亲水改性纳滤膜去除小分子可溶性有机物的研究
- 格式:pdf
- 大小:1.99 MB
- 文档页数:5
纳滤技术的特点及其应用摘要:纳滤是介于反渗透和超滤之间的一种膜分离技术。
文章综述了纳滤膜的特性,分离机理,影响纳滤膜分离特性的因素及其在水处理、制药业、食品及染料等行业过程中的应用,并对其更广泛的发展前景进行展望。
关键词: 纳滤; 纳滤膜; 膜分离; 应用20 世纪80 年代初期发展起来纳滤(NF)与反渗透和超滤一样均属于压力驱动的膜分离过程。
它通过膜的渗透作用,借助外界能量或化学位差的推动,对两组分或多组分混合气体或液体进行分离、分级、提纯和富集。
作为一种新型的分离技术,纳滤膜在分离过程中表现以下两个显著特征:一个是因为纳滤膜表面分离层由聚电解质所构成,对离子有静电相互作用,所以对无机盐有一定的截留率;2000,介于反渗透膜和超滤膜之间[1]。
纳滤膜的表另一个是其截留分子量为200~层孔径处于纳米级范围,在渗透过程中截留率大于90%的最小分子约为1nm,因而称为纳滤[2]。
1.纳滤膜的分离机理纳滤膜分离机理的研究自纳滤膜产生以来一直是热点问题。
尽管纳滤膜的应用越来越广泛,其迁移机理还没能确切地弄清楚。
传统理论认为纳滤膜传质机理与反渗透膜相似,是通过溶解扩散传递。
随着对纳滤膜应用和研究的深入,发现这种理论不能很好解释纳滤膜在分离中表现出来的特征。
就目前提出的纳滤膜机理来看,表述膜的结构与性能之间关系数学模型有电荷模型、道南-立体细孔模型、静电位阻模型。
电荷模型根据对膜内电荷及电势分布情形的不同假设,分为空间电荷模型(the SpaceCharge Model)和固定电荷模型(the Fixed-Charge Model)。
空间电荷模型[3]最早由Osterle 等提出,该模型的基本方程由Poisson-Boltzmann 方程、Nernst-P1anck 方程和Navier-Stokes 方程等来描述。
运用空间电荷模型,不仅可以描述诸如膜的浓差电位、流动电位、表面Zeta 电位和膜内离子电导率、电气粘度等动电现象,还可以表示荷电膜内电解质离子的传递情形。
膜技术在天然有机物去除中的应用摘要:在地表饮用水处理中,天然有机物作为消毒副产物的前驱物,不容忽视。
近年来,膜技术被越来越广泛的运用到天然有机物的去除中,本文对常用的几种膜技术的应用情况进行了论述,包括组合膜工艺,超滤、纳滤、反渗透以及新型改性膜技术。
关键词:天然有机物;组合膜工艺;改性膜;膜污染;天然有机物(Natural Organic Matter, NOM)最初开始受到关注,应归因于NOM是消毒副产物(Disinfection By-Products, DBPs)的前驱物,上段工艺出水中残留的NOM,在消毒工艺中会与氯发生反应形成了DBPs。
像三卤甲烷、卤乙酸和其他卤化有机物等消毒副产物,均证明被为致癌物。
因此,饮用水处理中NOM的有效去除是研究的热点。
近二十年来,膜技术作为一种可靠的、有效的处理工艺,开始广泛应用于饮用水处理领域[1]。
1. 天然有机物的定义和特征天然有机物是存在于自然地表水中的一系列基质复杂的有机物,主要是动植物腐烂降解所产生的。
它不仅影响水的气味、颜色和味道,而且影响饮用水处理系统中的好几个工艺。
NOM可以分成疏水性(腐殖质)、亲水性和过度亲水性三种组分,超过50%的NOM由腐殖质和相对疏水性或芳香族化合物组成。
溶解的有机物和有机碳,尤其是特征紫外吸光度(specific UV absorbance, SUVA)和三卤甲烷(THM)前驱物通常被用来作为衡量NOM去除的指示剂。
2. 膜技术在NOM去除中的发展和应用在国外,从90年代开始,由于占地小、去除率高、出水水质好等明显的优势,膜技术开始在饮用水处理中迅速取代旧的传统工艺。
但是,使用的较多的微滤(Microfiltration, MF)和超滤(Ultrafiltration, UF)技术,在没有预处理的前提下,去除消毒副产物的前驱物NOM的效果非常有限。
纳滤(Nanofiltration, NF)和反渗透(Reverse Osmosis, RO)能够较好的去除,但令人担忧的是天然有机物造成的膜污染,它会直接导致截留率、处理通量下降并引起一系列的连锁问题。
环境科学DOI :10.19392/j . cnki . 1671-7341.202104062纳滤膜有机污染研究2夏庆艳山东建筑大学市政与环境工程学院山东济南250101摘要:纳滤膜由于具有优异的性能而在净水方面引起了极大关注,而膜污染,特别是纳滤膜的有机污染却极大地限制了其广泛应用。
前人做了很多这方面的研究,但仍然没有完全揭示纳滤膜的有机污染。
本研究主要总结了纳滤膜的特征污 染物、分离机制及污染机理,并介绍了几种目前常见且应用广泛的膜污染表征方法。
关键词:纳滤;特征污染物;分离机理;污染机理;表征方法1绪论饮用水资源匮乏已成为全球最严重的问题之一,在各种 水处理技术中,纳滤因为具有不受温度限制,可有效分离,占 用空间小的优点,已逐渐成为一种公认的生产清洁水的工 艺。
因此,它在饮用水处理,回收重金属,去除农药和硬度, 脱盐,海水淡化,废水回收和食品工业等各种水生产应用方 面具有巨大潜力。
作为一种前景广阔的膜处理方法,纳滤受 到了广泛关注,尽管纳滤膜工艺比传统水处理工艺具有更好 的水处理效果,但和反渗透、微滤、超滤等压力驱动膜有相似 之处的是,膜污染仍然是纳滤膜广泛工业应用的最大障碍之 一,尤其是对于地表水处理[4]。
膜污染能够导致膜的水通量 下降,截留率降低,缩短了膜的使用寿命,增加了成本,阻碍 了其广泛应用。
纳滤膜主要有四种类型的污染,分别是颗粒 (胶体)污染、结晶(无机)污染、生物污染和有机污染。
由于 溶解性有机物在水体中大量存在,而且很难由预处理去除, 因此有机污染会对纳滤膜过滤过程有重要影响。
本文主要 介绍纳滤膜有机污染的特征污染物、分离机制及污染机理, 并介绍了几种目前常见且应用广泛的膜污染表征方法。
2特征污染物水体中的天然有机物(NOM )粒径接近膜孔尺寸,是造成 纳滤膜严重膜孔堵塞和能源消耗的主要原因,作为消毒副产 物的前体物,NOM 能降低紫外处理的效率,且滋生细菌。
(1) 富里酸。
膜分离技术的研究进展摘要:膜分离是借助于膜,在某种推动力的作用下,利用流体中各组分对膜的渗透速率的差别而实现组分分离的过程。
目前常见的膜分离过程可分为以下几种,电渗析(Electrodialysis,ED)、反渗透(Reverse osmosis,RO)、微滤(Microfiltration,MF)、超滤(Ultrafiltration,UF)、纳滤(Nanofiltration,UF)和液膜分离等。
膜技术具有分离效率高、能耗低、无相变、操作简便、无二次污染、分离产物易于回收、自动化程度高等优点,在水处理领域具有相当的技术优势,是现代分离技术中一种效率较高的分离手段。
关键词:化工、膜分离、研究进展引言: 膜分离技术在近20年发展迅速,其应用已从早期的脱盐发展到化工、轻工、石油、冶金、电子、纺织、食品、医药等工业废水、废气的处理,原材料及产品的回收与分离和生产高纯水等,是适应当代新产业发展的重要高新技术。
膜分离技术不但在工业领域得到广泛应用,同时正在成为解决能源、资源和环境污染问题的重要技术和可持续发展的技术基础。
一、膜分离技术在生产生活中的应用膜分离技术具有高效、节能,工艺过程简单,投资少,污染小等优点,因而在化工、轻工、电子、医药、纺织、生物工程、环境治理、冶金等方面具有广泛的应用前景。
如膜分离技术在纯净水处理中的应用。
水处理设备与最终水质有密切关系。
只用传统的沙滤棒或硅藻土过滤手段,不可能达到精细的过滤等级和绝对地去除微生物。
而应用膜分离手段则可能达到极好的分离效果。
在膜技术发达国家,饮料生产领域95%以上采用微孔滤膜为分离途径之一,在我国,微滤、超滤技术在饮料生产中都已得到较广泛应用。
在饮料行业中要达到净化、澄清的目的,用0.45 µm的微孔膜过滤元件进行流程过滤即可满足要求。
由于微孔膜过滤后除去的是饮料中的杂质、悬浮物及生物菌体等,而水中的微量元素和营养物质却毫无损失,所以特别适用于某些需保持特殊成分或风味的饮料的净化过滤,如天然饮用矿泉水。
1.引言随着全球人口和经济的增长、工业化不断推进,水资源短缺和水污染问题越发突出,水处理工业的发展程度成为制约社会进步的重要因素。
近年来,以微滤、超滤、纳滤、反渗透、电渗析等为代表的膜法水处理技术,因具有占地面积小、处理能力强、出水水质好等优点,成为饮用水及污废水处理领域的研究热点。
然而,膜技术在水处理领域的大规模推广仍然面临诸多挑战,其中,膜污染是最突出的问题。
膜组件运行过程中会产生界面浓差极化、形成滤饼层和膜孔堵塞等膜污染现象,导致膜的通量和工艺产水率降低,膜组件使用寿命减少,工艺成本增加。
通过对原水进行预处理或调节膜组件运行参数,可达到减缓膜污染速率的目的。
但从根本上解决膜污染问题,需要从膜材料的研制出发,增强膜本身的抗污染能力。
以目前最常见的聚偏氟乙烯(PVDF)和聚醚砜(PES)有机聚合物膜为例,它们具有良好的物理、化学稳定性,但本身疏水性较强,与水分子的亲和力较差,一方面使得膜的纯水通量较低,另一方面膜表面无法形成水分子薄层,各类原水中普遍存在的有机疏水性污染物容易直接接触膜表面,造成膜孔吸附和堵塞。
因此,增加有机聚合物膜材料的亲水性,成为提高其抗污染性能的重要手段。
本文将有机聚合物膜的抗污染亲水改性分为表面改性和共混改性两大类,分别对相关研究进行综述。
2.膜的表面亲水改性膜材料的表面亲水改性是指在制备的原膜表面通过物理、化学手段引入亲水薄层或亲水官能团,从而提高膜的亲水性,达到增强膜的抗污染能力的目的。
表面改性的改性效果较好,且其作用范围仅为膜表面,不影响膜基体的基础性能。
通常表面改性又可分为两种,引入薄层的表面改性方法称为表面涂覆法,引入官能团则称为表面接枝法。
2.1表面涂覆法表面涂覆的原理是在疏水原膜表面吸附、交联或聚合成一层亲水涂层。
浸渍涂覆是表面涂覆改性的常用方法。
将原膜浸入一定浓度的待涂覆材料的溶液中,一定时间后取出即可实现膜的涂覆改性。
常见的涂覆材料包括聚乙烯醇、聚多巴胺等无毒、生物相容性好、反应条件温和、容易形成光滑涂层的有机材料,以及以Al2O3、TiO2、碳纳米管等为代表的性质稳定、亲水性良好的纳米材料。
针对纳滤膜界面聚合反应的实验研究摘要:本文研究了关于聚酰胺复合纳滤膜制膜工艺中界面聚合反应中PH值对其影响的结果,制备完成的纳滤膜基材分别涂覆哌嗪溶液和均三苯甲酰氯溶液,在膜的表面完成界面聚合,在哌嗪溶液中加入HCl或NaOH改变哌嗪溶液PH 值,一定PH值的变化对纳滤膜截留性能产生一定影响,并通过对纳滤膜截留性能的测试,从中找到了利用调整PH值来控制复合膜性能的方法,数据结果表明,添加HCl较添加NaOH更能明显的改变膜的性质,当PIP溶液PH值降低至9~10这个区间时,膜的界面聚合反应开始发生明显的变化,表现为截留率的降低和通量的增大。
