2017年八年纪数学下册期末试卷附答案
- 格式:doc
- 大小:41.00 KB
- 文档页数:5
2017年陕西省西安市八年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)在中,分式的个数是()A.2 B.3 C.4 D.52.(3分)因式分解正确的是()A.m3+m2+m=m(m2+m)B.3﹣=(2﹣1)C.(a+b)(a﹣b)=a2﹣b2D.﹣4a2+9b2=(﹣2a+3b)(2a+3b)3.(3分)已知a<3,则不等式(a﹣3)<a﹣3的解集是()A.>1 B.<1 C.>﹣1 D.<﹣14.(3分)如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图2.两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°5.(3分)如图,在等边△ABC中,D,E分别是BC,AC上的点,且BD=CE,AD与BE相交于点P,则∠1+∠2的度数是()A .45°B .55°C .60°D .75°6.(3分)如图,l 1,l 2,l 3表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( )A .1处B .2处C .3处D .4处7.(3分)如图,平行四边形ABCD 中,AB=3,BC=5,AC 的垂直平分线交AD 于E ,则△CDE 的周长是( )A .6B .8C .9D .108.(3分)如图,平行四边形ABCD 周长是28cm ,△ABC 的周长是22cm ,则AC 长( )A .14cmB .12cmC .10cmD .8cm9.(3分)观察下列图象,可以得出不等式组的解集是( )A.<B.﹣<<0 C.0<<2 D.﹣<<210.(3分)A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为千米/时,则可列方程()A.B.C.+4=9 D.二、填空题(本题共4小题,每小题3分,共12分)11.(3分)不等式2﹣2≤7的正整数解分别是.12.(3分)分式方程+1=有增根,则m= .13.(3分)如图,在等腰在△ABC中,AB=27,AB的垂直平分线交AB于点D,交AC于点E,若在△BCE的周长为50,则底边BC的长为.14.(3分)若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是.三、解答下列问题(共58分)15.(6分)解不等式组:,并把解集在数轴上表示出.16.(6分)分解因式:(1)(﹣y)﹣y(y﹣).(2)(a2+1)2﹣4a2.17.(6分)先化简,再求值(+)÷,其中=﹣2,y=1.18.(8分)A、B两种机器人都被用搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?19.(8分)如图,在△ABC中,∠C=90°.(1)用圆规和直尺在AC上作点P,使点P到A、B的距离相等.(保留作图痕迹,不写作法和证明)(2)当满足(1)的点P到AB、BC的距离相等时,求∠A的度数.20.(8分)已知:如图,在平行四边形ABCD中,E,F是对角线BD上的两点,且BF=DE.求证:AE=CF.21.(8分)如图,在△ABC中,点D是边BC的中点,点E在△ABC内,AE 平分∠BAC,CE⊥AE,点F在边AB上,EF∥BC.(1)求证:四边形BDEF是平行四边形;(2)线段BF、AB、AC的数量之间具有怎样的关系?证明你所得到的结论.22.(8分)在平面直角坐标系中,以A,B,C,D为顶点组成平行四边形,A(1,0),B(3,0),C(4,3),求点D的坐标.2017年陕西省西安市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.(3分)在中,分式的个数是()A.2 B.3 C.4 D.5【解答】解:在中,分式有,∴分式的个数是3个.故选:B.2.(3分)因式分解正确的是()A.m3+m2+m=m(m2+m)B.3﹣=(2﹣1)C.(a+b)(a﹣b)=a2﹣b2D.﹣4a2+9b2=(﹣2a+3b)(2a+3b)【解答】解:A、原式=m(m2+m+1),错误;B、原式=(+1)(﹣1),错误;C、原式不是分解因式,错误;D、原式=(﹣2a+3b)(2a+3b),正确,故选D3.(3分)已知a<3,则不等式(a﹣3)<a﹣3的解集是()A.>1 B.<1 C.>﹣1 D.<﹣1【解答】解:因为a<3,∴a﹣3<0.两边同时除以a﹣3得,>1.选B4.(3分)如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图2.两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°【解答】解:根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如右图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图2.故选A.5.(3分)如图,在等边△ABC 中,D ,E 分别是BC ,AC 上的点,且BD=CE ,AD 与BE 相交于点P ,则∠1+∠2的度数是( )A .45°B .55°C .60°D .75°【解答】解:∵在等边△ABC 中,∠ABC=∠C=60°,AB=BC ,BD=CE , ∴△ABD ≌△BCE ,∴∠CBE=∠1,而∠CBE+∠2=60°,∴∠1+∠2=60°.故选C .6.(3分)如图,l 1,l 2,l 3表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( )A .1处B .2处C .3处D .4处【解答】解:作直线l 1、l 2、l 3所围成的三角形的外角平分线和内角平分线,外角平分线相交于点P 1、P 2、P 3,内角平分线相交于点P 4,根据角平分线的性质可得到这4个点到三条公路的距离分别相等.故选D .7.(3分)如图,平行四边形ABCD 中,AB=3,BC=5,AC 的垂直平分线交AD 于E ,则△CDE 的周长是( )A .6B .8C .9D .10【解答】解:根据垂直平分线上点到线段两个端点的距离相等知,EC=AE ; 根据在平行四边形ABCD 中有BC=AD ,AB=CD ,∴△CDE 的周长等于CD+DE+CE=CD+DE+AE=CD+AD=AB+BC=3+5=8. 故选B .8.(3分)如图,平行四边形ABCD 周长是28cm ,△ABC 的周长是22cm ,则AC 长( )A .14cmB .12cmC .10cmD .8cm【解答】解:∵▱ABCD 的周长是28cm ,∴AB+AD=14cm,∵△ABC的周长是22cm,∴AC=22﹣(AB+AC)=8cm,故选D.9.(3分)观察下列图象,可以得出不等式组的解集是()A.<B.﹣<<0 C.0<<2 D.﹣<<2【解答】解:根据图象得到,3+1>0的解集是:>﹣,第二个不等式的解集是<2,∴不等式组的解集是﹣<<2.故选D.10.(3分)A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为千米/时,则可列方程()A.B.C.+4=9 D.【解答】解:顺流时间为:;逆流时间为:.所列方程为:+=9.故选A.二、填空题(本题共4小题,每小题3分,共12分)11.(3分)不等式2﹣2≤7的正整数解分别是1,2,3,4 .【解答】解:不等式的解集是<4.5,所以不等式的正整数解是1,2,3,4.12.(3分)分式方程+1=有增根,则m= 3 .【解答】解:方程两边都乘(﹣3),得:+﹣3=m∵原方程有增根,∴最简公分母﹣3=0,故增根是=3,把=3代入整式方程,得m=3.13.(3分)如图,在等腰在△ABC中,AB=27,AB的垂直平分线交AB于点D,交AC于点E,若在△BCE的周长为50,则底边BC的长为23 .【解答】解:∵DE垂直且平分AB,∴BE=AE.由BE+CE=AC=AB=27,∴BC=50﹣27=23.14.(3分)若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是 6 .【解答】解:∵凸n边形的内角和为1260°,∴(n﹣2)×180°=1260°,得,n=9;∴9﹣3=6.故答案为:6.三、解答下列问题(共58分)15.(6分)解不等式组:,并把解集在数轴上表示出.【解答】解:∵解不等式①得:>﹣1,解不等式②得:≤3,∴不等式组的解集是﹣1<≤3,在数轴上表示为:.16.(6分)分解因式:(1)(﹣y)﹣y(y﹣).(2)(a2+1)2﹣4a2.【解答】解:(1)(﹣y)﹣y(y﹣)=(﹣y)+y(﹣y)=(﹣y)(+y);(2)(a2+1)2﹣4a2.=(a2+1﹣2a)(a2+1+2a)=(a﹣1)2(a+1)2.17.(6分)先化简,再求值(+)÷,其中=﹣2,y=1.【解答】解:(+)÷===,当=﹣2,y=1时,原式=.18.(8分)A 、B 两种机器人都被用搬运化工原料,A 型机器人比B 型机器人每小时多搬运20千克,A 型机器人搬运1000千克所用时间与B 型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?【解答】解:设A 型机器人每小时搬运化工原料千克,则B 型机器人每小时搬运(﹣20)千克,依题意得:.(3分)解这个方程得:=100.(6分)经检验=100是方程的解,所以﹣20=80.(7分)答:A 、B 两种机器人每小时分别搬运化工原料100千克和80千克.(8分)19.(8分)如图,在△ABC 中,∠C=90°.(1)用圆规和直尺在AC 上作点P ,使点P 到A 、B 的距离相等.(保留作图痕迹,不写作法和证明)(2)当满足(1)的点P 到AB 、BC 的距离相等时,求∠A 的度数.【解答】解:(1)依照题意,画出图形,如图所示.(2)∵点P到AB、BC的距离相等,∴PC=PD.在Rt△BCP和Rt△BDP中,,∴Rt△BCP≌Rt△BDP(HL),∴BC=BD.又∵PD垂直平分AB,∴AD=2BD=2BC.在Rt△ABC中,∠C=90°,AB=2BC,∴∠A=30°.20.(8分)已知:如图,在平行四边形ABCD中,E,F是对角线BD上的两点,且BF=DE.求证:AE=CF.【解答】证明:∵BF=DE,∴BE=DF,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∴∠ABE=∠CDF,∴在△ABE和△CDB中,,∴△ABE≌△CDB(SAS),∴AE=CF.21.(8分)如图,在△ABC中,点D是边BC的中点,点E在△ABC内,AE 平分∠BAC,CE⊥AE,点F在边AB上,EF∥BC.(1)求证:四边形BDEF是平行四边形;(2)线段BF、AB、AC的数量之间具有怎样的关系?证明你所得到的结论.【解答】(1)证明:延长CE交AB于点G,∵AE⊥CE,∴∠AEG=∠AEC=90°,在△AEG和△AEC中,∴△AGE≌△ACE(ASA).∴GE=EC.∵BD=CD,∴DE为△CGB的中位线,∴DE∥AB.∵EF∥BC,∴四边形BDEF是平行四边形.(2)解:BF=(AB﹣AC).理由如下:∵四边形BDEF是平行四边形,∴BF=DE.∵D、E分别是BC、GC的中点,∴BF=DE=BG.∵△AGE≌△ACE,∴AG=AC,∴BF=(AB﹣AG)=(AB﹣AC).22.(8分)在平面直角坐标系中,以A,B,C,D为顶点组成平行四边形,A(1,0),B(3,0),C(4,3),求点D的坐标.【解答】解:分三种情况:①BC为对角线时,点D的坐标为(6,3);②AB为对角线时,点D的坐标为(0,﹣3);③AC为对角线时,点D的坐标为(2,3).综上所述,点D的坐标是(6,3)或(0,﹣3)或(2,3).。
2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。
2017年陕西省西安市八年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)在中,分式的个数是()A.2 B.3 C.4 D.52.(3分)因式分解正确的是()A.m3+m2+m=m(m2+m)B.3﹣=(2﹣1)C.(a+b)(a﹣b)=a2﹣b2 D.﹣4a2+9b2=(﹣2a+3b)(2a+3b)3.(3分)已知a<3,则不等式(a﹣3)<a﹣3的解集是()A.>1 B.<1 C.>﹣1 D.<﹣14.(3分)如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图2.两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°5.(3分)如图,在等边△ABC中,D,E分别是BC,AC上的点,且BD=CE,AD与BE相交于点P,则∠1+∠2的度数是()A .45°B .55°C .60°D .75°6.(3分)如图,l 1,l 2,l 3表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( )A .1处B .2处C .3处D .4处7.(3分)如图,平行四边形ABCD 中,AB=3,BC=5,AC 的垂直平分线交AD 于E ,则△CDE 的周长是( )A .6B .8C .9D .108.(3分)如图,平行四边形ABCD 周长是28cm ,△ABC 的周长是22cm ,则AC 长( )A .14cmB .12cmC .10cmD .8cm9.(3分)观察下列图象,可以得出不等式组的解集是( )A.<B.﹣<<0 C.0<<2 D.﹣<<210.(3分)A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为千米/时,则可列方程()A.B.C.+4=9 D.二、填空题(本题共4小题,每小题3分,共12分)11.(3分)不等式2﹣2≤7的正整数解分别是.12.(3分)分式方程+1=有增根,则m= .13.(3分)如图,在等腰在△ABC中,AB=27,AB的垂直平分线交AB于点D,交AC于点E,若在△BCE的周长为50,则底边BC的长为.14.(3分)若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是.三、解答下列问题(共58分)15.(6分)解不等式组:,并把解集在数轴上表示出.16.(6分)分解因式:(1)(﹣y)﹣y(y﹣).(2)(a2+1)2﹣4a2.17.(6分)先化简,再求值(+)÷,其中=﹣2,y=1.18.(8分)A、B两种机器人都被用搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?19.(8分)如图,在△ABC中,∠C=90°.(1)用圆规和直尺在AC上作点P,使点P到A、B的距离相等.(保留作图痕迹,不写作法和证明)(2)当满足(1)的点P到AB、BC的距离相等时,求∠A的度数.20.(8分)已知:如图,在平行四边形ABCD中,E,F是对角线BD上的两点,且BF=DE.求证:AE=CF.21.(8分)如图,在△ABC中,点D是边BC的中点,点E在△ABC内,AE 平分∠BAC,CE⊥AE,点F在边AB上,EF∥BC.(1)求证:四边形BDEF是平行四边形;(2)线段BF、AB、AC的数量之间具有怎样的关系?证明你所得到的结论.22.(8分)在平面直角坐标系中,以A,B,C,D为顶点组成平行四边形,A (1,0),B(3,0),C(4,3),求点D的坐标.2017年陕西省西安市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.(3分)在中,分式的个数是()A.2 B.3 C.4 D.5【解答】解:在中,分式有,∴分式的个数是3个.故选:B.2.(3分)因式分解正确的是()A.m3+m2+m=m(m2+m)B.3﹣=(2﹣1)C.(a+b)(a﹣b)=a2﹣b2D.﹣4a2+9b2=(﹣2a+3b)(2a+3b)【解答】解:A、原式=m(m2+m+1),错误;B、原式=(+1)(﹣1),错误;C、原式不是分解因式,错误;D、原式=(﹣2a+3b)(2a+3b),正确,故选D3.(3分)已知a<3,则不等式(a﹣3)<a﹣3的解集是()A.>1 B.<1 C.>﹣1 D.<﹣1【解答】解:因为a<3,∴a﹣3<0.两边同时除以a﹣3得,>1.选B4.(3分)如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图2.两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°【解答】解:根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如右图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图2.故选A.5.(3分)如图,在等边△ABC 中,D ,E 分别是BC ,AC 上的点,且BD=CE ,AD 与BE 相交于点P ,则∠1+∠2的度数是( )A .45°B .55°C .60°D .75°【解答】解:∵在等边△ABC 中,∠ABC=∠C=60°,AB=BC ,BD=CE , ∴△ABD ≌△BCE ,∴∠CBE=∠1,而∠CBE+∠2=60°,∴∠1+∠2=60°.故选C .6.(3分)如图,l 1,l 2,l 3表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( )A .1处B .2处C .3处D .4处【解答】解:作直线l 1、l 2、l 3所围成的三角形的外角平分线和内角平分线,外角平分线相交于点P 1、P 2、P 3,内角平分线相交于点P 4,根据角平分线的性质可得到这4个点到三条公路的距离分别相等.故选D .7.(3分)如图,平行四边形ABCD 中,AB=3,BC=5,AC 的垂直平分线交AD 于E ,则△CDE 的周长是( )A .6B .8C .9D .10【解答】解:根据垂直平分线上点到线段两个端点的距离相等知,EC=AE ; 根据在平行四边形ABCD 中有BC=AD ,AB=CD ,∴△CDE 的周长等于CD+DE+CE=CD+DE+AE=CD+AD=AB+BC=3+5=8. 故选B .8.(3分)如图,平行四边形ABCD 周长是28cm ,△ABC 的周长是22cm ,则AC 长( )A .14cmB .12cmC .10cmD .8cm【解答】解:∵▱ABCD 的周长是28cm ,∴AB+AD=14cm,∵△ABC的周长是22cm,∴AC=22﹣(AB+AC)=8cm,故选D.9.(3分)观察下列图象,可以得出不等式组的解集是()A.<B.﹣<<0 C.0<<2 D.﹣<<2【解答】解:根据图象得到,3+1>0的解集是:>﹣,第二个不等式的解集是<2,∴不等式组的解集是﹣<<2.故选D.10.(3分)A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为千米/时,则可列方程()A.B.C.+4=9 D.【解答】解:顺流时间为:;逆流时间为:.