分别求出这个不等式组中各个不等式的解集,再利用数轴确定这个不等式组的解集. 3.一元一次不等式组的解集的四种类型:xx a空集4.几个重要的判断:是正数、y x 0xy 0y x ⇔⎭⎬⎫>>+, 是负数、y x 0xy 0y x ⇔⎭⎬⎫><+, 异号且正数绝对值大,、y x 0xy 0y x ⇔⎭⎬⎫<>+.y x 0xy 0y x 异号且负数绝对值大、⇔⎭⎬⎫<<+专题讲解典型例题1:A 、关于X的不等式2x-a≤-1的解集如图,求a的取值范围。
B 、若不等式组 x −a >2,b −2x >0的解集是-1<x <1,则(a +b )2009=典型例题2:若方程组 4x −3y =k 2x +3y =5的解中x >y ,求k 的取值范围。
典型例题3:已知关于x 的方程x-2x−m 3=2x 3的解是非负数,m 是正整数,求m 的值。
典型例题4:解不等式组并在数轴上表示出来典型例题5:王凯家到学校2.1千米,现在需要在18分钟内走完这段路。
已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?典型例题6:青海新闻网讯:西宁市为加大向国家环境保护模范城市大步迈进的步伐,积极推进城市绿地,主题公园、休闲场地建设,园林局利用甲种花卉和乙种花卉搭配成A、B两种园艺造型摆放在夏都大道两侧,搭配数量如下表所示,(1)已知搭配一个A种园艺造型和一个B种园艺造型共需500元,若园林局搭配A种园艺造型32个,B种园艺造型18个共投入11800元,则A,B两种园艺造型的单价分别是多少元?(2)如果搭配A,B两种园艺造型共50个,某校学生课外小组承接了搭配方案的设计,其中甲种花卉不超过3490盆,乙种花卉不超过2950盆,问符合题意的搭配方案有几种?请你设计出来。
一元一次不等式组(基础)知识讲解责编:杜少波【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34.x x >⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲 一元一次不等式组的解法370096 例2】举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______;(2)2,3x x <⎧⎨<-⎩的解集是______;(3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______.【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组 (1) 313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x +>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】解:(1)解不等式①,得x <-2解不等式②,得x≥-5故原不等式组的解集为-5≤x<-2.其解集在数轴上表示如图所示.(2)原不等式可变为:213(1)3(1)4x x x x +>-⎧⎨-≥-⎩①② 解①得:4x < 解②得:12x ≥-故原不等式组的解集为142x -≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x 名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(),不等式(1)的解集是:x <2121;不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121,因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【答案与解析】解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少?【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤,又x 为整数,所以5x =或6或7,∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆;方案2:租甲种货车6辆,乙种货车4辆;方案3:租甲种货车7辆,乙种货车3辆.(2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.。
一元一次不等式组的知识点及其经典习题讲解知识点一:一元一次不等式组由含有同一未知数的几个一元一次不等式组合在一起,叫做一元一次不等式组。
如:,。
要点诠释:在理解一元一次不等式组的定义时,应注意两点:(1)不等式组里不等式的个数并未规定,只要不是一个,两个、三个、四个等都行;(2)在同一不等式组中的未知数必须是同一个,不能在这个不等式中是这个未知数,而在另一个不等式中是另一个未知数。