关键词:纳滤;界面聚合;PH值中图分类号:TQ028.8 文献标识码:A 文章编号:纳滤是一种介于超滤和反渗透之间的膜过程,纳滤膜的研制晚于超滤和反渗透膜,1976年一种由哌嗪和均三苯甲酰氯通过界面聚合反应所形成的分离膜出现,这类膜对二价硫酸根离子具有很好的截留性能,对一价氯离子的截留效果却较差,并由FilmTec首先将其商品化正式命名为纳滤膜[1]。
界面聚合法[2]是使反应物在互不相溶的两相界面处发生聚合成膜,一般将微孔基膜浸入亲水单体的含水溶液中,排除过量的单体溶液,再浸入某种疏水单体的有机溶液中进行,这种制备方法的优点是,通过改变两种溶液中的单体浓度,可以很好地调控选择性膜层的性能。
随着膜技术的发展[3][4],应用的普及,对膜性能的要求也越来越高越来越具体,例如很多时候我们需要纳滤膜的性能更具有针对性,如宋玉军[5]等采用界面聚合法在聚砜基膜上分别用两种多元胺和多元酰氯反应成膜,制备了具有高脱盐率和水通量的复合纳滤膜;粱雪梅[6]等以PES为基膜,以二元酚BPA和二元酰氯(间苯二甲酰氯和对苯二甲酰氯)制备了复合纳滤膜,该膜对有机染料分子酸性大红GR(556道尔顿)和酸性墨水兰G(799道尔顿)的截留率分别为82.1%和93%。
总之,我们可以在原有制膜技术的基础上做一些改变来满足不同的应用需求。
纳滤膜的研究进展刘海露;王斌;郑景新;黄健恒;李良;廖兵【摘要】纳滤膜是一种新型分离膜,其截流分子量介于反渗透膜和超滤膜之间,且对无机盐有一定的截流率。
国内外纳滤膜制备方法有L-S相转化法、复合法、荷电化法和无机改性等。
纳滤膜研究中存在着膜通量小、膜制作成本较高及抗污染性差等问题,因此选择和制备纳滤膜的材料,优化纳滤技术水处理工艺设计,提高纳滤性能,降低制膜成本,减轻膜污染等已成为当今科学研究的重要课题。
%Nanofiltration (NF) membrane is a new membrane with molecular weight cutoff between reverse osmosis membranes and ultra filtration membrane, and it can retain inorganic salts. According to the methods of NF membranes preparation at home and abroad, the research progress in this field on L-S phase reversion, composition, charged method and inorganic modification were mainly reviewed. At present, low membrane flue, high production costs and poor antifouling property were existed, therefore, choosing and preparing NF membrane, optimizing the process design of the water treatment of NF membrane, improving the properties of NF membrane, reducing the production costs of NF membrane and increasing the antifouling property were of great importance in NF membrane research.【期刊名称】《广州化学》【年(卷),期】2012(037)002【总页数】6页(P46-51)【关键词】纳滤膜;制备方法;发展趋势【作者】刘海露;王斌;郑景新;黄健恒;李良;廖兵【作者单位】中国科学院广州化学研究所,广东广州510650 中国科学院纤维素化学重点实验室,广东广州510650 中国科学院研究生院,北京100049;中国科学院广州化学研究所,广东广州510650 中国科学院纤维素化学重点实验室,广东广州510650;中国科学院广州化学研究所,广东广州510650 中国科学院纤维素化学重点实验室,广东广州510650;中国科学院广州化学研究所,广东广州510650 中国科学院纤维素化学重点实验室,广东广州510650;中国科学院广州化学研究所,广东广州510650 中国科学院纤维素化学重点实验室,广东广州510650;中国科学院广州化学研究所,广东广州510650 中国科学院纤维素化学重点实验室,广东广州510650【正文语种】中文【中图分类】TQ028.8纳滤(nanofiltration, NF)是20世纪80年代中期发展起来的介于超滤和反渗透之间的、同属于压力驱动的新型膜分离技术,适宜于分离相对分子质量在200 Da 以上、分子大小约为1 nm的溶解组分,一般认为其截留相对分子质量在200~1 000之间,对NaCl的截留率一般为40%~90%,对二价或高价离子的截留率高达99%。
1、分配系数:指一定温度下,处于平衡状态时,组分在流动相中的浓度和在固定相中的浓度之比,以K表示。
分配系数反映了溶质在两相中的迁移能力及分离效能,是描述物质在两相中行为的重要物理化学特征参数。
分配系数与组分、流动相和固定相的热力学性质有关,也与温度、压力有关。
在不同的色谱分离机制中,K有不同的概念:吸附色谱法为吸附系数,离子交换色谱法为选择性系数(或称交换系数),凝胶色谱法为渗透参数。
但一般情况可用分配系数来表示。
2、絮凝:使水或液体中悬浮微粒集聚变大,或形成絮团,从而加快粒子的聚沉,达到固-液分离的目的,这一现象或操作称作絮凝。
通常絮凝的实施靠添加适当的絮凝剂,其作用是吸附微粒,在微粒间“架桥”,从而促进集聚。
胶乳工业中,絮凝是胶乳凝固的第一阶段,是一种不可逆的聚集。
絮凝剂通常为铵盐一类电解质或有吸附作用的胶质化学品。
3、层析分离:根据蛋白质的形态、大小和电荷的不同而设计的物理分离方法。
各种不同的层析方法都涉及共同的基本特点:有一个固定相和流动相,当蛋白质混合溶液(流动相)通过装有珠状或基质材料的管或柱(固定相)时,由于混合物中各组份在物理化学性质(如吸引力、溶解度、分子的形状与大小、分子的电荷性与亲和力)等方面的差异使各组分在两相间进行反复多次的分配而得以分开。
流动相的流动取决于引力和压力,而不需要电流。
用层析法可以纯化得到非变性的、天然状态的蛋白质。
层析的方法很多,其中凝胶过滤层析、离子交换层析、亲和层析等是目前最常用的层析方法。
4、吸附分离:是利用吸附剂对液体或气体中某一组分具有选择性吸附的能力,使其富集在吸附剂表面,再用适当的洗脱剂将其解吸达到分离纯化的过程。
5、分子印迹技术:将各种生物大分子从凝胶转移到一种固定基质上的过程称为分子印迹技术。
6、反渗析:是指在推动力作用下,溶剂(水)从高溶质浓度一侧到低溶质浓度一侧,克服渗透压作用的过程。
7、共沉淀分离是利用溶液中主沉淀物(称为载体)析出时将共存的某些微量组分载带下来而得到分离的方法。
亲水改性ZIF-8对聚酰胺纳滤膜性能的影响王亮1,2,谷康辉1,2,杨晨阳1,2,赵斌1,2(1.天津工业大学环境科学与工程学院,天津300387;2.天津工业大学省部共建分离膜与膜过程国家重点实验室,天津300387)摘要:为提高沸石咪唑酯骨架(ZIF-8)的水相分散性,以聚苯乙烯磺酸钠(PSS )对其改性处理,并将改性后的ZIF-8添加至含哌嗪的水溶液中,与正己烷中均苯三甲酰氯发生界面聚合反应,得到聚酰胺纳滤膜;对改性前后的纳米颗粒和纳滤膜进行TEM 、SEM 和红外光谱以及膜渗透性能的测试。
结果表明:经PSS 改性后,ZIF-8亲水性显著提高,聚酰胺(PA )层中ZIF-8颗粒分布更均匀,膜表面亲水性提高、荷负电性能增强;与改性前相比,改性后得到的纳米复合膜对Na 2SO 4的截留率由84.4%提高至96.3%,对染料酸性品红的截留率接近100%。
关键词:亲水改性;聚苯乙烯磺酸钠(PSS );沸石咪唑酸骨架(ZIF-8);纳米复合膜;聚酰胺纳滤膜中图分类号:TQ028.8文献标志码:A文章编号:员远苑员原园圆源载(圆园21)园4原园园18原06Effect of hydrophilic modified ZIF-8on properties of polyamidenanofiltration membraneWANG Liang 1,2,GU Kang-hui 1,2,YANG Chen-yang 1,2,ZHAO Bin 1,2(1.School of Environmental Science and Engineering ,Tiangong University ,Tianjin 300387,China ;2.State Key Labora原tory of Separation Membranes and Membrane Processes ,Tiangong University ,Tianjin 300387,China )Abstract :In order to improve the dispersion of ZIF-8in water phase袁the modified zeolitic imidazolate framework-8渊ZIF-8冤which was modified by polystyrene sulfonate 渊PSS冤was added to an aqueous solution containing piperazine袁and the modified ZIF-8was interfacial polymerized reaction with trimesoyl chloride in n-hexane袁and then the polyamide nanofiltration membrane was obtained.Through TEM袁SEM and infrared spectroscopy characterization of the nanoparticles and nanofiltration membrane before and after modification袁and the test of membrane perme鄄ability袁the results show that the hydrophilicity of ZIF -8is significantly improved after PSS modification袁and their distribution in the polyamide 渊PA冤layer was quite homogeneous.Both the hydrophilicity and negative charge of the membrane surface were pared with the TFN membrane with pristine ZIF-8袁the re鄄jection rate of Na 2SO 4by the TFN membrane with PSS modified ZIF-8increased from 83.4%to 96.3%袁and itsrejection rate of acid fuchsin was close to 100%.Keywords :hydrophilic modify曰polystyrene sulfonate渊PSS冤曰Zeolitic imidazolate framework-8渊ZIF-8冤曰nano compositemembrane曰polyamide nano-filtration membraneDOI :10.3969/j.issn.1671-024x.2021.04.003第40卷第4期圆园21年8月Vol.40No.4August 2021天津工业大学学报允韵哉砸晕粤蕴韵云栽陨粤晕GONG 哉晕陨灾耘砸杂陨栽再收稿日期:2020-12-30基金项目:国家自然科学基金资助项目(51978465);国家重点研发计划项目(2016YFC0400503);天津市自然科学基金资助项目(19JCZDJC39800)通信作者:王亮(1979—),男,博士,教授,主要研究方向为膜法水处理技术。