所列方程为:+=9.故选A.二、填空题(本题共4小题,每小题3分,共12分)11.(3分)不等式2﹣2≤7的正整数解分别是1,2,3,4 .【解答】解:不等式的解集是<4.5,所以不等式的正整数解是1,2,3,4.12.(3分)分式方程+1=有增根,则m= 3 .【解答】解:方程两边都乘(﹣3),得:+﹣3=m∵原方程有增根,∴最简公分母﹣3=0,故增根是=3,把=3代入整式方程,得m=3.13.(3分)如图,在等腰在△ABC中,AB=27,AB的垂直平分线交AB于点D,交AC于点E,若在△BCE的周长为50,则底边BC的长为23 .【解答】解:∵DE垂直且平分AB,∴BE=AE.由BE+CE=AC=AB=27,∴BC=50﹣27=23.14.(3分)若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是 6 .【解答】解:∵凸n边形的内角和为1260°,∴(n﹣2)×180°=1260°,得,n=9;∴9﹣3=6.故答案为:6.三、解答下列问题(共58分)15.(6分)解不等式组:,并把解集在数轴上表示出.【解答】解:∵解不等式①得:>﹣1,解不等式②得:≤3,∴不等式组的解集是﹣1<≤3,在数轴上表示为:.16.(6分)分解因式:(1)(﹣y)﹣y(y﹣).(2)(a2+1)2﹣4a2.【解答】解:(1)(﹣y)﹣y(y﹣)=(﹣y)+y(﹣y)=(﹣y)(+y);(2)(a2+1)2﹣4a2.=(a2+1﹣2a)(a2+1+2a)=(a﹣1)2(a+1)2.17.(6分)先化简,再求值(+)÷,其中=﹣2,y=1.【解答】解:(+)÷===,当=﹣2,y=1时,原式=.18.(8分)A 、B 两种机器人都被用搬运化工原料,A 型机器人比B 型机器人每小时多搬运20千克,A 型机器人搬运1000千克所用时间与B 型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?【解答】解:设A 型机器人每小时搬运化工原料千克,则B 型机器人每小时搬运(﹣20)千克,依题意得:.(3分)解这个方程得:=100.(6分)经检验=100是方程的解,所以﹣20=80.(7分)答:A 、B 两种机器人每小时分别搬运化工原料100千克和80千克.(8分)19.(8分)如图,在△ABC 中,∠C=90°.(1)用圆规和直尺在AC 上作点P ,使点P 到A 、B 的距离相等.(保留作图痕迹,不写作法和证明)(2)当满足(1)的点P 到AB 、BC 的距离相等时,求∠A 的度数.【解答】解:(1)依照题意,画出图形,如图所示.(2)∵点P到AB、BC的距离相等,∴PC=PD.在Rt△BCP和Rt△BDP中,,∴Rt△BCP≌Rt△BDP(HL),∴BC=BD.又∵PD垂直平分AB,∴AD=2BD=2BC.在Rt△ABC中,∠C=90°,AB=2BC,∴∠A=30°.20.(8分)已知:如图,在平行四边形ABCD中,E,F是对角线BD上的两点,且BF=DE.求证:AE=CF.【解答】证明:∵BF=DE,∴BE=DF,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∴∠ABE=∠CDF,∴在△ABE和△CDB中,,∴△ABE≌△CDB(SAS),∴AE=CF.21.(8分)如图,在△ABC中,点D是边BC的中点,点E在△ABC内,AE 平分∠BAC,CE⊥AE,点F在边AB上,EF∥BC.(1)求证:四边形BDEF是平行四边形;(2)线段BF、AB、AC的数量之间具有怎样的关系?证明你所得到的结论.【解答】(1)证明:延长CE交AB于点G,∵AE⊥CE,∴∠AEG=∠AEC=90°,在△AEG和△AEC中,∴△AGE≌△ACE(ASA).∴GE=EC.∵BD=CD,∴DE为△CGB的中位线,∴DE∥AB.∵EF∥BC,∴四边形BDEF是平行四边形.(2)解:BF=(AB﹣AC).理由如下:∵四边形BDEF是平行四边形,∴BF=DE.∵D、E分别是BC、GC的中点,∴BF=DE=BG.∵△AGE≌△ACE,∴AG=AC,∴BF=(AB﹣AG)=(AB﹣AC).22.(8分)在平面直角坐标系中,以A,B,C,D为顶点组成平行四边形,A (1,0),B(3,0),C(4,3),求点D的坐标.【解答】解:分三种情况:①BC为对角线时,点D的坐标为(6,3);②AB为对角线时,点D的坐标为(0,﹣3);③AC为对角线时,点D的坐标为(2,3).综上所述,点D的坐标是(6,3)或(0,﹣3)或(2,3).。
2017-2018学年八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.02.下列根式中,与是同类二次根式的是()A.B.C.D.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.25.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y27.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG 10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6B.2C.4D.4二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD=.15.代数式a+2﹣+3的值等于.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=.三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.20.解分式方程:(1)=(2)=﹣1.21.先化简,再求值:(1﹣)÷,其中a=﹣1.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(),B′(),C′();(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为().25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.0【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x+1=0,且3x﹣2≠0,再解即可.【解答】解:由题意得:x+1=0,且3x﹣2≠0,解得:x=﹣1,故选:A.2.下列根式中,与是同类二次根式的是()A.B.C.D.【考点】同类二次根式.【分析】运用化简根式的方法化简每个选项.【解答】解:A、=2,故A选项不是;B、=2,故B选项是;C、=,故C选项不是;D、=3,故D选项不是.故选:B.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义和图形的特点即可求解.【解答】解:由中心对称图形的定义知,绕一个点旋转180°后能与原图重合,只有选项B是中心对称图形.故选:B.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.2【考点】二次根式的性质与化简.【分析】首先根据x的范围确定x﹣3与x﹣2的符号,然后即可化简二次根式,然后合并同类项即可.【解答】解:∵1<x≤2,∴x﹣3<0,x﹣2≤0,∴原式=3﹣x+(2﹣x)=5﹣2x.故选C.5.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学2页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为=.故选C.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2【考点】反比例函数图象上点的坐标特征.【分析】先判断出﹣k2﹣2<0的符号,再根据反比例函数的性质进行比较.【解答】解:∵﹣k2﹣2<0,∴函数图象位于二、四象限,∵(﹣2,y1),(﹣1,y2)位于第二象限,﹣2<﹣1,∴y2>y1>0;又∵(,y3)位于第四象限,∴y3<0,∴y2>y1>y3.故选B.7.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.【考点】相似三角形的判定.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.【考点】反比例函数的图象.【分析】首先设出函数关系式,根据图象可以计算出k的取值范围,再根据k的取值范围选出答案即可.【解答】解:设函数关系式为y=(k≠0),当函数图象经过A(1,2)时,k=1×2=2,当函数图象经过B(﹣2,﹣2)时,k=(﹣2)×(﹣2)=4,由图象可知要求的函数解析式的k的取值范围必是:2<k<4,故选:C.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG【考点】相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.【分析】由四边形ABCD是正方形,可得AB=AD,由DE⊥AG,BF∥DE,易证得BF⊥AG,又由同角的余角相等,可证得∠BAF=∠ADE,则可利用AAS判定△AED ≌△BFA;由全等三角形的对应边相等,易证得DE﹣BF=EF;有两角对应相等的三角形相似,可证得△BGF∽△DAE;利用排除法即可求得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,AD∥BC,∵DE⊥AG,BF∥DE,∴BF⊥AG,∴∠AED=∠DEF=∠BFE=90°,∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,∴∠BAF=∠ADE,∴△AED≌△BFA(AAS);故A正确;∴DE=AF,AE=BF,∴DE﹣BF=AF﹣AE=EF,故B正确;∵AD∥BC,∴∠DAE=∠BGF,∵DE⊥AG,BF⊥AG,∴∠AED=∠GFB=90°,∴△BGF∽△DAE,故C正确;∵DE,BG,FG没有等量关系,故不能判定DE﹣BG=FG正确.故选D.10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6B.2C.4D.4【考点】翻折变换(折叠问题);矩形的性质.【分析】首先过点E作EM⊥BC于M,交BF于N,易证得△ENG≌△BNM(AAS),MN是△BCF的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=6,继而求得BF的值,又由勾股定理,即可求得BC的长.【解答】解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,在△ENG与△BNM中,,∴△ENG≌△BNM(AAS),∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=1,∴NG=1,∵BG=AB=CD=CF+DF=6,∴BN=BG﹣NG=6﹣1=5,∴BF=2BN=10,∴BC===4.故选D.二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是x≥1.【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为4.【考点】射影定理.【分析】根据射影定理得到:CD2=AD•BD,把相关线段的长度代入计算即可.【解答】解:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,∴CD2=AD•BD=8×2,则CD=4.故答案是:4.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是【考点】频数(率)分布直方图.【分析】由每一组内的频数总和等于总数据个数得到学生总数,再由频率=频数÷数据总和计算出成绩在90.5~95.5这一分数段的频率.【解答】解:读图可知:共有(1+4+10+15+20)=50人,其中在90.5~95.5这一分数段有20人,则成绩在90.5~95.5这一分数段的频率是=0.4.故本题答案为:0.4.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= 2.【考点】三角形中位线定理.【分析】由题意可知EF是△ADC的中位线,由此可求出AD的长,再根据中线的定义即可求出BD的长.【解答】解:∵点E、F分别是AC、DC的中点,∴EF是△ADC的中位线,∴EF=AD,∵EF=1,∵CD是△ABC的中线,∴BD=AD=2,故答案为:2.15.代数式a+2﹣+3的值等于4.【考点】二次根式有意义的条件.【分析】根据二次根式的意义先求出a的值,再对式子化简.【解答】解:根据二次根式的意义,可知,解得a=1,∴a+2﹣+3=1+3=4.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于﹣3.【考点】分式的化简求值.【分析】将a2+3ab+b2=0转化为a2+b2=﹣3ab,原式化为=,约分即可.【解答】解:∵a2+3ab+b2=0,∴a2+b2=﹣3ab,∴原式===﹣3.故答案为:﹣3.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.【考点】反比例函数综合题.【分析】先求出Q的坐标为(0,﹣2),P点坐标为(,0),易证Rt△OQP ∽Rt△MRP,根据三角形相似的性质得到==,分别求出PM、RM,得到OM的长,从而确定R点坐标,然后代入(k>0)求出k的值.【解答】解:对于y=x﹣2,令x=0,则y=﹣2,∴Q的坐标为(0,﹣2),即OQ=2;令y=0,则x=,∴P点坐标为(,0),即OP=;∵Rt△OQP∽Rt△MRP,而△OPQ与△PRM的面积是4:1,∴==,∴PM=OP=,RM=OQ=1,∴OM=OP+PM=,∴R点的坐标为(,1),∴k=×1=.故答案为.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE 时,EP+BP=8.【考点】相似三角形的判定与性质.【分析】如图,延长EF交BQ的延长线于G.首先证明PB=PG,EP+PB=EG,由EG∥BC,推出==2,即可求出EG解决问题.【解答】解:如图,延长EF交BQ的延长线于G.∵EG∥BC,∴∠G=∠GBC,∵∠GBC=∠GBP,∴∠G=∠PBG,∴PB=PG,∴PE+PB=PE+PG=EG,∵CQ=EC,∴EQ=2CQ,∵EG∥BC,∴==2,∵BC=4,∴EG=8,∴EP+PB=EG=8,故答案为8三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.【考点】二次根式的混合运算;分式的混合运算.【分析】(1))原式各项化为﹣3﹣3+2﹣,合并同类二次根式即可得到结果.(2)先计算括号里面的分式的减法,再分式的除法的方法计算.【解答】(1)解:(1)原式=﹣3﹣3+2﹣=﹣1﹣3;(2)原式=﹣=.20.解分式方程:(1)=(2)=﹣1.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母,得x+2=3,解得:x=1经检验,x=1是增根,原方程无解;(2)去分母,得3(5x﹣4)=﹣(4x+10)﹣3(x﹣2),解得:x=,经检验,x=是原方程的解.21.先化简,再求值:(1﹣)÷,其中a=﹣1.【考点】分式的化简求值.【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】(1)根据全等三角形的判定定理ASA证得△AFD≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到AD=CB,则由“有一组对边相等且平行的四边形是平行四边形”证得结论.【解答】证明:(1)如图,∵AD∥BC,DF∥BE,∴∠1=∠2,∠3=∠4.又AE=CF,∴AE+EF=CF+EF,即AF=CE.在△AFD与△CEB中,,∴△AFD≌△CEB(ASA);(2)由(1)知,△AFD≌△CEB,则AD=CB.又∵AD∥BC,∴四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.【考点】条形统计图;用样本估计总体;扇形统计图;概率公式.【分析】(1)根据良的天数除以良的天数所占的百分比,可得样本容量,根据样本容量乘以轻微污染所占的百分比求出轻微污染的天数,可得答案;(2)根据一年的时间乘以优良所占的百分比,可得答案;(3)根据根据一年中优的天数比上一年的天数,可得答案.【解答】解:(1)样本容量3÷5%=60,60﹣12﹣36﹣3﹣2﹣1=6,条形统计图如图:(2)这一年空气质量达到“优”和“良”的总天数为:365×=292;(3)随机选取这一年内某一天,空气质量是“优”的概率为:=.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(3,5),B′(5,5),C′(7,3);(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).【考点】作图﹣位似变换.【分析】(1)利用位似图形的性质得出变化后图形即可;(2)利用已知图形得出对应点坐标;(3)利用各点变化规律,进而得出答案.【解答】解:(1)如图所示:四边形TA′B′C′即为所求;(2)A′(3,5),B′(5,5),C′(7,3);故答案为:(3,5),(5,5),(7,3);(3)在(1)中,∵A(2,3),B(3,3),C(4,2),A′(2×2﹣1=3,2×3﹣1=5),B′(2×3﹣1=5,2×3﹣1=5),C′(2×4﹣1=7,2×2﹣1=3);∴D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).故答案为:(2a﹣1,2b﹣1).25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A点坐标代入代入y=(x>0),求出m的值为2,再将(2,2)代入y=kx﹣k,求出k的值,即可得到一次函数的解析式;(2)根据图象即可求得;(3)将三角形以x轴为分界线,分为两个三角形计算,再把它们相加.【解答】解:(1)将A(m,2)代入y=(x>0)得,m=2,则A点坐标为A(2,2),将A(2,2)代入y=kx﹣k得,2k﹣k=2,解得k=2,则一次函数解析式为y=2x﹣2;(2)∵A(2,2),∴当0<x≤2时,y1≥y2;(3)∵一次函数y=2x﹣2与x轴的交点为C(1,0),与y轴的交点为B(0,﹣2),S△ABP=S△ACP+S△BPC,∴×2CP+×2CP=4,解得CP=2,则P点坐标为(3,0),(﹣1,0).26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.【考点】分式方程的应用.【分析】(1)设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,根据小明和小丽能买到相同数量的笔记本建立方程求出其解就可以得出结论;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,根据小明和小丽能买到相同数量的笔记本建立方程就可以得出m与a的关系,就可以求出结论.【解答】解:(1))设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,由题意,得,解得:x=1.6.此时=7.5(不符合题意),所以,小明和小丽不能买到相同数量的笔记本;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,由题意,得,解得:a=m,∵a为正整数,∴m=4,8,12.∴a=3,6,9.当时,(不符合题意)∴a的值为3或9.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.【考点】相似形综合题.【分析】(1)根据点A、C的坐标求出AC的长,根据题意求出点B的坐标,利用待定系数法求出过点A,B的直线的函数表达式;(2)过点B作BD⊥AB,交x轴于点D,根据相似三角形的性质列出比例式,计算即可;(3)分PQ∥BD时和PQ⊥AD时两种情况,根据相似三角形的性质列出比例式,计算即可.【解答】解:(1)∵点A(﹣3,0),C(1,0),∴AC=4,又BC=AC,∴BC=3,∴B点坐标为(1,3),设过点A,B的直线的函数表达式为:y=kx+b,则,解得,,∴直线AB的函数表达式为:y=x+;(2)如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ABD=∠ACB,∴△ADB∽△ABC,∴D点为所求,∵△ADB∽△ABC,∴,即=,解得,CD=,∴,∴点D的坐标为(,0);(3)在Rt△ABC中,由勾股定理得AB==5,如图2,当PQ∥BD时,△APQ∽△ABD,则=,解得,m=,如图3,当PQ⊥AD时,△APQ∽△ADB,则=,解得,m=,所以若△APQ与△ADB相似时,m=或.。
