2018-2019学年河北省石家庄外国语学校(43中)八年级(上)期末数学试卷(含解析)印刷版
- 格式:doc
- 大小:752.50 KB
- 文档页数:22
…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2017-2018年度石家庄市八年级(上)期末模拟测试数学考试时间:90分钟;题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、仔细选一选(本大题共12小题,每小题2分,满分24分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确选项的代码填在题后的括号内)1.香港于1997年7月1日成为中华人民共和国的一个特别行政区,它的区徽图案(紫荆花)如图,这个图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形2.在式子2312351094678xy a b c x y x a x y π+++、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个3.要使分式x 124x -+有意义,则x 的取值范围是A.x l = B.x l =- C.1x 2≠ D.1x 2≠-4.下列各数:π,••0.45,0,-,9.181181118,其中无理数有()A.1个 B.2个 C.3个 D.4个5.以下四组木棒中,哪一组的三条能够刚好做成直角三角形的木架() A.7cm ,12cm ,15cm B.7cm ,12cm ,13cm C.8cm ,15cm ,16cm D.3cm ,4cm ,5cm 6.如图,已知∠1=∠2,要得到△ABD ≌△ACD ,还需从下列条件中补选一个,则错误的选法是()A.AB=AC B.DB=DC C.∠ADB=∠ADC D.∠B=∠C 72+的值,它的所在范围是().A.在5和6之间 B.在6和7之间 C.在7和8之间 D.在8和9之间8.轮船从河的上游A 地开往河的下游B 地的速度为v 1,从河的下游B 地返回河的上游A 地的速度为v 2,则轮船在A 、B 两地间往返一次的平均速度为()A.122v v + B.122v v + C.12122v v v v + D.12122v v v v +9.关于x 的方程2111ax x x -=++的解为非正数,且关于x 的不等式组22{ 533a x x +≤+≥无解,那么满足条件的所有整数a 的和是()A.﹣19 B.﹣15 C.﹣13 D.﹣910.已知ABC ∆中,1123A B C ∠=∠=∠,则它的三条边之比为().A. B.2 C. D.1:4:111.如图,在△ABE 中,∠A=105°,AE 的垂直平分线MN 交BE 于点C ,且AB+BC=BE ,则∠B 的度数是()A.50° B.45° C.60° D.55°12.如图在ABC ∆中,P ,Q 分别是BC 、AC 上的点,作PR AB ⊥,PS AC ⊥,垂足分别是R ,S ,AQ PQ =,PR PS =,下面三个结论:①AS AR =;②AB PQ //;③BRP ∆≌CSP ∆.其中正确的是().…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………内…………○…………装…………○…………订…………○…………线…………○………… A.①② B.②③ C.①③ D.①②③二、认真填一填(本大题共6个小题,每小题3分,满分18分.请把答案写在题中横线上)1316,72,48,122是同类二次根式的有________个.14.已知x ,y 为实数,且120x y -++=,则(x+y)2014=________.15.已知关于x 的分式方程2a +--=1的解是非负数,则a 的取值范围是_____.16.如图,在△ABC 中,DE 是AC 的垂直平分线,AE=5cm ,△ABC 的周长为26cm ,则△ABD 的周长为_________cm.17.如图,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180°形成的.若∠BAC =145°,则∠α=____.18.如果记()2x y f x ==+,并且f (1)表示当1x =时y 的值,即f (1)=211=+;f (12)表示当12x =时y 的值,即f (12)=221125112⎛⎫ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭.那么()()()()1111234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()12017f f ⎛⎫+++= ⎪⎝⎭ ______.三、细心解答(本大题共8个小题,共58分,解答应写出相应的文字说明或解题步骤)19.解方程:262393x x x x -÷+--20.计算:(1;(2)-.21.先化简:221111a a a a a a -÷----,然后在-1、0、1、2、3中选一个a 的值代入求值.22.(1)已知某数的平方根是3a +和215a -,b 的立方根是2-,求b a --的平方根.(2)已知+-8…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………23.如图,已知△ABC 中,D 为AB 的中点.(1)请用尺规作图法作边AC 的中点E ,并连接DE (保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE=4,求BC 的长.24.如图,∠MON=30°,在距离O 点80米的A 处有一所学校,当重型运输卡车P 沿道路ON 方向行驶时,距离卡车50米范围内都会受到卡车噪声的影响.(1)学校A 是否受到卡车噪声的影响?为什么?(2)假如学校A 会受到噪声的影响,若卡车以每小时18km 的速度行驶,求卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间.25.(10分)(2012•百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?26.已知CD 是经过∠BCA 顶点C 的一条直线,CA =CB .E 、F 分别是直线CD 上两点,且∠BEC =∠CF A =∠α.(1)若直线CD 经过∠BCA 的内部,且E 、F 在射线CD 上,请解决下面问题:①如图1若∠BCA =90°,∠α=90°、探索三条线段EF 、BE 、AF 的数量关系并证明你的结论.②如图2,若0°<∠BCA <180°,请添加一个关于∠α与∠BCA 关系的条件_______使①中的结论仍然成立;(2)如图3,若直线CD 经过∠BCA 的外部,∠α=∠BCA ,请写出三条线段EF 、BE 、AF 的数量关系并证明你的结论.。
2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷副标题一、选择题(本大题共14小题,共42.0分)1.近似数0.13是精确到()A. 十分位B. 百分位C. 千分位D. 百位2.下列四张扑克牌中,左旋转180°后还是和原来一样的是()A. B. C. D.3.是2的()A. 倒数B. 平方根C. 立方根D. 算术平方根4.在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A. B. C. D.5.下列选项中,可以用来证明命题“若|a-1|>1,则a>2”是假命题的反例是()A. B. C. D.6.如图是作△ABC的作图痕迹,则此作图的已知条件是()A. 已知两边及夹角B. 已知三边C. 已知两角及夹边D. 已知两边及一边对角7.在代数式和中,x均可以取的值为()A. 9B. 3C. 0D.8.如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是()A. 1B.C. abD.9.我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A. B.C. D.10.若(b为整数),则a的值可以是()A. B. 27 C. 24 D. 2011.如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=4,BF=3,EF=2,则AD的长为()A. 3B. 5C. 6D. 712.已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A. ③④①②B. ③④②①C. ①②③④D. ④③①②13.已知x=,则代数式(7+4)x2+(2+)x+的值是()A. 0B.C.D.14.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A. 10B.C. 10或D. 10或二、填空题(本大题共3小题,共12.0分)15.=______.16.如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D为垂足,连接EC,则∠ECD=______.17.如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为______.三、计算题(本大题共1小题,共6.0分)18.已知代数式(-1)÷,则:(1)当x=-3时,求这个代数式的值;(2)这个代数式的值能等于-1吗?请说明理由.四、解答题(本大题共6小题,共48.0分)19.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与-2.5的大小.20.(1)发现.①;②;③;…………写出④______;⑤______;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律______;(3)证明这个猜想.21.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.22.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DAE交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.答案和解析1.【答案】B【解析】解:近似数0.13是精确到百分位,故选:B.确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.【答案】C【解析】解:左旋转180°后还是和原来一样的是只有C.故选:C.左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.本题主要考查了中心对称图形的定义,是需要熟记的内容.3.【答案】D【解析】解:是2的算术平方根,故选:D.根据算术平方根与平方根的定义即可求出答案.本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.【答案】D【解析】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.直接利用轴对称图形的定义判断得出即可.此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.【答案】D【解析】解:当a=-1时,满足|a-1|>1,但满足a>2,所以a=-1可作为证明命题“若|a-1|>1,则a>2”是假命题的反例.故选:D.所选取的a的值符合题设,则不满足结论即作为反例.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.【答案】C【解析】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.观察图象可知已知线段AB,α,β,由此即可判断.本题考查作图-复杂作图,解题的关键是理解题意,属于中考常考题型.7.【答案】A【解析】解:由题意知,x-3≠0且x-3≥0,解得:x>3,故选:A.根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.【答案】B【解析】 解:如果把分式中的a 、b 同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是:b .故选:B . 直接利用分式的基本性质分别代入判断得出答案.此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键. 9.【答案】D【解析】解:A 、∵+c 2+ab=(a+b )(a+b ),∴整理得:a 2+b 2=c 2,即能证明勾股定理,故本选项不符合题意;B 、∵4×+c 2=(a+b )2,∴整理得:a 2+b 2=c 2,即能证明勾股定理,故本选项不符合题意;C 、∵4×+(b-a )2=c 2,∴整理得:a 2+b 2=c 2,即能证明勾股定理,故本选项不符合题意;D 、根据图形不能证明勾股定理,故本选项符合题意;故选:D .先表示出图形中各个部分的面积,再判断即可.本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.【答案】D【解析】解:+=3+=b当a=20时, ∴=2,∴b=5,符合题意,故选:D.根据二次根式的运算法则即可求出答案.本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.【答案】B【解析】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3-2)=5,故选:B.只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF=4+(3-2)=5;本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.【答案】A【解析】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.【答案】C【解析】解:当x=时,原式=(7+4)(2-)2+(2+)(2-)+=(7+4)(7-4)+4-3+=49-48+1+=2+,故选:C.将x的值代入原式,再利用完全平方公式和平方差公式计算可得.本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.【答案】C【解析】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.15.【答案】-【解析】解:∵-的立方为-,∴-的立方根为-,故答案为-.如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.【答案】36°【解析】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.【答案】4【解析】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB的中线,据此可得出BD=x,进而可得出结论.本题考查的是作图-基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.18.【答案】解:(1)原式=(-)÷=•=,当x=-3时,原式==-2;(2)若原式的值为-1,则=-1,解得:x=-1,而当x=-1时,原式分母为0,无意义;所以原式的值不能等于-1.【解析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于-1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.19.【答案】解:(1)OB=,∵OB=OA=∴A所代表的数字为-\sqrt{5};点表示的数为\sqrt{5}$≈-2.235∴A点表示的数大于-2.5【解析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与-2.5的大小;本题运用了勾股定理、数轴上负数大小比较的方法;20.【答案】(1)(2)(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【解析】【分析】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.(1)根据题目中的例子可以写出例4和例5;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)见上述答案.21.【答案】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【解析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.22.【答案】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【解析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.23.【答案】解:设杂拌糖的单价为x元,则奶糖的单价为(x+4)元,水果糖的单价为(x-6)元,根据题意得+=,解得:x=36.经检验,x=36是原方程的解.答:杂拌糖的单价为36元.【解析】设杂拌糖的单价为x元,则奶糖的单价为(x+4)元,水果糖的单价为(x-6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.【答案】(1)证明:∵AE⊥AD,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG-BD=6-3=3,∴在Rt△ADG中,AD===3.【解析】(1)根据SAS,只要证明∠1=∠2即可解决问题;(2)结论:BD2+FC2=DF2.连接FE,想办法证明∠ECF=90°,EF=DF,利用勾股定理即可解决问题;(3)过点A作AG⊥BC于G,在Rt△ADG中,想办法求出AG、DG即可解决问题;本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2018-2019学年联考八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
河北省石家庄创新国际学校2018-2019学年八上数学期末检测试题一、选择题1.在下列代数式中,是整式的为( )A .1x x+ B .33x - C .2x x D .3(3)-- 2.分式3(1)(2)x x x -+-有意义,则x 的取值范围是( ) A .x≠2 B .x≠2且x≠3C .x≠﹣1或x≠2D .x≠﹣1且x≠2 3.下面四个多项式中,能进行因式分解的是( ) A .x 2+y 2 B .x 2﹣yC .x 2﹣1D .x 2+x+1 4.已知a =2﹣2,b =(π﹣2)0,c =(﹣1)3,则a ,b ,c 的大小关系为( ) A.c <b <a B.b <a <cC.c <a <bD.a <c <b 5.若1a b -=,2213a b +=,则ab 的值为( ) A .6 B .7 C .8D .9 6.下列运算正确的是( ) A .236a a a ⋅= B .22423a a a +=C .236(2)2a a -=-D .422()a a a ÷-= 7.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F ,则下列结论成立的是( )A .EC =EFB .FE =FC C .CE =CFD .CE =CF =EF8.如图,将一根长为()8cm AB 8cm =的橡皮筋水平放置在桌面上,固定两端A 和B ,然后把中点C 竖直地向上拉升3cm 至D 点,则拉长后橡皮筋的长度为( )A .8cmB .10cmC .12cmD .15cm9.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为D ,DE ⊥AC ,垂足为E ,ED 的延长线与直线AB 交于点F ,则图中与∠EDC 相等的角(∠EDC 除外)有( )A .1个B .2个C .3个D .4个10.如图,已知∠BDA=∠CDA,则不一定能使△ABD≌△ACD的条件是()A.BD=DCB.AB=ACC.∠B=∠CD.∠BAD=∠CAD11.下列说法中正确的是()①角平分线上任意一点到角的两边的距离相等②等腰三角形两腰上的高相等;③等腰三角形的中线也是它的高④线段垂直平分线上的点(不在这条线段上)与这条线段两个端点构成等腰三角形A.①②③④B.①②③C.①②④D.②③④12.如图,ΔABC中,∠B=550,∠C=300,分别以点A和C为圆心,大于½ AC的长为半径画弧,两弧交于点M、N,作直线MN交BC于点D,连接AD,则∠BAD的度数为( )A.650B.600C.550D.50013.如图,OD平分∠AOB,OE平分∠BOC,∠COD=20°,∠AOB=140°,则∠DOE的度数为( )A.35°B.45°C.55°D.60°14.已知:如图,在△ABC中,∠A=60°,∠C=70°,点D、E分别在AB和AC上,且DE∥BC.则∠ADE的度数是()A.40°B.50°C.60°D.70°15.如图,直线AB、CD相交于点O,OE⊥CD,OD平分∠BOF,若∠EOF=α,则∠EOB=()A.α﹣90oB.360°﹣2αC.2α﹣180oD.180o﹣α二、填空题16.已知关于x 的分式方程22x x +-=2m x -,若采用乘以最简公分母的方法解此方程,会产生增根,则m 的值是______.17.若()()22616x m x x x -+=--,则m=__ 18.如图,CA ⊥BC ,垂足为C ,AC =2cm ,BC =6cm ,射线BM ⊥BQ ,垂足为B ,动点P 从C 点出发以1cm/s 的速度沿射线CQ 运动,点N 为射线BM 上一动点,满足PN =AB ,随着P 点运动而运动,当点P 运动_____秒时,△BCA 与点P 、N 、B 为顶点的三角形全等.19.如图ABC △中,AD 是BC 边上的中线,BE 是ABC △中AD 边上的中线,若ABC △的面积是24,6AE =,则点B 到ED 的距离是___.20.如图所示,AB =BC =CD =DE =EF =FG ,∠1=125°,则∠A =_____度.三、解答题21.某图书馆计划选购甲、乙两种图书.甲图书每本价格是乙图书每本价格的2.5倍,如果用900元购买图书,则单独购买甲图书比单独购买乙图书要少18本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总费用不超过1725元,那么该图书馆最多可以购买多少本乙图书?22.(2(5(2-23.如图是规格为88⨯正方形网格,请在所给网格中按下列要求操作:(1)在网格建立平面直角坐标系,使A 点坐标为(-2,4),B 点坐标为(-4,2):(2)在第二象限内的格点上画一-点C ,使点C 与线段AB 组成一个以AB 为底边的等腰三角形,且腰长是无理数.则点C 坐标是____;(3) ABC △的周长=____ : 面积=_ 。