纳滤膜的改性研究进展作者:谢朝新孙一博刘杰来源:《当代化工》2020年第05期摘要:近年来,纳滤(NF)膜以其独特的离子选择性和较低的工作压力越来越广泛地应用于水处理领域中,但膜通量和截留率低、抗污染性能差等问题严重制约了纳滤膜的发展与应用。
膜改性可以改变纳滤膜的亲水性、表面电荷和光滑程度,提高膜性能,是当今研究重点。
本文对近几年来国内外纳滤膜改性进行了综述,将纳滤膜的改性效果归纳为提升渗透性能、分离性能和抗污染性能,并分析了涂覆法、接枝法和共混法三种改性方法的优点和局限性,最后对未来的改性研究趋势进行了展望。
关键词:纳滤膜;膜改性;渗透;分离;抗污染中图分类号:TQ 028.8 文献标识码: A 文章編号: 1671-0460(2020)05-0993-05Abstract: In recent years, nanofiltration (NF) membranes have been more and more widely used in the field of water treatment due to their unique ion selectivity and low working pressure. However, problems including low membrane flux, low rejection rate and poor anti-pollution performance have severely restricted the development and application of nanofiltration membrane. Membrane modification can change the hydrophilicity, surface charge and smoothness of nanofiltration membranes to improve membrane performance, which is the focus of current research. In this article, the modification of nanofiltration membranes at home and abroad in recent years was reviewed, the modification effect of nanofiltration membranes was summarized from the aspects of improving permeability, improving separation performance and improving anti-pollution performance, and the advantages and limitations of the three modification methods of coatingmethod, grafting method and blending method were analyzed. Finally, the future research trend of modification was prospected.Key words: Nanofiltration membrane; Membrane modification; Penetration; Separation; Anti-fouling纳滤膜起源于20世纪70年代,初期被人们称为“疏松性反渗透(RO)膜”和“致密型超滤(UF)膜”[1]。
XDLVO理论解析有机物和钙离子对纳滤膜生物污染的影响赵飞;许柯;任洪强;耿金菊;丁丽丽【摘要】为了揭示有机物和Ca2+浓度对纳滤膜生物污染的影响机制,选用铜绿假单胞菌(PA)为模式菌株,海藻酸钠(SA)、牛血清白蛋白(BSA)和腐殖酸(HA)为典型废水有机物,采用extended derj aguin-landau-verwey-overbeek(XDLVO)理论定量解析了不同进水条件下膜预处理和生物污染过程的界面相互作用.结果表明,Ca2+浓度为5mmol/L时,SA预处理后膜面亲水性最强,粘聚自由能高达42.96mJ/m2,与PA、SA的界面自由能最高,分别为45.85和39.64mJ/m2,抑制膜的生物污染.而Ca2+浓度为2mmol/L时,BSA预处理后膜面疏水性最强,粘聚自由能低至-40.32mJ/m2,与PA、BSA的界面自由能最低,分别为3.49和-26.36mJ/m2,促进膜的生物污染.所有污染过程中,范德华作用能差异较小,而静电作用能绝对值极小,贡献微弱,有机物和Ca2+浓度对膜生物污染的影响主要体现在对疏水作用能的影响.【期刊名称】《中国环境科学》【年(卷),期】2015(035)012【总页数】10页(P3602-3611)【关键词】XDLVO理论;有机预吸附;钙离子;纳滤膜;生物污染【作者】赵飞;许柯;任洪强;耿金菊;丁丽丽【作者单位】南京大学环境学院,污染控制与资源化研究国家重点实验室,江苏南京210023;南京大学环境学院,污染控制与资源化研究国家重点实验室,江苏南京210023;南京大学环境学院,污染控制与资源化研究国家重点实验室,江苏南京210023;南京大学环境学院,污染控制与资源化研究国家重点实验室,江苏南京210023;南京大学环境学院,污染控制与资源化研究国家重点实验室,江苏南京210023【正文语种】中文【中图分类】X703膜生物污染是阻碍膜技术在废水处理和回用中广泛应用的最大障碍,尤其是高浓度有机废水回用处理中,前端生物处理工艺出水中的有机物和微生物造成的生物污染,会导致膜分离性能降低、出水水质恶化、膜使用寿命缩短、经济成本增加[1-3].膜生物污染是一个复杂且难以控制的过程,受很多因素的影响[4-7].根据XDLVO理论,膜污染的实质在于污染物与膜表面之间的界面相互作用,而污染物和膜表面的物化特性(亲/疏水性、荷电性、粗糙度等)决定了膜-污染物和污染物-污染物之间的界面作用能,包括范德华作用能、疏水相互作用能和静电作用能[8-10].当进水中存在的有机物吸附到膜面,会在膜面形成一层薄的有机污染层,改变膜表面特性,进而改变膜-污染物之间的相互作用,影响污染物的粘附和膜生物污染[11-15].进水中存在的Ca2+对有机物和微生物在膜面的粘附和污染均具有重要影响.海藻酸钠(SA)、牛血清白蛋白(BSA)和腐殖酸(HA)作为废水中多糖、蛋白质和腐殖酸的代表性物质,其分子结构中含有大量的-COOH和-OH官能团,其荷电性和官能团结合能力受溶液中Ca2+浓度的影响,导致不同的膜污染[16-22].对于微生物,一方面,Ca2+会影响微生物的生理学特性,如细胞活性和EPS的产量等[23-24];另一方面,Ca2+会与微生物及其EPS表面的特异性官能团结合,改变微生物的表面特性,进而改变膜-微生物和微生物-微生物的相互作用,改变生物膜的空间结构和膜的生物污染[4,25-26].目前关于废水中不同有机物和Ca2+浓度对膜生物污染影响的研究甚少,针对有机物、Ca2+和微生物三者共存的膜生物污染体系的研究更是缺乏.本研究目的在于运用XDLVO理论定量解析不同有机物和Ca2+浓度下纳滤膜预处理和生物污染中的界面相互作用,评价不同界面相互作用对膜生物污染的贡献以及与膜生物污染行为之间的关系,揭示不同有机物和Ca2+浓度对膜生物污染影响的主控机制.1.1 实验材料和装置实验选用NFW纳滤膜(Synder,美国)作为研究对象,铜绿假单胞菌(PA)和SA、BSA、HA分别作为模式菌株和模式有机物,其来源和废水组成与Zhao等[27]的研究相同.有机物浓度为60mg/L,Ca2+浓度为0~8mmol/L,添加NaCl调节溶液的总离子强度为140mmol/L,生物污染进水中微生物浓度为108CFU/mL.所用错流式膜过滤装置如图1所示,3个膜槽并联运行,使用恒温装置实时监测并控制进水温度,通过控制4个阀门以控制进水流量和压力.采用在线电子天平每1min测定出水的累积质量,通过3组平行实验结果计算得出实时渗透通量.1.2 纳滤膜生物污染实验膜生物污染实验分3个阶段,分别为基线平衡阶段(1h)、有机物粘附到膜面阶段(预处理阶段,4h)、生物污染阶段(19h).实验条件为:压力120psi,温度25℃,跨膜流速2.5cm/s.基线平衡的目的是为了使纯水通量达到稳定,以校正洁净膜面的纯水通量.有机物预处理是为了模拟进水中前端生物处理残余的有机成分在膜面的预吸附过程[28].为了加速生物污染过程,向系统中接种菌种时投加少量营养物质和培养基,以维持微生物的生长.详细步骤见Zhao等[27]的研究,采用相对通量(Jt/J0)的下降和生物污染后膜面的生物量(ATP)来表征膜生物污染的程度.1.3 XDLVO理论根据XDLVO理论,水溶液环境中膜-污染物界面相互作用能为范德华作用能(LW)、疏水相互作用能(AB)与静电作用能(EL)之和,即式中:下标f、m、l分别指污染物、膜和水溶液.其中,LW和AB作用能可通过膜与污染物的表面张力分项来计算:而EL作用能可表示为:式中:γLW、γ-、γ+分别指范德华、电子供体、电子受体表面张力分项;ε0和εr 分别为真空介电常数和水溶液相对介电常数;k为德拜常数倒数;ζm和ζf为膜面和污染物的Zeta电位;y0为接触时表面间距.表面张力参数通过修正的扩展杨氏方程计算:式中:θ为不同测试试剂于样品表面的接触角,下标S、L分别表示固体表面和测试试剂.r(=1+SAD)为Wenzel粗糙度面积比率[5],即固体表面的实际表面积除以在平面上的投影面积).SAD为表面积差值,通过原子力显微镜(AFM)测定[9].1.4 分析方法膜面形貌采用扫描电子显微镜SEM(S-3400N 11,Hitachi,日本)和AFM (Multi Mode 8,Bruker,美国)表征.膜面与污染物的接触角采用接触角测定仪(DropMaster 300,日本)测定,其中污染物的测定采用滤膜法[8],以去离子水(极性)、乙二醇(极性)、二碘甲烷(非极性)为测试试剂.