2017年八年级(下)数学期末测试题及答案(北师大版D23456716.如图,在四边形ABCD 中,对角线AC 、BD 互相垂直平分,若使四边形ABCD 是正方形,则需要再添加的一个条件为___________.(图形中不再添加辅助线,写出一个条件即可)17.若543z y x ==,则=++-+z y x z y x 234 . 18.如图,矩形ABCD 中,3,4AB BC ==,点E 是BC 边上一点,连接AE ,把B ∠沿AE 折叠,使点B 落在点'B 处,当△'CEB 为直角三角形时,BE 的长为三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)19. (本小题满分6分)(1)解分式方程:114112=---+x x xA BC DO8(2)解不等式组3(1)511242x x x x -<+⎧⎪⎨-≥-⎪⎩,并指出它的所有的非负整数解.;20. (本小题满分6分)张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.21. (本小题满分6分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.22. (本小题满分7分)如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)若BE的延长线交AC于点F,且BF⊥AC,910 垂足为F ,如图2,∠BAC =45°,原题设其它条件不变.求证:△AEF ≌△BCF .23. (本小题满分7分) 如图,在△ABC 中,∠ABC =90°,BM 平分∠ABC 交AC 于点M ,ME ⊥AB 于点E ,MF ⊥BC 于点F . 判断四边形EBFM 的形状,并加以证明.A B C D E F (第22题图2)AB CD E(第22题图1) A BC M EF24. (本小题满分8分)直线y=- 34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O⇒B⇒A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;(3)当S= 485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.25. (本小题满分8分)如图,在△ABC中,D是BC边上的一点,E 是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD 是矩形?并说明理由.26. (本小题满分9分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?27. (本小题满分9分)某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.答案一、选择题1-6.C D B C C B 7-12.C C D C C B二、填空题略三、解答题19(1)略(2)解: 3x2-4x-1=0, 372612164±=+±=x , 372,37221-=+=x x20、解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(x+10)本,依题意,得:,解得:x=20,经检验,x=20是原方程的解,答:张明平均每分钟清点图书20本。
2016-2017学年第二学期末质量检测试题数学(八年级)一、选择题:本大题共10小题,每小题3分,共30分.在每小题所给的4个选项中,只有一项符合题目要求的,请将代表正确选项的字1A .8 B .-8 C .-4 D .4 2.在下列命题中,正确的是( )A .一组对边平行的四边形是平行四边形B .有一个角是直角的四边形是矩形 C.有一组邻边相等的平行四边形是菱形 D .对角线互相垂直平分的四边形是正方形3.已知一次函数b x y +=的图像经过第一、三、四象限,则b 的值可以是( ) (A )-1; (B )0; (C )1; (D )2.4.某个公司有15名工作人员,他们的月工资情况如下表.则该公司所有工作人员的月工资的平均数、中位数和众数分别是A .520,2 000,2 000B .2 600, 800,800C .1 240,2 000,800D .1 240,800,800 5.若菱形的周长为8,高为1,则菱形两邻角的度数比为( ) A.3:1 B.4:1 C.5:1 D.6:1 6.一次函数,若y 随x 的增大而增大,则k的值可以是( )(A )1 (B )2 (C )3 (D )4 7.若在实数范围内有意义,则x 的取值范围是( )A . x <3B .x≤3C . x >3D .x≥38.下列计算结果正确的是:(A)(B) (C) (D)9. 如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是 ( ) A.12 B. 24 C. 312 D. 31610. 爷爷每天坚持体育锻炼,某天他慢跑离家到中山公园,打了一会儿太极拳后搭公交车回家。
下面能反映当天小华的爷爷离家的距离y 与时间x 的函数关系的大致图象是( )二、填空题:本大题共7小题,每小题3分 共21分.请将答案直接填在题中的横线上.11.若20n 是整数,则正整数n 的最小值为________________.12.一次函数y =2x +3的图象沿y 轴向下平移2个单位,所得图象的函数解析式是____________________________.13. 随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:13=甲x ,13=乙x ,5.72=甲S ,6.212=乙S ,则小麦长势比较整齐的试验田是 (填“甲”或“乙”). 14. 如图所示,有一张一个角为600的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是_____________15.已知点(-2,y 1),(-1,y 2),(1,y 3)都在直线y=-3x +b 上,则y 1,y 2,y 3的大小关系是________________________.16如图,一棵大树在离地面9米高的B 处断裂,树顶A 落在离树底部C 的12米处,则大树数断裂之前的高度为__________________17. 我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图” (如图①).图②由弦图变化得到,它是由八个第16题全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1、S2、S3,若S1+S2+S3=10,则S2的值是______________.三、解答题:本大题共9小题,共69分.从本大题开始各解答题应写出文字说明、证明过程或计算步骤.18.(本题满分12分)计算.(1)(2)19.(本题满分6分)我们学习了四边形和一些特殊的四边形,右图表示了在某种条件下它们之间的关系。
2017-2018学年八年级(下)期末数学试卷一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A,B,C,D 四个选项,有且只有一个答案是正确的,请將正确答案的代号填在答题卡上,填在试题卷上无效.1.式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x<0C.x≤2D.x≥22.已知直角三角形的两条直角边的长分别为1,,则斜边长为()A.1B.C.2D.33.下列计算正确的是()A.B.3﹣=3C.D.=4.点(a,﹣1)在一次函数y=﹣2x+1的图象上,则a的值为()A.a=﹣3B.a=﹣1C.a=1D.a=25.四边形ABCD中,已知AB∥CD,下列条件不能判定四边形ABCD为平行四边形的是()A.AB=CD B.AD=BC C.AD∥BC D.∠A+∠B=1806.匀速地向如图所示容器内注水,最后将容器注满.在注水过程中,水面高度h随时间t变化情况的大致函数图象(图中OABC为一折线)是()A.(1)B.(2)C.(3)D.无法确定7.如图,在△ABC中,AB=10,BC=6,点D为AB上一点,BC=BD,BE⊥CD于点E,点F为AC的中点,连接EF,则EF的长为()A.1B.2C.3D.48.某居民今年1至6月份(共6个月)的月平均用水量5t,其中1至5月份月用水量(单位:t)统计如图所示,根据表中信息,该户今年1至6月份用水量的中位数和众数分别是()A.4,5B.4.5,6C.5,6D.5.5,69.如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为()A.()7B.2()7C.2()8D.()910.在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3B.﹣5C.7D.﹣3或﹣5二、填空愿:(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.计算=,(﹣)2=,3﹣=.12.下表记录了某校篮球队队员的年龄分布情况,则该校篮球队队员的平均年龄为.13.如图,在平行四边形ABCD中,AC⊥BC,AD=AC=2,则BD的长为.14.将一次函数y=﹣x+1沿x轴方向向右平移3个单位长度得到的直线解析式为.15.“五一”期间,小红到某景区登山游玩,小红上山时间x(分钟)与走过的路程y(米)之间的函数关系如图所示,在小红出发的同时另一名游客小卉正在距离山底60米处沿相同线路上山,若小红上山过程中与小卉恰好有两次相遇,则小卉上山平均速度v(米/分钟)的取值范围是.16.如图,在矩形ABCD中,AB=5,AD=9,点P为AD边上点,沿BP折叠△ABP,点A的对应点为E,若点E到矩形两条较长边的距离之比为1:4,则AP的长为.三、解答题:〔共8小题,72分)小下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.(8分)计算:(1)﹣+(2)(+3)(﹣2)18.(8分)如图,已知▱ABCD的对角线AC,BD相交于O,点E,F分别是OA,OC的中点,求证:BE=DF.19.(8分)已知y是x的一次函数,如表列出了部分y与x的对应值,求m的值.20.(8分)运动服装店销售某品牌S号,M号,L号,XL号,XXL号五种不同型号服装,随机统计该品牌运动服装一周的销售情况并绘制如图所示不完整统计图.(1)L号运动服一周的销售所占百分比为.(2)请补全条形统计图;(3)服装店老板打算再次购进该品牌服饰共600件,根据各种型号的销售情况,你认为购进XL 号约多少件比较合适,请计算说明.21.(8分)如图,在矩形ABCD中,AF平分∠BAD交BC于E,交DC延长线于F,点G为EF 的中点,连结DG.(1)求证:BC=DF;(2)连BD,求BD:DG的值.22.(10分)某移动通信公司推出了如下两种移动电话计费方式,说明:月使用费固定收取,主叫不超过限定时间不再收费,超过部分加收超时费.例如,方式一每月固定交费30元,当主叫计时不超过300分钟不再额外收费,超过300分钟时,超过部分每分钟加收0.20元(不足1分钟按1分钟计算)(1)请根据题意完成如表的填空;(2)设某月主叫时间为t(分钟),方式一、方式二两种计费方式的费用分别为y1(元),y2(元),分别写出两种计费方式中主叫时间t(分钟)与费用为y1(元),y2(元)的函数关系式;(3)请计算说明选择哪种计费方式更省钱.23.(10分)如图,在正方形ABCD中,点E,F分别在边AD,CD上,(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.①如图1,求证:BE=BF=3;②如图2,连接AC,分别交AE,BF于M,M,连接DM,DN,求四边形BMDN的面积.(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为(直接写出结果).24.(12分)如图,直线y=2x+6交x轴于A,交y轴于B.(1)直接写出A(,),B(,);(2)如图1,点E为直线y=x+2上一点,点F为直线y=x上一点,若以A,B,E,F为顶点的四边形是平行四边形,求点E,F的坐标(3)如图2,点C(m,n)为线段AB上一动点,D(﹣7m,0)在x轴上,连接CD,点M为CD的中点,求点M的纵坐标y和横坐标x之间的函数关系式,并直接写出在点C移动过程中点M的运动路径长.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A,B,C,D 四个选项,有且只有一个答案是正确的,请將正确答案的代号填在答题卡上,填在试题卷上无效. 1.【分析】由二次根式的性质可以得到x﹣2≥0,由此即可求解.【解答】解:依题意得x﹣2≥0,∴x≥2.故选:D.【点评】此题主要考查了二次根式有意义的条件,根据被开方数是非负数即可解决问题.2.【分析】根据勾股定理进行计算,即可求得结果.【解答】解:直角三角形的两条直角边的长分别为1,,则斜边长=;故选:C.【点评】本题考查了勾股定理;熟练运用勾股定理进行求解是解决问题的关键.3.【分析】根据二次根式的运算法则逐一计算可得.【解答】解:A、、不是同类二次根式,不能合并,此选项错误;B、3﹣=2,此选项错误;C、×=,此选项错误;D、=,此选项正确;故选:D.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.4.【分析】把点A(a,﹣1)代入y=﹣2x+1,解关于a的方程即可.【解答】解:∵点A(a,﹣1)在一次函数y=﹣2x+1的图象上,∴﹣1=﹣2a+1,解得a=1,故选:C.【点评】此题考查一次函数图象上点的坐标特征;用到的知识点为:点在函数解析式上,点的横坐标就适合这个函数解析式.5.【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:根据平行四边形的判定,A、C、D均符合是平行四边形的条件,B则不能判定是平行四边形.故选:B.【点评】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.6.【分析】根据题意和图形可以判断哪个函数图象符合实际,从而可以解答本题.【解答】解:由图形可得,从开始到下面的圆柱注满这个过程中,h随时间t的变化比较快,从最下面的圆柱注满到中间圆柱注满这个过程中,h随时间t的变化比较缓慢,从中间圆柱注满到最上面的圆柱注满这个过程中,h随时间t的变化最快,故(1)中函数图象符合题意,故选:A.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.【分析】根据等腰三角形的性质求出CE=ED,根据三角形中位线定理解答.【解答】解:BD=BC=6,∴AD=AB﹣BD=4,∵BC=BD,BE⊥CD,∴CE=ED,又CF=FA,∴EF=AD=2,故选:B.【点评】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.8.【分析】先根据平均数的定义求出6月份的用水量,再根据中位数和众数的定义求解可得.【解答】解:根据题意知6月份的用水量为5×6﹣(3+6+4+5+6)=6(t),∴1至6月份用水量从小到大排列为:3、4、5、6、6、6,则该户今年1至6月份用水量的中位数为=5.5、众数为6,故选:D.【点评】本题主要考查众数和中位数,解题的关键是根据平均数定义求出6月份用水量及众数和中位数的定义.9.【分析】根据一次函数图象上点的坐标特征和等腰三角形的性质即可得到结论.【解答】解:∵A0(1,0),∴OA0=1,∴点B1的横坐标为1,∵B1,B2、B3、…、B8在直线y=2x的图象上,∴B1纵坐标为2,∴OA1=OB1=,∴A1(,0),∴B2点的纵坐标为2,于是得到B3的纵坐标为2()2…∴B8的纵坐标为2()7故选:B.【点评】本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是找出B n的坐标的变化规律.10.【分析】分三种情形讨论求解即可解决问题;【解答】解:对于函数y=|x﹣a|,最小值为a+5.情形1:a+5=0,a=﹣5,∴y=|x+5|,此时x=﹣5时,y有最小值,不符合题意.情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+5,得到a=﹣3.∴y=|x+3|,符合题意.情形3:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+5,方程无解,此种情形不存在,综上所述,a=﹣3.故选:A.【点评】本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.二、填空愿:(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.【分析】根据二次根式的性质化简和(﹣)2,利用二次根式的加减法计算3﹣.【解答】解:=2,(﹣)2=6,3﹣=2.故答案为2,6,2.【点评】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.12.