石家庄市2017---2018学年度第一学期期末考试八年级数学试题【一】选择题〔本大题共12个小题,每题2分,共24分,把每题的正确选项填写在下面的表格内〕1.以下图形中,有几个轴对称图形A.1个B.2个C.3个D.4个2.在4,3π-,22,-38,3.14,()02中,无理数的个数有A 、2个B 、3个C 、4个D 、5个3.假如x >y ,那么以下结论中错误的选项是A.3x >3yB.x -3>y -3C.x -3<y-3 D.-x -3>-y -34.假设点P 在第二象限,且点P 到x 轴、y 轴的距离分别为4,3,那么点P 的坐标是 A 、〔4,3〕B 、〔3,-4〕C 、〔-3,4〕D 、〔-4,3〕5.某不等式组的解集在数轴上表示如图1所示,那么那个不等式组能够是A. B.C.D.6.以下各式中,与5是同类二次根式的是A.10B.15C.20D.257.使分式42-+x x 有意义的x 的值满足 A 、x ≠-2B 、x ≠4C 、x ≠-2且x ≠4D 、x ≠-2或x ≠4 8.以下事件中,属于必定事件的是A.1月23日春节这天一定是晴天B.明天上学的路上遇到老师C.打开电视机时,正在播放动画片D.乱扔垃圾会破坏环境卫生9.在等边三角形ABC 中,∠B 和∠C 的角平分线相交于点O ,那么∠BOC 等于5米3米A.100°B.110°C.120°D.130°10.购买一袋m 千克的大米和一袋n 千克的大米,共花了a 元,那么平均每千克的大米多少元A.an+m B.m a +n a C.nm +a D.无法确定 11.如图为某楼梯,楼梯的长为5米,高3米,现计划在楼梯表面铺地毯,那么地毯的长度至少需要A.8.5米B.8米C.7.5米D.7米〔第11题图〕12以方程组的解为坐标的点在平面直角坐标系中的位置在A 、第一象限B 、第二象限C 、第三象限D 、第四象限【二】填空题〔本大题共8个小题,每题3分,共24分,将正确答案填在下面对应题号的13.不等式3〔x+1〕≥5x -3的解集是.14..15.计算2)4(-的结果是.16、如图,△ABC 中,AB=AC ,AB 的垂直平分线MN 交AC 于D17.某三角形的三内角之比为1:2:3.18.一副扑克牌除去大小王牌共52张,洗匀后从中任意抽取19.在△ABC 中,假如A 〔1,1〕B 〔-1,-1〕C 〔2,-1〕20.观看以下各式:〔x -1〕〔x +1〕=x 2-〔x -1〕〔x 2+x +1〕=x 3〔x -1〕〔x 3+x 2+x +1〕=x 4-1; 依照规律可得:〔x -1〕〔x n +x n -1+…x +1〕=. 【三】解答题〔本大题共5个小题,共52分〕21.〔每题6分,共12分〕 〔1〕化简45+5152021- 〔2〕先化简,再求值:99332---+a a a a ,其中a=1. 22.〔此题总分值8分〕甲同学口袋里有三张卡片,分别写着数字1、1、2,乙同学口袋里也有三张卡片.分别写着数字1、2、2.两人各自从自己的口袋里随机摸出一张卡片.假设两人摸出的卡片上的数字之和为偶数,那么甲胜,否那么乙胜,求甲胜的概率.〔列表说明〕23.〔此题总分值10分〕 △ABC 在直角坐标系中的位置如下图,请依照图示,解答以下问题:①写出△ABC 的各顶点坐标;②并画出△ABC 关于Y 轴的对称图形; ③写出△ABC 关于X 轴对称的三角形的 各顶点坐标.24.〔此题总分值10分〕 如图,A 、B 两个村庄在河流CD 的同侧,它们到河的距离分别为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂P ,向A 、B 两村供水,铺设水管的费用为每千米2万元,请你在河流CD 上选择水厂的位置P ,使铺设水管的费用最节省(只需正确找出P 点位置即可,不需证明),并求出如今的总费用.25.〔此题总分值12分〕某单位有30人,预备携带20件行李,租用甲、乙两种型号的汽车共8辆组团到外地旅游,经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.〔1〕设租用的甲种汽车x 辆,请你设计所有可能的租车方案 〔2〕假如甲乙两种汽车的租车费用每辆分别为8000元和6000元,请你选择最省钱的租车方案.参考答案及评分标准〔温馨提示:阅卷前,请老师们先认真研究一下答案〕一、 选择题:〔本大题共12个小题,每题2分,共24分〕 【二】填空题:〔本大题共8个小题,每题3分,共24分〕 13.x ≤314.)()2(s a v v a v ++15.416.30°17.218.13119.320.11-+n x 【三】解答题:〔本大题共5个小题,共52分〕题号 1 2 3 4 5 6 7 8 910 11 12 答案 A A D C B C B D CCDAABCDL21.解:(1)原式=59⨯+2154⨯-5555⨯…………………………………2分 =35+21×25-5×515…………………………………4分=5553-+=53………………………………………6分(2)原式=3a +a -)3)(3()3(3-+-a a a ………………………………………2分 =3a +a -33+a =33+-a a ………………………………………4分 当a=1时,原式=-21………………………………………6分22.解:依照题意列表如下:……………………………………………4分 故P 〔甲胜〕=94……………………8分 23.解〔1〕A(-3,2)、B(-4,-3)、C(-1,-1)…………………………3分〔2〕图略………………………………………………………………7分 〔3〕A ′(-3,-2)、B ′(-4,3)、C ′(-1,1)………………………10分 24.解:依题意,只要在直线l 上找一点P ,使点P 到A 、B 两点的距离和最小.………………………………………………2分作点A 关于直线l 的对称点A ′,连结A ′B ,那么A ′B 与直线l 的交点P 到A 、B 两点的距离和最小,且PA+PB=PA ′+PB=A ′B.………………4分过点A ′向BD 作垂线,交BD 的延长线于点E在直角三角形A ′BE 中,A ′E=CD=30,BE=BD+DE=40………………6分 依照勾股定理可得:A ′B=50(千米)即铺设水管长度的最小值为50千米.………………………………8分因此铺设水管所需费用的最小值为:50×2=100〔万元〕……………10分25.解:〔1〕设租用甲种汽车x 辆,那么租用乙种汽车〔8—x 〕辆,依题意得 4x+2(8-x)≥303x+8(8-x)≥20………………………………………2分 解得7≤x ≤544………………………………………4分 因为x 为正整数,因此x 只能取7,8…………………………6分即共有两种租车方案:①租甲种汽车7辆,乙种汽车1辆②全部租用甲种汽车8辆………………………………………8分〔2〕第一种方案租车费用7×8000+1×6000=62000第二种方案租车费用8×8000=64000…………………………10分 因此第一种方案最省钱.……………………………………12分。
八年级(上)期末数学试卷一、选择题(本大题共16小题,共32.0分)1.的相反数是A. B. C. D.2.若使分式有意义,则x的取值范围是A. B. C. D.3.下列实数中,无理数是A. B. C. D.4.下列图形中,对称轴的条数最多的图形是A. B. C. D.5.下列各式运算正确的是A. .B.C. .D. .6.如图,已知的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与全等的三角形是A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙7.a,b是两个连续整数,若,则的值是A. 7B. 9C. 21D. 258.如图,在等腰三角形纸片ABC中,,,折叠该纸片,使点A落在点B处,折痕为DE,则的度数是A.B.C.D.9.下列说法错误的是A. 是精确到的近似数B. 万是精确到百位的近似数C. 近似数与表示的意义相同D. 近似数是由数a四舍五入得到的,那么数a的取值范围是10.如图,在中,,分别以A,C为圆心,大于长为半径画弧,两弧相交于点M,N,作直线MN,与AC,BC分别交于点D,点E,连结AE当,时,则的周长是A. 19B. 14C. 4D. 1311.已知直角三角形两边的长为6和8,则此三角形的周长为A. 24B.C. 24或D. 以上都不对12.已知实数a在数轴上的位置如图,则化简的结果为A. 4B. 1C.D.13.如果解关于x的分式方程时出现了增根,那么a的值是A. B. C. 6 D. 314.甲乙丙丁四个同学玩接力游戏,合作定成道分式计算题,要求每人只能在前一人的基础上进行一步计算,再将结果传递给下一人,最后完成计算,过程如下所示,接力中出现错误的是甲乙丙丁A. 只有乙B. 甲和丁C. 丙和丁D. 乙和丁15.等边中,,于点D、E是AC的中点,点F在线段AD上运动,则的最小值是A. 6B.C.D. 316.如图,在长方形ABCD中,厘米,厘米,点P在线段BC上以4厘米秒的速度向C点运动,同时,点Q在线段CD上向D点运动,当点Q的运动速度为厘米秒时,能够在某时刻使与全等.A. 4B. 6C. 4或D. 4或6二、填空题(本大题共3小题,共10.0分)17.______填,或18.如图,在中,,CD是AB边上的高,,,则______.19.下列图形是一连串直角三角形演化而成,其中,则第3个三角形的面积______:按照上述变化规律,第是正整数个三角形的面积______.三、解答题(本大题共7小题,共58.0分)20.计算:解方程:21.先化简再求值:若,求的值.22.小明在证明“有两个角相等的三角形是等腰三角形”这一命题时,先画出图形再写出“已知“求证”如图,证明时他对所作的轴助线描述如下:“过点A作BC的中垂线AD,垂足为D”.请你判断小明轴助线的叙述是否正确:如果不正确,请改正.根据正确的辅助线的做法,写出证明过程.23.阅读下列材料,然后回答问题:阅读:在进行二次根式的化简与运算时,可以将进一步化简:方法一方法二【探究】选择恰当的方法计算下列各式:;.【猜想】______.24.近几年石家庄雾霾天气严重,给人们的生活带来很大影响.某学校计划在室内安装空气净化装置,需购进A,B两种设备,每台B种设备价格比每台A种设备价格多1万元,花50万元购买的A种设备和花70万元购买B种设备的数量相同.求A种、B种设备每台各多少万元?根据单位实际情况,需购进A、B两种设备共10台,总费用不高于30元,求A 种设备至少要购买多少台?25.如图,在的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、点A同时出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点C时,两个点同时停止运动.当运动时间为3秒时,请在网格纸图1中画出线段PQ,并求其长度.在动点P,Q运动的过程中,若是以PQ为腰的等腰三角形,求相应的时刻t的值.26.【解决问题】如图1,在中,,于点点P是BC边上任意一点,过点P做,,垂足分别为点E,点F.若,,则的面积是______,______;猜想线段PE,PF,CG的数量关系,并说明理由;【变式探究】如图2,在中,若,点P是内任意一点,且,,,垂足分别为点E,点F,点D,求的值.【拓展延伸】如图3,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C处,点P 为板痕EF上的任意一点,过点P作,,垂足分别为点G,点若,直接写出的值.答案和解析1.【答案】A【解析】解:,的相反数是.故选:A.由于互为相反数的两个数和为0,由此即可求解.此题主要考查了求无理数的相反数,无理数的相反数和有理数的相反数的意义相同,无理数的相反数是各地中考的重要考点.2.【答案】B【解析】解:由题意得,,解得,,故选:B.根据分式有意义的条件是分母不等于零列出不等式,解不等式即可.本题考查的是分式有意义的条件,掌握分式有意义的条件是分母不等于零是解题的关键.3.【答案】C【解析】解:A、是分数,分数是有理数,故本选项错误;B、是有理数,故本选项错误;C、是无理数,故本选项正确;D、是有理数,故本选项错误.故选:C.根据无理数的概念对各选项进行逐一分析即可.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像,等有这样规律的数.4.【答案】A【解析】解:A、圆有无数条对称轴,故此选项正确;B、此图形有1条对称轴,故此选项错误;C、矩形有2条对称轴,故此选项错误;D、有1条对称轴,故此选项错误;故选:A.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是正确确定对称轴.5.【答案】D【解析】解:A、原式,所以A选项错误;B、原式,所以B选项错误;C、原式,所以C选项错误;D、原式,所以D选项正确.故选:D.根据二次根式的性质对A、C进行判断;根据二次根式的加减法对B进行判断;根据二次根式的乘法法则对D进行判断.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.【答案】B【解析】解:甲、边a、c夹角不是,甲错误;乙、两角为、,夹边是a,符合ASA,乙正确;丙、两角是、,角对的边是a,符合AAS,丙正确.故选:B.根据全等三角形的判定ASA,SAS,AAS,SSS,看图形中含有的条件是否与定理相符合即可.本题主要考查对全等三角形的判定的理解和掌握,能熟练地根据全等三角形的判定定理进行判断是解此题的关键.7.【答案】A【解析】解:,,,,故选:A.先求出的范围,即可得出a、b的值,代入求出即可.本题考查了估算无理数的大小的应用,解此题的关键是估算出的范围,难度不是很大.8.【答案】B【解析】解:如图,由题意得: ≌ ,,,,,,,故选:B.根据折叠的性质得到 ≌ ,求得,根据等腰三角形的性质得到,于是得到结论.该题主要考查了翻折变换的性质、等腰三角形的性质、三角形的内角和定理及其应用问题;解题的关键是牢固掌握翻折变换的性质、等腰三角形的性质、三角形的内角和定理等知识点.9.【答案】C【解析】解:A、是精确到的近似数,所以A选项的说法正确;B、万是精确到百位的近似数,所以B选项的说法正确;C、近似数精确到十分位,精确到百分位,所以C选项的说法错误;D、近似数是由数a四舍五入得到的,那么数a的取值范围是,所以D选项的说法正确.故选:C.根据近似数的精确度对各选项进行判断.本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.10.【答案】B【解析】解:由作法得MN垂直平分AC,,的周长.故选:B.利用基本作图得到MN垂直平分AC,则,然后利用等线段代换得到的周长.本题考查了作图基本作图:熟练掌握5种基本作图作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线也考查了线段垂直平分线的性质.11.【答案】C【解析】解:设的第三边长为x,当8为直角三角形的直角边时,x为斜边,由勾股定理得,,此时这个三角形的周长;当8为直角三角形的斜边时,x为直角边,由勾股定理得,,此时这个三角形的周长,故选:C.先设的第三边长为x,由于8是直角边还是斜边不能确定,故应分8是斜边或x为斜边两种情况讨论.本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.12.【答案】D【解析】解:由数轴可得:,所以,则.故选:D.直接利用绝对值的性质和二次根式的性质化简得出答案.此题主要考查了绝对值的性质和二次根式的性质与化简,正确去掉绝对值符号,化简二次根式是解题关键.13.【答案】A【解析】解:去分母得:,由分式方程有增根,得到,即,代入整式方程得:,解得:,故选:A.分式方程去分母转化为整式方程,由分式方程有增根求出a的值即可.此题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.14.【答案】C【解析】解:原式,因此出现错误的是丙和丁.故选:C.分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.本题考查了分式的混合运算,熟练分解因式是解题的关键.15.【答案】B【解析】解:如图,作点E关于直线AD的对称点,连接交AD于.,当C、、F共线时,最小值,是等边三角形,,,,,,,,故选:B.如图,作点E关于直线AD的对称点,连接交AD于由,所以当C、、F共线时,最小,由是等边三角形,,,推出,解直角三角形即可得到结论.本题考查轴对称、等边三角形的性质、垂线段最短等知识,解题的关键是灵活运用所学知识解决最值问题.16.【答案】C【解析】解:设点Q的速度为,经过t秒,与全等,此时.分两种情形讨论:当,时, ≌ ,即,解得:,,;当,时, ≌ ,即,解得,,,综上所述,满足条件的点Q的速度为或,故选:C.设点Q的速度为,分两种情形构建方程即可解决问题.本题考查矩形的性质、全等三角形的性质、路程、速度、时间之间的关系等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.【答案】【解析】解:,,.故答案为:.先把3转化为,再比较被开放数的大小就可以了.本题考查实数大小比较,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.18.【答案】5【解析】解:在中,,,,,是AB边上的高,,,,故答案为:5.根据直角三角形的性质求出BC,求出,再根据直角三角形的性质计算,得到答案.本题考查的是直角三角形的性质,掌握在直角三角形中,角所对的直角边等于斜边的一半是解题的关键.19.【答案】【解析】解:,;;,,第是正整数个三角形的面积,故答案为:,.根据勾股定理和三角形的面积公式即可得到结论.此题主要考查的是等腰直角三角形的性质以及勾股定理的运用和利用规律的探查解决问题.20.【答案】解:原式;,解得,经检验,原方程的解为.【解析】利用二次根式的乘法法则运算;先去分母得到,然后解整式方程后进行检验确定原方程的解.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解分式方程.21.【答案】解:原式当时,原式.【解析】先把分式化简后,再把a的值代入求出分式的值.本题考查了分式的化简求值,熟练分解因式是解题的关键.22.【答案】解:不正确.应该是:过点A作,,,,,≌ ,.【解析】不正确.过一点可以作已知直线的垂线,不能作线段的中垂线.利用ASA证明 ≌ 即可.本题考查等腰三角形的判定,线段的垂直平分线的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.23.【答案】【解析】解:原式;原式;猜想:原式.故答案为.利用分母有理化计算;先分别分母有理化,然后合并即可;猜想部分与计算一样.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.24.【答案】解:设A种设备每台x万元,则B种设备每台万元,依题意,得:,解得:,经检验,是所列分式方程的解,且符合题意,.答:A种设备每台万元,B种设备每台万元.设购进A种设备m台,则购进B种设备台,依题意,得:,解得:.答:A种设备至少要购买5台.【解析】设A种设备每台x万元,则B种设备每台万元,根据数量总价单价结合花50万元购买的A种设备和花70万元购买B种设备的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;设购进A种设备m台,则购进B种设备台,根据总价单价数量结合总费用不高于30元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,正确列出分式方程;根据各数量之间的关系,正确列出一元一次不等式.25.【答案】解:点Q的运动速度为每秒1个单位,和运动时间t为3秒,由图中可知PQ的位置如图1,则由已知条件可得,,,,,作于点M,由题意知、,则、,,,则,即,,,当时,,解得或舍去;当时,,解得:;综上,当或时,能成为以PQ为腰的等腰三角形.【解析】因为已知P,Q的速度,根据时间即可求出各自运动路程,从而画出PQ;当时,,;当时,,;分别列出方程求出t后根据取舍即可得.本题主要考查了勾股定理,作图平移变换及等腰三角形,解题的关键是熟练掌握勾股定理及等腰三角形的判定.26.【答案】15 8【解析】【解决问题】解:,,,的面积;,,,且,,,;故答案为:15,8;;理由如下:,,,且,,,;【变式探究】解:连接PA、PB、PC,作于M,如图2所示:,是等边三角形,,,,的面积,,,,的面积的面积的面积的面积,;【拓展延伸】解:过点E作,垂足为Q,如图3所示:四边形ABCD是矩形,,,,,,由折叠可得:,,,,,,,四边形EQCD是矩形,,,,,,,由【解决问题】可得:,,即的值为4;【解决问题】只需运用面积法:,即可解决问题;解法同;【变式探究】连接PA、PB、PC,作于M,由等边三角形的性质得出,由勾股定理得出,得出的面积,由的面积的面积的面积的面积,即可得出答案;【拓展延伸】过点E作,垂足为Q,易证,过点E作,垂足为Q,由【解决问题】可得,易证,,只需求出BF 即可.本题是四边形综合题目,考查了矩形的性质与判定、等腰三角形的性质与判定、平行线的性质与判定、等边三角形的性质、勾股定理等知识,考查了用面积法证明几何问题,考查了运用已有的经验解决问题的能力,体现了自主探究与合作交流的新理念,是充分体现新课程理念难得的好题.。