知识点二:一元一次不等式组的解集组成一元一次不等式组的几个不等式的解集的公共部分叫做一元一次不等式组的解集.(1)求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被各个不等式解集的区域都覆盖的部分。
(2)用数轴表示由两个一元一次不等式组成的不等式组的解集,一般可分为以下四种情况:知识点三:一元一次不等式组的解法求不等式组的解集的过程,叫做解不等式组。
解一元一次不等式组的一般步骤为:(1)分别解不等式组中的每一个不等式;(2)将每一个不等式的解集在数轴上表示出来,找出它们的公共部分;(3)根据找出的公共部分写出这个一元一次不等式组的解集(若没有公共部分,说明这个不等式组无解).要点诠释:用数轴表示不等式组的解集时,要时刻牢记:大于向右画,小于向左画,有等号画实心圆点,无等号画空心圆圈。
知识点四:利用不等式或不等式组解决实际问题列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式或不等式组;(5)解:解出所列的不等式或不等式组的解集;(6)答:检验是否符合题意,写出答案。
要点诠释:在以上步骤中,审题是基础,是根据不等关系列出不等式的关键,而根据题意找出不等关系又是解题的难点,特别要注意结合实际意义对一元一次不等式或不等式组的解进行合理取舍,这是初学者易错的地方。
一元一次不等式组的概念及其解法在代数学中,不等式组是一种包含有两个或更多个不等式的数学表达式。
这些不等式之间可以通过逻辑连接诸如“且”或者“或者”等来关联起来,形成一个不等式组。
而一元一次不等式组则是其中一种特殊形式的不等式组,其中每个不等式均为一元一次不等式。
为了更清晰地理解一元一次不等式组的概念及其解法,让我们从简单的例子开始。
假设我们有一个一元一次不等式组:1. 2x + 3 > 72. x - 5 < 2在这个不等式组中,我们有两个一元一次不等式,分别为2x + 3 > 7和x - 5 < 2。
要解决这个不等式组,我们需要先单独解决每个不等式,然后将它们的解集合起来,以得出整个不等式组的解。
我们来解决第一个不等式2x + 3 > 7。
要解这个不等式,我们可以按照以下步骤进行:1. 将2x + 3 > 7化简为2x > 42. 再将2x > 4化简为x > 2第一个不等式2x + 3 > 7的解为x > 2。
接下来,我们来解决第二个不等式x - 5 < 2。
解决这个不等式的步骤如下:1. 将x - 5 < 2化简为x < 7第二个不等式x - 5 < 2的解为x < 7。
现在,我们得到了每个不等式的解,即第一个不等式的解为x > 2,第二个不等式的解为x < 7。
要得到整个不等式组的解,我们需要将这两个不等式的解进行合并。
由于这是一个“且”的关系,所以整个不等式组的解为同时满足这两个不等式的解,即2 < x < 7。
通过以上例子,我们可以看到解决一元一次不等式组的关键步骤。
首先是单独解决每个不等式,然后根据逻辑连接的关系合并这些解来得到整个不等式组的解。
在实际应用中,一元一次不等式组常常出现在数学建模和实际问题的求解中。
比如在工程、经济学、物理学等领域,人们经常需要通过建立不等式组来描述某一问题的限制条件,然后利用不等式组的解来得出问题的答案。
一元一次不等式和一元一次不等式组知识梳理(一)基本概念1.不等式:2.不等式的解:3.不等式的解集:4.一元一次不等式:5.一元一次不等式组的解集:(二)不等式的基本性质基本性质1:基本性质2:基本性质3:(三)基本方法1.不等式解集的表示方法:(1) (2)2.不等式的解法:【与解方程类似,不同之处就在:左右两边同时乘以(或除以)一个负数时,不等号的方向一定要改变。
】3.不等式组解法:“分开解,集中判”解出各个不等式,再判断所有解集的公共部分即为不等式组的解集。
4.不等式组解集规律:“同大取大,同小取小,不大不小中间找,又大又小无解了。
” 请用数轴展现:设 a > b :⎩⎨⎧bx a x ⎩⎨⎧b x a x ⎩⎨⎧b x a x ⎩⎨⎧bx a x(四)方法思想1.数形结合思想:不等式(组)解集的两种表示方法。
2.不等式与一次函数的关系,可以利用函数图像来分析解答。
如:一次函数y 1=k 1x+b 1,y 2=k 2x+b 2图像如右图所示,求不等式k 1x+b 1≤k 2x+b 2的解集。