【分析】根据加权平均数的计算公式计算可得.【解答】解:该校篮球队队员的平均年龄为=13.7(岁),故答案为:13.7.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义和计算公式.13.【分析】设AC与BD的交点为O,根据平行四边形的性质,可得AO=CO=1,BO=DO,根据勾股定理可得BO=,即可求BD的长.【解答】解:设AC与BD的交点为O∵四边形ABCD是平行四边形∴AD=BC=2,AD∥BCAO=CO=1,BO=DO∵AC⊥BC∴BO==∴BD=2故答案为2【点评】本题考查了平行四边形的性质,关键是灵活运用平行四边形的性质解决问题.14.【分析】平移后的直线的解析式的k不变,设出相应的直线解析式,从原直线解析式上找一个点,然后找到向右平移3个单位,代入设出的直线解析式,即可求得b,也就求得了所求的直线解析式.【解答】解:可设新直线解析式为y=﹣x+b,∵原直线y=﹣x+1经过点(0,1),∴向右平移3个单位,(3,1),代入新直线解析式得:b=,∴新直线解析式为:y=﹣x+.故答案为:y=﹣x+.【点评】此题主要考查了一次函数图象与几何变换,用到的知识点为:平移不改变直线解析式中的k,关键是得到平移后经过的一个具体点.15.【分析】利用极限值法找出小卉走过的路程y与小红上山时间x之间的函数图象经过的点的坐标,由点的坐标利用待定系数法可求出y与x之间的函数关系式,再结合函数图象,即可找出小卉上山平均速度v(米/分钟)的取值范围.【解答】解:设小卉走过的路程y与小红上山时间x之间的函数关系式为y=kx+b(k≠0).将(0,60)、(30,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=8x+60;将(0,60)、(70,480)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=6x+60;将(0,60)、(50,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=4.8x+60.观察图形,可知:小卉上山平均速度v(米/分钟)的取值范围是6<v<8或v=4.8.故答案为:6<v<8或v=4.8【点评】本题考查了一次函数的应用以及待定系数法求出一次函数解析式,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.16.【分析】分点E在矩形内部,EM:EN=1:4,或EM:EN=4:1,点E在矩形外部,EN:EM =1:4,三种情况讨论,根据折叠的性质和勾股定理可求AP的长度.【解答】解:过点E作ME⊥AD,延长ME交BC与N,∵四边形ABCD是矩形∴AD∥BC,且ME⊥DA∴EN⊥BC且∠A=90°=∠ABC=90°∴四边形ABNM是矩形∴AB=MN=5,AM=BN若ME:EN=1:4,如图1∵ME:EN=1:4,MN=5∴ME=1,EN=4∵折叠∴BE=AB=5,AP=PE在Rt△BEN中,BN==3∴AM=3在Rt△PME中,PE2=ME2+PM2AP2=(3﹣AP)2+1解得AP=若ME:EN=4:1,则EN=1,ME=4,如图2在Rt△BEN中,BN==2∴AM =2在Rt △PME 中,PE 2=ME 2+PM 2AP 2=(2﹣AP )2+16解得AP =若点E 在矩形外,如图∵EN :EM =1:4∴EN =,EM =在Rt △BEN 中,BN ==∴AM =在Rt △PME 中,PE 2=ME 2+PM 2AP 2=(AP ﹣)2+()2解得:AP =5故答案为,,5 【点评】本题考查了折叠问题,矩形的性质,勾股定理,利用分类思想解决问题是本题的关键.三、解答题:〔共8小题,72分)小下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)利用多项式乘法公式展开,然后合并即可.【解答】解:(1)原式=3﹣2+=;(2)原式=5﹣2+3﹣6=﹣1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【分析】据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE 是平行四边形,从而得出BE=DF.【解答】证明:连接BF、DE,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E、F分别是OA、OC的中点,∴OE=OA,OF=OC,∴OE=OF,∴四边形BFDE是平行四边形,∴BE∥DF.【点评】本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.19.【分析】利用待定系数法即可解决问题;【解答】解:设一次函数的解析式为y=kx+b,则有,解得,∴一次函数的解析式为y=2x﹣3,当x=﹣1时,m=﹣5.【点评】本题考查一次函数图象上的点的特征,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型.20.【分析】(1)利用百分比之和为1,计算即可;(2)求出M、L的件数,画出条形图即可;(3)利用不要告诉总体的思想解决问题即可;【解答】解:(1)L号运动服一周的销售所占百分比为1﹣16%﹣8%﹣30%﹣26%=20%.故答案为20%.(2)总数=13÷26%=50,M有50×30%=15,L有50×20%=10,条形统计图如图所示:(3)购进XL号约600×16%=96(件)比较合适.【点评】本题考查了频数分布直方图、扇形统计图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.【分析】(1)根据矩形的性质解答即可;(2)根据全等三角形的判定和性质以及等腰直角三角形的性质解答即可.【解答】证明:(1)∵四边形ABCD为矩形,∴AD=BC,∠BAD=∠ADC=90°,∵AF平分∠BAD,∴∠DAF=45°,∴AD=DF,∴BC=DF;(2)连接CG,BG,∵点G为EF的中点,∴GF=CG,∴∠F=∠BCG=45°,在△BCG与△DFG中,∴△BCG≌△DFG(SAS),∴BG=DG,∠CBG=∠FDG,∴△BDG为等腰直角三角形,∴BD=DG,∴BD:DG=:1.【点评】此题考查矩形的性质,关键是根据矩形的性质和全等三角形的判定和性质解答.22.【分析】(1)根据题意得出表中数据即可;(2)根据分段计费的费用就可以得出各个时段各种不同的付费方法就可以得出结论;(3)分别求出几种情况下时x的取值范围,根据x的取值范围即可选择计费方式.【解答】解:(1)由题意可得:月主叫时间500分钟时,方式一收费为70元;月主叫时间800分钟时,方式二收费为100元,故答案为:70;100;(2)由题意可得:y1(元)的函数关系式为:;y2(元)的函数关系式为:;(3)①当0≤t≤300时方式一更省钱;②当300<t≤600时,若两种方式费用相同,则当0.2t﹣30=50,解得:t=400,即当t=400,两种方式费用相同,当300<t≤400时方式一省钱,当400<t≤600时,方式二省钱;③当t>600时,若两种方式费用相同,则当0.2t﹣30=0.25t﹣100,解得:t=1400,即当t=1400,两种方式费用相同,当600<t≤1400时方式二省钱,当t>1400时,方式一省钱;综上所述,当0≤t≤400时方式一省钱;当400<t≤1400时,方式二省钱,当t>1400时,方式一省钱,当为400分钟、1400分钟时,两种方式费用相同.【点评】本题考查了一次函数的应用,难度中等.得到两种计费方式的关系式是解决本题的关键,注意在列式时应保证单位的统一.23.【分析】(1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;(2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC=AD=6,∠BAD=∠BCD=90°,∵点E是中点,∴AE=AD=3,在Rt△ABE中,根据勾股定理得,BE==3,在△BAE和△BCF中,,∴△BAE≌△BCF(SAS),∴BE=BF,∴BE=BF=3;②如图2,连接BD,在Rt△ABC中,AC=AB=6,∴BD=6,∵四边形ABCD是正方形,∴AD∥BC,∴△AEM∽△CMB,∴=,∴=,∴AM=AC=2,同理:CN=2,∴MN=AC﹣AM﹣CN=2,由①知,△ABE≌△CBF,∴∠ABE=∠CBF,∵AB=BC,∠BAM=∠BCN=45°,∴△ABM≌△CBN,∴BM=BN,∵AC是正方形ABCD的对角线,∴AB=AD,∠BAM=∠DAM=45°,∵AM=AM,∴△BAM≌△DAM,∴BM=DM,同理:BN=DN,∴BM=DM=DN=BN,∴四边形BMDN是菱形,∴S=BD×MN=×6×2=12;四边形BMDN(2)如图3,设DH=a,连接BD,∵四边形ABCD是正方形,∴∠BCD=90°,∵DH⊥BH,∴∠BHD=90°,∴点B,C,D,H四点共圆,∴∠DBH=∠DCH=22.5°,在BH上取一点G,使BG=DG,∴∠DGH=2∠DBH=45°,∴∠HDG=45°=∠HGD,∴HG=HD=a,在Rt△DHG中,DG=HD=a,∴BG=a,∴BH=BG+HG=A+A=(+1)a,∴==﹣1.故答案为:﹣1.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,菱形的判定和性质,勾股定理,判断出四边形BMDN是菱形是解本题的关键.24.【分析】(1)利用待定系数法即可解决问题;(2)因为A,B,E,F为顶点的四边形是平行四边形,推出AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),再利用待定系数法求出m即可;(3)求出点M的坐标(用m表示),即可解决问题,利用特殊位置求出点M的坐标,可以解决点C移动过程中点M的运动路径长;【解答】解:(1)对于直线y=2x+6,令x=0,得到y=6,令y=0,得到x=﹣3,∴A(﹣3,0),B(0,6),故答案为﹣3,0,0,6;(2)∵A,B,E,F为顶点的四边形是平行四边形,∴AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),把F(m+3,m+8)代入y=x,得到m+8=(m+3),解得m=﹣13,∴E(﹣13,﹣11),F(﹣10,﹣5),把F(m﹣3,m﹣4)代入y=x中,m﹣4=(m﹣3),解得m=5,∴E(5,7),F(2,1),当AB为对角线时,设E(m,m+2),则F(m﹣3,6﹣m),把F(﹣m﹣3,4﹣m)代入y=x中,4﹣m=(﹣m﹣3),解得m=11,∴E(11,13),F(﹣14,﹣7).(3)∵C(m,n)在直线y=2x+6上,∴n=2m+6,∴C(m,2m+6),∵D(﹣7m,0),CM=MD,∴M(﹣3m,m+3),令x=﹣3m,y=m+3,∴y=﹣x+3,当点C与A重合时,m=﹣3,可得M(9,0),当点C与B重合时,m=0,可得M(0,3),∴点C移动过程中点M的运动路径长为:=3.【点评】本题考查一次函数综合题、平行四边形的判定和性质、中点坐标公式、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置寻找点的运动轨迹,属于中考压轴题.。
2017年人教版八年级数学下册期末试卷(时间:90分钟满分:120分)题号一二三总分合分人复分人得分一、选择题(每小题3分,共30分)1.下列式子中,属于最简二次根式的是()A.12B.23 C.0.3 D.72.▱ABCD中,∠A=40°,则∠C=()A.40°B.50°C.130°D.140°3.下列计算错误的是()A.3+22=5 2 B.8÷2= 2 C.2×3= 6 D.8-2= 24.(重庆中考)某校将举办一场“中国汉字听写大赛”,要求每班推选一名同学参加比赛,为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8,根据以上数据,下列说法正确的是( )A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定5.下列各组数不能作为直角三角形三边长的是()A.3,4, 5 B.3,4,5 C.0.3,0.4,0.5 D.30,40,506.函数y=x-2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直; D.对角线平分对角8.2016年,某市发生了严重干旱,该市政府号召居民节约用水.为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图.则关于这10户家庭的月用水量,下列说法错误的是()A.众数是6 B.中位数是6 C.平均数是6 D.方差是4(第8题) (第9题)(第10题)9.(孝感中考)如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n>010.(牡丹江中考)如图,矩形ABCD 中,O 为AC 的中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连接BF 交AC 于点M ,连接DE ,BO .若∠COB =60°,FO =FC ,则下列结论:①FB ⊥OC ,OM =CM ;②△EOB ≌△CMB ;③四边形EBFD 是菱形;④MB ∶OE =3∶2.其中正确结论的个数是( ) A .1 B .2 C .3 D .4 二、填空题(每小题4分,共24分)11.二次根式x -2有意义,则x 的取值范围是.12.将正比例函数y =-2x 的图象向上平移3个单位,则平移后所得图象的解析式是. 13.已知菱形的两条对角线长分别为1和4,则菱形的面积为____________.14.若已知方程组⎩⎪⎨⎪⎧2x +y =b ,x -y =a 的解是⎩⎪⎨⎪⎧x =-1,y =3.则直线y =-2x +b 与直线y =x -a 的交点坐标是__________. 15.如图,在△MBN 中,已知BM =6,BN =7,MN =10,点A ,C ,D 分别是MB ,NB ,MN 的中点,则四边形ABCD 的周长是.16.如图,在矩形ABCD 中,AC ,BD 相交于点O ,AE 平分∠BAD 交BC 于点E ,若∠CAE =15°,则∠BOE 的度数为____________. 三、解答题(共66分)17.(8分)计算:3(2-3)-24-|6-3|.18.(8分)如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边上的点F 处,折痕为AE .若BC =10 cm ,AB =8 cm ,求EF 的长.19.(8分)已知,一次函数y=kx+3的图象经过点A(1,4).(1)求这个一次函数的解析式;(2)试判断点B(-1,5),C(0,3),D(2,1)是否在这个一次函数的图象上.20.(8分)如图,点D,C在BF上,AC∥DE,∠A=∠E,BD=CF.(1)求证:AB=EF;(2)连接AF,BE,猜想四边形ABEF的形状,并说明理由.21.(10分)某校要从小王和小李两名同学中挑选一人参加全市知识竞赛,在最近的五次选拔测试中,他俩的成绩分别如下表:第1次第2次第3次第4次第5次小王60 75 100 90 75小李70 90 100 80 80根据上表解答下列问题:(1)完成下表:姓名平均成绩(分) 中位数(分) 众数(分) 方差小王80 75 75 190小李(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为选谁参加比赛比较合适?说明你的理由.22.(12分)(潜江中考)为改善生态环境,防止水土流失,某村计划在汉江堤坡种植白杨树,现甲、乙两家林场有相同的白杨树苗可供选择,其具体销售方案如下:甲林场购树苗数量销售单价不超过1 000棵时4元/棵超过1 000棵的部分 3.8元/棵乙林场购树苗数量销售单价不超过2 000棵时4元/棵超过2 000棵的部分 3.6元/棵设购买白杨树苗x棵,到两家林场购买所需费用分别为y甲(元),y乙(元).(1)该村需要购买1 500棵白杨树苗,若都在甲林场购买所需费用为____________元,若都在乙林场购买所需费用为____________元;(2)分别求出y甲,y乙与x之间的函数关系式;(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么?23.(12分)以四边形ABCD的边AB,AD为边分别向外侧作等边△ABF和等边△ADE,连接EB,FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是EB=FD;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.参考答案1.D 2.A 3.A 4.A ) 5.A 6.B 7.B 8.D 9.D 10.C 提示:①③④正确,②错误.11.x ≥2 12.y =-2x +3 13.2 14.(-1,3) 15.13 16.75° 17.原式=6-3-26-(3-6)=-6.18.由条件知AF =AD =BC =10 cm ,在Rt △ABF 中,BF =AF 2-AB 2=102-82=6(cm ),∴FC =BC -BF =10-6=4(cm ).设EF =x cm ,则DE =EF =x ,CE =8-x ,在Rt △CEF 中,EF 2=CE 2+FC 2,即x 2=(8-x )2+42.解得x =5,即EF =5 cm .19.(1)由题意,得k +3=4,解得k =1,∴该一次函数的解析式是y =x +3.(2)由(1)知,一次函数的解析式是y =x +3.当x =-1时,y =2,即点B (-1,5)不在该一次函数图象上;当x =0时,y =3,即点C (0,3)在该一次函数图象上;当x =2时,y =5,即点D (2,1)不在该一次函数图象上.20.(1)证明:∵AC ∥DE ,∴∠ACD =∠EDF .∵BD =CF ,∴BD +DC =CF +DC ,即BC =DF .又∵∠A =∠E ,∴△ABC ≌△EFD (AAS ).∴AB =EF .(2)猜想:四边形ABEF 为平行四边形,理由如下:由(1)知△ABC ≌△EFD ,∴∠B =∠F .∴AB ∥EF .又∵AB =EF ,∴四边形ABEF 为平行四边形. 21.(1)84 80 80 104(2)因为小王的方差是190,小李的方差是104,而104<190,所以小李成绩较稳定.小王的优秀率为25×100%=40%,小李的优秀率为45×100%=80%.(3)因为小李的成绩较小王稳定,且优秀率比小王的高,因此选小李参加比赛比较合适. 22.(1)5 900 6 000(2)y 甲=⎩⎪⎨⎪⎧4x (0≤x≤1 000且x 为整数),3.8x +200(x>1 000且x 为整数);y 乙=⎩⎪⎨⎪⎧4x (0≤x≤2 000且x 为整数),3.6x +800(x>2 000且x 为整数). (3)①当0≤x ≤1 000时,两家林场单价一样,因此到两林场购买所需要费用都一样;②当1 000<x ≤2 000时,甲林场有优惠而乙林场无优惠,∴当1 000<x ≤2 000时,到甲林场购买合算;③当x >2 000时,y 甲=3.8x +200,y 乙=3.6x +800,y 甲-y 乙=3.8x +200-(3.6x +800)=0.2x -600.(ⅰ)当y 甲=y 乙时,0.2x -600=0,解得x =3 000.∴当x =3 000时,到两林场购买所需要费用都一样;(ⅱ)当y 甲<y 乙时,0.2x -600<0,解得x <3 000.∴当2 000<x <3 000时,到甲林场购买合算;(ⅲ)当y 甲>y 乙时,0.2x -600>0,解得x >3 000.∴当x >3 000时,到乙林场购买合算.综上所述,当0≤x ≤1 000或x =3 000时,到两林场购买所需要费用都一样;当1 000<x <3 000时,到甲林场购买合算;当x >3 000时,到乙林场购买合算. 23.(2)EB =F D.(3)∠EGD不发生变化.∵△ADE为等边三角形,∴∠AED=∠EDA=60°.∵△ABF,△AED均为等边三角形,∴AB =AF,∠F AB=60°,AE=AD,∠EAD=60°.∴∠F AD=∠BAE.∴△F AD≌△BAE.∴∠AEB=∠ADF.设∠AEB为x°,则∠ADF也为x°,于是有∠BED为(60-x)°,∠EDF为(60+x)°,∴∠EGD=180°-∠BED-∠EDF=180°-(60-x)°-(60+x)°=60°.。