河北省石家庄市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) 3.61的平方根是()A . -1.9B . 1.9C . ±1.9D . 不存在2. (2分)(2018·遵义模拟) 一组从小到大排列的数据:a,3,5,5,6,(a为正整数),唯一的众数是5,则该组数据的平均数是()A . 3.8B . 4C . 3.6或3.8D . 4.2或43. (2分)分别以下列四组数为一个三角形的边长:(1)3,4,5;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中能构成直角三角形的有()A . 4组B . 3组C . 2组D . 1组4. (2分)已知点A(2,-3)关于x轴对称的点的坐标为点B(2m,m+n),则m-n的值为()A . -5B . -1C . 1D . 55. (2分) (2020七上·槐荫期末) 若a-b=1,则代数式2b-2a-3的值是()A . 1B . -1C . 5D . -56. (2分)(2016·安徽模拟) 若一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,则k的取值范围是()A . k>3B . 0<k≤3C . 0≤k<3D . 0<k<37. (2分) (2017九上·召陵期末) 如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A . 4B . 5C . 6D . 78. (2分)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为()A . 700mB . 500mC . 400mD . 300m9. (2分)小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l1、l2 ,如图所示,他解的这个方程组是()A .B .C .D .10. (2分)“过直线外一点作已知直线的垂线”.下列尺规作图中对应的正确作法是()A .B .C .D .11. (2分) (2016七下·临河期末) 下列4对数值中是方程2x-y=1的解的是()A .B .C .D .12. (2分)(2019·抚顺模拟) 如图,已知在边长为4的菱形ABCD中,∠C=60°,E是BC边上一动点(与点B,C不重合).连接DE,作∠DEF=60°,交AB于点F,设CE=x,△FBE的面积为y.下列图象中,能大致表示y与x的函数关系的是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2017八下·双柏期末) 要使二次根式有意义,则x的取值范围是________.14. (1分)(2016·慈溪模拟) 已知直线y=kx+b经过点(2,3),则4k+2b﹣7=________.15. (1分)已知=1.536,=4.858.则=________ .若=0.4858,则x=________16. (1分)如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为________.三、解答题 (共11题;共101分)17. (10分) (2020九上·南昌期末) 计算× ;18. (10分)解下列方程组:.19. (15分)(2017·黄岛模拟) 已知:如图,线段a,∠α.求作:Rt△ABC,使∠C=90°,∠A=∠α,AC=a.20. (5分) (2016八上·济南开学考) 如图,四边形ABCD,已知∠A=90°,AB=3,BC=12,CD=13,DA=4.求四边形的面积.21. (5分) (2017七下·昭通期末) 已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值.22. (11分) (2018七下·余姚期末) 如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个等式,这个等式可以为________ .(只要写出一个即可)(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值②若三个实数x,y,z满足2x×4y÷8z= ,x2+4y2+9z2=44,求2xy-3xz-6yz的值23. (5分)如图,直线与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线与x轴交于点P,若△ABP的面积为,试求点P的坐标.24. (5分) (2017九上·平房期末) “双11”期间,某个体户在淘宝网上购买某品牌A、B两款羽绒服来销售,若购买3件A,4件B需支付2400元,若购买2件A,2件B,则需支付1400元.(1)求A、B两款羽绒服在网上的售价分别是多少元?(2)若个体户从淘宝网上购买A、B两款羽绒服各10件,均按每件600元进行零售,销售一段时间后,把剩下的羽绒服全部6折销售完,若总获利不低于3800元,求个体户让利销售的羽绒服最多是多少件?25. (15分) (2020九上·大丰期末) 九年级(1)班的小华和小红两名学生10次数学测试成绩如下表(表Ⅰ)所示:现根据上表数据进行统计得到下表(表Ⅱ):姓名平均成绩中位数众数小华80小红8090(1)填空:根据表Ⅰ的数据完成表Ⅱ中所缺的数据;(2)老师计算了小红的方差请你计算小华的方差并说明哪名学生的成绩较为稳定.26. (5分) (2018七上·定安期末) 如图,已知直线AB与CD交于点O,OM⊥CD,OA平分∠MOE,且∠BOD=28°,求∠AOM,∠COE的度数.27. (15分) (2017八下·宜城期末) 为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共11题;共101分)17-1、18-1、19-1、20-1、21-1、22-1、22-2、23-1、24-1、24-2、25-1、25-2、26-1、27-1、27-2、27-3、。
2025届河北省石家庄市43中学数学八年级第一学期期末综合测试试题 试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.下列标志中,不是轴对称图形的是( )A .B .C .D .2.对于命题“已知:a ∥b ,b ∥c ,求证:a ∥c”.如果用反证法,应先假设( ) A .a 不平行bB .b 不平行cC .a ⊥cD .a 不平行c3.甲、乙、丙、丁四人进行 100m 短跑训练,统计近期 10 次测试的平均成绩都是 13.2s ,10次测试成绩的方差如下表,则这四人中发挥最稳定的是( ) 选手甲乙丙丁方差2()s 0.200.190.21 0.22 A .甲B .乙C .丙D .丁4.冬天到了,政府决定免费为贫困山区安装暖气,计划甲安装队为A 山区安装660片, 乙安装队为B 山区安装600片,两队同时开工且恰好同时完工,甲队比乙队每天多安装20片.设乙队每天安装x 片,根据题意,下面所列方程中正确的是( ) A .66060020x x =- B .66060020x x=- C .66060020x x =+ D .66060020x x=+ 5.如图,直线l 1、l 2的交点坐标可以看作方程组( )的解.A .x 2y 22x y 2-=-⎧⎨-=⎩B .y x 1y 2x 2=-+⎧⎨=-⎩C .x 2y 1 2x y 2-=-⎧⎨-=-⎩ D .y 2x 1y 2x 2=+⎧⎨=-⎩6.如图,直线12l l //,被直线3l 、4l 所截,并且34l l ⊥,144∠=,则2∠等于( )A .56°B .36°C .44°D .46°7.如图,在Rt △ABO 中,∠OBA =90°,A(8,8),点C 在边AB 上,且13AC CB =,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( )A .(2,2)B .55,22⎛⎫ ⎪⎝⎭C .88,33⎛⎫ ⎪⎝⎭D .1616,33⎛⎫ ⎪⎝⎭8.点(2,-3)关于y 轴的对称点是( ) A .()2,3- B .()2,3C .()2,3--D .()2,3-9.解分式方程2x 23x 11x++=--时,去分母后变形为A .()()2x 23x 1++=-B .()2x 23x 1-+=-C .()()2x 231?x -+=- D .()()2x 23x 1-+=-10.如图,▱ABCD 的周长为36,对角线AC 、BD 相交于点O ,点E 是CD 的中点,BD=12,则△DOE 的周长为( )A .15B .18C .21D .24二、填空题(每小题3分,共24分)11.已知函数y=-x+m 与y=mx-4的图象交点在y 轴的负半轴上,那么,m 的值为____. 12.函数 y =15x -中自变量 x 的取值范围是___________. 13.分式211m m -+的值为0,则m =__________.14.等腰三角形中有一个角的度数为40°,则底角为_____________. 15.已知15m a =,3n a =,则m n a -=__________ 16.分解因式:3312x y xy -=__________. 17.已知14a a -=,那么221+=a a______. 18.在函数y =22+x x中,自变量x 的取值范围是____. 三、解答题(共66分)19.(10分)如图,在△ABC 中,AB=CB ,∠ABC=90°,D 为AB 延长线上一点,点E 在BC 边上,且BE=BD ,连结AE 、DE 、DC①求证:△ABE ≌△CBD ;②若∠CAE=30°,求∠BDC 的度数.20.(6分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)证明:△BCE≌△CAD;(2)若AD=15cm,BE=8cm,求DE的长.21.(6分)某校为了创建书香校远,计划进一批图书,经了解.文学书的单价比科普书的单价少20元,用800元购进的文学书本数与用1200元购进的科普书本数相等.(1)文学书和科普书的单价分别是多少元?(2)该校计划用不超过5000元的费用购进一批文学书和科普书,问购进60本文学书后最多还能购进多少本科普书?22.(8分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.23.(8分)已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置,并求△ABC的面积;(2)在平面直角坐标系中画出△A′B′C′,使它与△ABC关于x轴对称,并写出△A′B′C′三顶点的坐标;(3)若M(x,y)是△ABC内部任意一点,请直接写出这点在△A′B′C′内部的对应点M′的坐标.24.(8分)现有一长方形纸片ABCD,如图所示,将△ADE沿AE折叠,使点D恰好落在BC边上的点F,已知AB=6,BC=10,求EC的长.25.(10分)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=_______,β=_______.②求α、β之间的关系式.(2)是否存在不同于以上②中的α、β之间的关系式?若存在,求出这个关系式,若不存在,请说明理由.26.(10分)如图①,ABC 中,AB AC =,B 、C ∠的平分线交于O 点,过O 点作//EF BC 交AB 、AC 于E 、F .(1)猜想:EF 与BE 、CF 之间有怎样的关系.(2)如图②,若AB AC ≠,其他条件不变,在第(1)问中EF 与BE 、CF 间的关系还存在吗?并说明理由.(3)如图③,若ABC 中B 的平分线BO 与三角形外角平分线CO 交于O ,过O 点作//OE BC 交AB 于E ,交AC 于F .这时图中还有等腰三角形吗?EF 与BE 、CF 关系又如何?说明你的理由.参考答案一、选择题(每小题3分,共30分) 1、B【分析】根据轴对称图形的性质对各项进行判断即可. 【详解】A. 是轴对称图形; B. 不是轴对称图形; C. 是轴对称图形; D. 是轴对称图形; 故答案为:B .【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的性质是解题的关键. 2、D【分析】用反证法进行证明;先假设原命题不成立,本题中应该先假设a 不平行c ,由此即可得答案.【详解】直线a ,c 的位置关系有平行和不平行两种,因而a ∥c 的反面是a 与c 不平行, 因此用反证法证明“a ∥c”时,应先假设a 与c 不平行, 故选D. 【点睛】本题结合直线的位置关系考查反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定. 3、B【分析】根据方差的定义判断,方差越小数据越稳定. 【详解】∵0.190.200.210.22<<<, ∴这四人中乙的方差最小, ∴这四人中发挥最稳定的是乙, 故选:B . 【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 4、D【分析】根据题意,分别求出两队完工的天数列出方程即可. 【详解】设乙队每天安装x 片,则甲队每天安装x+20片, 66060020x x=+ 故选:D. 【点睛】此题主要考查分式方程的实际应用,解题关键是理解题意,找出等量关系. 5、A【分析】首先利用待定系数法求出l 1、l 2的解析式,然后可得方程组.【详解】解:设l1的解析式为y=kx+b,∵图象经过的点(1,0),(0,-2),∴b20k b=-⎧⎨=+⎩,解得:b2 k2=-⎧⎨=⎩,∴l1的解析式为y=2x-2,可变形为2x-y=2,设l2的解析式为y=mx+n,∵图象经过的点(-2,0),(0,1),∴n102m n=⎧⎨=-+⎩,解得:n11m2=⎧⎪⎨=⎪⎩,∴l2的解析式为y=12x+1,可变形为x-2y=-2,∴直线l1、l2的交点坐标可以看作方程组x2y22x y2-=-⎧⎨-=⎩的解.故选:A.【点睛】此题主要考查了一次函数与二元一次方程组的解,关键是掌握两函数图象的交点就是两函数解析式组成的方程组的解.6、D【分析】依据l1∥l2,即可得到∠1=∠3=44°,再根据l3⊥l4,可得∠2=90°-44°=46°.【详解】解:如图,∵l1∥l2,∴∠1=∠3=44°,又∵l3⊥l4,∴∠2=90°-44°=46°,故选:D.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.7、D【分析】根据已知条件得到AB=OB=8,∠AOB=45°,求得BC=6,OD=BD=4,得到D(4,0),C(8,6),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,4),求得直线EC的解析式为y=14x+4,解方程组即可得到结论.【详解】解:∵在Rt△ABO中,∠OBA=90°,A(8,8),∴AB=OB=8,∠AOB=45°,∵13ACCB=,点D为OB的中点,∴BC=6,OD=BD=4,∴D(4,0),C(8,6),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,4),∵直线OA 的解析式为y=x,设直线EC的解析式为y=kx+b,∴486 bk b=⎧⎨+=⎩,解得:144kb⎧=⎪⎨⎪=⎩,∴直线EC 的解析式为y =14x+4, 解144y x y x =⎧⎪⎨=+⎪⎩ 得,163163x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴P (163,163), 故选:D .【点睛】本题考查了轴对称-最短路线问题,等腰直角三角形的性质,正确的找到P 点的位置是解题的关键. 8、C【解析】让两点的横坐标互为相反数,纵坐标不变可得所求点的坐标. 【详解】解:∵所求点与点A (2,–3)关于y 轴对称, ∴所求点的横坐标为–2,纵坐标为–3,∴点A (2,–3)关于y 轴的对称点是(–2,–3). 故选C . 【点睛】本题考查两点关于y 轴对称的知识;用到的知识点为:两点关于y 轴对称,横坐标互为相反数,纵坐标相同. 9、D【解析】试题分析:方程22311x x x++=--,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.考点:解分式方程的步骤. 10、A【分析】此题涉及的知识点是平行四边形的性质.根据平行四边形的对边相等和对角线互相平分可得,OB=OD ,又因为E 点是CD 的中点,可得OE 是△BCD 的中位线,可得OE=12BC,所以易求△DOE的周长.【详解】解:∵▱ABCD的周长为32,∴2(BC+CD)=32,则BC+CD=1.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=12BD=2.又∵点E是CD的中点,DE=12 CD,∴OE是△BCD的中位线,∴OE=12 BC,∴△DOE的周长=OD+OE+DE=12BD+12(BC+CD)=2+9=3,即△DOE的周长为3.故选A【点睛】此题重点考察学生对于平行四边形的性质的理解,三角形的中位线,平行四边形的对角对边性质是解题的关键.二、填空题(每小题3分,共24分)11、-1【分析】根据题意,第二个函数图象与y轴的交点坐标也是第一个函数图象与y轴的交点坐标,然后求出第二个函数图象与y轴的交点坐标,代入第一个函数解析式计算即可求解.【详解】当x=0时,y=m•0-1=-1,∴两函数图象与y轴的交点坐标为(0,-1),把点(0,-1)代入第一个函数解析式得,m=-1.故答案为:-1.【点睛】此题考查两直线相交的问题,根据第二个函数解析式求出交点坐标是解题的关键,也是本题的突破口.12、5x【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于1.【详解】解:根据题意得:x-2≠1,解得:x≠2.故答案为:x ≠2.【点睛】本题考查了分式有意义的条件,解题的关键是掌握当函数表达式是分式时,考虑分式的分母不能为1.13、1【分析】分式为0,则分子为0,且分母不为0,列写关于m 的方程求得. 【详解】∵分式211m m -+的值为0 ∴21m -=0,且m+1≠0解得:m=1故答案为:1【点睛】本题考查分式为0的情况,需要注意,在求解过程中,必须还要考虑分母不为0.14、40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°; 当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°. 