专题一:不等式的有关概念与不等式的基本性质解不等式(组)(一)、不等式的基本性质练习1、已知a <b ,用“<”或“>”填空(1) a -3b -3;(2) 6a6b ;(3) -a -b ;(4) a -b 0;2aa+b2、若a <b ,则不等式○1a-5<b-5 ○2a+k <b+k ○32a <2b ○4ac <b 中成立的有( ) A、1个 B、2个 C、3个 D、4个3、不等式7+5x 〈24 的正整数解的个数是( )A.1个B.3个C.无数个D.4个4、已知32,5221+-=-=x y x y ,如果21y y <,则x 的取值范围是( )A .2>xB .2<xC .2->xD .2-<x5、当x 时,能使x+4>0和2x+1>0同时成立6、关于x 的方程632=-x a 的解是正数,那么a 的取值范围:__________(二)、解不等式(组)1(1)4352+>-x x (2)11237x x --≤2、解下列不等式组(1)⎪⎩⎪⎨⎧->->13132x x (2)⎩⎨⎧>+≤0312x x(3)⎩⎨⎧-≤+>+145321x x x x (4)24321<--<-x专题三、不等式组的特解1、求不等式x x 228)2(5-≤+的非负整数解2、解不等式组()⎪⎩⎪⎨⎧---+≥+-xx x x 81311323 并写出该不等式组的整数解当堂练习1、求不等式组⎪⎩⎪⎨⎧-≤+421121 x x 的整数解2、求不等式()⎪⎩⎪⎨⎧-+≤+3212352x x x x 的正整数专题三 用不等式或不等式组解答实际问题一、课堂练习1、小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元,每个练习本4角,那么他最多能买笔记本多少本?2、某校初一新生中有若干住宿生,分住若干间宿舍,若每间住4人,则还有21人无房住;若每间住7人,则有一间不空也不满,求住宿生人数.3、暑假,学校的老师将带领校、镇、市级“三好学生”去旅游.甲旅行社说:“其中一位带队老师买全票,全票价为240元,则其余老师和学生可享受半价优惠”;乙旅行社说:“包括带队老师和学生全部票价6折优惠”。
一元一次不等式(组)知识总结及经典例题分析一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。
一元一次不等式的所有解组成的集合是一元一次不等式的解集。
注:其标准形式: ax+b <0或ax+b ≤0, ax+b >0或ax+b ≥0(a ≠0).二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a<(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!x <a x >a x ≤a x ≥a五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <)①⎩⎨⎧>>b x a x 的解集是b x >,如下图: ②⎩⎨⎧<<b x a x 的解集是a x <,如下图:同大取大 同小取小③⎩⎨⎧<>b xa x 的解集是b x a <<,如下图:④⎩⎨⎧><bx a x 无解,如下图:大小交叉取中间 大小分离解为空六、解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.七、一元一次不等式的综合应用1.列不等式解决问题比列方程解决问题的应用更广泛、更实际。
有些问题用方程不能解决,而用不等式却能轻易解决。
一元一次不等式组1 一元一次不等式组的概念一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
如⎩⎨⎧<->-,20106,52x x ⎪⎩⎪⎨⎧<+>+>-9153611207x x x ,等都是一元一次不等式组。
①这里的“几个”不等式是两个、三个或三个以上。
②这几个一元一次不等式必须含有同一个未知数。
2 解一元一次不等式组(1)一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫作这个一元一次不等式组的解集。
①找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分。
②有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况。
解不等式组就是求它的解集,解一元一次不等式组的方法步骤如下: 第一步:分别求出不等式组中各个不等式的解集;第二步:将各不等式的解集在数轴上表示出来;第三步:在数轴上找出各个不等式的解集的公共部分,这个公共部分就是这个不等式组的解集。
3 一元一次不等式组的应用(1)列一元一次不等式组解应用题的步骤:审题→设未知数→找不等关系→列不等式组→检验→答。
①利用一元一次不等式组解应用题的关键是找不等关系。
②列不等式组解决实际问题时,求出不等式的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取整数。
(2)列一元一次方程(组)与列一元一次不等式(组)解应用题的 步骤例1 解不等式组:⎪⎩⎪⎨⎧->+-≥+1321112x x x 并把不等式组的解集在数轴上表示出来。
例2 解不等式组⎪⎪⎩⎪⎪⎨⎧-<-->+814311532x x x x 并写出它的非负整数解。
例3 若不等式组⎩⎨⎧->-≥+2210x x a x 有解,求a 的取值范围。
例4 某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买B A ,两种型号的污水处理设备共8台,具体情况如下表:吨。