膜面Zeta电位通过固体表面Zeta电位仪(SurPASS,Anton Paar,奥地利)测定,溶液Zeta 电位采用高灵敏度Zeta电位仪(ZetaPALS,美国)测定.2.1 纳滤膜及模式污染物的表面热力学性质表1所示为NFW膜、PA和三种有机物的表面热力学性质.NFW膜的去离子水接触角(θDI)最大,表面不易被水润湿,而PA的θDI最小,水的润湿性最好.三种有机物中,表面水的润湿性强弱顺序为:BSA<HA<SA.乙二醇接触角(θEG)的大小顺序为:BSA>NFW膜>PA>SA>HA,而二碘甲烷接触角(θDM)的大小顺序为:PA>SA>BSA>HA>NFW膜.NFW膜的SAD值较低,表面粗糙度较小.膜和4种污染物表面均带负电荷,如图2所示,污染物表面Zeta电位随着Ca2+浓度增加逐渐上升,且有机物表面负电荷的含量高于PA负电荷含量.溶液中Ca2+的存在会对污染物表面负电荷产生屏蔽和中和作用,且Ca2+会与污染物表面的-COOH等官能团结合发生络合反应,因此随着Ca2+浓度的增加微生物和有机物表面的负电荷密度逐渐减小.范德华表面张力分项γLW值由非极性的二碘甲烷接触角决定,θDM越大,γLW越小.纳滤膜和污染物的电子供体表面张力γ-明显大于电子受体表面张力γ+,呈现出明显的电子供体特征,尤其是BSA分子,其γ+值极低,导致了极低的γAB 值.粘聚自由能ΔGcoh是指某一固体表面(或物质)在特定溶剂环境中的热力学稳定性或发生自凝聚的趋势[5].在水溶液中,若ΔGcoh为负值表明该表面(或物质)热力学稳定性差,疏水性强,水分子不容易在其表面上附着,容易发生自凝聚.相反,若ΔGcoh为正值表明该表面(或物质)在水溶液中溶解性较好,亲水性强,容易被水分子包围,不易发生自凝聚.从表1可以看出,NFW膜与BSA具有疏水性特征,而PA和SA具有强的亲水性,HA具有弱的亲水性.表2所示为NFW膜与PA、有机物之间的各项界面自由能.在膜污染初始阶段,污染物的吸附和附着主要受洁净膜面和污染物之间的界面作用控制.界面自由能值为负说明二者相互吸引,值越小吸引作用越强烈,造成的膜污染越严重;其值为正说明二者相互排斥,值越大排斥作用越强烈,造成的膜污染越轻[5].对于不同污染物,范德华自由能Δ差异较小且均为负值,说明NFW膜与污染物之间的LW作用力为吸引力,促进膜污染.疏水自由能Δ差异明显,疏水性的NFW膜与亲水性的PA、SA之间的AB作用力为排斥力,阻碍污染物的粘附.而疏水性的NFW膜与弱亲水性的HA之间为吸引力,促进腐殖酸的污染.BSA疏水性最强,与NFW膜的AB作用能最小,最有利于污染物的粘附.相比之下,静电自由能Δ远小于Δ和Δ,均为排斥作用.其中,由于HA分子表面负电荷密度最高,膜-HA之间的EL 作用能最大.总界面自由能ΔGadh的结果表明,洁净膜面与PA之间为排斥力作用,而与3种有机物之间均为吸引力作用.BSA与膜面的ΔGadh值最低,最有利于BSA预处理过程的进行,HA次之,SA最高.然而目前大多数研究[27,29-31]认为,SA和HA造成的膜污染比BSA膜污染严重.这是由于XDLVO理论只能量化污染物与膜面的疏水相互作用、静电作用等,不能反映电荷屏蔽、电性中和和络合反应等作用的影响.并且,膜污染初始粘附阶段很短暂,一旦进水中存在的有机物吸附到膜面,便会改变膜面的热力学特征,从而改变污染物-膜面之间的界面作用能.2.2 不同钙离子浓度下有机物对膜生物污染的影响2.2.1 有机物预处理对膜面形貌的影响有机物预处理后膜面的形貌采用SEM和AFM表征,预处理膜面的SEM图谱如图3所示.从图3中可以看出,Ca2+不存在和Ca2+浓度为8mmol/L时,3种有机物预处理后膜面的形貌存在明显差异.当无Ca2+存在时,SA分子与单价Na+相互作用,形成较为疏松的物理凝胶层,膜面可观察到微小的簇状体.当Ca2+存在时,SA分子会与Ca2+发生螯合作用,在膜面形成一层完整、致密的交联网状凝胶层,致使预处理后的膜面非常光滑[18,32].相比之下,BSA和HA预处理后膜面的形貌较复杂,粗糙度较高.Ca2+不存在时BSA分子表面负电荷密度较高,由于分子解链作用以及较强的静电排斥作用,污染层呈现出较多孔疏松的结构[21,33].当Ca2+存在时,Ca2+会和BSA分子的-COOH进行架桥连接,并且较高浓度的Ca2+吸附到膜面,可以降低BSA分子之间以及BSA与膜面之间的静电排斥力,形成较为致密的污染层.同理,Ca2+会与HA分子的-COOH特异性结合,改变HA分子的表面电荷以及HA分子之间的静电作用力,致使污染层更为紧密[22].2.2.2 有机物预处理过程界面作用能分析(1)预处理后膜面的热力学性质不同Ca2+浓度下3种有机物预处理后膜面的热力学性质如表3所示.SA预处理后,膜面θDI和θEG下降,θDM增加,导致γLW值和γ+值下降,γ-值增加,γTOT 随Ca2+浓度的变化较小.膜面SAD值较低,当Ca2+浓度为0和1mmol/L时,其值略大于洁净膜面和其它Ca2+浓度下SA预处理膜面的值.SAD值越大,Wenzel粗糙度面积比率越大,越有利于污染物在膜面的附着,形成更严重的污染.其原因主要有两方面,一方面是由于污染物更容易沉积在膜表面的凹陷处而不易被水力作用去除,另一方面是由于增加的膜表面积为污染物提供了更多的接触机会[28,34].预处理后膜面ΔGcoh显著上升(74.70~84.46mJ/m2),随着Ca2+浓度的增加先上升后下降,在5mmol/L处取得最大值,膜面亲水性极强,热力学稳定性好.BSA预处理后,Ca2+浓度为2mmol/L时θDI较大,导致了较高的γ+值和较低的γ-值,但γTOT随Ca2+浓度的变化却不大.SAD值在Ca2+浓度为0到2mmol/L时较高,当Ca2+浓度增加到8mmol/L时,SAD值减小,其数值远大于SA预处理膜面的值.预处理后膜面的ΔGcoh值上升,但仍为负值,说明膜面仍为疏水性,尤其是当Ca2+浓度为2mmol/L时,膜面疏水性几乎没有变化,热力学稳定性差.HA预处理后,θDI略有下降,其值介于SA预处理和BSA预处理膜面之间,θEG 也略有下降,而θDM上升.γLW和γAB随Ca2+浓度的变化没有显著规律,γTOT随Ca2+浓度的变化很小.SAD值介于BSA预处理和SA预处理膜面之间,随Ca2+浓度的变化也很小.ΔGcoh为正,绝对值较低,说明HA预处理膜面呈弱亲水性,热稳定性较好.(2)预处理后膜-污染物的界面作用能有机物预处理后膜面与PA、相应有机物之间的界面自由能如表4所示.膜-PA界面自由能代表生物污染初期膜面与微生物之间的相互作用,而膜-有机物界面自由能一方面代表预处理后期膜面与对应有机物之间的相互作用,即已经吸附到膜面的有机物分子和趋近于膜面的有机物分子之间的相互作用,反映了有机物预处理粘聚阶段的界面相互作用机制,另一方面也反映了生物污染初期膜面与进水中共存的有机物之间的相互作用.从表4中可以看出,SA预处理后膜-PA和膜-SA的界面作用能变化较为相似.Δ均为负值,吸引作用较弱,且受Ca2+浓度的影响很小;Δ为正值,排斥作用极强,随着Ca2+浓度增加先增加后降低;Δ在低Ca2+浓度时为排斥作用,而当Ca2+浓度为5mmol/L和8mmol/L时为吸引作用.3种作用能中,Δ绝对值最大,Δ次之,Δ最小,ΔGadh随Ca2+浓度的变化趋势与Δ一致,这说明不同Ca2+浓度下SA预处理对膜-污染物界面相互作用的影响主要是通过改变AB作用能实现的.ΔGadh数值较大,膜面与PA、SA分子之间排斥作用较强,该结果表明预处理后期SA分子的粘聚作用较缓慢,而在生物污染初期,膜-PA之间的排斥作用强于膜-SA之间的排斥作用.因此,SA预处理和SA的共存均不利于微生物的粘附,抑制膜的生物污染.BSA预处理后期,膜-BSA之间的LW作用能略有上升,受Ca2+浓度的影响很小;AB作用能上升(Ca2+浓度为2mmol/L时除外),EL作用能在总界面能中贡献仍然最微弱.因此,在预处理后期,除Ca2+浓度为2mmol/L时以外,膜-BSA的ΔGadh绝对值均下降,吸引作用减弱.而Ca2+浓度为2mmol/L时膜-BSA之间的吸引作用最强,有利于BSA分子的粘聚.相比之下,膜-PA的LW和EL作用能与膜-BSA相差较小,而AB作用能远高于膜-BSA的值,导致膜面与PA之间的总界面能较高,表现为排斥作用,PA难于粘附到膜面,且受共存BSA分子的竞争影响.但与SA预处理相比,BSA预处理膜面为疏水性,膜-PA之间的排斥作用相对较小,尤其是Ca2+浓度为2mmol/L时,ΔGadh较低,促进膜的生物污染.HA预处理后期,膜面与HA分子之间的Δ和Δ受Ca2+浓度的影响很小,而Δ随着Ca2+浓度增加逐渐降低,其绝对值仍远小于Δ和Δ的绝对值.ΔGadh值介于SA预处理和BSA预处理之间,表现为弱的排斥作用.相比之下,膜-PA之间的Δ略大于膜-HA,且Δ为较大的正值而Δ很小,因此ΔGadh也为较大的正值,随Ca2+浓度的变化很小,排斥作用介于SA和BSA预处理之间.因此,在生物污染的初始阶段,HA预处理不利于微生物的粘附,且HA的存在会和PA竞争,阻碍PA在膜面的粘附,抑制膜的生物污染.2.2.3 生物污染过程界面作用能分析(1)生物污染后膜面的热力学性质不同有机物和Ca2+浓度下生物污染后膜面的热力学参数如表5所示.PA-SA生物污染后,Ca2+浓度为0~5mmol/L时,θDI上升,而Ca2+浓度为8mmol/L时,θDI下降.生物污染前后θEG和θDM的变化较小,无明显的规律性,当Ca2+存在时其数值较小.膜面SAD值较低,各项张力参数改变也较小.Ca2+浓度为0~5mmol/L 时,ΔGcoh降低,而Ca2+浓度为8mmol/L时ΔGcoh几乎没有变化.ΔGcoh值随Ca2+浓度的增加先下降后上升,在2mmol/L时取得最小值,说明该浓度点生物污染膜面的亲水性较弱,稳定性较差.PA-BSA生物污染后,膜面的θDI随着Ca2+浓度增加先下降后上升,2mmol/L 时其值最小,从而导致其γ+值最小,γ-值最大,γAB和γTOT值也最小,而θEG 和θDM随Ca2+浓度的变化无明显规律.生物污染后SAD值显著下降,ΔG coh 显著上升,由负值变为正值,尤其是当Ca2+浓度为2mmol/L时,ΔGcoh值的增加高达95.4mJ/m2,膜面亲水性极强.这是由于该Ca2+浓度下,生物污染初期膜面的疏水性较强,膜面与PA的排斥作用较小,大量亲水性微生物的沉积导致了膜面亲水性的急剧上升.PA-HA生物污染后,无Ca2+存在时,膜面θDI较高,ΔGcoh较低,膜面呈现弱亲水性.当Ca2+存在时,ΔGcoh值较高,膜面亲水性增强.与生物污染前相比,SAD值略有下降,随Ca2+浓度的变化没有明显规律性.膜面各项张力参数随Ca2+浓度的变化也没有显著规律.(2)生物污染后膜-污染物的界面作用能生物污染后膜面与PA、共存有机物之间的界面自由能如表6所示,该结果代表生物污染一定阶段之后膜面和微生物、共存有机物之间的相互作用.PA-SA生物污染后期,膜-PA、膜-SA的Δ和Δ均随着Ca2+浓度增加先下降后上升,而Δ随着Ca2+浓度增加逐渐减小,数值很小.