故答案为:40°或70°. 点睛:此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,由于不明确40°的角是等腰三角形的底角还是顶角,所以要采用分类讨论的思想.15、5【分析】由题意根据同底数幂的除法,进行分析计算即可.【详解】解:∵15m a =,3n a =,∴1535m n m n a a a -=÷=÷=.故答案为:5.【点睛】本题考查同底数幂的除法,熟练掌握同底数幂的除法法则即同底数幂相除指数相减是解题的关键.16、()()322xy x x +-【分析】先提取公因式3xy ,再对余下的多项式利用平方差公式继续分解.【详解】3x 3y ﹣12xy=3xy (x 2﹣4)=3xy (x +2)(x ﹣2).故答案为:3xy (x +2)(x ﹣2).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 17、1 【分析】由完全平方公式变形,把14a a -=两边同时平方,然后移项即可得到答案. 【详解】解:∵14a a -=, ∴21()16a a-=, ∴221216a a+-=, ∴22118a a+=; 故答案为:1.【点睛】本题考查了完全平方公式的运用,解题的关键是熟练掌握完全平方公式进行解题.18、x ≥-2且x ≠1【分析】根据二次根式被开方数大于等于1,分式分母不等于1列式计算即可得解.【详解】解:由题意得,x+2≥1且2x≠1,解得:x≥-2且x≠1.故答案为:x≥-2且x≠1.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为1;(3)当函数表达式是二次根式时,被开方数非负.三、解答题(共66分)19、①见解析;②∠BDC =75°.【分析】①利用SAS 即可得证;②由全等三角形对应角相等得到∠AEB =∠BDC ,利用外角的性质求出∠AEB 的度数,即可确定出∠BDC 的度数.【详解】①证明:在△ABE 和△CBD 中,90AB CB ABE CBD BE BD ⎧⎪∠∠︒⎨⎪⎩====,∴△ABE ≌△CBD (SAS );②解:∵在△ABC 中,AB =CB ,∠ABC =90°,∴∠BAC =∠ACB =45°,∵△ABE ≌△CBD ,∴∠AEB =∠BDC ,∵∠AEB 为△AEC 的外角,∴∠AEB =∠ACB +∠CAE =45°+30°=75°,∴∠BDC =75°.【点睛】此题考查了全等三角形的判定与性质以及三角形的外角性质,熟练掌握全等三角形的判定与性质是解本题的关键.20、(1)见解析;(2)7cm .【分析】(1)根据垂直定义求出∠BEC =∠ACB =∠ADC ,根据同角的余角相等得出∠ACD =∠CBE ,根据AAS 证明△CAD ≌△BCE ;(2)根据全等三角形的对应边相等得到AD =CE ,BE =CD ,利用DE =CE ﹣CD ,即可得出结论.【详解】(1)∵∠ACB =90°,BE ⊥CE ,AD ⊥CE ,∴∠BEC =∠ACB =∠ADC =90°,∴∠ACE +∠BCE =90°,∠BCE +∠CBE =90°,∴∠ACD =∠CBE .在△CAD 和△BCE 中,∵ADC BEC ACD CBE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CAD ≌△BCE ;(2)∵△CAD ≌△BCE ,∴AD =CE ,BE =CD ,∴DE =CE ﹣CD =AD ﹣BE =15﹣8=7(cm ).【点睛】本题考查了全等三角形的性质和判定,垂线的定义等知识点的应用,解答本题的关键是得出证明△ADC和△CEB全等的三个条件.21、(1)文学书的单价为40元/本,科普书的单价为1元/本;(2)购进1本文学书后最多还能购进2本科普书.【解析】(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,根据数量=总价÷单价结合用800元购进的文学书本数与用1200元购进的科普书本数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进m本科普书,根据总价=文学书的单价×购进本数+科普书的单价×购进本数结合总价不超过5000元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.【详解】解:(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,依题意,得:,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x+20=1.答:文学书的单价为40元/本,科普书的单价为1元/本.(2)设购进m本科普书,依题意,得:40×1+1m≤5000,解得:m≤.∵m为整数,∴m的最大值为2.答:购进1本文学书后最多还能购进2本科普书.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.22、(1)2000;(2)28.8°;(3)补图见解析;(4)36万人.【解析】分析:(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.详解:(1)本次接受调查的市民人数为300÷15%=2000人,(2)扇形统计图中,扇形E的圆心角度数是360°×1602000=28.8°,(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).点睛:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、(1)5;(2)A′(﹣2,﹣1)、B′(3,﹣1)、C′(2,﹣3);(3)M'(x,﹣y).【解析】分析:(1)根据点的坐标,直接描点,根据点的坐标可知,AB∥x轴,且AB=3﹣(﹣2)=5,点C到线段AB的距离3﹣1=2,根据三角形面积公式求解;(2)分别作出点A、B、C关于x轴对称的点A'、B'、C',然后顺次连接A′B′、B′C′、A′C′,并写出三个顶点坐标;(3)根据两三角形关于x轴对称,写出点M'的坐标.本题解析:(1)描点如图,由题意得,AB∥x轴,且AB=3﹣(﹣2)=5,∴S△ABC =12×5×2=5;(2)如图;A′(﹣2,﹣1)、B′(3,﹣1)、C′(2,﹣3);(3)M'(x,﹣y).24、8 3【分析】由勾股定理求出BF=8,得出FC=2,设DE=EF=x,则EC=6﹣x,在Rt△CEF中,EF2=FC2+EC2,即x2=22+(6﹣x)2,解得x=103,即可得出答案.【详解】解:∵四边形ABCD是矩形,∴CD=AB=6,AD=BC=10,∠B=∠C=90°,又∵将△ADE折叠使点D恰好落在BC边上的点F,∴AF=AD=10,DE=EF,在Rt△ABF中,AB=6,AF=10,∴BF22221068--=AF AB,∴FC=10﹣8=2,设DE=EF=x,则EC=6﹣x,在Rt△CEF中,EF2=FC2+EC2,即x2=22+(6﹣x)2,解得103x=,∴EC=6﹣x=83,即EC的长为83.【点睛】本题考查了折叠的性质、矩形的性质和勾股定理,利用折叠的性质和矩形的性质得出线段长及未知线段的数量关系,再由勾股定理得出方程是解题的关键.25、(1)①20°,10°;②α=2β;(2)见解析.【详解】(1)①∵AD=AE,∴∠AED=∠ADE=70°,∠DAE=40°,又∵AB=AC,∠ABC=60°,∴∠BAC=∠C=∠ABC=60°,∴α=∠BAC-∠DAE=60°-40°=20°,β=∠AED-∠C=70°-60°=10°;②设∠ABC=x,∠ADE=y,则∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β,∴α=2β.(2)如图1,点E在CA延长线上,点D在线段BC上,设∠ABC=x,∠ADE=y,则∠ACB=x,∠AED=y,在△ABD中,x+α=β-y,在△DEC中,x+y+β=180°,∴α=2β-180°.当点E在CA的延长线上,点D在CB的延长线上,如图2,同①的方法可得α=180°−2β. 考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.=+,证明见解析;(2)存在,证明见解析;(3)等腰三角形为△BEO,26、(1)EF BE CF=-,证明见解析.△CFO,EF BE CF【分析】(1)根据角平分线的定义和平行线的性质可得∠EOB =∠EBO,∠FOC=∠FCO,进而可得EO=EB,FO=FC,然后根据线段间的和差关系即得结论;(2)同(1)的思路和方法解答即可;(3)同(1)的思路和方法可得EO=EB,FO=FC,再根据线段间的和差关系即得结论.【详解】(1)EF、BE、FC的关系是EF=BE+FC.理由如下:∵OB、OC平分∠ABC、∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB =∠EBO,∠FOC =∠FCO,∴EO=EB,FO=FC,∵EF=EO+OF,∴EF =BE+CF;(2)当A B≠AC时,EF =BE+CF仍然成立.理由如下:∵OB、OC平分∠ABC、∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB =∠EBO,∠FOC =∠FCO,∴EO=EB,FO=FC,∵EF=EO+OF,∴EF =BE+CF;(3)等腰三角形为△BEO,△CFO ,EF=BE﹣FC.理由如下:如图③,∵OB、OC平分∠ABC、∠ACG,∴∠ABO=∠OBC,∠ACO=∠OCG,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCG,∴∠EOB =∠EBO,∠FOC =∠ACO,∴EO=EB,FO=FC,∴△BEO与△CFO为等腰三角形,∵EF=EO-OF,∴EF=BE-CF.【点睛】本题考查了角平分线的定义、平行线的性质以及等腰三角形的判定等知识,属于常考题型,熟练掌握上述知识是解题的关键.。
河北省石家庄市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、反复比较,慎重选择:(本大题共10小题,每小题3分,满分30 (共10题;共30分)1. (3分)(2018·广安) 已知点P(1﹣a,2a+6)在第四象限,则a的取值范围是()A . a<﹣3B . ﹣3<a<1C . a>﹣3D . a>12. (3分)下列图形中,是中心对称图形,但不是轴对称图形是()A . 正方形B . 矩形C . 菱形D . 平行四边形3. (3分) (2019九上·九龙坡开学考) 当x=2时,一次函数y=﹣2x+1的函数值y是()A . ﹣3B . ﹣2C . ﹣1D . 04. (3分)三角形两边长分别为3和6,第三边是方程x2-6x+8=0的解,则这个三角形的周长是()A . 11B . 13C . 11或13D . 不能确定5. (3分) (2019八下·杜尔伯特期末) 如图,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正确的是()A . ①②B . ②③C . ①③D . ①②③6. (3分) (2017七下·高台期末) 如图:AB=A′B′,∠A=∠A′,若△ABC≌△A′B′C′,则还需添加的一个条件有()种.A . 1B . 2C . 3D . 47. (3分)(2017·锡山模拟) 下列命题中,假命题是()A . 经过两点有且只有一条直线B . 平行四边形的对角线相等C . 两腰相等的梯形叫做等腰梯形D . 圆的切线垂直于经过切点的半径8. (3分) (2019八下·扬州期末) 如图,在同一直角坐标系中,正比例函数y=kx+3与反比例函数的图象位置可能是()A .B .C .D .9. (3分)从1,2,3,4,5这五个数中,任取两个数p和q(p≠q),构成函数y1=px-2和y2=x+q,使两个函数图象的交点在直线x=2的右侧,则这样的有序数组(p,q)共有()A . 7对B . 9对C . 11对D . 13对10. (3分) (2019八下·平顶山期中) 如图,直线与的交点的横坐标为,则关于的不等式的整数解为().A .B .C .D .二、注重审题,细心填空(本大题共6小题,每小题4分,满分24分) (共6题;共24分)11. (4分)(2017·郴州) 函数y= 的自变量x的取值范围为________.12. (4分) (2017八下·庆云期末) 将直线y=2x向下平移2个单位,所得函数的图象过第________象限.13. (4分) (2017九上·郑州期中) 如图所示,已知点G为Rt△ABC的重心,∠ABC=90°,若AB=12cm,BC=9cm,则△AGD的面积是________.14. (4分)在△ABC中,AB=AC,AB的垂直平分线DE与AC所在的直线相交于点E,垂足为D,连接BE.已知AE=5,tan∠AED=,则BE+CE=________15. (4分)已知命题“如果一个四边形是平行四边形,那么这个四边形是旋转对称图形.”,写出它的逆命题是________,该逆命题是________命题(填“真”或“假”).16. (4分) (2017八上·西华期中) 如图所示,△ABC中,∠A = 60°,将△ABC沿DE翻折后,点A落在BC 边上的点A'处,如果∠A'EC =70°,那么∠A'DE的度数为________.三、开动脑筋,你一定能做对! (共5题;共44分)17. (8分) (2017七下·迁安期末) 若a、b是等腰△ABC的两边,且a是不等式组的最小整数解,b=46×0.256+(﹣)﹣2﹣(3721﹣4568)0 ,求△ABC的周长.18. (8.0分)如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC 的顶点在格点上,且A(1,-4),B(5,-4),C(4,-1)(1)①在方格纸中画出△ABC;②若把△ABC向上平移2个单位长度,再向左平移4个单位长度得到Δ A ′ B ′ C ′ ,在图中画出Δ A ′B ′C ′ ,并写出B ′ 的坐标.(2)求出△ABC的面积;19. (8分)如图:在△ABC中,∠C=90°,点D是AB边上一点,DM⊥AB且DE=BC,过点M作ME∥BC交AB 于点E.求证:ME=AB.20. (8分) (2019九上·西城期中) 对某一个函数给出如下定义:若存在实数,对于任意的函数值y,都满足,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(1)分别判断函数和是不是有界函数?若是有界函数,求其边界值;(2)若函数的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足?21. (12分) (2019八下·昭通期末) 如图,AD∥BC,AC⊥AB,AB=3,AC=CD=2.(1)求BC的长;(2)求BD的长.参考答案一、反复比较,慎重选择:(本大题共10小题,每小题3分,满分30 (共10题;共30分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、注重审题,细心填空(本大题共6小题,每小题4分,满分24分) (共6题;共24分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、开动脑筋,你一定能做对! (共5题;共44分)答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、答案:21-2、考点:解析:。
河北省石家庄市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·安康月考) 等腰三角形的一边长等于4,一边长等于9,则它的周长是()A . 17B . 13C . 17或22D . 222. (2分)下列图形中,是轴对称图形的是()A .B .C .D .3. (2分)(2018·潍坊) 下列计算正确的是()A .B .C .D .4. (2分)四边形的四个内角()A . 可以都是锐角B . 可以都是钝角C . 可以都是直角D . 必须有两个锐角5. (2分) (2018八上·衢州期中) 如图,已知 BF=CE,∠B=∠E,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A . AB=DEB . AC∥DFC . ∠A=∠DD . AC=DF6. (2分) (2018七下·慈利期中) 不论x,y为何有理数,x2+y2﹣10x+8y+45的值均为()A . 正数B . 零C . 负数D . 非负数7. (2分)如图,∠C=∠D,DE=EC,则以下说法错误的是()A . AD=BCB . OA=ACC . ∠OAD=∠OBCD . △OAD≌△OBC8. (2分) (2019八上·港南期中) 把分式中的x和y都扩大2倍,则分式的值()A . 扩大4倍B . 扩大2倍C . 缩小2倍D . 不变9. (2分) (2018八上·双城期末) 如图,等边三角形ABC中,D,E分别为AB,BC边上的点,且 AD=BE,AE 与CD交于点F,AG⊥CD于点G,则的值为()A .B .C .D .10. (2分) (2015八上·哈尔滨期中) 如图,如图,△ABC中,AB=AC,∠A=30°,且△ABC的面积是4,则AB的长为()A . 2B . 4C . 8D . 6二、填空题 (共8题;共8分)11. (1分)已知当x1=a,x2=b,x3=c时,二次函数y= x2+mx对应的函数值分别为y1 , y2 , y3 ,若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c时,都有y1<y2<y3 ,则实数m的取值范围是________.12. (1分)(2018·道外模拟) 一种病毒长度约为0.000056mm,用科学记数法表示这个数为________.13. (1分)(2011·扬州) 因式分解:x3﹣4x2+4x=________.14. (1分) (2019九上·南岗期末) 函数的自变量的取值范围是________.15. (1分) (2017八上·密山期中) 如图,△ABC中,∠ABC与∠ACB的平分线相交于点D,过点D作直线EF‖BC,交AB于点E、交AC于点F若BE=4,EF=7,则FC=________。