一元一次不等式(组)知识定位不等式是一个比较重要的知识点,难度不是很大,在理解的基础上,使用适当的技巧即可解决。
知识梳理一、不等式与不等式的性质1、不等式:表示不等关系的式子。
(表示不等关系的常用符号:≠,<,>)。
2、不等式的性质:(l )不等式的两边都加上(或减去)同一个数,不等号方向不改变,如a > b , c 为实数⇒a +c >b +c(2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如a >b , c >0⇒ac >bc 。
(3)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如a >b ,c <0⇒ac <bc.注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像应用等式的性质那样随便,以防出错。
3、任意两个实数a ,b 的大小关系(三种):(1)a – b >0⇔ a >b(2)a – b=0⇔a=b(3)a–b <0⇔a <b4、(1)a >b >0⇔b a >(2)a >b >0⇔22b a <二、不等式(组)的解、解集、解不等式1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。
不等式的所有解的集合,叫做这个不等式的解集。
不等式组中各个不等式的解集的公共部分叫做不等式组的解集。
2.求不等式(组)的解集的过程叫做解不等式(组)三、不等式(组)的类型及解法1、一元一次不等式:(l )概念:含有一个未知数并且含未知数的项的次数是一次的不等式,叫做一元一次不等式。
(2)解法:与解一元一次方程类似,但要特别注意当不等式的两边同乘以(或除以)一个负数时,不等号方向要改变。
2、一元一次不等式组:(l )概念:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
(2)解法:先求出各不等式的解集,再确定解集的公共部分。
注:求不等式组的解集一般借助数轴求解较方便。
一元一次不等式和一元一次不等式组知识点一:不等式1、 不等式的基本性质性质1:不等式的两边同时加上(或减去)同一个数或同一个整式,不等号方向不改变。
若a>b ,则a+c>b+c (a-c>b-c )。
性质2:不等式的两边同时乘以(或除以)同一个正数,不等号方向不变。
若a>b 且c>0,则ac>bc 。
性质3:不等式的两边同时乘以(或除以)同一个负数,不等号方向改变。
若a>b 且c<0,则ac<bc 。
2、同解不等式:如果几个不等式的解集相同,那么这几个不等式称为同解不等式。
知识点二:一元一次不等式1、定义:像276x x -<,39x ≤等只含有一个未知数,且含未知数的式子是整式,未知数的次数是1,系数不为0,这样的不等式叫做一元一次不等式。
2、一元一次不等式的标准形式: 0ax b +>(0a ≠)或0ax b +<(0a ≠)。
3、一元一次不等式组的解集确定:若a>b则(1)当⎩⎨⎧>>b x a x 时,则a x >,即“大大取大” (2)当⎩⎨⎧<<bx a x 时,则b x <,即“小小取小”(3)当⎩⎨⎧><b x a x 时,则a x b <<,即“大小小大取中间”(4)当⎩⎨⎧<>b x a x 时,则无解,即“大大小小取不了” 知识点三:一元一次不等式组由含有同一未知数的几个一元一次不等式组合在一起,叫做一元一次不等式组。
如:, 。
要点诠释: 在理解一元一次不等式组的定义时,应注意两点:(1)不等式组里不等式的个数并未规定,只要不是一个,两个、三个、四个等都行;(2)在同一不等式组中的未知数必须是同一个,不能在这个不等式中是这个未知数,而在另一个不等式中是另一个未知数。
知识点四:一元一次不等式组的解集组成一元一次不等式组的几个不等式的解集的公共部分叫做一元一次不等式组的解集.(1)求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被各个不等式解集的区域都覆盖的部分。
解一元一次不等式组1.一元一次不等式组的定义:由几个一元一次不等式构成的不等式组叫做一元一次不等式组.2.一元一次不等式组的解集的定义:一般地,几个一元一次不等式的解集的公共部分,叫做由它们组成的一元一次不等式组的解集.3.解一元一次不等式组的一般步骤:①求出这个不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,即可求出这个不等式组的解集.注意:①利用数轴表示不等式的解集时,需要注意表示数的点的位置上是空心圆圈,还是实心圆点;②若不等式组中各个不等式的解集没有公共部分,则这个不等式组无解.4.由两个一元一次不等式组成的不等式组的解集的情况有如下四种:不等式组()大小,小大中间找例1.解不等式组,并把它的解集表示在数轴上.例2.解不等式:.例3.解不等式组.例4.求不等式组的整数解.例5.解不等式:.例6.解不等式组:.例7.