因此总界面能ΔGadh随着Ca2+浓度增加表现为先下降后上升,与生物污染初期的变化趋势相反. ΔGadh数值较高,说明PA-SA生物污染后期膜面与污染物之间的排斥作用虽然有所下降,但PA、SA仍难于粘附到膜面形成生物污染.PA-BSA生物污染后期,膜面与PA、BSA之间的界面作用能显著上升,当Ca2+浓度为2mmol/L时,膜-PA和膜-BSA的ΔGadh分别上升了47.6mJ/m2和49.5mJ/m2.与生物污染初期相比,Δ改变较小,而Δ的绝对值比Δ和Δ低3~4个数量级,ΔGadh的增加主要归因于Δ的增加.膜-PA和膜-BSA之间的ΔGadh 随着Ca2+浓度增加先上升后下降,与生物污染初期的变化趋势相反,即初期生物污染越严重,后期生物污染越缓慢.与PA-SA生物污染后期的界面作用能相比,膜面与PA的界面排斥作用均较高,抑制微生物的粘附.但膜-BSA的排斥能远小于膜-SA,促进BSA分子的粘附,因此PA-BSA后期污染仍高于PA-SA.PA-HA生物污染后期,不添加Ca2+时,膜-PA和膜-HA之间的ΔGadh略有降低,促进PA和HA的粘附,导致后期生物污染加重.而Ca2+存在时,膜-PA和膜-HA之间的ΔGadh均上升,随Ca2+浓度的变化很小.膜-HA之间的排斥作用小于膜-PA,HA更容易粘附到膜面,因此PA-HA生物污染过程中HA的共存会阻碍微生物的粘附,抑制膜的生物污染.2.3 不同有机物和钙离子浓度下膜生物污染行为分析不同有机物和Ca2+浓度下,对比分析膜预处理和生物污染过程中界面作用能的计算结果与膜污染情况,包括膜通量的变化、生物污染膜面的生物量和膜表面特性等,详见Zhao等[27]的研究(图1和2为膜通量变化,图3为生物量变化).有机物预处理初期,NFW膜与3种有机物之间的界面作用均为吸引力作用,促进有机物在膜面的粘附过程.然而除了XDLVO作用力,阳离子的电荷屏蔽、电性中和和络合反应等,均决定着有机物在膜面的污染行为,尤其是当Ca2+存在时,Ca2+在有机物分子之间以及有机物与膜面之间的架桥作用中起着关键作用.SA与HA分子的-COOH官能团密度较高[11],易与Ca2+相结合,分别在膜面形成致密的凝胶层和厚实的滤饼层,增加有机物的沉积量,导致膜通量急剧下降.而BSA分子的-COOH官能团密度较低,膜面有机沉积量相对较小,导致的膜通量下降值较小. 有机物预处理后期,膜-有机物的界面作用能增加,膜通量的下降减缓,尤其是在SA预处理过程中,膜面与SA分子的排斥作用最强,膜通量随时间的变化非常小.预处理后期膜面与BSA之间的吸引作用随着Ca2+浓度增加先增加后降低,Ca2+浓度为2mmol/L时吸引作用最强,有利于BSA的粘聚.而BSA与Ca2+的架桥作用随着Ca2+浓度增加而增加,二者的综合作用导致了BSA的沉积量不是随Ca2+浓度的增加逐渐上升,而是当Ca2+浓度大于2mmol/L后,沉积量相对稳定(Zhao等[27]表2).生物污染初期,SA预处理膜面与PA、SA之间的排斥作用极强,阻碍污染物的粘附,导致膜面生物量最低,以及膜通量的下降值最小,随着Ca2+浓度的增加膜生物污染先下降后上升,与界面作用能的理论计算结果相一致.BSA预处理膜面与PA 之间的排斥作用远小于SA预处理膜面与PA的排斥作用,因此PA-BSA生物污染导致了较高的膜面生物量和较大的渗透通量下降值.随着Ca2+浓度的增加,PA-BSA生物污染膜面的ATP值先上升后下降,Ca2+浓度为2mmol/L时取得最大值,该结果与此浓度下最低的界面作用能相一致.而由于该Ca2+浓度下生物膜表面的多孔性较好、表面积(或SAD值)较高,此生物膜结构不仅会促进污染物的沉积,还会增强渗滤液的渗透作用[35],因此相对通量的下降随Ca2+浓度的变化较小.HA预处理膜面与污染物之间的排斥能介于SA预处理膜面和BSA预处理膜面之间,因此膜面生物沉积量和膜通量下降情况也介于二者之间.生物污染后期,由于PA-SA生物污染膜面与污染物的排斥作用仍然较强,污染速率较为缓慢;PA-BSA生物污染后,膜面与污染物的界面作用能上升,但膜-BSA 之间的排斥作用仍远小于PA-SA污染膜面与污染物之间的排斥作用,因此膜污染速率仍大于PA-SA生物污染;PA-HA生物污染后期,Ca2+不存在时膜-污染物界面排斥作用较小,导致膜面生物量较高且膜通量下降值较大,而Ca2+存在时膜-污染物界面排斥作用较大,膜污染较轻且受Ca2+浓度的影响不明显.3.1 钙离子对有机物预处理过程的影响主要是通过离子架桥等作用来实现,XDLVO作用力的影响较小.3.2 不同钙离子浓度下有机物预处理对膜面与污染物界面作用能的影响主要体现在对AB作用能的影响,LW作用能差异不明显,而EL作用能在总作用能中贡献极小.3.3 三种有机物粘附到膜面均会降低膜面的疏水性,阻碍微生物的粘附,且有机物的共存会与微生物产生竞争作用,尤其是钙离子存在时.SA的预处理和共存对膜生物污染的抑制作用最强,HA次之,而BSA预处理对膜生物污染的影响较小,Ca2+浓度为2mmol/L时促进膜生物污染.3.4 不同有机物和钙离子浓度下膜生物污染初始阶段和后期的膜污染情况与界面自由能的理论结果有较好的关联性,说明XDLVO理论应用于不同进水条件下膜生物污染行为的分析具有较好的有效性.【相关文献】[1]Ivnitsky H, Katz I, Minz D, et al. Characterization of membrane biofouling in nanofiltration processes of wastewater treatment [J]. Desalination, 2005,185:255-268.[2]Ivnitsky H, Minz D, Kautsky L, et al. Biofouling formation and modeling in nanofiltration membranes applied to wastewater treatment [J]. Journal of Membrane Science, 2010,360:165-173.[3]Yu C, Wu J, Contreras A E, et al. Control of nanofiltration membrane biofouling by Pseudomonas aeruginosa using d-tyrosine [J]. Journal of Membrane Science, 2012,423-424:487-494.[4]Flemming H C. Biofouling in water systems--cases, causes and countermeasures [J]. Appl Microbiol Biotechnol, 2002,59:629-640.[5]Subramani A, Hoek E M V. Direct observation of initial microbial deposition onto reverse osmosis and nanofiltration membranes [J]. Journal of Membrane Science,2008,319:111-125.[6]Jeong S, Kim S J, Kim L H, et al. Foulant analysis of a reverse osmosis membrane used pretreated seawater [J]. Journal of Membrane Science, 2013,428:434-444. [7]Herzberg M, Kang S, Elimelech M. Role of Extracellular Polymeric Substances (EPS) in Biofouling of Reverse Osmosis Membranes [J]. Environmental Science and Technology, 2009,43:4393-4398.[8]Subramani A, Huang X F, Hoek E M V. Direct observation of bacterial deposition onto clean and organic-fouled polyamide membranes [J]. Journal of Colloid and Interface Science, 2009,336:13-20.[9]Xiao K, Wang X, Huang X, et al. Combined effect of membrane and foulant hydrophobicity and surface charge on adsorptive fouling during microfiltration [J]. Journal of Membrane Science,2011,373:140-151.[10]Ding Y, Tian Y, Li Z, et al. Interaction energy evaluation of the role of solution chemistry and organic foulant composition on polysaccharide fouling of microfiltration membrane bioreactors[J]. Chemical Engineering Science, 2013,104:1028-1035. [11]Liu Y, Mi B. Effects of organic macromolecular conditioning on gypsum scaling of forward osmosis membranes [J]. Journal of Membrane Science, 2014,450:153-161. [12]Matin A, Khan Z, Zaidi S M J, et al. Biofouling in reverse osmosis membranesfor seawater desalination: Phenomena and prevention [J]. Desalination, 2011,281:1-16.[13]Herzberg M, Rezene T Z, Ziemba C, et al. Impact of higher alginate expression on deposition of Pseudomonas aeruginosa in radial stagnation point flow and reverse osmosis systems [J]. Environmental Science and Technology, 2009,43:7376-7383. [14]Hwang G, Kang S, El-Din M G, et al. Impact of conditioning films on the initial。