石家庄市2018-2019学年度第一学期八年级期末考试数学模拟试卷一.选择题(共14小题)1.下列各近似数精确到万位的是()A.8200B.8亿5千万C.4×104D.1.25×1042.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l43.下列说法正确的是()A.(﹣3)2的平方根是3B.=±4C.1的平方根是1D.4的算术平方根是24.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点C B.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PC D.过点P作PC⊥AB,垂足为C5.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD第2题第4题第5题6.下列二次根式中,是最简二次根式的是()A.B.C.D.7.化简的结果为()A.B.a﹣1C.a D.18.下列计算或运算中,正确的是()A.2=B.﹣=C.6÷2=3D.﹣3=9.用反证法证明命题:“△ABC中,若AB=AC,则∠B、∠C都是锐角”首先应假设()A.∠B、∠C都不是锐角B.∠B为锐角C.∠C不为锐角D.∠B、∠C不都是锐角10.下列无理数中,与4最接近的是()A.B.C.D.11.如图,一根木棍(AB),斜靠在与地面(OM)垂直的墙(OM)上,当木棍A端沿墙下滑,且B端沿地面向右滑行时,AB的中点P到点O的距离()A.变大B.变小C.先变小后变大D.不变12.如图,AB=AC,则数轴上点C所表示的数为()A.﹣1B.C.﹣2D.+213.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁14.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3B.4C.5D.6第11题第12题第14题二.填空题(共6小题)15.计算:=.16.若式子有意义,则x的取值范围是.17.已知CD是△ABC的边AB上的高,若CD=,AD=1,AB=2AC,则BC的长为.18.如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是2和2,则图中阴影部分的面积是.19.已知关于x的分式方程﹣2=有一个正数解,则k的取值范围为.20.如图,已知AO=10,P是射线ON上一动点(即P点可在射线ON上运动),∠AON=60°.(1)OP=时,△AOP为直角三角形.(2)设OP=x,则x满足时,△AOP为钝角三角形.第18题第20题三.解答题(共11小题)21.某学生化简分式+出现了错误,解答过程如下:原式=+(第一步)=(第二步)=.(第三步)(1)该学生解答过程是从第步开始出错的,其错误原因是;(2)请写出此题正确的解答过程.22.计算:+﹣23.解分式方程:(1)+1=.(2).24.综合计算题(1)先化简,再求值:(﹣)÷,其中,x=﹣3.(2)已知:=﹣(其中A、B为常数),求A、B的值.25.如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=°.26.如图,在Rt△ABC中.(1)利用尺规作图,在BC边上求作一点P,使得点P到AB的距离(PD的长)等于PC的长;(2)利用尺规作图,作出(1)中的线段PD.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)27.如图,在△ABC中,点D在边AC上,DB=BC,E是CD的中点,F是AB的中点.(1)直接写出AB与EF的数量关系:;(2)若AD=3,BD=2,∠C=60°,求EF的长.28.如图1,射线OB与直线AN垂直于点O,线段OP在∠AOB内,一块三角板的直角顶点与点P重合,两条直角边分别与AN、OB的交于点C、D.(1)当∠POB=60°,∠OPC=30°,PC=2时,则PD=.(2)若∠POB=45°,①当PC与PO重合时,PC和PD之间的数量关系是;②当PC与PO不重合时,猜想PC与PD之间的数量关系,并证明你的结论.29.某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?30.在Rt△AOB中,∠AOB=90°,∠A=45°,点P、D分别在射线AB、OB上,PO=PD.=9,求点D到AB的距离.(1)如图1,若∠OPD=30°,S△OPD(2)①如图2,作DE⊥AB于点E,当∠OPD≤90°时,PE与AB之间的数量关系是;②当∠OPD为钝角时,PE与AB之间是否存在上述关系?若存在,设AB=11,求出PE的值;若不存在,请说明理由.石家庄市2018-2019学年度第一学期八年级期末考试数学模拟试卷参考答案与试题解析一.选择题(共14小题)1.下列各近似数精确到万位的是()A.8200B.8亿5千万C.4×104D.1.25×104【分析】根据近似数的精确度对各选项进行判断.【解答】解:A、8200精确到个位,所以A选项错误;B、8亿5千万精确到千万位,所以B选项错误;C、4×104精确到万位,所以C选项正确;D、12.5×104精确到百位,所以D选项错误.故选:C.2.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l4【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:该图形的对称轴是直线l3,故选:C.3.下列说法正确的是()A.(﹣3)2的平方根是3B.=±4C.1的平方根是1D.4的算术平方根是2【分析】直接利用算术平方根以及平方根的定义分析得出答案.【解答】解:A、(﹣3)2=9的平方根是±3,故此选项错误;B、=4,故此选项错误;C、1的平方根是±1,故此选项错误;D、4的算术平方根是2,正确.故选:D.4.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点C B.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PC D.过点P作PC⊥AB,垂足为C【分析】利用判断三角形全等的方法判断即可得出结论.【解答】解:A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB 的垂直平分线上,符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;故选:B.5.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.6.下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的定义对各选项分析判断利用排除法求解.【解答】解:A、不是最简二次根式,错误;B、是最简二次根式,正确;C、不是最简二次根式,错误;D、不是最简二次根式,错误;故选:B.7.化简的结果为()A.B.a﹣1C.a D.1【分析】根据分式的运算法则即可求出答案.【解答】解:原式=+==a﹣1。
2018-2019学年河北石家庄八年级上数学期末试卷一、选择题1.下列图形中,可以看作是中心对称图形的是()2.在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是()A.在丙校随机抽取600名学生进行调查B.抽取乙校初二年级学生进行调查C.在四个学校各随机抽取150名学生进行调查D.随机抽取150名老师进行调查3.下列叙述正确的是()A.近似数24.30精确到了十分位B.近似数4.70 X IO’精确到了百位C.近似数3.6万精确到了十分位D.近似数1.70和1.7都精确到了十分位4.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即:如果一个三角形的三边长分别为a, b, c,则该三角形的面积为s =小卜广一(注2£并已知△ 48C的三边长分别为麻,2, 1,则△A8C的面积为()A.2.5B.lC.2D.—5.己知: = g(aW0,bW0),下列变形错误的是()A. 2a = 3b C.3a = 2b D.-=-a 26.黄金分割数学是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算巡-1的值()7 .已知:如图,点P 在线段48外且41 = P8,求证:点P 在线段力8的垂直平分线上,在证明该结论时,需添 加辅助线,下列做法不正确的是()8 .作乙1P8的平分线PC 交08于点C C.过点P 作PC _L/B,垂足为CD,过点P 作PC J.月8于点C 且力C = BC8 .〃赵爽弦图〃巧妙地利用而枳关系证明了勾股定理,是我国古代数学的骄傲.如图所示的〃赵爽弦图〃是由四 个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为。
,较短直角边长 为b.若ab = 8,大正方形的面积为25,则小正方形的边长为()A.6B.9C.3D.49 .如图,在△力BC 中,DE 是力C 的垂直平分线,且分别交8C,力C 于点。
2018-2019学年河北省石家庄外国语学校八年级(上)期末数学试卷一、选择题(本大题共16小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求,请把正确的选项写在答题卡上)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2. 若分式|x|−2x+2的值为0,则x的值为()A.0B.2C.x=2D.−23. 如图,小手盖住的点的坐标可能为()A.(−6, 3)B.(5, 2)C.(−4, −6)D.(3, −4)4. 227,π−√3,√93,3.14159,√16,0.3,0.101001001⋯(相邻两个1之间依次多一个0)中,无理数的个数是()A.3个B.2个C.5个D.4个5. 若√x+3x−1有意义,则x满足条件是()A.x>−3且x≠1B.x≥−3且x≠1C.x≥−3D.x≥16. 如图,AD⊥BC,D为BC的中点,以下结论正确的有几个?()①△ABD≅△ACD;②AB=AC;③∠B=∠C;④AD是△ABC的角平分线.A.2 B.1 C.3 D.47. 下列变形正确的是()A.√273=±3 B.√179=±43C.±√121=±11D.√(−4)2=−48. 小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的平分线.”他这样做的依据是( )A.角平分线上的点到这个角两边的距离相等B.角的内部到角的两边的距离相等的点在角的平分线上C.以上均不正确D.三角形三条角平分线的交点到三条边的距离相等9. 下列变形从左到右一定正确的是()A.ab=acbcB.ab=a−2b−2C.axbx=abD.ab=a2b10. 下列条件中,不能判定△ABC是直角三角形的是()A.a:b:c=5:12:13B.∠A=∠B+∠CC.∠A:∠B:∠C=3:4:5D.a2=(b+c)(b−c)11. 几个同学包租一辆面包车去旅游,面包车的租价为180元,后来又增加了两名同学,租车价不变,若设原来参加旅游的同学共有x人,结果每个同学比原来少分摊元车费()A.180 x(x+2)B.180x+2−180xC.720x(x+2)D.360x(x+2)12. 在△ABC中,AC=6、BC=8,AB=10,用尺规作图的方法在BC上确定一点P,设PC=x,下列作图方法中,不能求出PC的长的作图是()A. B.C. D.13. 已知:如图,下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①②③④B.①③④C.①②④D.①③14. 下列说法正确的个数()①近似数32.6×102精确到十分位:②在√2,−(−2)2,√83,−|−√2|中,最小的数是√83③如图所示,在数轴上点P所表示的数为−1+√5④反证法证明命题“一个三角形中最多有一个钝角”时,首先应假设“这个三角形中有两个纯角”⑤如图②,在△ABC内一点P到这三条边的距离相等,则点P是三个角平分线的交点A.2B.1C.4D.315. 如图,把长方形纸片OABC放入平面直角坐标系中,使OA,OC分别落在x轴、y轴上,连接AC,将纸片OABC沿AC折叠,使点B落在点D的位置,AD与y轴交于点E,若B(1, 2),则OE的长为()A.34B.1C.45D.2316. 如图所示,把多块大小不同的30∘角三角板,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与x轴重合且点A的坐标为(2, 0),∠ABO=30∘,第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交x轴于点B1,第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交y轴于点B2,第四块三角板斜边B2B3与第三块三角板的斜边B1B2垂直且交x轴于点B3,按此规律继续下去,则线段OB2020的长为()A.2×(√3)2021B.2×(√3)2020C.(√3)2021D.(√3)2020二.填空题(本大题共4小题,每题3分,共12分)①|2−√5|=________.②√8×√12=________.③写出−√5和√10之间的所有整数________.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形B 、C 、D 的面积依次为4、3、9,则正方形A 的面积为________.如图,在直角坐标系中,点B(−8, 8),点C(−2, 0),若动点P 从坐标原点出发,沿y 轴正方向匀速运动,运动速度为1cm/s ,设点P 运动时间为t 秒,当△BCP 是以BC 为腰的等腰三角形时,直接写出t 的所有值________.如图,在Rt △ABC 中,∠C =90∘,∠ABC =30∘,AB =6. 点D 在AB 边上,E 是BC 边上一点(不与点B ,C 重合),且DA =DE ,则AD 的最小值是( )A.3B.2C.4D.5三、解答题(共6小题,满分66分)计算: (1)√18√2+18√12;(2)(√3−1)2+√12÷√3;(3)解分式方程:1x−1+x1−x =1;(4)已知:A =(1x+1−1x 2−1)÷x−2x 2+2x+1;①当x =√3+1时,先化简,再求值;②代数式A 的值能不能等于3,并说明理由.如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB =DE ,AC =DF ,BF =EC .(1)求证:△ABC ≅△DEF ;(2)指出图中所有平行的线段,并说明理由.如图,在10×10网格中,每个小正方形的边长都为1.(1)建立如图所示的平面直角坐标系,若点A(3, 4),则点C 的坐标________;(2)将△AOC 向左平移5个单位,向上平移2个单位,则点C 的坐标变为________;(3)若将△AOC 的三个顶点的横纵坐标都乘以−12,请画出△A 1OC 1;(4)图中格点△AOC 的面积是________;(5)在x 轴上找一点P ,使得PA +PC 最小,请画出点P 的位置,并直接写出PA +PC的最小值是________.已知点D是∠BAC的平分线上一点,DE⊥AB,DF⊥AC,垂足分别为E、F在AF上有一点C,在AE的延长线上有一点B,使得CF=BE.(1)过点D作DG⊥BC,连结CD、BD,求证:DG垂直平分BC;(2)当BC⊥AF时,若AE=5,AC=3,求BC的长.由于受到手机更新换代的影响,某手机店经销的华为P10plus手机四月售价比三月每台降价500元.如果卖出相同数量的华为P10plus手机,那么三月销售额为90000元,四月销售额只有80000元.(1)填表:(2)三、四月华为P10plus手机每台售价各为多少元?(3)为了提高利润,该店计划五月购进华为P20pro手机销售,已知华为P10plus每台进价为3500元,华为P20pro每台进价为4000元,调进一部分资金购进这两种手机共20台(其中华为P10plus有m台),在销售中决定在四月售价基础上每售出一台华为P10plus手机再返还顾客现金100元,而华为P20pro按销售价4400元销售,若将这20台手机全部售出共获得多少利润?阅读情境:在综合实践课上,同学们探究“全等的等腰直角三角形图形变化问题如图1,△ABC≅△ADE,其中∠B=∠D=90∘,AB=BC=AD=DE=2,此时,点C与点E重合,操作探究1(1)小凡将图1中的两个全等的△ABC和△ADE按图2方式摆放,点B落在AE上,CB所在直线交DE所在直线于点M,连结AM,求证:BM=DM.操作探究2(2)小彬将图1中的△ABC绕点A按逆时针方向旋转角度a(0∘<a<90∘),然后,分别延长BC,DE,它们相交于点F.如图3,在操作中,小彬提出如下问题,请你解答:①a=30∘时,求证:△CEF为等边三角形;②当a=________时,AC // FE.(直接回答即可)操作探究3(3)小颖将图1中的△ABC绕点A按顺时针方向旋转角度β(0∘<β<90∘),线段BC和DE相交于点F,在操作中,小颖提出如下问题,请你解答:①如图4,当β=60∘时,直接写出线段CE的长为________;②如图5,当旋转到点F是边DE的中点时,直接写出线段CE的长为________.参考答案与试题解析2018-2019学年河北省石家庄外国语学校八年级(上)期末数学试卷一、选择题(本大题共16小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求,请把正确的选项写在答题卡上)1.【答案】此题暂无答案【考点】轴正算图形中心较称图腾【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】分式值射零的条象【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】象限体点火坐标【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】无理较的识轻算三平最根立方于的性术【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】分式根亮义况无意肌的条件二次根式较意夏的条件【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】等体三火暗服判定与性质【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】平方根算三平最根立方于的性术【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】角平较线的停质【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】分式正构本性质【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】三角形常角簧定理勾股定体的展定理【解析】此题暂无解析【解答】此题暂无解答11.【答案】此题暂无答案【考点】列代数都(分式)【解析】此题暂无解析【解答】此题暂无解答12.【答案】此题暂无答案【考点】作图常复占作图【解析】此题暂无解析【解答】此题暂无解答13.【答案】此题暂无答案【考点】等腰三射形的判经【解析】此题暂无解析【解答】此题暂无解答14.【答案】此题暂无答案【考点】反证法【解析】此题暂无解析【解答】此题暂无解答15.【答案】此题暂无答案【考点】翻折变换(折叠问题)矩来兴性质坐标与图表镜化-对称【解析】此题暂无解析【解答】此题暂无解答16.【答案】此题暂无答案【考点】规律型:三形的要化类锐角三较函数严定义坐标正测形性质【解析】此题暂无解析【解答】此题暂无解答二.填空题(本大题共4小题,每题3分,共12分)【答案】此题暂无答案【考点】估算无于数的深小【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】勾体定展【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】等腰三验库的性质坐标正测形性质勾体定展【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】直线与都连位置关系含因梯否角样直角三角形【解析】此题暂无解析【解答】此题暂无解答三、解答题(共6小题,满分66分)【答案】此题暂无答案【考点】二次根明的织合运算分式因混合似算解于姆方程【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】全等三表形木判定全等三来形的稳质平行水因判定【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】轴明称月去最键路线问题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】线段垂直来分线慢性质全根三烛形做给质与判定角平较线的停质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】分式较程的腾用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】几何使碳综合题【解析】此题暂无解析【解答】此题暂无解答。
2018-2019学年八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义; 所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解. 答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE . (1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明; (3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题; 【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