2017八年级下册期末考试卷数学【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 下列函数中,哪一个函数在其定义域内是增函数?A. y = -2x + 3B. y = x^2C. y = 1/xD. y = 3x 23. 在一个等差数列中,若第1项为3,第5项为15,则这个数列的公差为多少?A. 2B. 3C. 4D. 54. 若一个圆的半径为5cm,则这个圆的面积是多少平方厘米?A. 25πcm^2B. 50πcm^2C. 75πcm^2D. 100πcm^25. 若一个正方体的表面积为54平方厘米,则这个正方体的体积是多少立方厘米?A. 27cm^3B. 36cm^3C. 45cm^3D. 54cm^3二、判断题(每题1分,共5分)1. 两个等腰三角形的面积相等,则这两个三角形全等。
()2. 若一个函数是偶函数,则这个函数的图像关于y轴对称。
()3. 在一个等比数列中,若第1项为2,公比为3,则第4项为18。
()4. 若一个圆的直径为10cm,则这个圆的周长为20πcm。
()5. 两个互质的正整数的最小公倍数等于这两个数的乘积。
()三、填空题(每题1分,共5分)1. 若一个等差数列的第1项为2,公差为3,则第10项为______。
2. 若一个圆的周长为25.12cm,则这个圆的半径为______cm。
3. 若一个正方体的体积为64立方厘米,则这个正方体的表面积为______平方厘米。
4. 若一个函数的图像关于原点对称,则这个函数是______函数。
5. 在直角坐标系中,点(3, 4)到原点的距离为______。
四、简答题(每题2分,共10分)1. 简述等差数列和等比数列的定义。
2. 简述一次函数、二次函数和反比例函数的定义。
2017八年级下册数学期末试卷一、选择题(每小题3分,共48分)1.下列调查中,适宜采用普查方式的是( )A.了解某校初三一班的体育学考成绩B.了解某种节能灯的使用寿命C.了解我国青年人喜欢的电视节目D.了解全国九年级学生身高的现状2.函数y= 中,自变量x的取值范围是( )A.x>3B.x<3C.x=3D.x≠33.点A的坐标为(2,3),点B的坐标为(﹣2,3),则点A与点B( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.不是对称点4.已知函数y=(1﹣3m)x是正比例函数,且y随x的增大而增大,那么m 的取值范围是( )A.m>B.m<C.m>1D.m<15.点B(m2+1,﹣1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限6.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟 0频数(通话次数) 20 16 9 5则通话时间不超过15分钟的频率是( )A.0.1B.0.4C.0.5D.0.97.在下列图象中,能作为一次函数y=﹣x+1的图象的是( )A. B. C. D.8.已知四边形ABCD是平行四边形,下列结论不正确的是( )A.当AC=BD时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AB=BC时,它是菱形9.某校的校内有一个两个相同的正六边形(即六条边都相等,六个角都相等)围成的花坛,边长为2.5m,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为( )A.20mB.25mC.30mD.35m10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为( )A.x≤3B.x≥3C.x≤D.x≥11.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC 边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y= x+12B.y=﹣2x+24C.y=2x﹣24D.y= x﹣1212.A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是( )A.1B.2C.3D.413.如图,△AOB是等边三角形,B(2,0),将△AOB绕O点逆时针方向旋转90°到△A′OB′位置,则A′坐标是( )A.(﹣1, )B.(﹣,1)C.( ,﹣1)D.(1,﹣ )14.如图,在边长为1的正方形ABCD中,对角线AC和BD相交于点O,P 是BC边上任意一点,PE⊥BD于点E,PF⊥AC于点F,则PE+PF=( )A. B. C. D.15.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是( )A.②③B.②⑤C.①③④D.④⑤16.如图,在平面直角坐标系中,直线y=﹣ x+3与矩形OABC的边AB、BC分别交于点E、F,若点B的坐标为(m,2),则m的值可能为( )A. B. C. D.二、填空题(每小题3分,共12分)17.P(m﹣4,1﹣m)在x轴上,则m= .18.一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m= .19.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=1,则AC的长为.20.如图,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),则顶点C的坐标是.三、解答题(本题8分)21.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.22.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周)(1)写出点B的坐标.(2)当P点移动了4秒时,直接写出点P的坐标(3)在移动过程中,当点P到x轴距离为5个单位长度时,则点P移动的时间为.23.如图,将▱ABCD沿CE折叠,使点D落在BC边上的F处,点E在AD上.(1)求证:四边形ABFE为平行四边形;(2)若AB=4,BC=6,则四边形ABFE的周长为.24.为了了解某校七年级男生的体能情况,从该校七年级抽取50名男生进行1分钟跳绳测试,把所得数据整理后,画出频数分布直方图.已知图中从左到右第一、第二、第三、第四小组的频数的比为1:3:4:2.(1)总体是,个体是,样本容量是;(2)求第四小组的频数和频率;(3)求所抽取的50名男生中,1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比.25.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.26.如图,在△ABC中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD、CD;(1)求证:∠BAE=∠DAE;(2)当AB=BC时,猜想四边形ABCD是什么四边形,并证明你的结论;(3)当AC=8cm,BD=6cm,现将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长是多少?2017八年级下册数学期末试卷参考答案一、选择题(每小题3分,共48分)1.下列调查中,适宜采用普查方式的是( )A.了解某校初三一班的体育学考成绩B.了解某种节能灯的使用寿命C.了解我国青年人喜欢的电视节目D.了解全国九年级学生身高的现状【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解某校初三一班的体育学考成绩,适合普查,故A正确;B、了解某种节能灯的使用寿命,调查具有破坏性,适合抽样调查,故B 错误;C、了解我国青年人喜欢的电视节目,调查范围广,适合抽样调查,故C 错误;D、了解全国九年级学生身高的现状,调查范围广,适合抽样调查,故D 错误;故选:A.2.函数y= 中,自变量x的取值范围是( )A.x>3B.x<3C.x=3D.x≠3【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣3≠0,解得x≠3.故选D.3.点A的坐标为(2,3),点B的坐标为(﹣2,3),则点A与点B( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.不是对称点【考点】关于x轴、y轴对称的点的坐标;关于原点对称的点的坐标.【分析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【解答】解:由A的坐标为(2,3),点B的坐标为(﹣2,3),得点A与点B关于y轴对称,故选:B.4.已知函数y=(1﹣3m)x是正比例函数,且y随x的增大而增大,那么m 的取值范围是( )A.m>B.m<C.m>1D.m<1【考点】正比例函数的定义.【分析】先根据正比例函数的性质列出关于m的不等式,求出m的取值范围即可.【解答】解:∵正比例函数y=(1﹣3m)x中,y随x的增大而增大,∴1﹣3m>0,解得m< .故选:B.5.点B(m2+1,﹣1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标;非负数的性质:偶次方.【分析】根据非负数的性质确定出点B的横坐标是正数,再根据各象限内点的坐标特征解答.【解答】解:∵m2≥0,∴m2+1≥1,∴点B(m2+1,﹣1)一定在第四象限.故选D.6.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟 0频数(通话次数) 20 16 9 5则通话时间不超过15分钟的频率是( )A.0.1B.0.4C.0.5D.0.9【考点】频数(率)分布表.【分析】根据表格可以得到总的频数和通话时间不超过15分钟的频数,从而可以求得通话时间不超过15分钟的频率.【解答】解:由表格可得,通话时间不超过15分钟的频率是:,故选D.7.在下列图象中,能作为一次函数y=﹣x+1的图象的是( )A. B. C. D.【考点】一次函数的图象.【分析】先根据一次函数y=﹣x+1中k=﹣1,b=1判断出函数图象即可.【解答】解:∵一次函数y=﹣x+1中k=﹣1<0,b=1>0,∴此函数的图象经过一、二、四象限,故选A.8.已知四边形ABCD是平行四边形,下列结论不正确的是( )A.当AC=BD时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AB=BC时,它是菱形【考点】菱形的判定;平行四边形的性质;矩形的判定.【分析】根据对角线相等的平行四边形是矩形可得A错误;根据对角线互相垂直的平行四边形是菱形可得B正确;根据有一个角是直角的平行四边形是矩形可得C正确;根据一组邻边相等的平行四边形是菱形可得D正确.【解答】解:A、当AC=BD时,它是菱形,说法错误;B、当AC⊥BD时,它是菱形,说法正确;C、当∠ABC=90°时,它是矩形,说法正确;D、当AB=BC时,它是菱形,说法正确,故选:A.9.某校的校内有一个两个相同的正六边形(即六条边都相等,六个角都相等)围成的花坛,边长为2.5m,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为( )A.20mB.25mC.30mD.35m【考点】正多边形和圆;菱形的性质.【分析】根据题意和正六边形的性质得出△BMG是等边三角形,再根据正六边形的边长得出BG=GM=2.5m,同理可证出AF=EF=2.5m,再根据AB=BG+GF+AF,求出AB,从而得出扩建后菱形区域的周长.【解答】解:如图,∵花坛是由两个相同的正六边形围成,∴∠FGM=∠GMN=120°,GM=GF=EF,∴∠BMG=∠BGM=60°,∴△BMG是等边三角形,∴BG=GM=2.5(m),同理可证:AF=EF=2.5(m)∴AB=BG+GF+AF=2.5×3=7.5(m),∴扩建后菱形区域的周长为7.5×4=30(m).故选:C.10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为( )A.x≤3B.x≥3C.x≤D.x≥【考点】一次函数与二元一次方程(组).【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式2x≥ax+4的解集即可.【解答】解:∵函数y=2x的图象过点A(m,3),∴将点A(m,3)代入y=2x得,2m=3,解得,m= ,∴点A的坐标为( ,3),∴由图可知,不等式2x≥ax+4的解集为x≥ .故选:D.11.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC 边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y= x+12B.y=﹣2x+24C.y=2x﹣24D.y= x﹣12【考点】函数关系式.【分析】根据题意可得2y+x=24,继而可得出y与x之间的函数关系式.【解答】解:由题意得:2y+x=24,故可得:y=﹣ x+12(0故选:A.12.A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是( )A.1B.2C.3D.4【考点】一次函数的应用.【分析】观察函数图象,从图象中获取信息,根据速度,路程,时间三者之间的关系求得结果.【解答】解:由函数图象可知,乙比甲晚出发1小时,故①正确;乙出发3﹣1=2小时后追上甲,故②错误;甲的速度为:12÷3=4(千米/小时),故③正确;乙的速度为:12÷(3﹣1)=6(千米/小时),则甲到达B地用的时间为:20÷4=5(小时),乙到达B地用的时间为:20÷6= (小时),1+3 ,∴乙先到达B地,故④正确;正确的有3个.故选:C.13.如图,△AOB是等边三角形,B(2,0),将△AOB绕O点逆时针方向旋转90°到△A′OB′位置,则A′坐标是( )A.(﹣1, )B.(﹣,1)C.( ,﹣1)D.(1,﹣ )【考点】坐标与图形变化-旋转.【分析】过点A′作A′C⊥x轴于C,根据点B的坐标求出等边三角形的边长,再求出∠A′OC=30°,然后求出OC、A′C,再根据点A′在第二象限写出点A′的坐标即可.【解答】解:如图,过点A′作A′C⊥x轴于C,∵B(2,0),∴等边△AOB的边长为2,又∵∠A′OC=90°﹣60°=30°,∴OC=2× = ,A′C=2× =1,∵点A′在第二象限,∴点A′(﹣,1).故选B.14.如图,在边长为1的正方形ABCD中,对角线AC和BD相交于点O,P是BC边上任意一点,PE⊥BD于点E,PF⊥AC于点F,则PE+PF=( )A. B. C. D.【考点】正方形的性质.【分析】先根据勾股定理求出对角线BD,证明△BEP是等腰直角三角形,得出PE=BE,再证明四边形OEPF是矩形,得出PF=OE,得出PE+PF=BE+OE=OB即可.【解答】解:∵四边形ABCD是正方形,∴AB=AD=1,AC⊥BD,∠ABC=∠BCD=90°,∠CBO=∠BCO=45°,OB= BD,∴BD= = ,∠BOC=90°,∴OB= ,∵PE⊥BD于点E,PF⊥AC于点F,∴∠OEP=∠OFP=90°=∠EOF,△BEP是等腰直角三角形,∴四边形OEPF是矩形,PE=BE,∴PF=OE,∴PE+PF=BE+OE=OB= ;故选:B.15.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是( )A.②③B.②⑤C.①③④D.④⑤【考点】三角形中位线定理;平行线之间的距离.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN= AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴M N= AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.16.如图,在平面直角坐标系中,直线y=﹣ x+3与矩形OABC的边AB、BC 分别交于点E、F,若点B的坐标为(m,2),则m的值可能为( )A. B. C. D.【考点】一次函数图象上点的坐标特征;矩形的性质.【分析】求出点F和直线y=﹣ x+3与x轴交点的坐标,即可判断m的范围,由此可以解决问题.【解答】解:∵B、F两点的纵坐标相同,B点的纵坐标为2,∴点F的纵坐标为2,∵点F在y=﹣ x+3上,∴点F的坐标( ,2),∵直线y=﹣ x+3与x轴的交点为(2,0),∴由图象可知点B的横坐标∴选项中只有B符合.故选B.二、填空题(每小题3分,共12分)17.P(m﹣4,1﹣m)在x轴上,则m= 1 .【考点】点的坐标.【分析】根据x轴上的点的纵坐标为0列式计算即可得解.【解答】解:∵P(m﹣4,1﹣m)在x轴上,∴1﹣m=0,解得m=1.故答案为:1.18.一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m= 2 .【考点】一次函数的性质.【分析】根据一次函数的增减性列出关于m的不等式组,求出m的值即可.【解答】解:∵一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,∴ ,解得m=2.故答案为:2.19.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=1,则AC的长为 2 .【考点】矩形的性质.【分析】由矩形的性质得出OA=OB,再证明△AOB是等边三角形,即可得出AB=OA,问题得解.【解答】解:∵四边形ABCD是矩形,∴OA= AC,OB= BD,BD=AC,∴OA=OB=1,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=1,∴AC=2OA=2,故答案为:2.20.