如果、、这三个实数在数轴上所对应的点从左到右依次排列,求的取值范围.一元一次不等式组的运用例1.韩日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A、B两个出租车队,A队比B队少3辆车,若全部安排乘A队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排乘B队的车,每辆车坐4人,车不够,每辆车坐5人,有的车未坐满,则A队有出租车()A.11辆B.10辆C.9辆D.8辆例2.苏州地处太湖之滨,有丰富的水产养殖资源,•水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息:①每亩水面的年租金为500元,水面需按整数亩出租;②每亩水面可在年初混合投入4kg蟹苗和20kg虾苗;③每千克蟹苗的价格为75元,其饲养费用为525元,当年可获1 400元收益;④每千克虾苗的价格为15元,其饲养费用为85元,当年可获160元收益.(1)若租用水面n亩,则年租金共需_________元;(2)水产养殖的成本包括水面年租金、苗种费用和饲养费用,求每亩水面蟹虾混合养殖的年利润(利润=收益-成本).例3.某种植物适宜生长在温度为18℃~22℃的山区,已知山区海拔每升高100m,气温下降0.6℃,现测出山脚下的平均气温为22℃,问该植物种在山上的哪一部分为宜(设山脚下的平均海拔高度为0m).例4.某公司经营甲、乙两种商品,每件甲种商品进价12万元,•售价14.5万元.每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变.•现准备购进甲、乙两种商品共20件,所用资金不低于190万元不高于200万元.(1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?(3)利用(2)中所求得的最大利润再次进货,•请直接写出获得最大利润的进货方案.例5.某食品厂生产的一种巧克力糖每千克成本为24元,其销售方案有如下两种:方案一:若直接给本厂设在某市门市部销售,则每千克售价为32元,但门市部每月需上缴有关费用2400元;方案二:若直接批发给本地超市销售,则出厂价为每千克28元.若每月只能按一种方案销售,且每种方案都能按月销售完当月产品,设该厂每月的销售量为xkg.(1)你若是厂长,应如何选择销售方案,可使工厂当月所获利润更大?(2)厂长看到会计送来的第一季度销售量与利润关系的报表后(下表),发现该表填写的销售量与实际有不符之处,请找出不符之处,并计算第一季度的实际销量总量.一元一次不等式组的易错题例1.当满足条件时,由,可得.例2.若,则在与之间.例3.已知关于的方程的解是正数,的取值范围是.例4.若关于的不等式组解是,则= .例5.若、、是三角形三边长,则代数式的值()(A)>0 (B)<0 (C)(D)例6.的最小值为.例7.共有竞赛题25题,做对得4分,不做或做错倒扣2分,若不低于60分,则至少对了题.例8.已知,若,则的取值范围是.例9.若不等式组的整数解仅为1,2,3,符合这个不等式组的整数和的有序实数对共有多少对?例10.当,求取值范围.例11.已知关于的不等式组的整数解共有5个,求的范围.例12.关于的不等式的正整数解为1、2、3,则的取值范围是多少?例13.一半学生学数学,学音乐,学外语,剩下的不足6位踢球,共有多少学生?课堂反思1.一元一次不等式组是代数运算的重点与必考点,要求学生熟练地掌握.2.一元一次不等式组的解法是基础基础的题型,按照规范步骤解题即可.3.利用一元一次不等式组解决实际问题类似于利用二元一次方程组解决实际问题,关键是根据题意列出不等式组.课后练习1.已知为正整数,且不等式只有3个正整数解,求的值.2.若不等式组有解,则的取值范围是()A.B.C.D.3.已知关于x的不等式组只有4个整数解,则实数的取值范围是.4.已知两数,,试比较与的大小关系.5.把价格为每千克20元的甲种糖果8千克和价格为每千克18元的乙种糖果若干千克混合,要使总价不超过400元,且糖果不少于15千克,所混合的乙种糖果最多是多少?最少是多少?6.一个工程队原定10天内至少要挖掘600m3的土方,在前两天共完成了120m3后,又要求提前2天完成挖掘土方任务,问以后几天内,平均每天至少要挖掘多少土方?(列出算式,不要求求解)根据列表分析可列出不等式为__________________≥600.7.某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:计划购进电视机和洗衣机共100台,商店最多可筹集资金161800元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)8.某园林的门票每张10,一次使用.考虑到人们的不同需求,也为了吸收更多的少游客,该园林除保留原有的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年).年票分A、B、C三类:A类年票每张120元,持票者是入该园林时,无需再购买门票;B类门票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类门票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果您只选择一种购买门票的方式,并且您计划在一年中花80元在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式;(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算.。