河北省石家庄市第43中学2022-2023学年八年级上学期数学期末试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各式中,属于最简分式的是()A .24xB .2xy C .2(y)(x )()x y x y +-+D .6a ab2.下列图案中,既是中心对称图形又是轴对称图形的是()A .B .C .D .3.实数)A B .C .6D .6-4.若对分式“2121x x x x-+⋅-”进行约分化简,则约掉的因式为()A .1x +B .2x +C .1x -D .x 5.如图,Rt ABC △中,90C ∠=︒,AD 平分BAC ∠,交BC 于点D ,10AB =,3CD =,则ABD △的面积为()A .60B .30C .15D .106.3的平方根是()A .B .±3C .3D7.下面是甲、乙两位同学在黑板上计算23224x x x x +-++-的做法:甲同学乙同学原式=()()2232244x x x x x +-----22624x x x x +---=-2284x x -=-原式=()()32222x x x x x +--+-+3122x x x +=-++3112x x +-==+则关于这两位同学的做法,你认为()A .甲、乙都对B .甲、乙都不对C .乙对,甲不对D .甲对,乙不对8.如图,DEF 是由ABC 绕点O 旋转180°得到的,则下列结论不成立的是()A .点A 与点D 是对应点B .BO =EOC .∠ACB =∠FED D .AB DE∥9.近似数13.7万精确到()A .十分位B.百位C .千位D .千分位10.若解分式方程322k k xx x-=---产生增根,则k 的值为()A .2B.1C .0D .任何数11.如图,在ABC 中,90BAC ∠>︒,AB 的垂直平分线交BC 于点E,AC 的垂直平分线交BC 于点F ,连接AE ,AF ,若AEF △的周长为7,则BC 的长是()A .7B .8C .9D .1012.下列变形正确的是()A B 142==⨯C 13D 25241=-=13.图中字母B 代表的正方形的面积为()A .12B .81C .225D .144141.414≈,计算--的结果是()A .﹣141.4B .﹣100C .141.4D .﹣0.0141415.下列推理中,不能判断ABC 是等边三角形的是()A .ABC ∠=∠=∠B .,60AB AC B =∠=︒C .60,60A B ∠=︒∠=︒D .AB AC =,且B C∠=∠16.在实数 1.13-,2π-,02.10010001A .1个B .2个C .3个D .4个17.如图,在Rt ABC △中,90ACB ∠=︒,点D 为边AB 的中点,3CD =,2AC =,则BC 的长为()A .3B .4C .6D .18.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:如图,CAE ∠是ABC 的外角,12∠=∠,AD ∥BC .求证AB AC =.以下是排乱的证明过程:①又12∠=∠,②∴B C ∠=∠,③∵AD ∥BC ,④∴1B ∠=∠,2C ∠=∠,⑤∴AB AC =.证明步骤正确的顺序是()A .③→②→①→④→⑤B .③→④→①→②→⑤C .①→②→④→③→⑤D .①→④→③→②→⑤二、填空题19.某生产车间要制造a 个零件,原计划每天制造x 个,后为了供货需要,每天多制造6个,可提前______天完成任务.20.将边长分别为1和2的长方形如图剪开,拼成一个与长方形的面积相等的正方形,则该正方形的边长最接近整数___________.21.已知a =+b =22a b -的值是________.22.如图,已知点B 是直线MN 外一点,A 是直线MN 上一点,且20BAM ∠=︒,点P 是直线MN 上一动点,当ABP ∆是等腰三角形时,它的顶角的度数为________________.三、解答题23.计算(1)222a b ab a b a b a b+----(2)211121a a a a ⎛⎫-÷ ⎪+++⎝⎭24.计算:(1)(3)21)25.如图,ABC 中,5AB =,6AC =,ABC ∠与ACB ∠的平分线交于点I ,过I 作DE BC ∥分别交AB ,AC 于点D ,E .求ADE ∆的周长.请补全以下的解答过程.解:BI 平分ABC ∠(已知),12∴∠=∠(角平分线的定义),又DE BC ∥(已知),2∴∠=______(______),1∴∠=_______,DI ∴=_______().同理可得:EI =_______.ADE ∴V 的周长AD DE AE AD DI EI AE AD DB EC AE =++=+++=+++=______+______5611=+=.26.列分式方程解应用题:为了提高学生体育锻炼的意识和能力、丰富学生体育锻炼的内容,学校准备购买一批体育用品.在购买跳绳时,甲种跳绳比乙种跳绳的单价低10元,用1600元购买甲种跳绳与用2100元购买乙种跳绳的数量相同,求甲、乙两种跳绳的单价各是多少元?27.如图,AD BC ∥,90D Ð=°,点P 为CD 中点,BP 平分ABC ∠.(1)求证:AP 平分DAB ∠;(2)若30BPC ∠=︒,2BC =,则AD =______.28.如图1至图3,在等腰ABC 和等腰ADE V 中,顶角相等即2BAC DAE α∠=∠=(其中045a <<°),直线CP 交边AB 于点Q ,且ACP α∠=,当点D 在直线PC 上移动时,ADE V 在AD 的左侧.(1)连接BE ,①求证:CD BE =;请帮助小丽完成证明;①证明:∵BAC EAD ∠=∠,∴BAC BAD EAD BAD ∠+∠=∠+∠,∴CAD BAE ∠=∠,在CAD 与BAE 中,_______________AD CAD AC =⎧⎪∠=∠⎨⎪=⎩,∴()CAD BAE SAS ≌ ,∴CD BE =;②当点D 在直线PC 上移动时,CBE ∠=______°(2)若点D ,E 同时落在直线PC 上时,有BC BE =,则α=______;(3)当AE 长度最小时,并且点D 落在ABC 的内部,则α的取值范围是______;(4)当58QCB ∠=︒时,若BE AC =,直接写出:AEB ∠的度数是______.参考答案:1.B【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【详解】A.2142x x=,故不是最简分式;B.2xy的分子、分母除1以外没有其它公因式,故是最简分式;C.()()()2y x xxx y yyx y+--=++,故不是最简分式;D.66aab b=,故不是最简分式;故选B.【点睛】本题考查了最简分式,当一个分式的分子与分母,除去1以外没有其它的公因式时,这样的分式叫做最简分式.2.B【分析】根据轴对称图形与中心对称图形的概念选择即可.【详解】A.是中心对称图形,但不是轴对称图形,故该选项不符合题意;B.既是中心对称图形,又是轴对称图形,故该选项不符合题意;C.既不是中心对称图形,也不是轴对称图形,故该选项不符合题意;D.不是中心对称图形,是轴对称图形,故该选项不符合题意.故选B.【点睛】本题考查识别轴对称图形与中心对称图形.识别轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.识别中心对称图形是要寻找对称中心,旋转180度后与自身重合.3.A【分析】根据绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,即可求解.【详解】=故选:A.【点睛】本题主要考查了实数的绝对值,掌握绝对值的性质是解题的关键.4.C【分析】因为21(1)(1)x x x -=-+,再和分子1x -进行约分,进而得出结论.【详解】解:∵()()2111x x x -=-+∴2121x x x x -+⋅-()()()2121x x x x -+=-()()()()1211x x x x x -+=-+()21x x x +=+∴约掉的因式为:1x -故答案为:C【点睛】本题考查了分式的约分,掌握因式分解是分式约分的关键.5.C【分析】过点D 作DE AB ⊥,根据角平分线的性质即可得到DE 的长度,再根据三角形的面积公式进行计算即可.【详解】解:过点D 作DE AB ⊥,∵AD 平分BAC ∠,90C ∠=︒,DE AB ⊥,∴3CD DE ==,∴111031522ABD S AB DE ==⨯⨯= △.故选:C .【点睛】本题主要考查了角平分线的性质,解题的关键是熟练掌握角平分线上的点到两边的距离相等.6.A【分析】根据平方根的定义计算即可得到答案;【详解】解:根据平方根的定义可知:∵23a =∴a =∴3的平方根是故选A ;【点睛】本题考查了平方根,掌握并熟练使用相关知识,同时注意解题时需注意的事项是本题的解题关键.7.C【分析】根据分式的性质,解方式方程的方法,检验根是否正确,由此即可求解.【详解】解:甲同学:23224x x x x +-++-()()2232244x x x x x +--=---22624x x x x +--+=-,由此,甲同学的不对,乙同学:23224x x x x +-++-()()32222x x x x x +-=-+-+3122x x x +=-++312x x +-=+22x x +=+1=∴乙同学的正确,故选:C .【点睛】本题主要考查分式加减运算,掌握分式的性质,分式的加减运算法则是解题的关键.8.C【分析】旋转180°后,对应点与旋转中心共线,对应线段平行且相等,对应点到旋转中心的距离相等,对应角相等,其中∠ACB 与∠FDE 不是对应角,不能判断相等.【详解】解:根据旋转的性质可知,点A 与点D 是对应点,BO =EO ,AB ∥DE ,∠ACB =∠DFE ≠∠FED .故选:C .【点睛】本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.同时要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.9.C【分析】根据近似数的精确度求解.【详解】解:近似数13.7万精确到千位.故选:C .【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.10.B【分析】先将分式方程化为整式方程,再用k 表示出方程的解,然后方程的解为2,再求出k 的值即可.【详解】解:322k k xx x-=---322k k xx x -=----36k k x x =-+-+3x k=-令=2x ,即23k =-,解得=1k .故选B .【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.11.A【分析】根据线段垂直平分线的性质,得到,AE BE AF CF ==,进而得到AEF △的周长等于BC 的长,即可得解.【详解】解:∵AB 的垂直平分线交BC 于点E ,AC 的垂直平分线交BC 于点F ,∴,AE BE AF CF ==,∵AEF △的周长为7AE AF EF ++=,∴7BE CF EF ++=,即:7BC =;故选A .【点睛】本题考查线段垂直平分线的性质.熟练掌握线段垂直平分线上的点到线段两端点的距离相等,是解题的关键.12.C【分析】根据二次根式的性质和二次根式的乘除法则求出每个式子的值,再判断即可.【详解】解:AB ==C 13,故本选项符合题意;D7,故本选项不符合题意;故选:C .【点睛】本题考查了二次根式的性质和二次根式的乘除法则,能熟练地运用二次根式的乘除法则进行计算是解此题的关键.13.D【分析】根据已知两个正方形的面积225和81,求出各个的边长,然后再利用勾股定理求出字母B 所代表的正方形的边长,然后即可求得其面积.【详解】解:∵2222258115912-=-=,∴字母B 所代表的正方形的面积212144==.故选:D .【点睛】此题主要考查勾股定理这一知识点,比较简单,熟练掌握勾股定理的计算方法是解题的关键.14.A【分析】先利用乘法分配律进行实数运算,再代入求值.【详解】解:原式(2399=--=-≈1.414,≈-⨯∴原式100 1.414=-141.4.故选:A.【点睛】本题主要考查了实数的混合运算,会灵活运用乘法运算律简便运算是解此题的关键.15.D【分析】根据等边三角形的定义、判定定理以及三角形内角和定理进行判断.【详解】A、由“三个角都相等的三角形是等边三角形”可以判断△ABC是等边三角形,故本选项不符合题意;B、由“有一个角是60°的等腰三角形是等边三角形”可以判断△ABC是等边三角形,故本选项不符合题意;C、由“∠A=60°,∠B=60°”可以得到“∠A=∠B=∠C=60°”,则由“三个角都相等的三角形是等边三角形”可以判断△ABC是等边三角形,故本选项不符合题意;D、由“AB=AC,且∠B=∠C”只能判定△ABC是等腰三角形,故本选项符合题意.故选:D.【点睛】本题主要考查了等边三角形的判定和三角形内角和定理,属于基础题.(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.16.C【分析】根据无理数的定义解答即可.-,0,2.10010001是有理数;【详解】 1.132π-故选C.【点睛】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有:π①π类,如2π,30.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)17.D【分析】根据直角三角形斜边中线的性质,推导得AB,再根据勾股定理性质计算,即可得到答案.【详解】∵Rt ABC △,点D 为边AB 的中点,3CD =,∴26AB CD ==,∴BC ===故选:D .【点睛】本题考查了直角三角形斜边中线、勾股定理的知识;解题的关键是熟练掌握勾股定理的性质,从而完成求解.18.B【分析】根据平行线的性质得出1,2B C ∠=∠∠=∠,再利用12∠=∠等量代换,得出B C ∠=∠,即可判定ABC 是等腰三角形,即可证明.【详解】具体步骤为:③∵AD ∥BC ,④∴1B ∠=∠,2C ∠=∠,①又12∠=∠,②∴B C ∠=∠,⑤∴AB AC =.故选:B .【点睛】本题考查平行线的性质,等量代换,等腰三角形的判定与性质,解题关键是熟练掌握平行线的性质与等腰三角形的判定与性质.19.6a a x x ⎛⎫- ⎪+⎝⎭【分析】先分别求出原计划的天数和后来用的天数,两者相减即可得出提前的天数.【详解】解:∵制造a 个零件,原计划每天制造x 个,∴原计划的时间是a x天,∵后为了供货需要,每天多制造6个,∴后来用的时间是6a x +天,∴可提前的天数是6a a x x ⎛⎫- ⎪+⎝⎭天;故答案为:6a a x x ⎛⎫- ⎪+⎝⎭.【点睛】此题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.20.1【分析】根据题意,拼成的正方形边长是直角边长为1的等腰直角三角形的斜边长,根据勾【详解】解:根据题意可知,拼成的正方形边长是直角边长为1的等腰直角三角形的斜边长,124<< ,<,即12<<,若取1与2中点,得到32,则23982244⎛⎫=>= ⎪⎝⎭,1∴<<最接近的整数是1,∴该正方形的边长最接近整数是1.【点睛】本题考查勾股定理的实际应用,涉及无理数范围的估算,熟练掌握数形结合利用勾股定理求线段长以及无理数范围的估算方法是解决问题的关键.21.【分析】先求出a +b 和a -b 的值,把所求的式子进行分解,再代入相应的值运算即可.【详解】解:∵a b =∴(2a b b +=-=∴22=()()a b b a b a +-==-故答案为【点睛】本题主要考查二次根式的化简求值,解答的关键是对相应的运算法则的掌握.22.20︒或140︒或160︒【分析】分AB 边为腰或底画出图形求解即可.【详解】①当AB 为腰时,如图,在△ABP 1中,AB=AP 1,此时顶角∠BA P 1的度数为:20°;在△ABP 2中,AB=BP 2,此时顶角∠ABP 2的度数为:180°-20°×2=140°;在△ABP 3中,AB=BP 3,此时顶角∠BAP 3的度数为:180°-20°=160°;②当AB 为底时,如图,在△ABP 4中,AP 4=BP 4,此时顶角∠BAP 4的度数为:180°-20°×2=140°.故答案为:20︒或140︒或160︒.【点睛】此题主要考查了等腰三角形的判定以及三角形内角和定理,熟练掌握等腰三角形的判定是解题的关键.23.(1)a b-(2)1a +【分析】(1)根据同分母分式的加减计算法则求解即可;(2)根据分式的混合计算法则进行求解即可.【详解】(1)解:222a b ab a b a b a b+----222a ab b a b-+=-()2a b a b -=-a b =-;(2)解:211121a a a a ⎛⎫-÷ ⎪+++⎝⎭()21111a a a a +-=÷++()211a a a a+=⋅+1a =+.【点睛】本题主要考查了分式的加减计算,分式的混合计算,熟知分式的相关计算法则是解题的关键.24.(3)6【分析】(1)先化简式子含有的二次根式为最简二次根式,再进行二次根式乘除法运算;(2)先化简式子含有的二次根式为最简二次根式,再进行二次根式加减运算;(3)先化简完全平方式,再化简二次根式为最简二次根式最后进行二次根式的加减运算.【详解】(1)解:26=⨯=(2=3=-3=;(3)解:21)+-51=-6=【点睛】本题考查的是二次根式的混合运算,化简二次根式为最简二次根式是解题的关键.25.3∠,两直线平行,内错角相等;3∠,BD ,等腰三角形的判定;CE ,AB ,AC .【分析】根据角平分线的定义及平行线的性质证明13∠=∠,从而DI BD =,同理可证EI CE =,然后根据三角形周长公式求解即可.【详解】解:BI 平分ABC ∠(已知),12∴∠=∠(角平分线的定义),又DE BC ∥(已知),23∴∠=∠(两直线平行,内错角相等),13∠∠∴=,DI BD ∴=(等腰三角形的判定).同理可得:EI CE =.ADE ∴∆的周长AD DE AE AD DI EI AE AD DB EC AE=++=+++=+++5611AB AC =+=+=.故答案为:3∠,两直线平行,内错角相等;3∠,BD ,等腰三角形的判定;CE ,AB ,AC .【点睛】本题考查等腰三角形的判定,平行线的性质及角平分线的定义,证明DI BD =和EI CE =是解答本题的关键.26.甲种跳绳的单价为32元,乙种跳绳的单价为42元【分析】设甲种跳绳的单价为x 元,则乙种跳绳的单价为()10x +元,由题意得:用1600元购买甲种跳绳与用2100元购买乙种跳绳的数量相同,列出分式方程,解方程即可.【详解】解:设甲种跳绳的单价为x 元,则乙种跳绳的单价为()10x +元,由题意得:1600210010x x =+,解得:32x =,经检验,32x =是原方程的解,且符合题意,则10321042x +=+=,答:甲种跳绳的单价为32元,乙种跳绳的单价为42元.【点睛】本题考查了分式方程的应用,找准等量关系式,正确列出分式方程是解题的关键.27.(1)见解析(2)6【分析】(1)过点P 作PE AB ⊥于E ,由角平分线性质易得PC PE =,进而可得PE PD =,根据角平分线的判定定理即可得出结论;(2)首先根据直角三角形的性质可得4PB =,60PBC ∠=︒,根据勾股定理可得PC =,可得PD =,再由BP 平分ABC ∠及平行线的性质,可得120ABC ∠=︒,60DAB ∠=︒,30DAP ∠=︒,据此即可解答.【详解】(1)证明:过点P 作PE AB ⊥于E ,AD BC ∥ ,90D Ð=°,18090C D ∴∠=︒-∠=︒,即PC BC ⊥,BP 平分ABC ∠,PE AB ⊥,PC BC ⊥,PC PE ∴=,∵点P 是CD 的中点,PD PC ∴=,PE PD ∴=,又PE AB ⊥ ,PD AD ⊥,AP ∴平分DAB ∠;(2)解:90D ∠=︒ ,30BPC ∠=︒,24PB BC ∴==,903060PBC ∠=︒-︒=︒PC ∴===,∵点P 是CD 的中点,PD PC ∴==BP 平分ABC ∠,2120ABC PBC ∠∠∴==︒AD BC ∥ ,180********DAB ABC ∴∠=︒-∠=︒-︒=︒,由(1)知AP 平分DAB ∠,1302DAP DAB ∴∠=∠=︒,∴在Rt ADP △中,2AP PD ==6AD ∴=故答案为:6.【点睛】本题考查了角平分线的定义及性质,平行线的性质,勾股定理,直角三角形的性质,熟练掌握和运用各图形的性质是解决本题的关键.28.(1)①AE ,BAE ∠,AB ;②90︒(2)22.5︒(3)3060α︒<<︒(4)82︒【分析】(1)①根据等腰三角形的性质可得,AD AE AB AC ==,由2∠BAD α+得CAD BAE ∠=∠,即可得到答案.②根据全等可知∠∠ABE ACP α==,又因为1802∠∠902ABC ACB αα-===- ,再由EBC ABE ABC ∠=∠+∠便可得到答案;(2)由点D ,E 同时落在直线PC 上,BC BE =得BCE 为等腰直角三角形,故45BCE ∠=o ,则∠4590ABC αα=+=- ,即可;(3)因为AE AD =,根据垂线段最短,所以当AD PC ⊥时AD 最小,又因为点D 落在ABC 的内部,所以∠1803ACQ α=- 是个锐角,即可得到答案;(4)因为58QCB ∠=︒,所以∠5890ABC αα=+=- 得到∠16ABE α== ,又因为BE AC =,所以()1180822α∠=-= AEB .【详解】(1)①证明:∵BAC EAD ∠=∠,∴BAC BAD EAD BAD ∠+∠=∠+∠,∴CAD BAE ∠=∠,在CAD 与BAE 中,AD AE CAD BAE AC AB =⎧⎪∠=∠⎨⎪=⎩,∴()CAD BAE SAS ≌ ,∴CD BE =;故答案为:AE ,BAE ∠,AB ;②90CBE ∠=o ,理由如下:∵ CAD BAE ≌,∴∠∠ABE ACP α==,又∵,∠2AB AC BAC α==,∴1802∠∠902ABC ACB αα-===- ,则∠∠∠9090EBC ABE ABC αα=+=+-= ,故答案为:90 ;(2)22.5 ,理由如下:如图,∵,90∠== BC BE EBC ,∴BCE 为等腰直角三角形,则45BCE ∠=o ,∴∠4590ABC αα=+=- ,解得22.5α= ,故答案为:22.5 ;(3)3060α︒<<︒,理由如下:如图∵AE AD =,∴当AD PC ⊥时AD 最小,即AE 最小,又∵点D 落在ABC 的内部,∴∠180∠∠1803ACQ ACQ CAQ α=--=- 是个锐角,即0180390α<-< ,解得3060α︒<<︒,故答案为:3060α︒<<︒;(4)82︒,理由如下:∵58QCB ∠=︒,∴∠∠∠QCB=5890ABC ACP αα=++=- ,答案第15页,共15页解得∠16ABE α== ,又∵BE AC =,∴BE AB=∴()1180822α∠=-= AEB ,故答案为:82︒.【点睛】本题考查了等腰三角形性质,全等三角形判定和性质等知识,解决问题的关键熟练掌握“手拉手”模型,正确运用全等三角形解决问题.。