有机配体表面改性NiCo2O4纳米线用于水全分解孙轲;赵永青;殷杰;靳晶;刘翰文;席聘贤【期刊名称】《物理化学学报》【年(卷),期】2022(38)6【摘要】由于水分解在绿色能源领域的重要作用,能够在碱性介质中进行析氢(HER)和析氧(OER)反应的双功能电催化剂具有重要的应用价值。
本文报道一种具有丰富缺陷的表面改性NiCo_(2)O_(4)纳米线(NWs),在碱性介质中作为一种高效的整体水裂解电催化剂。
X射线光电子能谱(XPS)分析表明,Co^(2+)/Co^(3+)比值的增加是表面修饰NiCo_(2)O_(4)纳米线具有优异双功能电催化性能的重要原因。
结果表明,在1.0 mol·L^(−1)KOH溶液中,通过有机配体主导的表面改性,优化后的NiCo_(2)O_(4)纳米线在电流密度达到10 mA·cm^(−2)时的HER过电位仅为83 mV,OER过电位仅为280 mV。
更重要的是,有机配体表面改性后的NiCo_(2)O_(4)纳米线表现出了出色的水分解性能,在2.1 V电压下达到了100 mA·cm^(−2)的电流密度。
目前的工作凸显了提高NiCo_(2)O_(4)NWs尖晶石结构中Co^(2+)含量对促进整体水裂解的重要性。
【总页数】8页(P130-137)【作者】孙轲;赵永青;殷杰;靳晶;刘翰文;席聘贤【作者单位】功能有机分子化学国家重点实验室【正文语种】中文【中图分类】O646【相关文献】1.亲水改性纳滤膜去除小分子可溶性有机物的研究2.可见光“全”分解水的类纳光电化学(PEC)电池模型3.交流和纳秒脉冲Ar/H_(2)O介质阻挡放电聚丙烯材料表面亲水改性对比研究4.含蒽环氮杂有机配体光催化分解水的机理研究5.Ni_(3)S_(2)/NiV-LDH纳米线异质结构用于高效电催化全解水反应因版权原因,仅展示原文概要,查看原文内容请购买。
聚酰胺纳滤膜及其在海水淡化中的应用近年来,人类社会面临着日益严重的淡水资源短缺问题。
在这种情况下,海水淡化作为一种重要的解决方案被广泛应用。
而在海水淡化中,聚酰胺纳滤膜作为一种重要的膜技术,其应用也越来越受到关注。
一、聚酰胺纳滤膜的性能特点聚酰胺纳滤膜是由聚酰胺等高分子材料制成的,可以用于分离和浓缩溶液中的分子和离子。
其性能特点如下:1.高分子材料的优异性:聚酰胺具有化学稳定性、高温耐性、耐腐蚀性、抗污染性等优异性能。
2.高捕集效率:聚酰胺纳滤膜通过分子筛分离出小于0.01微米的微粒和离子,能够高效地去除海水中的各种杂质和有害物质。
3.长寿命:聚酰胺纳滤膜具有较长的使用寿命,在使用过程中抗压强度、机械强度和稳定性较高。
二、聚酰胺纳滤膜在海水淡化中的应用聚酰胺纳滤膜在海水淡化中应用广泛,其应用主要涉及两大领域:1.海水淡化预处理在海水淡化过程中,聚酰胺纳滤膜作为其预处理膜,主要用于去除海水中的悬浮物、有机物和生物物,减少海水淡化过程中膜的污染。
其优点在于聚酰胺纳滤膜对海水中的浮游菌、微生物和粘性有机物具有良好的捕集效果,可使进一步的淡化过程更加稳定和可靠。
2.海水淡化反渗透在海水淡化反渗透过程中,聚酰胺纳滤膜用于分离出水中的无机盐、重金属和病原体。
其机制在于聚酰胺纳滤膜是一种亲水性材料,对水分子具有较好的捕集能力,同时对大分子离子和物质的筛选性较高,可以限制有害物质的通过并使水净化效果更佳。
同时,聚酰胺纳滤膜在制备反渗透膜中也有重要的应用。
其加入可以提高反渗透膜的稳定性和分离效率,为海水淡化提供更加高效和优质的技术支持。
三、聚酰胺纳滤膜未来的发展方向尽管聚酰胺纳滤膜在海水淡化领域已经被广泛应用,但其未来的发展仍然面临着一些挑战和机遇。
1.技术提升:未来的聚酰胺纳滤膜技术需要更强的抗腐蚀能力、更高的捕集效率、更高的分离效率和较长的使用寿命等方面提升。
2.成本降低:聚酰胺纳滤膜制备成本较高,需要进一步降低材料成本、工艺改进和设备升级等方面下功夫。
第41卷第1期2021年2月膜科学与技术MEMBRANE SCIENCE AND TECHNOLOGYVol41No1Feb&2021纳滤去除水中新兴污染物的研究进展赵长伟$,唐文晶,贾文娟,李研,赫东煜,史哲民,宋瑞平(中国农业大学资源与环境学院农田土壤防控与修复北京市重点实验室,北京100193)摘要:纳滤膜技术由于自身优势特O,是水体净化处理的一种行之有效的方法.水中新兴污染物不断被检出,正日益受到广泛关注.本文总结了纳滤膜技术去除水中新兴污染物的相关研究进展,研究表明,纳滤膜可有效去除水中药‘和个人护理‘(PPCPs)、全氟化合物、内分泌干扰物质(EDCs)、微囊藻毒素等典型新兴污染物,去除率一般都在90%以上,在水中新兴污染物去除方面具有很好的效果,并探讨了未来纳滤膜技术应重O开展的研究工作和应用前景.关键词:纳滤膜;新兴污染物;水处理;综述中图分类号:TQ028:X703文献标志码:A文章编号:1007-89?4(?0?1)01-0144-08 doi:1016159/ki.issnl007-89?4.202101019资源匮乏、能源短缺与环境污染问题已经成为制约全球经济可持续发展的三大“瓶颈”,其中解决水资源匮乏、水污染及饮用水安全问题尤为紧迫•如何有效保障水质安全是事关民生的热点问题,这直接关系到人民的身体健康•然而,随着科学技术的发展,水中越来越多的新兴污染物被检测出来'1—3(,主要包括内分泌干扰物质(EDCs)、药品和个人护理品(PPCPs)、全氟化合物、微囊藻毒素和抗生素等.这些污染物在水环境中普遍存在,其质量分数通常保持在mg/L到&g/L的数量级之间,化学结构十分复杂,难于被生物降解,对生物体有慢性累积的毒性,很难通过传统水处理技术得到有效去除⑷•因此,水中新兴污染物的有效去除问题亟待解决•当前对新兴污染物的处理技术主要包括吸附技术、生物处理技术、高级氧化技术、膜分离技术等囚•一些吸附剂经改性后可对水中新兴污染物产生有效去除,例如活性炭、生物炭、碳纳米管、粘土矿物,然而吸附剂的可持续利用仍有待进一步研究;生物修复技术可以有效降解那些易降解的新兴污染物,然而对于那些难降解的新兴污染物,还未有关于生物技术对其实现有效去除的报导;高级氧化技术可有效破坏新兴污染物的结构,然而对于其副产物尚未得到详细阐明#膜分离技术具有分离效率高、去除污染物选择性强、环保、操作简便等突出优势,在水质净化领域起着至关重要的作用,被认为是最有发展潜力的水处理技术之一'"6(.前期文献报导对新兴污染物去除效果较好'7(.本文主要从水中新兴污染物去除的角度,探讨纳滤膜技术在水中新兴污染物净化研究方面的进展情况.1纳滤膜介绍纳滤(Namofiltratiom,NF)作为膜分离技术中的一种,是近些年来发展起来的一项新型的功能膜分离技术,是介于超滤(UF)和反渗透(RO)之间的由压力驱动的膜分离过程'"10(.因其选择分离效率高、通量大、运行压力低等特点,正逐步取代一些污染严重、能耗高、工艺繁琐的传统分离技术•由于大期:2020-07-16#期:2020-09-19基金项目:国家自然科学基金资助项目(21878323);中国农业大学人才资助项目(2020TC010)第一作者简介:赵长伟(1976-),女,辽宁人,教授,博导,主要从事纳滤膜技术和水处理技术研究,$通讯作者,E-mail:1804762788@引用本文:赵长伟,唐文晶,贾文娟,等.纳滤去除水中新兴污染物的研究进展[J(.膜科学与技术,2021,41(1):144—151. Citation:Zhao C W,Tang W J,Jia W J,tal.Applied research progress of nanofiltration membrane technology for removing the emerging pollutants in water[J(.Membrane Science and Technology(Chinese),2021,41(1):144一151.第1期赵长伟等:纳滤去除水中新兴污染物的研究进展•145-部分纳滤膜的膜表面存在带电基团,因此纳滤膜对物质的分离主要是基于电荷效应和筛分效应•筛分效应主要选择性截留不同分子量的物质,可以将不同分子量的物质进行选择性分离.电荷效应是指膜所带电荷与溶液中分布的离子所带电荷之间存在的静电作用•凭借这两种作用机制,纳滤膜技术目前已经被广泛应用在废水处理、脱盐、新兴污染物的去除等领域'1—15(.2研究进展近年来,随着科学技术的发展和进步,水中新兴污染物不断被检出,尽管这类物质浓度很低,但其潜在的生态毒性却不容忽视,且常规的水处理工艺无法对其有效去除,因此,新兴污染物最终可能进入人体,对人体安全造成威胁•对水中新兴污染物如何有效去除已成为水处理领域研究的焦点之一,国内外采用纳滤膜技术在这方面开展了大量研究工作.2.1纳滤去除水中药品和个人护理品的研究药品和个人护理品(PPCPs)是一类“新兴”环境污染物质,不同于持久性有机污染物,PPCPs的极性强、易溶于水、不易挥发,会通过水相传递和食物链扩散.由于其可以在水中稳定存在,致使去除PPCPs的难度比较大,而纳滤膜处理技术被研究发现是去除PPCPs的一种有效的方法,相对于传统去除工艺,纳滤膜处理技术由于电荷效应和筛分效应对相对分子质量在150〜1000的PPCPs截留效果较黄丹等'6(通过实验分别从污染物的纳滤过程、溶液性质以及预接触时间等因素探讨纳滤膜去除典型常见的PPCPs污染物布洛芬(IBU)的性能.纳滤膜对于IBU的去除率受阳离子的电荷数影响比较大,电荷数越多,压缩膜面双电层强度越大,使膜孔变小,一方面使膜通量降低,另一方面使膜更容易截留IBU分子.pH也会影响纳滤膜对于IBU的去除.由于IBU解离后带负电,因此其与膜面负电荷的互斥作用也就更强,从而使得布洛芬溶液的纳滤过程持续保持较高的截留性能,并且布洛芬的水溶液在纳滤过程中的通量随着pH值的增大而增大;加入天然有机物(NOM)后,膜通量明显降低,膜表面对IBU的吸附量降低;预接触时间的增大,对IBU的纳滤过程起始通量影响较大,膜表面对IBU 的累积吸附量变化不大•刘蕊等也以常见的IBU为例,主要考察了纳滤膜的吸附作用和溶液中离子种类、离子强度对纳滤膜去除微量有机污染物IBU 的效果产生的影响,其中水处理过程采用活性氯浸泡聚酰胺纳滤膜法•研究发现,溶液中存在的CaCl2可以提高IBU去除率,其原因可能是加入了CaCl2的IBU溶液,溶液中的电解质浓度增大,聚L胺纳滤膜表面带负电,一部分Ca2+吸附到膜表面,膜的有效孔径减小,筛分作用增强,使膜更适合分离粒径比较小的布洛芬颗粒•此外,ca+易在膜表面发生沉积和吸附,堵塞膜孔,发生浓差极化,造成膜面污染,阻碍了有机物IBU透过膜面•Nghiem等'8(采用NF270膜进行了去除磺胺甲恶>与卡马西平的研究,用以探究分子极性与脱除率之间的关系•NF270膜的等电点大约在pH=3.5,而当pH低于等电点时,膜带有少量的正电荷.在等电点以上时,膜带负电荷,随着pH的增加,Zeta电位变得更负.