初中七年级数学下册第九章:不等式与不等式组——9.3:一元一次不等式组一:知识点讲解知识点一:一元一次不等式组及其解法一元一次不等式组:把含有相同未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
一元一次不等式组的三个条件:✧ (1)不等式组中所有不等式都是一元一次不等式✧ (2)不等式组中的所有一元一次不等式都含有同一个未知数 ✧ (3)不等式组中的一元一次不等式的个数至少是两个 注意:不等式组一定要用大括号联立,大括号表示“且”的意思。
1. 例1:下列不等式组中,是一元一次不等式组的是( )A.B.C.D.一元一次不等式组解法✧ 一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们组成的一元一次不等式组的解集。
✧ 解一元一次不等式组:求一元一次不等式组的解集的过程叫做解一元一次不等式组。
解法:先分别求不等式组中每个不等式的解集,然后找出它们解集的公共部分。
不等式组:b a <✧ ⎩⎨⎧>>bx ax :同大取大。
✧ ⎩⎨⎧<<b x ax :同小取小。
⎩⎨⎧-<>32x x ⎩⎨⎧<-<+0201y x ()()⎩⎨⎧>+-<-032023x x x ⎪⎩⎪⎨⎧>+>-x x x 11023✧ ⎩⎨⎧<>bx ax :大小小大中间找。
✧ ⎩⎨⎧><b x ax :大大小小无处找。
例1:不等式组⎩⎨⎧≤-<-0262x x 的解集在数轴上表示正确的是( )A.B.C.D.知识点二:列一元一次不等式组解决实际问题列不等式组解决实际问题:✧ “审”:分清题目中的已知量和未知量,找出已知量和未知量之间的所有的不等关系; ✧ “设”:设出适当的未知数;✧ “列”:依据各个不等关系分别列出相应的不等式,从而组成不等式组; ✧ “解”:求不等式组的解集;✧ “答”:检验解集是否符合实际情况,作答。
优能个性化辅导--一元一次不等式与不等式组一元一次不等式与一元一次不等式组的解法一.知识梳理1.知识结构图(二).知识点回顾1.不等式用不等号连接起来的式子叫做不等式. 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc (或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c) 4.一元一次不等式(重点)只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式.5.解一元一次不等式的一般步骤(重难点)(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1.例:131321≤---x x 解不等式:6.一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.7.一元一次不等式组的解集 一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.(三)常见题型归纳和经典例题讲解1.常见题型分类(加粗体例题需要作答) 1.下列不等式中,是一元一次不等式的是( )A.x1+1>2 B.x 2>9 C.2x +y ≤5D.21(x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 .用不等式表示a 与6的和小于5; x 与2的差小于-1;数轴题1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空:a __________b ; |a |__________|b |; a +b __________0 a -b __________0; a +b __________a -b ; ab __________a .2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A 、ab >0B 、a b >C 、a -b >0D 、a +b >0同等变换1.与2x <6不同解的不等式是( )A.2x +1<7B.4x <12C.-4x >-12D.-2x <-6借助数轴解不等式(组): (这类试题在中考中很多见)1.(2010湖北随州)解不等式组110334(1)1x x +⎧-⎪⎨⎪--<⎩≥2.