河北省石家庄市石家庄外国语学校2023-2024学年数学八上期末综合测试模拟试题学校_______ 年级_______ 姓名_______注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.已知一个等腰三角形的两边长是3cm 和7cm ,则它的周长为( )A .13cmB .17cmC .13或17cmD .10cm2.某公司有学徒工和熟练工两个工种的工人,已知一个学徒工每天制造的零件比一个熟练少20个,一个学徒工与两个熟练工每天共可制造220个零件,求一个学徒工与 一个熟练工每天各能制造多少个零件?设一个学徒工每天能制造x 个零件,一个熟练工每天能制造y 个零件,根据题意可列方程组为( )A .202220y x x y -=⎧⎨+=⎩B .202220x y x y -=⎧⎨+=⎩ C .202220y x x y -=⎧⎨+=⎩ D .202220x y x y -=⎧⎨+=⎩ 3.不等式组53643x x x +>⎧⎨+>-⎩的整数解的个数是( ) A .2 B .3 C .4 D .54.下面的图案中,不是轴对称图形的是( )A .B .C .D .5.若点()2,3A -在正比例函数(0)y kx k =≠的图象上,则下列各点不在正比例函数(0)y kx k =≠的图象上的是( )A .()4,6-B .93,2⎛⎫- ⎪⎝⎭C .()2,3-D .()8,126.将三角形三个顶点的横坐标都加3,纵坐标不变,则所得三角形与原三角形的关系是( )A .将原图向左平移三个单位B .关于原点对称C .将原图向右平移三个单位D .关于y 轴对称7.如图,已知BAD CAD ∠=∠,欲证ABD ACD ∆≅∆,还必须从下列选项中补选一个,则错误的选项是( )A .ADB ADC ∠=∠B .BC ∠=∠ C .BD CD = D .AB AC =8.如果一次函数y=-kx+8中的y 随x 的增大而增大,那么这个函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限9.如图,从标有数字1,2,3.4的四个小正方形中拿走一个,成为一个轴对称图形,则应该拿走的小正方形的标号是( )A .1B .2C .3D .410.如图,轮船从B 处以每小时50海里的速度沿南偏东30方向匀速航行,在B 处观测灯塔A 位于南偏东75︒方向上.轮船航行半小时到达C 处,在C 处观测灯塔A 位于北偏东60︒方向上,则C 处与灯塔A 的距离是( )A .50海里B .45海里C .35海里D .25海里二、填空题(每小题3分,共24分)11.五边形的外角和等于 °.12.若x 29y 29的小数部分,则)29x y 的值为______.13.若关于x 的方程2233x m x x -=+--有解,则m 的取值范围是______. 14.如图,已知90,AEB D AB BC ︒∠=∠==,若ABE BCD ∆≅∆,需要补充一个条件:________.15.在ABC 中,,AB AC BD =是高,若40ABD ∠=︒,则C ∠的度数为______.16.如图,D 为△ABC 外一点,BD ⊥AD ,BD 平分△ABC 的一个外角,∠C=∠CAD ,若AB=5,BC=3,则BD 的长为_______.17.如图,点E ,F 在AC 上,AD=BC ,DF=BE ,要使△ADF ≌△CBE ,还需要添加的一个条件是________(添加一个即可)18.计算:2933a a a -=++__________. 三、解答题(共66分)19.(10分)已知:如图1,OM 是∠AOB 的平分线,点C 在OM 上,OC =5,且点C 到OA 的距离为1.过点C 作CD ⊥OA ,CE ⊥OB ,垂足分别为D 、E ,易得到结论:OD+OE =_________;(1)把图1中的∠DCE 绕点C 旋转,当CD 与OA 不垂直时(如图2),上述结论是否成立?并说明理由;(2)把图1中的∠DCE绕点C旋转,当CD与OA的反向延长线相交于点D时:①请在图1中画出图形;②上述结论还成立吗?若成立,请给出证明;若不成立,请直接写出线段OD、OE之间的数量关系,不需证明.20.(6分)先化简,再求值:y(x+y)+(x+y)(x﹣y)﹣x2,其中x=﹣2,y=12.21.(6分)某服装店用4400元购进A,B两种新式服装,按标价售出后可获得毛利润2800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.类型价格A型B型进价(元/件)60 100标价(元/件)100 160(1)请利用二元一次方程组求这两种服装各购进的件数;(2)如果A种服装按标价的9折出售,B种服装按标价的8折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?22.(8分)如图1,△ABC中,AD是∠BAC的角平分线,若AB=AC+CD.那么∠ACB 与∠ABC有怎样的数量关系? 小明通过观察分析,形成了如下解题思路:如图2,延长AC到E,使CE=CD,连接DE,由AB=AC+CD,可得AE=AB,又因为AD是∠BAC的平分线,可得△ABD≌△AED,进一步分析就可以得到∠ACB 与∠ABC的数量关系.(1) 判定△ABD 与△AED 全等的依据是______________(SSS,SAS,ASA,AAS 从其中选择一个);(2)∠ACB 与∠ABC 的数量关系为:___________________23.(8分)已知:如图,AD 垂直平分BC ,D 为垂足,DM ⊥AB ,DN ⊥AC ,M 、N 分别为垂足.求证:DM=DN .24.(8分)如图,AB CB ⊥,DC CB ⊥,E 、F 在BC 上,A D ∠=∠,BE CF =,求证:AF DE =.25.(10分)(1)计算:(3212×6; (2)解方程组:125x y x y +=⎧⎨-=⎩①②.26.(10分)解不等式3(2)2x x +>,并把解集在数轴上表示出来.参考答案一、选择题(每小题3分,共30分)1、B2、A3、C4、B5、D6、C7、C8、D9、B10、D二、填空题(每小题3分,共24分)11、360°.12、113、m ≠114、AE BD =15、65°或25°16、317、∠D=∠B18、3a -.三、解答题(共66分)19、8;(1)上述结论成立;(2)①见详解;②上述结论不成立,8OE OD -=. 20、-1.21、(1) 购A 型50件,B 型30件.(2) 2440元.22、SAS ∠ACB =2∠ABC23、见解析.24、见解析25、(1)(2)21x y =⎧⎨=-⎩. 26、x>-6,见详解.。
河北省石家庄市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列各对数中,数值相等的是()A . -32与-23B . -63与(-6)3C . -62与(-6)2D . (-3×2)2与(-3)×22【考点】2. (2分) (2016八上·江阴期末) 下列图形中,轴对称图形的个数为()A . 1个B . 2 个C . 3个D . 4个【考点】3. (2分)下列运算正确的是()A . 3a2﹣a=2aB . a﹣(1﹣2a)=a﹣1C . ﹣5(1﹣a2)=﹣5﹣5a2D . a3+7a3﹣5a3=3a3【考点】4. (2分)(2019·黑龙江模拟) 下列运算正确的是()A . a3+a3=a6B . (﹣a2)3=a6C . a5÷a﹣2=a7D . (a+1)0=1【考点】5. (2分)若2x+y=0,则的值为()A . -B . -C . 1D . 无法确定【考点】6. (2分)(2019·河北模拟) A.B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A .B .C .D .【考点】7. (2分) (2018八上·巍山期中) 两个三角形只有以下元素对应相等,不能判定两个三角形全等的()A . 两角和一边B . 两边及夹角C . 三个角D . 三条边【考点】8. (2分) (2020八下·南岸期末) 等腰三角形一腰长为5,这一腰上的高为3,则这个等腰三角形底边长为()A .B .C . 或D . 或【考点】9. (2分) (2020八上·赫山期末) 如图,以点O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画出射线OB,则∠AOB=()A . 30°B . 45°C . 60°D . 90°【考点】10. (2分)如图,在△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为()A . 80°B . 75°C . 65°D . 45°【考点】二、填空题 (共6题;共6分)11. (1分)(2017·浙江模拟) 分解因式: a3+ab2-2a2b ________【考点】12. (1分)(2019·封开模拟) 计算:÷4x2y=________.【考点】13. (1分)若, mn=1.【考点】14. (1分)(2017·黔东南) 把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2C垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为________.【考点】15. (1分) (2020八上·惠州月考) 一个多边形的每一个外角都是,则这个多边形是________边形.【考点】16. (1分) (2019八上·郑州期中) 如图,等腰△ABC中,AB=AC=10,BC=16,点F是边BC上不与点B,C 重合的一个动点,直线DE垂直平分BF,垂足为D.当△ACF是直角三角形时,线段BD的长为________.【考点】三、解答题 (共9题;共75分)17. (5分)计算:﹣(3﹣π)0+|﹣4|【考点】18. (5分) (2017八下·林甸期末)(1)计算:+|3﹣ |﹣2sin60°+(2017﹣π)0+()﹣2(2)解方程:.【考点】19. (5分)(2018·合肥模拟) 先化简:(2x﹣)÷ ,然后从0,1,﹣2中选择一个适当的数作为x的值代入求值.【考点】20. (5分) (2016八上·路北期中) 如图,E、F是线段BD上的两点,且DF=BE,AE=CF,AE∥CF.求证:AD∥BC.【考点】21. (10分) (2020七下·西湖期末) 已知m=a2b,n=3a2﹣2ab(a≠0,a≠b).(1)当a=3,b=﹣2时,分别求m,n的值.(2)比较n+ 与2a2的大小.(3)当m=12,n=18时,求﹣的值.【考点】22. (10分) (2019八上·绿园期末)(1)你能求出(a﹣1)(a99+a98+a97+…+a2+a+1)的值吗?遇到这样的问题,我们可以先从简单的情况入手,分别计算下列各式的值.(a﹣1)(a+1)=________;(a﹣1)(a2+a+1)=________;(a﹣1)(a3+a2+a+1)=________;…由此我们可以得到:(a﹣1)(a99+a98+…+a+1)=________.(2)利用(1)的结论,完成下面的计算:2199+2198+2197+…+22+2+1=________.【考点】23. (10分) (2019八上·永安期中) 已知,如图,中,,,,以斜边为底边作等腰三角形,腰刚好满足,并作腰上的高.(1)求证:;(2)求等腰三角形的腰长.【考点】24. (10分) (2017七下·陆川期末) 某电器超市销售每台进价分别为200元,170元的A、B联众型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A,B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【考点】25. (15分)(2017·襄州模拟) 如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F,BD交AE于M.(1)求证:△AEC≌△ADB;(2)若BC=2,∠BAC=30°,当四边形ADFC是菱形时,求BF的长.【考点】参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共9题;共75分)答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:答案:25-1、答案:25-2、考点:解析:第21 页共21 页。
2018-2019学年河北省石家庄外国语学校八年级(上)期末数学试卷一、选择题(本大题共16小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求,请把正确的选项写在答题卡上)1.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(3分)若分式的值为0,则x的值为()A.2B.0C.﹣2D.x=23.(3分)如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)4.(3分)(相邻两个1之间依次多一个0)中,无理数的个数是()A.2个B.3个C.4个D.5个5.(3分)若有意义,则x满足条件是()A.x≥﹣3且x≠1B.x>﹣3且x≠1C.x≥1D.x≥﹣36.(3分)如图,AD⊥BC,D为BC的中点,以下结论正确的有几个?()①△ABD≌△ACD;②AB=AC;③∠B=∠C;④AD是△ABC的角平分线.A.1B.2C.3D.47.(3分)下列变形正确的是()A.=B.C.D.8.(3分)小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确9.(3分)下列变形从左到右一定正确的是()A.B.C.D.=10.(3分)下列条件中,不能判定△ABC是直角三角形的是()A.∠A=∠B+∠C B.a:b:c=5:12:13C.a2=(b+c)(b﹣c)D.∠A:∠B:∠C=3:4:511.(2分)几个同学包租一辆面包车去旅游,面包车的租价为180元,后来又增加了两名同学,租车价不变,若设原来参加旅游的同学共有x人,结果每个同学比原来少分摊元车费()A.B.C.D.12.(2分)在△ABC中,AC=6、BC=8,AB=10,用尺规作图的方法在BC上确定一点P,设PC=x,下列作图方法中,不能求出PC的长的作图是()A.B.C.D.13.(2分)已知:如图,下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③④B.①②③④C.①②④D.①③14.(2分)下列说法正确的个数()①近似数32.6×102精确到十分位:②在,,﹣||中,最小的数是③如图所示,在数轴上点P所表示的数为﹣1+④反证法证明命题“一个三角形中最多有一个钝角”时,首先应假设“这个三角形中有两个纯角”⑤如图②,在△ABC内一点P到这三条边的距离相等,则点P是三个角平分线的交点A.1B.2C.3D.415.(2分)如图,把长方形纸片OABC放入平面直角坐标系中,使OA,OC分别落在x轴、y轴上,连接AC,将纸片OABC沿AC折叠,使点B落在点D的位置,AD与y轴交于点E,若B(1,2),则OE 的长为()A.1B.C.D.16.(2分)如图所示,把多块大小不同的30°直角三角板,摆放在平面直角坐标系中,第一块三角板AOB 的一条直角边与x轴重合且点A的坐标为(2,0),∠ABO=30°,第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交x轴于点B1,第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交y轴于点B2,第四块三角板斜边B2B3与第三块三角板的斜边B1B2垂直且交x轴于点B3,按此规律继续下去,则点B2018的坐标为()A.(﹣2×()2018,0)B.(0,﹣2×()2018)C.(2×()2019,0)D.(0,﹣2×()2019)二.填空题(本大题共4小题,每题3分,共12分)17.(3分)①=.②=.③写出﹣和之间的所有整数.18.(3分)如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形B、C、D的面积依次为4、3、9,则正方形A的面积为.19.(3分)如图,在直角坐标系中,点B(﹣8,8),点C(﹣2,0),若动点P从坐标原点出发,沿y轴正方向匀速运动,运动速度为1cm/s,设点P运动时间为t秒,当△BCP是以BC为腰的等腰三角形时,直接写出t的所有值.20.(3分)如图,Rt△ABC中,∠C=90°,∠ABC=30°,AB=6.点D在AB边上,点E是BC边上一点(不与点B、C重合),且DA=DE,则AD的取值范围是.三、解答题(共6小题,满分66分)21.(19分)计算:(1);(2);(3)解分式方程:;(4)已知:;①当x=+1时,先化简,再求值;②代数式A的值能不能等于3,并说明理由.22.(8分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.23.(8分)如图,在10×10网格中,每个小正方形的边长都为1.(1)建立如图所示的平面直角坐标系,若点A(3,4),则点C的坐标;(2)将△AOC向左平移5个单位,向上平移2个单位,则点C的坐标变为;(3)若将△AOC的三个顶点的横纵坐标都乘以﹣,请画出△A1OC1;(4)图中格点△AOC的面积是;(5)在x轴上找一点P,使得P A+PC最小,请画出点P的位置,并直接写出P A+PC的最小值是.24.(8分)已知点D是∠BAC的平分线上一点,DE⊥AB,DF⊥AC,垂足分别为E、F在AF上有一点C,在AE的延长线上有一点B,使得CF=BE.(1)过点D作DG⊥BC,连结CD、BD,求证:DG垂直平分BC;(2)当BC⊥AF时,若AE=5,AC=3,求BC的长.25.(11分)由于受到手机更新换代的影响,某手机店经销的华为P10plus手机四月售价比三月每台降价500元.如果卖出相同数量的华为P10plus手机,那么三月销售额为90000元,四月销售额只有80000元.(1)填表:(2)三、四月华为P10plus手机每台售价各为多少元?(3)为了提高利润,该店计划五月购进华为P20pro手机销售,已知华为P10plus每台进价为3500元,华为P20pro每台进价为4000元,调进一部分资金购进这两种手机共20台(其中华为P10plus有m台),在销售中决定在四月售价基础上每售出一台华为P10plus手机再返还顾客现金100元,而华为P20pro 按销售价4400元销售,若将这20台手机全部售出共获得多少利润?26.(12分)阅读情境:在综合实践课上,同学们探究“全等的等腰直角三角形图形变化问题如图1,△ABC≌△ADE,其中∠B=∠D=90°,AB=BC=AD=DE=2,此时,点C与点E重合,操作探究1(1)小凡将图1中的两个全等的△ABC和△ADE按图2方式摆放,点B落在AE上,CB所在直线交DE所在直线于点M,连结AM,求证:BM=DM.操作探究2(2)小彬将图1中的△ABC绕点A按逆时针方向旋转角度a(0°<a<90°),然后,分别延长BC,DE,它们相交于点F.如图3,在操作中,小彬提出如下问题,请你解答:①a=30°时,求证:△CEF为等边三角形;②当a=时,AC∥FE.(直接回答即可)操作探究3(3)小颖将图1中的△ABC绕点A按顺时针方向旋转角度β(0°<β<90°),线段BC和DE相交于点F,在操作中,小颖提出如下问题,请你解答:①如图4,当β=60°时,直接写出线段CE的长为;②如图5,当旋转到点F是边DE的中点时,直接写出线段CE的长为.2018-2019学年河北省石家庄外国语学校八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共16小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求,请把正确的选项写在答题卡上)1.