由于尺寸(空间)排斥和静电相互的作用,膜表面的两性特性对膜的溶质截留机制具有重要意义•结果表明,在电中性条件下,高偶极矩的磺胺甲恶>的脱除率明显低于低偶极矩的卡马西平•他们认为极性影响了有机物的去除情况,如果带电的有机物的分子量"有高偶极矩的有机物比另一种脱除率要低.Souza等'9(评估了NF90和NF270两种纳滤膜从水中去除诺氟沙星的效能,探究了pH、浓度和操作压力对诺氟沙星截留量的影响•实验结果表明,两种纳滤膜对诺氟沙星的截留率分别保持在87%和98%以上;pH会影响溶质的解离和膜的活性基团,导致静电相互作用(排斥或吸引)发生变化,并与浓度极化一起降低渗透通量,增加或减少截留率•因此改变pH便改变了纳滤膜对诺氟沙的留,pH65时,纳滤膜均获得最高的诺氟沙星截留率(分别为94%和99%)杨海燕和王鑫淼:20—21(介绍了纳滤膜去除水中PPCPs的优势所在,以及去除过程中的作用机理及影响由纳滤膜有较小的膜孔,对分子直径较大的美托洛尔(MET)分子有较好的筛分作用•作者研究了在浓度、压力、pH、盐离子强度等条件下,纳滤去除水中典型的MET的效果变化.结果表明,在初始浓度从1&g/L增加到30&g/L的范围内,纳滤对MET的去除率均能达到99%以上;当压力从0.1MPa下降到0.04MPa时,去除率从99%下降到90%左右;当pH值为5时,纳滤对MET去除略有增加;当盐离子强度从10mmol/L•146-膜科学与技术第41卷增加到20mmol/L时,纳滤对MET的去除率从98%以上降低至约92%.李娜娜等'2(考察了不同氧化石墨烯(GO)配比的改性聚酰胺复合纳滤膜对目标污染物利血平、诺氟沙星和盐酸四环素的去除效果,相较于薄膜复合膜,用氧化石墨烯(GO)改性聚酰胺复合膜可提高对PPCPs污染物的去除效果,氧化石墨烯(GO)是单一的原子层结构,其带有的含氧官能团,加入到膜材料中,能够增加纳滤膜的亲水性,提高过水通量,同时GO带有的官能团使膜带有负电荷,使膜的荷电负性增强,静电斥力增加,从而提高了膜的分离性能•结果表明,添加GO后的纳滤膜对污染物利血平的去除率从94%上升到95%,对诺氟沙星的去除率从65%上升到72%,对盐酸四环素的去除率从62%上升到72%.Yoon等对比超滤膜和纳滤膜对27种PPCPs的处理效果发现,纳滤膜处理效果较超滤膜更好,对PPCPs截留率在44%〜93%之间,这与膜孔径和加工药物的化学结构有关•此外纳滤膜对不带电荷的痕量有机物的排斥受到空间位阻的影响,而极性的痕量有机物的排斥则可以通过与带电膜的静电相互作用来解释•由于邻苯二甲酸二丁酯、邻苯二甲酸二酯、乐果和莠去津的分子量分别为27&34、390.56,229.12和215.68,均在纳滤膜能去除范围内,沈智育等采用纳滤工艺去除这些污染物,结果表明,采用纳滤膜去除邻苯二甲酸二丁酯、邻苯二甲酸二酯、乐果和莠去津去除率分别为91%、89%、98%和77%.众所周知,化合物的疏水性和分子大小是影响纳滤膜截留性能的主要因素•另外,Donnan效应是膜去除低电荷药物的重要机制.Ouyang等'5(采用聚多巴胺(PDA)和季R盐壳聚糖(HTCC)对聚MN (PES)超滤膜进行逐层改性,成功制备了一种去除PPCPs的双电荷聚电解质多层纳滤膜•其中效果最佳的膜对阿替洛尔(ATE)、卡马西平(CBZ)和IBU 的截留率分别为76%,87%和89%.此外,调整pH 可使ATE和CBZ的截留率分别提高到81%和92%.王健行等'6(以实际抗生素制药废水的二级生化出水为研究对象,研究了纳滤膜在实际工程应用中对其去除效果,结果表明,经纳滤膜处理后,产水中多价离子盐得到有效去除,剩余部分单价离子盐,这是由于抗生素制药废水中所含的离子成分复杂,纳滤膜对单价离子盐的截留率有限•纳滤产水满足药厂发酵水的水质要求,因此可回用于生产,实现了抗生素制药废水的回收利用.2.2纳滤去除水中全氟化合物(PFCs)的研究PFOS(全氟辛烷磺酸)以及其他全氟表面活性剂是一类持久性的有机污染物质,并具有内分泌干扰作用,PFOS的分子量为498g/mol,在纳滤切割分子量的范围之内,另外PFOS在水溶液中呈负电性.结合纳滤的电荷效应和筛分效应,用纳滤的方法去除PFOS应该可行有效.前期我们开展了纳滤膜处理饮用水中PFOS的试验研究'门,分别采用NF270,NF90和ESNA1,结果表明,由于膜的静电排斥、筛分及吸附作用,这些纳滤膜对PFOS去除率都可达到92%以上.研究考察了在不同的PFOS含量、共存有机物以及共存无机离子条件下,膜对PFOS的截留率•结果表明,截留率随PFOS含量升高而升高;腐殖酸、ca+、Mg+的存在都能明显提高截留率.张祥波'8(制备新型平板型芳香聚酰胺纳滤膜,将其用于饮用水中PFOS的去除•结果表明,当高分子聚合物PMIA作为纳滤膜材料时,在25C,操作压力达到10MPa下,对100ppb PFOS溶液的截留率为80%,通量达到50.57L/(m2.h).这与纳滤膜的截留机理-电荷作用有关,电荷作用是指带电纳滤膜与溶液中带电目标化物间发生的电用.由于纳滤膜表面的电荷为强负电性,而PFOS的磺酸基基团带负电,导致PFOS与纳滤膜表面发生电荷排斥作用•添加纳米粒子的实验结果表明,在PMIA复合纳米膜中添加纳米活性炭,可以有效提高膜对水体中PFOS的截留率•张一等'9(通过研究建立了包括PFOS在内的四种全氟化合物的环境样品前处理以及仪器分析方法•研究发现,在纯水条件下,由于PFOS较之PFBS有更大的相对分子质量,纳滤膜对前者的筛分作用强于后者•李木等'0(研究了致密型纳滤膜(NF90)和疏松型纳滤膜(NFG)对6种典型PFCs的动态截留效果,并分析了pH、钙离子、腐殖酸(HA)对PFOS去除率的影响.结果表明,在NFG膜对PFOS的去除中,静电作用和疏水作用的贡献较高;而在NF90膜对PFOS的去除中,两者贡献均低于10%.另外由于孔径和膜表面电荷分布不同,具有较大孔径的NFG膜吸附效果远大NF90.陈霞明等'口将纳滤技术应用到对新兴有机污染物PFCs,PPCPs的去除中,探讨不同原水中膜分第1期赵长伟等:纳滤去除水中新兴污染物的研究进展•147-离性能及共存有机物对膜分离性能的影响•结果表明:不同原水中的纳滤膜对PFCs去除率均在94%以上•在水中呈解离态的PFCs,影响其分离性能的主要是电荷效应.pH较高的人工模拟污水的PFCs 分离性能也相应的得到提高,影响在水中呈解离态的PFCs分离性能的主要原因是电荷效应,共存有机物对其分离性能无显著性影响.2.3纳滤去除水中内分泌干扰物的研究内分泌干扰物(EDCs)是一种外源性干扰内分泌系统的有类似激素作用的污染物,能干扰人类或动物内分泌系统,从而影响生长发育,扰乱免疫系统.当EDCs进入机体靶细胞后,与体内的激素竞争结合受体复合物,再进入细胞核与DNA结合,引起细胞功能的显著改变,给人类的健康和生存带来了十分严重的潜在危害•因此在饮用水中去除EDCs 成为了备受关注的问题•纳滤膜由于其具有分离效果好、操作压力低、能有效去除有机污染物等优点,是有效去除EDCs的方法.内分泌干扰物-17a-乙烘雌二醇(EE2)的相对分子质量为?95,4,在纳滤膜的去除范围内,曹方圆等'?(发现,聚酰胺类复合纳滤膜对水中的EE?具有很好的去除效果,在纳滤膜筛分的作用下,对EE?的截留率可达到97%,而且原液浓度对EE?的截留效果影响较小.Sadmami等'3研究了天然水中的胶体颗粒和阳离子的存在对纳滤去除水中EDCs的影响,采用聚酰胺纳滤膜对水体中分子量小于300的EDCs分子进行纳滤实验•结果表明,天然水中胶体颗粒的存在影响中性EDCs的去除,而对大多数离子型EDCs 的去除几乎没有影响•出现这种结果的原因可能是天然胶体颗粒影响了膜表面的疏水相互作用,使中性EDCs的去除受到限制,而离子型EDCs的去除仍受化合物表面电荷与膜表面电荷之间的静电排斥控制•该实验研究了纳滤对天然水中EDCs去除效果的影响因素,为天然水的净化提供了理论支撑. Suma等研究了纳滤(NF)膜和反渗透(RO)膜从溶液中去除内分泌干扰化合物双酚A(BPA)的性能.结果表明,除NF270膜外,在其他研究的聚酰胺基NF和RO膜中均未观察到其BPA去除的显著变化.由于筛分作用以及静电排斥使得纳滤膜技术对BPA有较好的去除作用,与孙晓丽等'5(的研究结果大致相同.当反应物和引发剂在膜表面附近的浓度增加时,极化效应就对膜的性能有益,会使得接枝聚合反应的速率显著增强,Adi等'6(采用浓差极化增强表面接枝聚合改性纳滤膜,该膜对EDCs的去除效果较普通纳滤膜更好•除了电荷和尺寸(筛分)排斥外, NF中的排斥机制受到溶质和膜之间亲和力的强烈影响•它与极性、氢键和分子形状等许多其他分子性质以及膜、溶液组成和pH等特性有着复杂的关系.研究结果显示,在低浓度下EDCs的去除率提升较高,但高浓度则几乎没有提高•该工作提供了一种用于各种用途的纳滤膜改性的简便方法.Guo等利用聚多巴胺(PDA)和银纳米颗粒(AgNPs)设计了一种高度选择性的PDA/AgNPs表面涂层,通过加强孔径的筛选作用同时抑制疏水相互作用来实现提高EDCs的纳滤效果,并且其损失的水渗透率较少,范围约在4%〜10%.梁娟等'8(以CNT分散液作为添加剂,通过界面聚合法将其加入到纳滤膜中,改善纳滤膜的渗透和截留性能•将CNT改性复合纳滤膜用于对水溶液中一种EDCs-阿特拉津进行处理,研究其处理效果•结果表明,由于纳滤膜的纳米级孔径,对EDCs-阿特拉津的截留率高达99%. Demg等'9(提出光催化氧化与纳滤工艺相结合的技术,利用纳滤对水体中内分泌干扰物高截留的特点,留的内分扰物光催化用下分解•该工艺是去除内分泌干扰物的一种可靠、实用、有效的方法•Guo等制备了具有一种新型的由绿色单宁酸-铁(TA-Fe3)复合物形成的具有10〜30mm的连续薄截留层的非聚酰胺纳滤膜,其透水率为 5.1L/(m2.h.bar)(1bar=0.1MPa),Na?SO4截留率为89%•同时,由于该膜对内分泌干扰物的截留率(99%)明显高于聚酰胺膜(81%),这归功于该膜具有更强的尺寸筛分效应.张明等'口以章江实际水体为研究对象,采用碳纳米管改性自制膜和商品纳滤膜研究了对邻苯二甲酸酯(PAEs)的去除效果,结果表明,在筛分以及电荷排斥共同作用下,纳滤对PAEs的截留率大于90%&2.4纳滤去除微囊藻毒素的研究微囊藻毒素(MCYST),简称MCs.MCs是一种分子量在800〜1100之间的单环七肽肝毒素,是以肝脏为主要靶器官,具有多种毒性和致癌性的有毒物质'?(•蓝藻的微囊藻(Microcystis)、鱼腥藻(Amabaema)、颤藻(Oscillatoria)及念珠藻(Nostoc)的某些种或品系的微生物是产生微囊藻毒素的主要•148-膜科学与技术第41卷源头'3-44(.MCs易溶于水中,且其耐热性及酸碱稳定性都比较强,这也使得普通的饮用水处理工艺难以完全将其去除•纳滤相对于超滤和反渗透等技术,具有高效去除污染物的优势'5—46(.因此成为去除微囊藻毒素的方法之一.沈阳师范大学任桐欣通过对浑河水体的研究,采用固相萃取-Elisa试剂盒法,分析测定水体环境中的微量微囊藻毒素•分别使用美国Osmonics 公司生产的Desai-DL和Desai-HL两种纳滤膜测试了其对微囊藻毒素的去除效果•研究发现,两种纳滤膜由于具有筛分作用都能有效去除微囊藻毒素,当过滤体积从40mL增加到200mL时,DL对微囊藻毒素的截留率从2%上升到17%,HL对微囊藻毒素的截留率从12%上升到20%,微囊藻毒素的截留率呈上升的趋势.Teixeira等'8(研究了采用气浮过滤加纳滤联合工艺对铜绿微囊藻及其相关微囊藻素的去除进行了研究•纳滤膜采用NFT50型,研究结果表明,在筛分以及电荷排斥的协同作用下,纳滤对微囊藻毒素的去除率接近100%.