如图,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),则顶点C的坐标是(7,3) .【考点】平行四边形的性质;坐标与图形性质.【分析】首先过点D作DE⊥OB于点E,过点C作CF⊥OB于点F,易证得△ODE≌△CBF,则可得CF=DE=3,BF=OE=2,继而求得OF的长,则可求得顶点C的坐标.【解答】解:过点D作DE⊥OB于点E,过点C作CF⊥OB于点F,∴∠OED=∠BFC=90°,∵平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),∴OB∥CD,OD∥BC,∴DE=CF=3,∠DOE=∠CBF,在△ODE和△CBF中,,∴△ODE≌△CBF(AAS),∴BF=OE=2,∴OF=OB+BF=7,∴点C的坐标为:(7,3).故答案为:(7,3).三、解答题(本题8分)21.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.【考点】多边形内角与外角.【分析】一个多边形的内角和是它的外角和的4倍,而外角和是360°,则内角和是4×360°.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:设这个多边形有n条边.由题意得:(n﹣2)×180°=360°×4,解得n=10.故这个多边形的边数是10.22.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周)(1)写出点B的坐标(4,6) .(2)当P点移动了4秒时,直接写出点P的坐标(4,4)(3)在移动过程中,当点P到x轴距离为5个单位长度时,则点P移动的时间为 4.5秒或7.5秒.【考点】四边形综合题.【分析】(1)由题意,根据A与C坐标确定出OC与OA的长,即可确定出B的坐标;(2)由P移动的速度与时间确定出移动的路程,求出AP的长,根据此时P 在AB边上,确定出P的坐标即可;(3)分两种情况考虑:当P在AB边上;当P在OC边上,分别求出P移动的时间即可.【解答】解:(1)∵长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),B在第一象限,∴OA=BC=4,OC=AB=6,则B坐标为(4,6);(2)∵P移动的速度为每秒2个单位,且运动时间是4秒,∴P移动的路程为8个单位,∴此时P在AB边上,且AP=4,则P坐标为(4,4);(3)分两种情况考虑:当P在AB边上时,由PA=5,得到P移动的路程为5+4=9,此时P移动的时间为9÷2=4.5(秒);当P在CO边上时,由OP=5,得到P移动的路程为4+6+6﹣5=11,此时P移动的时间是11÷2=5.5(秒),综上,P移动的时间为4.5秒或7.5秒.故答案为:(1)(4,6);(2)(4,4);(3)4.5秒或7.5秒23.如图,将▱ABCD沿CE折叠,使点D落在BC边上的F处,点E在AD上.(1)求证:四边形ABFE为平行四边形;(2)若AB=4,BC=6,则四边形ABFE的周长为12 .【考点】翻折变换(折叠问题);平行四边形的判定与性质.【分析】(1)根据折叠的性质得到EF=ED,∠CFE=∠CDE,根据平行四边形的性质得到AD∥BC,∠B=∠D,由平行线的判定得到AE∥BF,即可得到结论;(2)根据平行四边形的性质得到EF=AB=4.求得ED=4,得到AE=BF=6﹣4=2,于是得到结论.【解答】(1)证明:∵将 ABCD沿CE折叠,使点D落在BC边上的F处,∴EF=ED,∠CFE=∠CDE,∵四边形ABCD是平行四边形,∴AD∥BC,∠B=∠D,∴AE∥BF,∠B=∠CFE,∴AB∥EF,∴四边形ABFE为平行四边形;(2):∵四边形ABFE为平行四边形,∴EF=AB=4,∵EF=ED,∴ED=4,∴AE=BF=6﹣4=2,∴四边形ABFE的周长=AB+BF+EF+EA=12,故答案为:1224.为了了解某校七年级男生的体能情况,从该校七年级抽取50名男生进行1分钟跳绳测试,把所得数据整理后,画出频数分布直方图.已知图中从左到右第一、第二、第三、第四小组的频数的比为1:3:4:2.(1)总体是某校七年级男生的体能情况,个体是每个男生的体能情况,样本容量是50 ;(2)求第四小组的频数和频率;(3)求所抽取的50名男生中,1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比.【考点】频数(率)分布直方图.【分析】(1)根据总体、个体和样本容量的定义分别进行解答即可;(2)根据第一、第二、第三、第四小组的频数的比为1:3:4:2,可得第四小组的频率是,再用抽查的总人数乘以第四小组的频率即可求出频数;(3)根据1分钟跳绳次数在100次以上(含100次)的人数是第三、第四小组,再求出第三、第四小组的频率之和即可.【解答】解:(1)总体是某校七年级男生的体能情况;个体是每个男生的体能情况,样本容量是50;故答案为:某校七年级男生的体能情况;每个男生的体能情况;50.(2)第四小组的频率是: =0.2;第四小组的频数是:50× =10;(3)根据题意得:1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比是:×100%=60%.25.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.【考点】一次函数图象与几何变换.【分析】(1)根据平移的性质得到点C的坐标;把点B、C的坐标代入直线方程y=kx+b(k≠0)来求该直线方程;(2)根据平移的性质得到点D的坐标,然后将其代入(1)中的函数解析式进行验证即可;(3)根据点B的坐标求得直线l2的解析式,据此求得相关线段的长度,并利用三角形的面积公式进行解答.【解答】解:(1)∵B(﹣3,3),将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,∴﹣3+1=﹣2,3﹣2=1,∴C的坐标为(﹣2,1),设直线l1的解析式为y=kx+c,∵点B、C在直线l1上,∴代入得:解得:k=﹣2,c=﹣3,∴直线l1的解析式为y=﹣2x﹣3;(2)∵将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,C(﹣2,1),∴﹣2﹣3=﹣5,1+6=7,∴D的坐标为(﹣5,7),代入y=﹣2x﹣3时,左边=右边,即点D在直线l1上;(3)把B的坐标代入y=x+b得:3=﹣3+b,解得:b=6,∴y=x+6,∴E的坐标为(0,6),∵直线y=﹣2x﹣3与y轴交于A点,∴A的坐标为(0,﹣3),∴AE=6+3=9,∵B(﹣3,3),∴△ABE的面积为×9×|﹣3|=13.5.26.如图,在△ABC中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD、CD;(1)求证:∠BAE=∠DAE;(2)当AB=BC时,猜想四边形ABCD是什么四边形,并证明你的结论;(3)当AC=8cm,BD=6cm,现将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长是多少?【考点】正方形的性质;线段垂直平分线的性质;作图—基本作图.【分析】(1)由SSS证明△ABC≌△ADC,得出对应角相等即可;(2)证出AB=BC=DC=AD,即可得出结论;(3)由等腰三角形的性质得出AC⊥BD,求出四边形ABCD的面积,即可得出拼成的正方形的边长.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BAE=∠DAE;(2)解:四边形ABCD是菱形,理由如下:∵AB=AD,BC=DC,AB=BC,∴AB=BC=DC=AD,∴四边形ABCD是菱形;(3)解:∵AB=AD,∠BAE=∠DAE,∴AC⊥BD,∴四边形ABCD的面积= AC•BD=8×6=24(cm2),∴拼成的正方形的边长= =2 (cm).。
1FEDCBA(-1,1)1y (2,2)2yxyO10203040506070809012345678某班学生1~8月课外阅读数量折线统计图3670585842287583本数月份(第8题)123456782017年八年级数学(下)期末检测试卷一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30 、x+2 、240x 、22y x +中,最简二次根式有( )个。
A 、1 个B 、2 个C 、3 个D 、4个 2.若式子23x x --有意义,则x 的取值范围为( ).A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222C .3,4, 5D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )A .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >2 8、 在方差公式()()()[]2222121x x x x x x nS n -++-+-=中,下列说法不正确的是( )A. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58 (D )每月阅读数量超过40的有4个月BCADOACB10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65二、填空题(本题共10小题,满分共30分)11.48-133-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30-23-=12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。
2017年陕西省西安市八年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)在中,分式的个数是()A.2 B.3 C.4 D.52.(3分)因式分解正确的是()A.m3+m2+m=m(m2+m)B.3﹣=(2﹣1)C.(a+b)(a﹣b)=a2﹣b2 D.﹣4a2+9b2=(﹣2a+3b)(2a+3b)3.(3分)已知a<3,则不等式(a﹣3)<a﹣3的解集是()A.>1 B.<1 C.>﹣1 D.<﹣14.(3分)如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图2.两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°5.(3分)如图,在等边△ABC中,D,E分别是BC,AC上的点,且BD=CE,AD与BE相交于点P,则∠1+∠2的度数是()A .45°B .55°C .60°D .75°6.(3分)如图,l 1,l 2,l 3表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( )A .1处B .2处C .3处D .4处7.(3分)如图,平行四边形ABCD 中,AB=3,BC=5,AC 的垂直平分线交AD 于E ,则△CDE 的周长是( )A .6B .8C .9D .108.(3分)如图,平行四边形ABCD 周长是28cm ,△ABC 的周长是22cm ,则AC 长( )A .14cmB .12cmC .10cmD .8cm9.(3分)观察下列图象,可以得出不等式组的解集是( )A.<B.﹣<<0 C.0<<2 D.﹣<<210.(3分)A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为千米/时,则可列方程()A.B.C.+4=9 D.二、填空题(本题共4小题,每小题3分,共12分)11.(3分)不等式2﹣2≤7的正整数解分别是.12.(3分)分式方程+1=有增根,则m= .13.(3分)如图,在等腰在△ABC中,AB=27,AB的垂直平分线交AB于点D,交AC于点E,若在△BCE的周长为50,则底边BC的长为.14.(3分)若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是.三、解答下列问题(共58分)15.(6分)解不等式组:,并把解集在数轴上表示出.16.(6分)分解因式:(1)(﹣y)﹣y(y﹣).(2)(a2+1)2﹣4a2.17.(6分)先化简,再求值(+)÷,其中=﹣2,y=1.18.(8分)A、B两种机器人都被用搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?19.(8分)如图,在△ABC中,∠C=90°.(1)用圆规和直尺在AC上作点P,使点P到A、B的距离相等.(保留作图痕迹,不写作法和证明)(2)当满足(1)的点P到AB、BC的距离相等时,求∠A的度数.20.(8分)已知:如图,在平行四边形ABCD中,E,F是对角线BD上的两点,且BF=DE.求证:AE=CF.21.(8分)如图,在△ABC中,点D是边BC的中点,点E在△ABC内,AE 平分∠BAC,CE⊥AE,点F在边AB上,EF∥BC.(1)求证:四边形BDEF是平行四边形;(2)线段BF、AB、AC的数量之间具有怎样的关系?证明你所得到的结论.22.(8分)在平面直角坐标系中,以A,B,C,D为顶点组成平行四边形,A (1,0),B(3,0),C(4,3),求点D的坐标.2017年陕西省西安市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.(3分)在中,分式的个数是()A.2 B.3 C.4 D.5【解答】解:在中,分式有,∴分式的个数是3个.故选:B.2.(3分)因式分解正确的是()A.m3+m2+m=m(m2+m)B.3﹣=(2﹣1)C.(a+b)(a﹣b)=a2﹣b2D.﹣4a2+9b2=(﹣2a+3b)(2a+3b)【解答】解:A、原式=m(m2+m+1),错误;B、原式=(+1)(﹣1),错误;C、原式不是分解因式,错误;D、原式=(﹣2a+3b)(2a+3b),正确,故选D3.(3分)已知a<3,则不等式(a﹣3)<a﹣3的解集是()A.>1 B.<1 C.>﹣1 D.<﹣1【解答】解:因为a<3,∴a﹣3<0.两边同时除以a﹣3得,>1.选B4.(3分)如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图2.两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°【解答】解:根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如右图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图2.故选A.5.(3分)如图,在等边△ABC 中,D ,E 分别是BC ,AC 上的点,且BD=CE ,AD 与BE 相交于点P ,则∠1+∠2的度数是( )A .45°B .55°C .60°D .75°【解答】解:∵在等边△ABC 中,∠ABC=∠C=60°,AB=BC ,BD=CE , ∴△ABD ≌△BCE ,∴∠CBE=∠1,而∠CBE+∠2=60°,∴∠1+∠2=60°.故选C .6.(3分)如图,l 1,l 2,l 3表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( )A .1处B .2处C .3处D .4处【解答】解:作直线l 1、l 2、l 3所围成的三角形的外角平分线和内角平分线,外角平分线相交于点P 1、P 2、P 3,内角平分线相交于点P 4,根据角平分线的性质可得到这4个点到三条公路的距离分别相等.故选D .7.(3分)如图,平行四边形ABCD 中,AB=3,BC=5,AC 的垂直平分线交AD 于E ,则△CDE 的周长是( )A .6B .8C .9D .10【解答】解:根据垂直平分线上点到线段两个端点的距离相等知,EC=AE ; 根据在平行四边形ABCD 中有BC=AD ,AB=CD ,∴△CDE 的周长等于CD+DE+CE=CD+DE+AE=CD+AD=AB+BC=3+5=8. 故选B .8.(3分)如图,平行四边形ABCD 周长是28cm ,△ABC 的周长是22cm ,则AC 长( )A .14cmB .12cmC .10cmD .8cm【解答】解:∵▱ABCD 的周长是28cm ,∴AB+AD=14cm,∵△ABC的周长是22cm,∴AC=22﹣(AB+AC)=8cm,故选D.9.(3分)观察下列图象,可以得出不等式组的解集是()A.<B.﹣<<0 C.0<<2 D.﹣<<2【解答】解:根据图象得到,3+1>0的解集是:>﹣,第二个不等式的解集是<2,∴不等式组的解集是﹣<<2.故选D.10.(3分)A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为千米/时,则可列方程()A.B.C.+4=9 D.【解答】解:顺流时间为:;逆流时间为:.所列方程为:+=9.故选A.二、填空题(本题共4小题,每小题3分,共12分)11.(3分)不等式2﹣2≤7的正整数解分别是1,2,3,4 .【解答】解:不等式的解集是<4.5,所以不等式的正整数解是1,2,3,4.12.(3分)分式方程+1=有增根,则m= 3 .【解答】解:方程两边都乘(﹣3),得:+﹣3=m∵原方程有增根,∴最简公分母﹣3=0,故增根是=3,把=3代入整式方程,得m=3.13.(3分)如图,在等腰在△ABC中,AB=27,AB的垂直平分线交AB于点D,交AC于点E,若在△BCE的周长为50,则底边BC的长为23 .【解答】解:∵DE垂直且平分AB,∴BE=AE.由BE+CE=AC=AB=27,∴BC=50﹣27=23.14.(3分)若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是 6 .【解答】解:∵凸n边形的内角和为1260°,∴(n﹣2)×180°=1260°,得,n=9;∴9﹣3=6.故答案为:6.三、解答下列问题(共58分)15.(6分)解不等式组:,并把解集在数轴上表示出.【解答】解:∵解不等式①得:>﹣1,解不等式②得:≤3,∴不等式组的解集是﹣1<≤3,在数轴上表示为:.16.(6分)分解因式:(1)(﹣y)﹣y(y﹣).(2)(a2+1)2﹣4a2.【解答】解:(1)(﹣y)﹣y(y﹣)=(﹣y)+y(﹣y)=(﹣y)(+y);(2)(a2+1)2﹣4a2.=(a2+1﹣2a)(a2+1+2a)=(a﹣1)2(a+1)2.17.(6分)先化简,再求值(+)÷,其中=﹣2,y=1.【解答】解:(+)÷===,当=﹣2,y=1时,原式=.18.(8分)A 、B 两种机器人都被用搬运化工原料,A 型机器人比B 型机器人每小时多搬运20千克,A 型机器人搬运1000千克所用时间与B 型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?【解答】解:设A 型机器人每小时搬运化工原料千克,则B 型机器人每小时搬运(﹣20)千克,依题意得:.(3分)解这个方程得:=100.(6分)经检验=100是方程的解,所以﹣20=80.(7分)答:A 、B 两种机器人每小时分别搬运化工原料100千克和80千克.(8分)19.(8分)如图,在△ABC 中,∠C=90°.(1)用圆规和直尺在AC 上作点P ,使点P 到A 、B 的距离相等.(保留作图痕迹,不写作法和证明)(2)当满足(1)的点P 到AB 、BC 的距离相等时,求∠A 的度数.【解答】解:(1)依照题意,画出图形,如图所示.(2)∵点P到AB、BC的距离相等,∴PC=PD.在Rt△BCP和Rt△BDP中,,∴Rt△BCP≌Rt△BDP(HL),∴BC=BD.又∵PD垂直平分AB,∴AD=2BD=2BC.在Rt△ABC中,∠C=90°,AB=2BC,∴∠A=30°.20.(8分)已知:如图,在平行四边形ABCD中,E,F是对角线BD上的两点,且BF=DE.求证:AE=CF.【解答】证明:∵BF=DE,∴BE=DF,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∴∠ABE=∠CDF,∴在△ABE和△CDB中,,∴△ABE≌△CDB(SAS),∴AE=CF.21.(8分)如图,在△ABC中,点D是边BC的中点,点E在△ABC内,AE 平分∠BAC,CE⊥AE,点F在边AB上,EF∥BC.(1)求证:四边形BDEF是平行四边形;(2)线段BF、AB、AC的数量之间具有怎样的关系?证明你所得到的结论.【解答】(1)证明:延长CE交AB于点G,∵AE⊥CE,∴∠AEG=∠AEC=90°,在△AEG和△AEC中,∴△AGE≌△ACE(ASA).∴GE=EC.∵BD=CD,∴DE为△CGB的中位线,∴DE∥AB.∵EF∥BC,∴四边形BDEF是平行四边形.(2)解:BF=(AB﹣AC).理由如下:∵四边形BDEF是平行四边形,∴BF=DE.∵D、E分别是BC、GC的中点,∴BF=DE=BG.∵△AGE≌△ACE,∴AG=AC,∴BF=(AB﹣AG)=(AB﹣AC).22.(8分)在平面直角坐标系中,以A,B,C,D为顶点组成平行四边形,A (1,0),B(3,0),C(4,3),求点D的坐标.【解答】解:分三种情况:①BC为对角线时,点D的坐标为(6,3);②AB为对角线时,点D的坐标为(0,﹣3);③AC为对角线时,点D的坐标为(2,3).综上所述,点D的坐标是(6,3)或(0,﹣3)或(2,3).。