(2010福建宁德)解不等式215312+--x x ≤1,并把它的解集在数轴上表示出来.3.(2006年绵阳市)12(1)1,1.23x x x -->⎧⎪⎨-≥⎪⎩此类试题易错知识辨析(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集: 当0a >时,b x a >(或b x a <) 当0a <时,b x a <(或bx a >)当0a <时,b x a <(或bx a>)4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <15 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠27.如果不等式(a -3)x <b 的解集是x <3-a b,那么a 的取值范围是________.1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6 D.无数个2.不等式4x -41141+<x 的最大的整数解为( ) A.1B.0C.-1D.不存在1. 不等式|x |<37的整数解是________.不等式|x |<1的解集是________.1.已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( ) A.x <2 B.x >-2 C.当a >0时,x <2 D.当a >0时,x <2;当a <0时, x >21. 若x +y >x -y ,y -x >y ,那么(1)x +y >0,(2)y -x <0,(3)xy ≤0,(4)y x<0中,正确结论的序号为________。
一元一次不等式组的定义
◎ 一元一次不等式组的定义的定义
定义:
由几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组。
不等式组中所有不等式的解集的公共部分叫做这个不等式组的解集。
求不等式组的解集的过程叫做解不等式组。
在理解时要注意以下两点:
1) 不等式组里不等式的个数并未规定;
2) 在同一不等式组里的未知数必须是同一个。
◎ 一元一次不等式组的定义的知识扩展
定义:由几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组。
◎ 一元一次不等式组的定义的特性
一元一次不等式必须符合三个条件:
①组成不等式组的一元一次不等式可以是两个、三个······
②每个不等式都是一元一次不等式;
③必须都含有同一个未知数。
◎ 一元一次不等式组的定义的知识点拨
◎ 一元一次不等式组的定义的教学目标
1、通过对不等式的复习和具体实例总结一元一次不等式组以及一元一次不等式组的解集的概念。
2、创设情境,通过实例引导学生考虑多个不等式联合的解法。
3、通过对典型例题的分析加深对一元一次不等式组的认识。
4、在探究学习中培养学生独立思考、自主探索、勇于创新的精神。
◎ 一元一次不等式组的定义的考试要求
能力要求:了解
课时要求:30 考试频率:少考分值比重:2。
一元一次不等式组教案6篇(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!一元一次不等式组教案6篇通过教案的内容是可以看出教师的教学能力的,教案是教师与学生和家长进行有效的沟通和交流,共同关注学生的学习进展,本店铺今天就为您带来了一元一次不等式组教案6篇,相信一定会对你有所帮助。
如何解一元一次不等式组
一元一次不等式组是初等代数中的一个重要内容,解一元一次不等式组是求解一元一次不等式的集合关系的问题。
在解一元一次不等式组时,我们可以使用图像法、代入法、消元法等多种方法来求解。
下面将介绍一些解一元一次不等式组的常用方法。
我们可以使用图像法来解一元一次不等式组。
通过将不等式转化为一条直线,然后确定直线与坐标轴的交点,最终确定不等式的解集。
这种方法直观简单,适用于一些简单的不等式组求解。
代入法也是解一元一次不等式组的常用方法。
通过将一个不等式的解代入另一个不等式中,然后求解得到另一个不等式的解集,最终确定整个不等式组的解集。
这种方法适用于一些复杂的不等式组求解。
消元法也是解一元一次不等式组的有效方法。
通过将一个不等式乘以一个适当的系数,然后将两个不等式相减或相加,最终得到一个新的一元一次不等式,从而求解整个不等式组的解集。
这种方法适用于一些需要化简的不等式组求解。
除了以上方法,还可以通过分情况讨论、代数法等多种方法来解一元一次不等式组。
在解题过程中,需要注意不等式的性质,如乘除不等式两边不等号方向不变、加减不等式两边不等号方向不变等。
总的来说,解一元一次不等式组需要我们熟练掌握不等式的性质和解题方法,灵活运用各种方法来求解。
在解题过程中,需要注意化简不等式、分析不等式的关系,从而得到准确的解集。
希望通过本文的介绍,读者能够更加深入地了解如何解一元一次不等式组,提高解题能力,取得更好的学习成绩。