处理后的水中微囊藻毒素浓度一直在定量限制之下,远低于世界卫生组织指导的饮用水MC-LR1.0&g/L的值•2.5不同切割分子量对新兴污染物截留率的影响在膜领域,广泛用切割分子量来表示膜的截留能力'9(,纳滤膜的切割分子量(MWCO)介于超滤膜和反渗透膜之间,孔径为0.5〜2nm,切割分子量为150〜2000.纳滤膜对分子量为200〜1000之间低分子有机物和多价盐有较好的截留效果'0—5⑵.然而具有不同切割分子量的纳滤膜对新兴污染物的截留效果不同,因此越来越多的学者对其进行了深入究王美莲等'3(探讨了相同材质不同孔径的纳滤膜对磺胺二甲基嚏‘的截留性能,实验采用了3种不同型号的纳滤膜:NF90、NF270和NF290,结果表明,孔径最小的NF90膜对磺胺二甲基嚏‘的去除率为97%,孔径最大的NF290膜对磺胺二甲基嚏‘去除率只有85%,去除率相差119%,可见膜孔径的大小对纳滤膜去除磺胺二甲基嚏‘效果有明显的影响,孔径小的纳滤膜去除磺胺二甲基嚏‘效果要高于孔径较大的纳滤膜•在膜材质相同的情况下,膜孔径越小筛分作用越好,对于小分子溶解性有机物截留效果更好•程喜全'4(采用氨基封端聚乙二醇分子与均苯三甲酰氯通过界面聚合工艺制备了两种聚乙二醇基复合纳滤膜,切割分子量分别为677.8和496.2g/ mol.进行抗生素分离实验后表明,由于膜的筛分作用以及电荷作用,对荷正电抗生素(妥布霉素)具有92%以上的截留率•采用没食子酸和聚乙烯亚胺共涂覆制备的新型疏松复合纳滤膜切割分子量约为950.0g/mol,这种膜对爱奇霉素的截留率高达96%董蕾茜'5(通过实验考察和对比了孔径为(11.7±1.4)nm的NF-0和孔径为(36.6±92) nm的NF-LTL-0膜在操作压力5〜11bar条件下对21PPCPs的留性, 结,5〜9bar 时NF-0膜对PPCPs的平均截留率高于NF-LTL -0膜;9〜11bar时结果相反.由此可知纳滤膜的孔径(切割分子量)越小膜对PPCPs的截留率越高,但超过一定压力会发生变化.2.6膜污染对新兴污染物截留率的影响膜污染是指原液中的胶体悬浮物、无机盐、有机物和微生物等物大量积膜,膜孔减小,堵塞膜孔,导致膜的过滤性能降低'6(,减少使用,增加成的一现,兴物滤过程中,膜污染的出现同时往往也伴随着截留率的变化•传统聚酰胺(PA)复合纳滤膜通量较低,膜的抗污染能力差,因此开发新型纳滤膜材料是解决降低膜污染从而进一步提高对新兴污染物的截留率以及膜通量等问题的重要手段.Mahdavi和Bagherifar:57:通过相转化法制备了醋酸纤维素(CA)/二氧化硅和醋酸纤维素(CA)/改性二氧化硅混合基质膜,并用于从水中去除头抱曲松钠抗生素•为了增加表面电荷从而降低膜污染提高对抗生素的截留率,作者通过聚合反应在二氧化硅的表面接枝了2-丙烯酰基-氨基-2-甲基T-丙烷磺酸(AMPS)单体.与纯醋酸纤维纳滤膜相比,该复合纳滤膜对抗生素的截留率大大增加,在pH为8时,该纳滤膜可实现对头抱曲松钠高达96%的截留率.Jun等'8(通过酸催化水解过程对半芳香聚酰胺纳滤膜进行改性,探究经处理后的纳滤膜对红霉素和万古霉素的去除效果•实验结果发现,改性纳滤膜的水通量和盐通量均显著提高,膜的抗污性能大大提高,改性后的膜的静电斥力增加致使红霉素和万古霉素的去除率明显升高,并且在6天的重复使用过程中对抗生素的截留率保持稳定.Li等'9(所制备的膜是用2〜4的碳化钛纳米片组装而成,在第1期赵长伟等:纳滤去除水中新兴污染物的研究进展•149-纳滤膜分离抗生素的研究中指出T d C z T’膜分离抗生素的机理主要是通过膜与抗生素分子之间的静电相互作用与筛分作用共同影响•膜表面均匀分布的亲水端基,使得在真空过滤过程中更容易形成更好的堆积结构,从而获得更好的分离性能•研究表明,该纳滤膜对抗生素的截留率与其它纳滤膜相似,与此同时,其溶剂渗透量比其它聚合物纳滤膜要高一个数量级,膜的抗污性能显著提高.Karimnezhad 等'0将铁基纳米颗粒固定在聚丙烯[纳滤膜上,在纳滤截留抗生素的同时,芬顿技术也可以有效去除聚丙烯[(PAN)基纳滤膜表面毛孔上积累的各种各样的污垢•这样的组合在有效减少了纳滤膜的污染的同时增加了膜的水通量,但是芬顿技术对膜会产生不可逆转的氧化破坏.Fang等'口将氧化石墨烯(GO)片掺杂到聚丙烯[(PAN)基底中,增强基底的亲水性并构建层状结构,再通过溶剂热法合成具有选择性分子筛性质的错基MOF(UiO-66),然后利用聚多巴胺(PDA)将二者稳定结合.由此制备的复合纳滤膜在筛分作用和静电相互作用的协同影响下对盐酸四环素、土霉素和环丙沙星的截留率均高于94%,并具备较高的抗污性能.Yang等将功能化的多壁碳纳米管(MWCNT)介于氧化石墨烯纳米片(GO)中构成具有三维结构的纳滤膜•所制备的膜可以通过静电相互作用对抗生素分子进行分离.该纳滤膜对四环素的截留率可达到99%.此外,该纳滤膜还具有制备过程快速环保、膜的抗污性能稳定、水渗透速度快等优点.3随着工业化进程的加快,新兴污染物不断出现,水体呈现复合污染以及污染效应复合等特征#纳滤自身的特性及分离特点为发展纳滤净水技术带来了机遇•但在实际应用过程中,如何进一步提高纳滤膜的去除效能,如何减缓膜污染,仍是制约其推广应用和发展的关键问题•因此,未来还应在以下方面做好研究工作:1)新型高通量纳滤膜材料研发•膜材料是决定膜性能的核心,新型膜材料应具有高的通量和高截留率、抗污染、抗氧化、良好的机械稳定性、化学稳定性和物理稳定性.近年来这方面的研究已取得一定进展,如新型二维材料、仿生材料、抑菌材料等新型膜研发断进展.2)如何提高新兴污染物的去除效果•水中新兴污染物越来越普遍,如何基于新兴污染的特性及纳滤膜的分离机理,研究开发对新兴污染物高效截留的纳滤膜材料及其工艺,也是纳滤膜研究的热点之3)如何进行膜污染有效控制•膜污染是膜应用过程中不可避免的问题,由于影响膜污染的因素很多,如进水水质、预处理、膜材料本身性能等,在实际运行过程中,需要结合特定的条件进行行之有效的膜.参考文献:[1(Tan Z,Chen S F,Peng XS,tal.Polyamide membranes with nanoscale Turing structures for water purification [J(.Science,2018,360:518—521[2(Li X,Liu C,Yin W,et al.Design and development of layer-by-layer based low-pressure antifouling nanofiltration membrane used for water reclamation[J(.J Membr Sci2019584:309—323&[3(张润楠,李亚飞,苏延磊,等•氨基化氧化石墨烯界面聚合制备超薄复合纳滤膜'(•化工学报,01869(1):435—445&[4(徐南平,高从増,金万勤.中国膜科学技术的创新进展中国工程科学,2014,16(12):4—9.[5(Mi Y F,X u G,Guo Y S e al Development of antifouling nanofiltration membrane with zwitterionic functionalized monomer for efficient dye/salt selective separation [J(&JMembrSci,2020,601%117795&[6(李小晴,李杰,王乃鑫,等.PEC/g-C3N4杂化膜的制备及其渗透汽化性能研究[(•膜科学与技术,020,0(2):67—74[7(Qin D,Huang G,TeradaD,tal Nanodiamond mediated interfacial polymerization for high performance nanofiltrationmembrane[J(J MembrSci,2020,603:118003[(石紫,王志,王宠,等.染料分离有机纳滤膜制备技术研究进展膜科学与技术,020,0(1):340—351[9(WangT,ZhaoCW,Li P,t al Fabrication of novel po-ly(/n-phenylene isophthalamide)hollow fiber nanofiltration membrane for effective removal of trace amount perfluorooctane sulfonate from water[J(.J Membr Sci, 2015,477:74—85&[10(王晓琳,张澄洪,赵杰.纳滤膜的分离机理及其在食品和医药行业中的应用[(•膜科学与技术,000,0(1):29—36&[11(,高,赵&纳滤膜技术化用水的应。
浅谈中药生产中膜分离技术的应用【中图分类号】tq46 【文献标识码】a 【文章编号】1672-3783(2011)09-0342-01【摘要】随着人类生活水平的提高和生态环境的恶化,人类回归自然的思潮日益强烈,这些因素为促进中草药的研究和发展创造了有利条件。
本文介绍了膜分离技术及其中药生产中的应用。
【关键词】膜分离技术中药生产近年来,膜分离技术的发展,受到人们极大的关注,并已在中药针剂生产中得到部分应用。
日本等发达国家已使用超滤技术应用于中药的加工,代替传统的分离制备工艺,以达到降低生产成本,提高药品质量的目的。
膜分离技术是利用有选择性的薄膜,以压力为推动力实现混合物组分分离的技术,可将溶液中的物质按分子量大小进行分离,从而达到分离、分级、纯化、浓缩的目的。
超滤是20世纪60年代兴起的一项膜分离新技术,由于超滤过程是一种简单的物理分离,在操作过程中无相应变化,不添加任何化学药剂;其次超滤设备的操作比较简单,滤膜可以反复、多次使用,因此在中药产业中应用具有其独特的作用和较大的开发潜力。
现将超滤技术的优点及应用简介如下。
1 超滤技术的优点中药提取液中的鞣质、淀粉、树脂和蛋白等,传统的水醇法不易除尽,因而固体收率依然很高,不仅给病人带来服用时的不便和痛苦,同时也使中药制剂容易吸潮变质,而且制剂口感较差。
为了解决水提醇沉、醇提水沉等传统除杂工艺所存在的问题,有人将超滤技术应用于中药制剂的研究,发现超滤技术应用于中药制剂的研究具有以下几方面的优点。
(1)超滤时无相变,有利于保存中药的生理活性及理化稳定性,且超滤技术的应用会尽量多地保留方剂中多种有效成分,能保持中药方剂配伍的特点,特别是可以保留中药有效成分之一的微量元素。
(2)由于不耗用有机溶剂,与传统方法相比,膜分离技术可减少工序,缩短生产周期、降低生产成本,且整个工艺可连续进行,利于大规模生产。
(3)提高中药制剂的质量。
高相对分子质量非药效成分或低药效成分的存在,降低了中药有效部位的浓度,加大了服用剂量,同时使中药口感差,易吸潮变质,难以保存,由于膜分离技术能最大限度地除去高相对分子质量非药效成分或低药效成分,因而是降低服用剂量、改善制剂的口感和成品性质的有效方法。