人教版2017年八年级下册期末数学试卷附答案解析【两套汇编三】2017八年级(下)期末数学试卷一一、选择题1.值等于()A.±4 B.4 C.±2 D.22.以下列各组数为边长能构成直角三角形的是()A.6,12,13 B.3,4,7 C.8,15,16 D.5,12,133.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,若菱形ABCD的周长为20,则OH的长为()A.2 B.2.5 C.3 D.3.54.在今年的中招体育考试中,我校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S甲2=8.5,S乙2=21.7,S丙2=15,S丁2=17,则四个班体考成绩最稳定的是()A.甲班B.乙班C.丙班D.丁班5.如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD 是平行四边形的条件是()A.OA=OC,AD∥BC B.∠ABC=∠ADC,AD∥BCC.AB=DC,AD=BC D.∠ABD=∠ADB,∠BAO=∠DCO6.如图,直线y1=﹣x+m与y2=kx+n相交于点A,若点A的横坐标为2,则下列结论中错误的是()A.k>0 B.m>nC.当x<2时,y2>y1D.2k+n=m﹣2二、填空题7.化简:=.8.汽车开始行使时,油箱中有油55升,如果每小时耗油7升,则油箱内剩余油量y(升)与行使时间t(小时)的关系式为.9.如图所示,矩形ABCD的两条对角线相交于点O,AD=8,AB=6,将△ABO向右平移得到△DCE,则△ABO向右平移过程扫过的面积是.10.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为.11.函数的图象交x轴于A,交y轴于B,则AB两点间的距离为.12.如图,已知正方形ABCD的边长为2,以AD为边向正方形外作等腰直角三角形ADE,则BE的长为.三、解答题13.(6分)计算:﹣+14.(6分)计算:2×+.15.(6分)在平面直角坐标系xOy中,一次函数的图象经过点A(1,﹣3)和(2,0),求这个一次函数的解析式.16.(6分)如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:(1)在图1中,作出∠DAE的角平分线;(2)在图2中,作出∠AEC的角平分线.17.(6分)如图,四边形ABCD是菱形,对角线AC=8 cm,BD=6cm,DH⊥AB 于H,求DH的长.四、解答题18.(8分)某中学组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t(小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D 表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)本次随机抽取的学生人数为人;(2)求出x值,并将不完整的条形统计图补充完整;(3)若该校共有学生2500人,试估计每周课外阅读量满足2≤t<4的人数.19.(8分)已知一个长方形的长为(2+)cm,宽为(2﹣)cm,请分别求出它的面积和对角线的长.20.(8分)甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中超过200元后的价格部分打7折.(1)以x(单位:元)表示商品原价,y(单位:元)表示购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;(2)在同一直角坐标系中画出(1)中函数的图象;(3)春节期间如何选择这两家商场去购物更省钱?21.(8分)如图,已知△ABC中,AB=AC,E,D,F分别是边AB,BC,AC的中点.(1)求证:四边形AEDF是菱形;(2)若∠B=30°,BC=4,求四边形AEDF的周长.五、解答题(10分)22.(10分)如图是第七届国际数学教育大会的会徽示意图,主题图案是由一连串如图所示的直角三角形演化而成的.其中的第一个三角形OA1A2是等腰直角三角形,且OA1=A1A2=A2A3…=A8A9=1.(1)根据图示,求出OA2的长为;OA4的长为;OA6的长为.(2)如果按此演变方式一直连续作图到△OA n﹣1A n,则线段OA n的长和△OA n﹣1A n的面积分别是多少?(用含n的代数式表示)(3)若分别用S1,S2,S3…S100表示△OA1A2,△OA2A3,△OA3A4…△OA99A100的面积,试求出S12+S22+S32+…+S1002的值.六、解答题(12分)23.(12分)如图,在矩形ABCD中,AB=16,AD=10,E是线段AB上一点,连接CE,现将∠B向右上方翻折,折痕为CE,使点B落在点P处.(1)当点P落在CD上时,BE=;当点P在矩形的内部时,BE的取值范围是.(2)当点E与点A重合时:①请在备用图1中画出翻折后的图形(尺规作图,保留作图痕迹)②连接PD,求证:PD∥AC;(3)当点P在矩形ABCD的对称轴上时,求BE的长.参考答案与试题解析一、选择题1.值等于()A.±4 B.4 C.±2 D.2【考点】算术平方根.【分析】由于即是求16的算术平方根.根据算术平方根的概念即可求出结果.【解答】解:∵表示16的算术平方根,∴的值等于4.故选B.【点评】此题考查了算术平方根的概念以及求解方法,解题注意首先化简.2.以下列各组数为边长能构成直角三角形的是()A.6,12,13 B.3,4,7 C.8,15,16 D.5,12,13【考点】勾股定理的逆定理.【分析】求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、62+122≠132,不能构成直角三角形,故选项错误;B、32+42≠72,不能构成直角三角形,故选项错误;C、82+152≠162,不能构成直角三角形,故选项错误;D、52+122=132,能构成直角三角形,故选项正确.故选D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,若菱形ABCD的周长为20,则OH的长为()A.2 B.2.5 C.3 D.3.5【考点】菱形的性质.【分析】根据菱形的性质可得AO⊥BO,从而可判断OH是Rt△DAB斜边的中线,继而可得出OH的长度.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∵菱形ABCD的周长为20,∴AD=5又∵点H是AD中点,则OH=AD=×5=,故选:B.【点评】本题考查了菱形的性质及直角三角形斜边的中线定理,熟练掌握菱形四边相等、对角线互相垂直且平分的性质是解题关键.4.在今年的中招体育考试中,我校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S甲2=8.5,S乙2=21.7,S丙2=15,S丁2=17,则四个班体考成绩最稳定的是()A.甲班B.乙班C.丙班D.丁班【考点】方差.【分析】根据四个班的平均分相等结合给定的方差值,即可找出成绩最稳定的班级.【解答】解:∵甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S甲2=8.5、S乙2=21.7、S丙2=15、S丁2=17,且8.5<15<17<21.7,∴甲班体考成绩最稳定.故选A.【点评】本题考查了方差,解题的关键是明白方差的意义.本题属于基础题,难度不大,解决该题型题目时,熟练掌握方差的意义是关键.5.如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD 是平行四边形的条件是()A.OA=OC,AD∥BC B.∠ABC=∠ADC,AD∥BCC.AB=DC,AD=BC D.∠ABD=∠ADB,∠BAO=∠DCO【考点】平行四边形的判定.【分析】平行四边形的性质有①两组对边分别相等的四边形是平行四边形,②两组对边分别平行的四边形是平行四边形③两组对角分别相等的四边形是平行四边形④对角线互相平分的四边形是平行四边形,⑤有一组对边平行且相等的四边形是平行四边形,根据以上内容判断即可.【解答】解:A、∵AD∥BC,∴∠ADB=∠CBD,在△BOC和△DOA中,∴△BOC≌△DOA(AAS),∴BO=DO,∴四边形ABCD是平行四边形,正确,故本选项错误;B、∵∠ABC=∠ADC,AD∥BC,∴∠ADC+∠DCB=180°,∴∠ABC+∠BCD=180°,∴AB∥DC,∴四边形ABCD是平行四边形,正确,故本选项错误;C、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,正确,故本选项错误;D、由∠ABD=∠ADB,∠BAO=∠DCO,无法得出四边形ABCD是平行四边形,错误,故本选项正确;故选:D.【点评】本题考查了对平行四边形和等腰梯形的判定的应用,注意:平行四边形的性质有:①两组对边分别相等的四边形是平行四边形,②两组对边分别平行的四边形是平行四边形③两组对角分别相等的四边形是平行四边形④对角线互相平分的四边形是平行四边形,⑤有一组对边平行且相等的四边形是平行四边形.6.如图,直线y1=﹣x+m与y2=kx+n相交于点A,若点A的横坐标为2,则下列结论中错误的是()A.k>0 B.m>nC.当x<2时,y2>y1D.2k+n=m﹣2【考点】两条直线相交或平行问题.【分析】由函数图象可判断A;由直线与y轴的交点位置可判断B;由函数图象可知当x>2时,对应的函数值的大小关系可判断C;把A点横坐标代入两函数解析式可判断D;可得出答案.【解答】解:∵y2=kx+n在第一、三、四象限,∴k>0,故A正确;由图象可知直线y1与y轴的交点在直线y2相与y轴交点的上方,∴m>n,故B正确;由函数图象可知当x<2时,直线y1的图象在y2的上方,∴y1>y2,故C不正确;∵A点为两直线的交点,∴2k+n=m﹣2,故D正确;故选C.【点评】本题主要考函数的交点问题,能够从函数图象中得出相应的信息是解题的关键.注意数形结合.二、填空题7.化简:=.【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质化简求出答案.【解答】解:==.故答案为:.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.8.汽车开始行使时,油箱中有油55升,如果每小时耗油7升,则油箱内剩余油量y(升)与行使时间t(小时)的关系式为y=﹣7t+55.【考点】函数关系式.【分析】剩油量=原有油量﹣工作时间内耗油量,把相关数值代入即可.【解答】解:∵每小时耗油7升,∵工作t小时内耗油量为7t,∵油箱中有油55升,∴剩余油量y=﹣7t+55,故答案为:y=﹣7t+55【点评】考查列一次函数关系式;得到剩油量的关系式是解决本题的关键.9.如图所示,矩形ABCD的两条对角线相交于点O,AD=8,AB=6,将△ABO向右平移得到△DCE,则△ABO向右平移过程扫过的面积是48.【考点】矩形的性质;平移的性质.=S△DEC,进而可知△ABO平移过程扫过的【分析】首先根据平移的知识可知S△ABO面积是矩形ABCD的面积,于是得到答案.【解答】解:∵△ABO向右平移得到△DCE,=S△DEC,∴S△ABO∴△ABO平移过程扫过的面积是矩形ABCD的面积,∵AD=8,AB=6,∴矩形ABCD的面积为48,∴△ABO向右平移过程扫过的面积是48,故答案为48.【点评】本题主要考查了矩形的性质以及平移的知识,解题的关键是知道△ABO 平移过程扫过的面积是矩形ABCD的面积,此题难度一般.10.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为1.【考点】中位数;算术平均数.【分析】根据平均数的定义先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【解答】解:这组数据的平均数为1,有(1+2+0﹣1+x+1)=1,可求得x=3.将这组数据从小到大重新排列后,观察数据可知最中间的两个数是1与1,其平均数即中位数是(1+1)÷2=1.故答案为:1.【点评】本题考查了平均数和中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.11.函数的图象交x轴于A,交y轴于B,则AB两点间的距离为5.【考点】一次函数图象上点的坐标特征.【分析】先令x=0,y=0分别求出点A、B的坐标,再根据坐标特征求得AB点的距离.【解答】解:根据题意,令y=0,解得x=﹣3,即点A的坐标为(﹣3,0),令x=0,解得y=﹣4,即点B的坐标为(0,﹣4),∴在直角三角形AOB中,AB2=32+42=25,∴AB=5.故填5.【点评】本题考查了一次函数上点的坐标特征,是基础题.12.如图,已知正方形ABCD的边长为2,以AD为边向正方形外作等腰直角三角形ADE,则BE的长为、4或2.【考点】正方形的性质;等腰直角三角形.【分析】分∠AED=90°、∠DAE=90°以及∠ADE=90°三种情况考虑,通过构建直角三角形,利用正方形和等腰直角三角形的性质找出直角边的长度,利用勾股定理即可得出结论.【解答】解:AD为边向正方形外作等腰直角三角形ADE分三种情况,如图所示.①当∠AED=90°时,过点E作EF⊥BA延长线于点F,连接BE,∵正方形ABCD的边长为2,△AED为等腰直角三角形,∴AF=EF=AD=1.在Rt△BFE中,BF=AB+AF=2+1=3,EF=1,∴BE==;②当∠DAE=90°时,∵正方形ABCD的边长为2,△AED为等腰直角三角形,∴AE=AD=2,∴BE=AB+AE=2+2=4;③当∠ADE=90°时,连接BE,∵正方形ABCD的边长为2,△AED为等腰直角三角形,∴DE=AD=2,在Rt△BCE中,BC=2,CE=CD+DE=2+2=4,∴BE==2.故答案为:、4或2.【点评】本题考查了正方形的性质、等腰直角三角形的性质以及勾股定理,解题的关键是分∠AED=90°、∠DAE=90°以及∠ADE=90°三种情况考虑.本题属于中档题,难度不大,解决该题型题目时,分类讨论是关键.三、解答题13.计算:﹣+【考点】二次根式的加减法.【分析】二次根式的加减法,先化简,再合并同类二次根式.【解答】解:原式=3﹣4+=0.【点评】二次根式的加减运算,实质是合并同类二次根式.14.计算:2×+.【考点】二次根式的混合运算.【分析】直接利用二次根式混合运算法则化简求出答案.【解答】解:原式=2××+=3+.【点评】此题主要考查了二次根式的混合运算,正确掌握二次根式运算法则是解题关键.15.在平面直角坐标系xOy中,一次函数的图象经过点A(1,﹣3)和(2,0),求这个一次函数的解析式.【考点】待定系数法求一次函数解析式.【分析】设一次函数解析式为y=kx+b,把A、B两点的坐标代入可求得k、b的值,可求得一次函数的解析式.【解答】解:设一次函数解析式为y=kx+b,把A、B两点的坐标代入可得,解得,∴一次函数解析式是y=3x﹣6.【点评】本题主要考查待定系数法求函数解析式,掌握待定系数法的应用步骤是解题的关键.16.如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:(1)在图1中,作出∠DAE的角平分线;(2)在图2中,作出∠AEC的角平分线.【考点】平行四边形的性质;作图—基本作图.【分析】(1)连接AC,由AE=CE得到∠EAC=∠ECA,由AD∥BC得∠DAC=∠ECA,则∠CAE=∠CAD,即AC平分∠DAE;(2)连接AC、BD交于点O,连接EO,由平行四边形的性质及等腰三角形的性质可知EO为∠AEC的角平分线.【解答】解:(1)连接AC,AC即为∠DAE的平分线;如图1所示:(2)①连接AC、BD交于点O,②连接EO,EO为∠AEC的角平分线;如图2所示.【点评】本题考查的是作图﹣基本作图、平行四边形的性质、等腰三角形的性质,熟知平行四边形及等腰三角形的性质是解答此题的关键.17.如图,四边形ABCD是菱形,对角线AC=8 cm,BD=6cm,DH⊥AB于H,求DH的长.【考点】菱形的性质.【分析】根据菱形的面积等于对角线积的一半,可求得菱形的面积,又由菱形的对角线互相平分且垂直,可根据勾股定理得AB的长,根据菱形的面积的求解方法:底乘以高或对角线积的一半,即可得菱形的高.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4cm,OB=OD=3cm,∴AB=5cm,=AC•BD=AB•DH,∴S菱形ABCD∴DH==4.8cm.【点评】此题考查了菱形的性质:菱形的对角线互相平分且垂直;菱形的面积的求解方法:底乘以高或对角线积的一半.四、解答题18.