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:C.2.(3分)若分式的值为0,则x的值为()A.2B.0C.﹣2D.x=2【分析】根据分式的值为0的条件即可求出答案.【解答】解:由题意可知:|x|﹣2=0且x+2≠0,∴x=2故选:A.3.(3分)如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)【分析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【解答】解:根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有D符合.故选:D.4.(3分)(相邻两个1之间依次多一个0)中,无理数的个数是()A.2个B.3个C.4个D.5个【分析】根据无理数是无限不循环小数,可得答案.【解答】解:(相邻两个1之间依次多一个0)中,,,010*******…(相邻两个1之间依次多一个0)是无理数,故选:B.5.(3分)若有意义,则x满足条件是()A.x≥﹣3且x≠1B.x>﹣3且x≠1C.x≥1D.x≥﹣3【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:∵有意义,∴x满足条件是:x+3≥0,且x﹣1≠0,解得:x≥﹣3且x≠1.故选:A.6.(3分)如图,AD⊥BC,D为BC的中点,以下结论正确的有几个?()①△ABD≌△ACD;②AB=AC;③∠B=∠C;④AD是△ABC的角平分线.A.1B.2C.3D.4【分析】由AD⊥BC,D为BC的中点,利用SAS可证明△ABD≌△ACD,然后利用全等三角形的性质即可求证出②③④.【解答】解:∵AD⊥BC,D为BC的中点,∴∠ADB=∠ADC=90°,BD=BC,AD为公共边,∴△ABD≌△ACD,∴AB=AC,∠B=∠C,∠BAD=∠CAD,即AD是△ABC的角平分线.故选:D.7.(3分)下列变形正确的是()A.=B.C.D.【分析】根据算术平方根和立方根及平方根的定义求解可得.【解答】解:A.=,此选项错误;B.=3,此选项错误;C.=4,此选项错误;D.,此选项正确;故选:D.8.(3分)小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确【分析】过两把直尺的交点C作CE⊥AO,CF⊥BO,根据题意可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB;【解答】解:(1)如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.9.(3分)下列变形从左到右一定正确的是()A.B.C.D.=【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.【解答】解:A、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故A错误;B、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,错误;C、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故C错误;D、分子分母都除以x,分式的值不变,故D正确;故选:D.10.(3分)下列条件中,不能判定△ABC是直角三角形的是()A.∠A=∠B+∠C B.a:b:c=5:12:13C.a2=(b+c)(b﹣c)D.∠A:∠B:∠C=3:4:5【分析】根据三角形内角和定理可分析出A、D的正误;根据勾股定理逆定理可分析出B、C的正误.【解答】解:A、∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC为直角三角形,故此选项不合题意;B、∵52+122=132,∴能构成直角三角形,故此选项不符合题意;C、∵a2=(b+c)(b﹣c),即a2=b2﹣c2,∴b2=a2+c2,∴能构成直角三角形,故此选项不符合题意;D、设∠A=3x°,∠B=4x°,∠C=5x°,3x+4x+5x=180,解得:x=15,则5x°=75°,△ABC不是直角三角形,故此选项符合题意.故选:D.11.(2分)几个同学包租一辆面包车去旅游,面包车的租价为180元,后来又增加了两名同学,租车价不变,若设原来参加旅游的同学共有x人,结果每个同学比原来少分摊元车费()A.B.C.D.【分析】用总车费除以人数得每人分摊的车费数,两者相减,利用分式的通分进行加减并化简即可.【解答】解:∵原来参加旅游的同学共有x人时,每人分摊的车费为元,又增加了两名同学,租车价不变,则此时每人分摊的车费为∴每个同学比原来少分摊元车费:﹣==故选:C.12.(2分)在△ABC中,AC=6、BC=8,AB=10,用尺规作图的方法在BC上确定一点P,设PC=x,下列作图方法中,不能求出PC的长的作图是()A.B.C.D.【分析】根据题意分别求出选项A,B,C中的PC的长,即可解决问题.【解答】解:A、由题意PC=BC﹣PB=BC﹣(AB﹣AC)=8﹣(10﹣6)=4.B、连接P A,由题意P A=PB,设,P A=PB=x.∵AC=6、BC=8,AB=10,∴AB2=AC2+BC2,∴∠ACB=90°,∴P A2=AC2+PC2,∴x2=(8﹣x)2+62,∴x=,∴PC=BC﹣PB=8﹣=.C、作PH⊥AB于H.由题意,P A平分∠BAC,∵PH⊥AB,PC⊥AC,∴PH=PC,设PH=PC=x,∵S△ABC=S△ABP+S△APC,∴•AC•BC=•AB•PH+•AC•PC,∴6×8=10x+6x,∴x=3,∴PC=3,故A,B,C中,PC能确定,故选:D.13.(2分)已知:如图,下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③④B.①②③④C.①②④D.①③【分析】顶角为:36°,90°,108°的四种等腰三角形都可以用一条直线把这四个等腰三角形每个都分割成两个小的等腰三角形,再用一条直线分其中一个等腰三角形变成两个更小的等腰三角形.【解答】解:由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°,72°,能;②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°,72,72°和36°,36°,108°,能.故选:A.14.(2分)下列说法正确的个数()①近似数32.6×102精确到十分位:②在,,﹣||中,最小的数是③如图所示,在数轴上点P所表示的数为﹣1+④反证法证明命题“一个三角形中最多有一个钝角”时,首先应假设“这个三角形中有两个纯角”⑤如图②,在△ABC内一点P到这三条边的距离相等,则点P是三个角平分线的交点A.1B.2C.3D.4【分析】根据近似数、实数的大小比较、勾股定理、反证法、角平分线的性质定理判断即可.【解答】解:①近似数32.6×102精确到十位,故本说法错误;②在,,﹣||中,最小的数是﹣(﹣2)2,故本说法错误;③如图所示,在数轴上点P所表示的数为﹣1+,故本说法错误;④反证法证明命题“一个三角形中最多有一个钝角”时,首先应假设“这个三角形中至少有两个纯角”,故本说法错误;⑤如图②,在△ABC内一点P到这三条边的距离相等,则点P是三个角平分线的交点,故本说法正确;故选:A.15.(2分)如图,把长方形纸片OABC放入平面直角坐标系中,使OA,OC分别落在x轴、y轴上,连接AC,将纸片OABC沿AC折叠,使点B落在点D的位置,AD与y轴交于点E,若B(1,2),则OE 的长为()A.1B.C.D.【分析】由四边形OABC是矩形与折叠的性质,易证得△AEC是等腰三角形,然后在Rt△AEO中,利用勾股定理求得AE,OE的长.【解答】解:∵四边形OABC是矩形,∴OC∥AB,∴∠ECA=∠CAB,根据题意得:∠CAB=∠CAD,∠CDA=∠B=90°,∴∠ECA=∠EAC,∴EC=EA,∵B(1,2),∴AD=AB=2,设OE=x,则AE=EC=OC﹣OE=2﹣x,在Rt△AOE中,AE2=OE2+OA2,即(2﹣x)2=x2+1,解得:x=,∴OE=,故选:B.16.(2分)如图所示,把多块大小不同的30°直角三角板,摆放在平面直角坐标系中,第一块三角板AOB 的一条直角边与x轴重合且点A的坐标为(2,0),∠ABO=30°,第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交x轴于点B1,第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交y轴于点B2,第四块三角板斜边B2B3与第三块三角板的斜边B1B2垂直且交x轴于点B3,按此规律继续下去,则点B2018的坐标为()A.(﹣2×()2018,0)B.(0,﹣2×()2018)C.(2×()2019,0)D.(0,﹣2×()2019)【分析】根据题意和图象可以发现题目中的变化规律:OB=2×,OB1=2×,OB2=2×,……,从而可以推算出点B2018的坐标.【解答】解:由题意可得,∵OB=OA•tan60°=2×=2,∴B(0,2)∵OB1=OB•tan60°=2×=2×,∴B1(﹣2×,0)∵OB2=OB1•tan60°=2×,∴B2(0,﹣2×)∵OB3=OB2•tan60°=2×,∴B3(2×,0)……∵2018=504×4+2∴点B2018的坐标为(0,﹣2×)故选:D.二.填空题(本大题共4小题,每题3分,共12分)17.(3分)①=﹣2.②=2.③写出﹣和之间的所有整数﹣2,﹣1,0,1,2,3.【分析】①先估算出的取值范围,再去绝对值符号即可;②利用二次根式的运算法则计算即可;③先估算出﹣、的取值范围,再找出符合条件的整数即可.【解答】解:①因为>2,所以|2﹣|=﹣2;故答案为:﹣2;②×===2;故答案为:2;③因为﹣3<﹣、<4,所以﹣和之间的所有整数:﹣2,﹣1,0,1,2,3.故答案为:2,﹣1,0,1,2,3.18.(3分)如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形B、C、D的面积依次为4、3、9,则正方形A的面积为2.【分析】根据勾股定理的几何意义:S正方形A+S正方形B=S正方形E,S正方形D﹣S正方形C=S正方形E解得即可.【解答】解:由题意:S正方形A+S正方形B=S正方形E,S正方形D﹣S正方形C=S正方形E,∴S正方形A+S正方形B=S正方形D﹣S正方形C∵正方形B,C,D的面积依次为4,3,9∴S正方形A+4=9﹣3,∴S正方形A=2故答案为2.19.(3分)如图,在直角坐标系中,点B(﹣8,8),点C(﹣2,0),若动点P从坐标原点出发,沿y轴正方向匀速运动,运动速度为1cm/s,设点P运动时间为t秒,当△BCP是以BC为腰的等腰三角形时,直接写出t的所有值2秒,4秒或14秒.【分析】如图所示,过点B作BD⊥x轴于点D,作BE⊥y轴于点E,分别以点B和点C为圆心,以BC 长为半径画弧交y轴正半轴于点F,点H和点G,在直角三角形BDC中,由勾股定理求得BC=8cm,所以BF=CG=BH=8cm,再在直角三角形OCG和直角三角形BEF和直角三角形BEH中,由勾股定理或常见的勾股数6,8,10,易求得OF,OG,OH的长,从而求得t的值.【解答】解:如图所示,过点B作BD⊥x轴于点D,作BE⊥y轴于点E,分别以点B和点C为圆心,以BC长为半径画弧交y轴正半轴于点F,点H和点G∵点B(﹣8,8),点C(﹣2,0),∴DC=6cm,BD=8cm,由勾股定理得:BC=10cm∴在直角三角形COG中,OC=2cm,CG=BC=10cm,∴OG==(cm)当点P运动到点F或点H时,BE=8cm,BH=BF=10cm,∴EF=EH=6cm∴OF=8﹣6=2(cm),OH=8+6=14(cm)故答案为:2秒,秒或14秒.20.(3分)如图,Rt△ABC中,∠C=90°,∠ABC=30°,AB=6.点D在AB边上,点E是BC边上一点(不与点B、C重合),且DA=DE,则AD的取值范围是2≤AD<3.【分析】以D为圆心,AD的长为半径画圆,当圆与BC相切时,AD最小,与线段BC相交且交点为B 或C时,AD最大,分别求出即可得到范围.【解答】解:以D为圆心,AD的长为半径画圆①如图1,当圆与BC相切时,DE⊥BC时,∵∠ABC=30°,∴DE=BD,∵AB=6,∴AD=2;②如图2,当圆与BC相交时,若交点为B或C,则AD=AB=3,∴AD的取值范围是2≤AD<3.三、解答题(共6小题,满分66分)21.(19分)计算:(1);(2);(3)解分式方程:;(4)已知:;①当x=+1时,先化简,再求值;②代数式A的值能不能等于3,并说明理由.【分析】(1)先化简各二次根式,再计算加减可得;(2)先利用完全平方公式计算、计算除法,再计算加减可得;(3)先去分母,解方程求出x的值,再检验即可得;(4)①先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;②假设A=3,解之求出x的值,再根据分式有意义的条件判断即可得.【解答】解:(1)原式=3+﹣1﹣4=﹣1;(2)原式=4﹣2+2=6﹣2;(3)两边都乘以x﹣1,得:1﹣x=x﹣1,解得:x=1,检验:当x=1时,x﹣1=0,∴x=1是原分式方程的增根,则原分式方程无解;(4)①原式=[﹣]•=•=,当x=+1时,原式===;②若代数式A的值为3,则=3,解得x=2,当x=2时,原式没有意义,∴代数式A的值不可能为3.22.(8分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.【分析】(1)先证明BC=EF,再根据SSS即可证明.(2)结论AB∥DE,AC∥DF,根据全等三角形的性质即可证明.【解答】(1)证明:∵BF=CE,∴BF+FC=FC+CE,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).(2)结论:AB∥DE,AC∥DF.理由:∵△ABC≌△DEF,∴∠ABC=∠DEF,∠ACB=∠DFE,∴AB∥DE,AC∥DF.23.(8分)如图,在10×10网格中,每个小正方形的边长都为1.(1)建立如图所示的平面直角坐标系,若点A(3,4),则点C的坐标(4,2);(2)将△AOC向左平移5个单位,向上平移2个单位,则点C的坐标变为(﹣1,4);(3)若将△AOC的三个顶点的横纵坐标都乘以﹣,请画出△A1OC1;(4)图中格点△AOC的面积是5;(5)在x轴上找一点P,使得P A+PC最小,请画出点P的位置,并直接写出P A+PC的最小值是.【分析】(1)根据第一象限点的坐标特征写出C点坐标;(2)利用点平移的坐标变换规律求解;(3)将△AOC的三个顶点的横纵坐标都乘以﹣得到A1、C1的坐标,然后描点即可;(4)用一个矩形的面积分别减去三个三角形的面积去计算△AOC的面积;(5)作C点关于x轴的对称点C′,然后计算AC′即可.【解答】解:(1)如图,点C的坐标(4,2);(2)将△AOC向左平移5个单位,向上平移2个单位,则点C的坐标变为(﹣1,4);(3)如图,△A1OC1为所作;(4)图中格点△AOC的面积=4×4﹣×2×1﹣×4×2﹣×4×3=5;(5)如图,点P为所作,P A+PC的最小值=P A+PC′=AC′==.故答案为(4,2);(﹣1,4);5;.24.(8分)已知点D是∠BAC的平分线上一点,DE⊥AB,DF⊥AC,垂足分别为E、F在AF上有一点C,在AE的延长线上有一点B,使得CF=BE.(1)过点D作DG⊥BC,连结CD、BD,求证:DG垂直平分BC;(2)当BC⊥AF时,若AE=5,AC=3,求BC的长.【分析】(1)先证明:△BDE≌△CDF,再根据等腰三角形性质和线段垂直平分线判定和性质即可;(2)先证明:Rt△ADE≌Rt△ADF,可求得AE,AB,再运用勾股定理即可.【解答】解:(1)证明:如图1,连接CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠AED=∠AFD=∠BED=90°在△BDE和△CDF中,∴△BDE≌△CDF(SAS)∴BD=CD∵DG⊥BC,∴BG=CG∴DG垂直平分BC;(2)如图2,由(1)知:DE=DF∵AD=AD∴Rt△ADE≌Rt△ADF(HL)∴AE=AF=5∵AC=3,∴BE=CF=AF﹣AC=5﹣3=2∴AB=AE+BE=5+2=7在Rt△ABC中,∠ACB=90°∴BC===225.(11分)由于受到手机更新换代的影响,某手机店经销的华为P10plus手机四月售价比三月每台降价500元.如果卖出相同数量的华为P10plus手机,那么三月销售额为90000元,四月销售额只有80000元.(1)填表:(2)三、四月华为P10plus手机每台售价各为多少元?(3)为了提高利润,该店计划五月购进华为P20pro手机销售,已知华为P10plus每台进价为3500元,华为P20pro每台进价为4000元,调进一部分资金购进这两种手机共20台(其中华为P10plus有m台),在销售中决定在四月售价基础上每售出一台华为P10plus手机再返还顾客现金100元,而华为P20pro 按销售价4400元销售,若将这20台手机全部售出共获得多少利润?【分析】(1)设三月华为P10plus手机每台售价为x元,则四月华为P10plus手机每台售价为(x﹣500)元,三月售出手机台,四月售出手机台,此问得解;(2)根据数量=总价÷单价结合三、四月份华为P10plus手机的销售量相等,即可得出那样x的分式方程,解之经检验后即可得出结论;(3)设总利润为y元,根据总利润=单台利润×销售数量,即可求出获得的总利润.【解答】解:(1)设三月华为P10plus手机每台售价为x元,则四月华为P10plus手机每台售价为(x ﹣500)元,三月售出手机台,四月售出手机台.故答案为:(x﹣500);;.(2)依题意,得:=,解得:x=4500,经检验,x=4500是所列分式方程的解,且符合题意,∴x﹣500=4000.答:三月华为P10plus手机每台售价为4500元,四月华为P10plus手机每台售价为4000元.(3)设总利润为y元,依题意,得:y=(4000﹣3500﹣100)m+(4400﹣4000)(20﹣m)=8000.答:若将这20台手机全部售出共获得8000元利润.26.(12分)阅读情境:在综合实践课上,同学们探究“全等的等腰直角三角形图形变化问题如图1,△ABC≌△ADE,其中∠B=∠D=90°,AB=BC=AD=DE=2,此时,点C与点E重合,操作探究1(1)小凡将图1中的两个全等的△ABC和△ADE按图2方式摆放,点B落在AE上,CB所在直线交DE所在直线于点M,连结AM,求证:BM=DM.操作探究2(2)小彬将图1中的△ABC绕点A按逆时针方向旋转角度a(0°<a<90°),然后,分别延长BC,DE,它们相交于点F.如图3,在操作中,小彬提出如下问题,请你解答:①a=30°时,求证:△CEF为等边三角形;②当a=45°时,AC∥FE.(直接回答即可)操作探究3(3)小颖将图1中的△ABC绕点A按顺时针方向旋转角度β(0°<β<90°),线段BC和DE相交于点F,在操作中,小颖提出如下问题,请你解答:①如图4,当β=60°时,直接写出线段CE的长为2;②如图5,当旋转到点F是边DE的中点时,直接写出线段CE的长为.【分析】(1)根据HL证明Rt△AMB≌Rt△AMD即可解决问题.(2)①想办法证明∠FCE=∠FEC=60°即可解决问题.②根据平行线的判定定理即可解决问题.(3)①连接EC,证明△AEC是等边三角形,利用勾股定理求出AE即可解决问题.②如图5中,连接AF,BD交于点O.首先证明EC=BD,再证明OB=OD,利用面积法求出OB即可解决问题.【解答】(1)证明:如图2中,∵∠ABM=∠D=90°,AM=AM,AB=AD,∴Rt△AMB≌Rt△AMD(HL),∴BM=DM.(2)①证明:如图3中,∵CA=CE,∠CAE=30°,∴∠ACE=∠AEC=75°,∵AB=BC=AD=DE,∠B=∠D=90°∴∠ACB=∠AED=45°,∴∠BCE=∠CDE=120°,∴∠FCE=∠FEC=60°,∴△EFC是等边三角形.②解:∵AC∥EF,∴∠CAE=∠AED=45°,∴当α=45°时,AC∥EF.故答案为45°.(3)①解:如图4中,连接EC.∵∠EAC=β=60°,AE=AC,∴△AEC是等边三角形,∵AD=DE=2,∠ADE=90°,∴AE===2,∴EC=AE=2.故答案为2.②解:如图5中,连接AF,BD交于点O.∵∠ABF=∠ADF=90°,AF=AF,AB=AD,∴Rt△ABF≌Rt△ADF(HL),∴BF=DF,∵DF=EF=1,∴BF=DF=1,∵BC=2,∴BF=CF=1,∵BF=CF=DF=EF,∠BFD=∠CFE,∴△BFD≌△CFE(SAS),∴EC=BD.∵AB=AD,FB=FD,∴AF垂直平分线段BD,∴OB=OD,在Rt△ABF中,∵∠ABF=90°,AB=2,BF=1,∴AF===,∵S△ABF=•AB•BF=•OB•AF,∴OB==,∴BD=2OB=,∴EC=BD=.故答案为.。