某中学组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t(小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)本次随机抽取的学生人数为200人;(2)求出x值,并将不完整的条形统计图补充完整;(3)若该校共有学生2500人,试估计每周课外阅读量满足2≤t<4的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由条形图可知A等级有90人,由扇形图可知对应的百分比为45%,那么抽查的学生总数=A等级的人数÷对应的百分比,计算即可求解;(2)根据所有等级的百分比的和为1,则可计算出x的值,再求出B级与C级的人数,即可作图;(3)利用每周课外阅读时间量满足2≤t<4的人数=该校总人数×B级的与C级百分比的和计算即可.【解答】解:(1)抽查的学生总数=90÷45%=200人,(2)∵x%+15%+10%+45%=1,∴x=30;B等级的人数=200×30%=60人,C等级的人数=200×10%=20人,条形统计图补充如下:(3)2500×(10%+30%)=1000人,所以估计每周课外阅读时间量满足2≤t<4的人数为1000人.故答案为200.【点评】本题主要考查了条形统计图,扇形统计图及用样本估计总体.解题的关键是读懂统计图,能从条形统计图,扇形统计图中得到准确的信息.19.已知一个长方形的长为(2+)cm,宽为(2﹣)cm,请分别求出它的面积和对角线的长.【考点】二次根式的应用.【分析】长方形的面积等于长乘以宽,计算时应用平方差公式比较简便;求长方形的对角线应用勾股定理,注意二次根式的运算【解答】解:如图所示:∵在Rt△BCD中,BC=(2+)cm,CD=(2﹣)cm,且∠BCD=90°,=(2+)×(2﹣)∴S四边形ABCD=(2)2﹣()2=8﹣2=6(cm2)由勾股定理得:BD====2(cm)即:该长方形的面积和对角线的长分别是6cm2、2cm【点评】本题考查了二次根式的应用,解题的关键的是二次根式的运算:(2 +)×(2﹣)=(2)2﹣()2、(2+)2=(2)2+2×2×+()2=12+4+2等.20.甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中超过200元后的价格部分打7折.(1)以x(单位:元)表示商品原价,y(单位:元)表示购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;(2)在同一直角坐标系中画出(1)中函数的图象;(3)春节期间如何选择这两家商场去购物更省钱?【考点】一次函数的应用.【分析】(1)根据两家商场的让利方式分别列式整理即可;(2)利用两点法作出函数图象即可;(3)求出两家商场购物付款相同的x的值,然后根据函数图象作出判断即可.【解答】解:(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤200),y=0.7(x﹣200)+200=0.7x+60,即y=0.7x+60(x>200);(2)如图所示;(3)当0.8x=0.7x+60时,x=600,所以,x<600时,甲商场购物更省钱,x=600时,甲、乙两商场购物更花钱相同,x>600时,乙商场购物更省钱.【点评】本题考查了一次函数的应用,一次函数图象,读懂题目信息,理解两家商场的让利方法是解题的关键,要注意乙商场根据商品原价的取值范围分情况讨论.21.如图,已知△ABC中,AB=AC,E,D,F分别是边AB,BC,AC的中点.(1)求证:四边形AEDF是菱形;(2)若∠B=30°,BC=4,求四边形AEDF的周长.【考点】菱形的判定与性质;等腰三角形的性质;三角形中位线定理.【分析】(1)由AB=AC利用中位线的性质可得DE=DF,四边形AEDF为平行四边形,由邻边相等的平行四边形是菱形证得结论;(2)首先由等腰三角形的性质“三线合一”得AD⊥BC,BD=BC=,由锐角三角函数定义得AE,易得四边形AEDF的周长.【解答】(1)证明:∵E,D,F分别是边AB,BC,AC的中点,∴DE∥AF且DE==AF,∴四边形AEDF为平行四边形,同理可得,DF∥AB且DF=,∵AB=AC,∴DE=DF,∴四边形AEDF是菱形;(2)解:连接AD,∵AB=AC,D为BC的中点,∴AD⊥BC,BD=BC=,∴AE===4,∵四边形AEDF是菱形,∴四边形AEDF的周长为4×4=16.【点评】此题主要考查了菱形的判定及性质定理,等腰三角形的性质,三角形中位线的性质定理,综合运用各定理是解答此题的关键.五、解答题(10分)22.(10分)(2016春•石城县期末)如图是第七届国际数学教育大会的会徽示意图,主题图案是由一连串如图所示的直角三角形演化而成的.其中的第一个三角形OA1A2是等腰直角三角形,且OA1=A1A2=A2A3…=A8A9=1.(1)根据图示,求出OA2的长为;OA4的长为2;OA6的长为.(2)如果按此演变方式一直连续作图到△OA n﹣1A n,则线段OA n的长和△OA n﹣1A n的面积分别是多少?(用含n的代数式表示)(3)若分别用S1,S2,S3…S100表示△OA1A2,△OA2A3,△OA3A4…△OA99A100的面积,试求出S12+S22+S32+…+S1002的值.【考点】等腰直角三角形;规律型:图形的变化类.【分析】(1)利用勾股定理依次计算即可;(2)依据(1)的计算找出其中的规律可得到OA n的长,然后依据计算出前几个A n的面积即可;三角形的面积,然后依据规律解答求得△OA n﹣1(3)首先依据题意列出算式,然后再求解即可.【解答】解:(1)OA2==,OA3==,OA4= ==2,…OA6=故答案为:;2;.(2)由(1)可知:OA n=.S1=×1×1=;S2=××;S3=××1=;…A n的面积=.△OA n﹣1(3)S12+S22+S32+…+S1002=()2+()2+()2+…+()2==1262.5.【点评】此题主要考查的是等腰直角三角形的性质以及勾股定理的运用和利用规律的探查解决问题,找出其中的规律是解题的关键.六、解答题(12分)23.(12分)(2016春•石城县期末)如图,在矩形ABCD中,AB=16,AD=10,E是线段AB上一点,连接CE,现将∠B向右上方翻折,折痕为CE,使点B落在点P处.(1)当点P落在CD上时,BE=10;当点P在矩形的内部时,BE的取值范围是0<BE<10.(2)当点E与点A重合时:①请在备用图1中画出翻折后的图形(尺规作图,保留作图痕迹)②连接PD,求证:PD∥AC;(3)当点P在矩形ABCD的对称轴上时,求BE的长.【考点】四边形综合题.【分析】(1)由折叠的性质得到推出△BCE是等腰直角三角形,即可得到结论;(2)①由题意画出图形即可;②根据全等三角形的性质得到∠PAC=∠DCA,设AP与CD相交于O,于是得到OA=OC,求得∠OAC=∠OPD,根据平行线的判定定理得到结论;(3)由折叠的性质用BE表示出AE,最后用勾股定理即可.【解答】解:(1)当点P在CD上时,如图1,∵将∠B向右上方翻折,折痕为CE,使点B落在点P处,∴∠BCE=∠ECP=45°,∴△BCE是等腰直角三角形,∴BE=BC=AD=10,当点P在矩形内部时,BE的取值范围是0<BE<12;故答案为:10,0<BE<10;(2)①补全图形如图2所示,②当点E与点A重合时,如图3,由折叠得,AB=PC,在△ADC与△CPA中,,∴△ADC≌△CPA,∴∠PAC=∠DCA,设AP与CD相交于O,则OA=OC,∴OD=OP,∠ODP=∠OPD,∵∠AOC=∠DOP,∴∠OAC=∠OPD∴PD∥AC,(3)如备用图1,由折叠得,BE=PE,PC=BC=10,AE=AB﹣BE,在Rt△ABC中,AC==2,∴AP=AC﹣PC=2﹣10,在Rt△APE中,AE2﹣PE2=AP2,∴(16﹣BE)2﹣BE2=(2﹣10)2,∴BE=.【点评】此题是四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理折叠的性质,等腰直角三角形的性质,尺规作图,正确的作出辅助线构造全等三角形是解题的关键.2017八年级(下)期末数学试卷二一、选择题1.化简﹣x的结果为()A.x﹣x B.x﹣C.2x D.02.已知甲乙两组各10个数据的平均数都是8,甲组数据的方差S甲2=0.12,乙组2=0.5,则()数据的方差S乙A.甲组数据的波动大B.乙组数据的波动大C.甲乙两组数据的波动一样大D.甲乙两组数据的波动大小不能比较3.a、b、c为某一三角形的三边,且满足a2+b2+c2=6a+8b+10c﹣50,则三角形是()A.直角三角形B.等边三角形C.等腰三角形D.锐角三角形4.若最简二次根式与可合并,则ab的值为()A.2 B.﹣2 C.﹣1 D.15.矩形边长为10cm和15cm,其中一内角平分线把长边分为两部分,这两部分是()A.6cm和9cm B.7cm和8 cm C.5cm和10cmD.4cm和11cm6.若一次函数+5,y随x的增大而减小,则m的值为()A.2或﹣2 B.3或﹣3 C.﹣3 D.37.某地区某月前两周从周一至周五每天的最低气温是(单位:℃)x1,x2,x3,x4,x5,和x1+1,x2+2,x3+3,x4+4,x5+5,若第一周这五天的平均气温为7℃,则第二周这五天的平均气温为()A.7℃B.8℃C.9℃D.10℃8.已知正方形ABCD中,E是BC上一点,如果DE=2,CE=1,那么正方形ABCD 的面积为()A.B.3 C.4 D.5二、填空题9.当x=时,二次根式取最小值,其最小值为.10.如下图,在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为.11.如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE=.12.如图,平行四边形ABCD的对角线相交于点O,且DC≠AD,过点O作OE⊥BD交BC于点E.若△CDE的周长为6cm,则平行四边形ABCD的周长为.13.直线y=3x+2沿y轴向下平移5个单位,则平移后与y轴的交点坐标为.14.小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行米.15.甲、乙两人5次射击命中的环数如下:甲:7、9、8、6、10.乙:7、8、9、8、8.则这两人5次射击命中的环数的平均数甲=乙=8,方差S甲2S乙2.(填:“>”“<”或“=”)三、解答题(本大题共8个小题满分75分)16.(7分)先化简,再求值:已知m=2+,求的值.17.(8分)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)18.(8分)在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F;求证:DF=DC.19.(10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A 点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.20.(10分)某校八年级(1)班20名学生某次数学测验的成绩统计如表:(1)若这20名学生成绩的平均数为82分,求x和y的值.(2)在(1)的条件下,求这20名学生本次测验成绩的众数和中位数.21.(10分)已知直线与x轴交于点A,与y轴交于点B,直线y=2x+b经过点B 且与x 轴交于点C ,求△ABC 的面积.22.(10分)某校校长暑假将带领该校三好学生去北京旅游,甲旅行社说:“若校长买全票,则其余学生可享受半价优惠”;乙旅行社说:“包括校长在内全部按票价的六折优惠”.已知全程票价为240元.(1)设学生数为x ,甲旅行社的收费为y 甲(元),乙旅行社的收费为y 乙(元),分别求出y 甲,y 乙关于x 的函数关系式;(2)当学生数是多少时,两家旅行社的收费一样; (3)根据学生人数讨论哪家旅行社更优惠.23.(12分)如图,直线y=kx ﹣1与x 轴、y 轴分别交于B 、C 两点,且OB=OC . (1)求B 点的坐标和k 的值.(2)若点A (x ,y )是第一象限内直线y=kx ﹣1的一个动点,试写出△AOB 的面积与x 的函数关系式.(3)当点A 运动到什么位置时,△AOB 的面积是.参考答案与试题解析一、选择题1.化简﹣x的结果为()A.x﹣x B.x﹣C.2x D.0【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再合并同类项即可.【解答】解:原式=﹣=0.故选D.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.2.已知甲乙两组各10个数据的平均数都是8,甲组数据的方差S甲2=0.12,乙组数据的方差S乙2=0.5,则()A.甲组数据的波动大B.乙组数据的波动大C.甲乙两组数据的波动一样大D.甲乙两组数据的波动大小不能比较【考点】方差;算术平均数.【分析】根据方差的定义,方差越小数据越稳定,方差越大数据越不稳定.从而得出答案.【解答】解:∵甲乙两组各10个数据的平均数都是8,甲组数据的方差S甲2=0.12,乙组数据的方差S乙2=0.5,∴S甲2<S乙2,∴甲组数据的波动小,乙组数据的波动大;故选B.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差。
初二下册数学期末考卷含答案2017年初二下册数学期末考卷(含答案)引导语:初二下册数学期末考卷会怎么考,有哪些重点知识点需要牢记的呢?以下是店铺整理的2017年初二下册数学期末考卷(含答案),欢迎参考!2017年初二下册数学期末考卷(含答案)一、选择题(本大题共10题,每小题3分,共30分)1.下列各式其中二次根式的个数有A、1个B、2个C、3个D、4个2.下列各组数据中的三个数,可构成直角三角形的是( )A、4,5,6B、2,3,4C、11,12,13D、8,15,173.下列给出的条件中,能判定四边形ABCD是平行四边形的是( )A、AB∥CD,AD=BCB、AB=AD,CB=CDC、AB=CD,AD=BCD、∠B=∠C,∠A=∠D4.若为二次根式,则m的取值为( )A、m≤3B、m<3C、m≥3D、m>35. 下列计算正确的是( )① ; ② ;③ ; ④ ;A、1个B、2个C、3个D、4个6.一次函数y=-5x+3的图象经过的象限是( )A、一、二、三B、二、三、四C、一、二、四D、一、三、四7. 在Rt△ABC中,AB=3,AC=4,则BC的长为( ).A、5B、C、5或D、无法确定8.数据10,10,,8的众数与平均数相同,那么这组数的中位数是( )A、10B、8C、12D、49.如果三角形的两边分别为4和6,那么连接该三角形三边中点所得三角形的周长可能是( )A、6B、8C、10D、1210.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是( )A. B. C. D.二、填空题(本大题共8题,每小题3分,共24分)11.计算: =_______。
12.若是正比例函数,则m=_______。
13.在□ABCD 中,若添加一个条件_______ _,则四边形ABCD是矩形。
14.已知一组数据10,8,9,a,5众数是8,求这组数据的中位数________________。
一、选择题(每小题3分,共18分,每题有且只有一个答案正确,请把你认为正确的答案前面的字母填入相应的括号内)
1. 下面4个图案中,是中心对称图形的是【】
2.下列事件中必然事件有【】
①当x是非负实数时,≥0 ; ②打开数学课本时刚好翻到第12页;
③13个人中至少有2人的生日是同一个月;
④在一个只装有白球和绿球的袋中摸球,摸出黑球.
A.1个
B.2个
C.3个
D.4个
3. 如果代数式有意义,那么x的取值范围是【】
A.x≥0
B.x≠1
C.x>0
D.x≥0且x≠1
4.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD 一定是【】
A.矩形
B.菱形
C.对角线互相垂直的四边形
D.对角线相等的四边形
5.如图,E 、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接
CE、DF.△CDF可以看作是将△BCE绕正方形ABCD的中心O按逆时
针方向旋转得到.则旋转角度为【】
A.45°
B. 60°
C.90°
D.120°
6.已知点三点都在反比例函数
的图象上,则下列关系正确的是【】
A. B. C. D.
二、填空题(每题2分,共18分,请将正确答案填写在相应的横线上)
7.若分式有意义,则x的取值范围是__________________.
8.计算的结果是.
9. 一个反比例函数y= (k≠0)的图象经过点P(-2,-3),则该反比例函数的解析式是
.
10.合作小组的4位同学坐在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机
坐到其他三个座位上,则学生B坐在2号座位的概率是
11.如图,在△ABC中,∠CAB=70º,在同一平面内,将△ABC绕点逆时针旋转50º到
△的位置,则∠= _________度.
12.已知的整数部分是a,小数部分是b,则=____
13.如图正方形ABCD中,点E在边DC上,DE=2,EC=1 ,把线段AE 绕点A旋转,使
点E落在直线BC上的点F处,则F、C两点的距离为.
14.函数, 的图象如图所示,则结论:①两函数图象的交点
A的坐标为(3 ,3 ); ②当x>3时,y2>y1 ; ③当x=1时,BC = 8; ④当x逐
渐增大时,y1随着x的增大而增大,y2随着x 的增大而减小.其中正确结论的序号是
15. 如图,在函数的图象上有点P1、P2、P3…、Pn、Pn+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、Pn、Pn+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、Sn,则Sn=.(用含n的代数式表示)
三、解答题(本大题8小题,共64分.把解答过程写在试卷相对应的位置上.解答时应写出必要的计算过程,推演步骤或文字说明)
16.计算: (每小题4分,共8分)
(1) (2)
17. (本题满分6分)
先化简代数式,然后选取一个使原式有意义的a值代入求值。
18. 解分式方程: (每小题4分,共8分)
(1) (2)
19.(本小题8分)随着车辆的增加,交通违规的现象越来越严重,交警对人民路某雷达测速区检测到的一组汽车的时速数据进行整理(速度在30﹣40 含起点值30,不含终点值40),得到其频数及频率如表:
数据段频数频率
30﹣40 10 0.05
40﹣50 36 c
50﹣60 a 0.39
60﹣70 b d
70﹣80 20 0.10
总计200 1
(1) 表中a、b、c、d分别为:a= ; b= ; c= ; d= . (4分)
(2) 补全频数分布直方图;(2分)
(3) 如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?(2分)
20.(本小题8分)若,M= ,N= ,
⑴当时,计算M与N的值;(4分)
⑵猜想M与N的大小关系,并证明你的猜想.(4分)
21.已知,如图,Rt△ABC中,∠ABC=90°.
(1)利用直尺和圆规按要求完成作图(保留作图痕迹);(2+2=4分)
①作线段AC的垂直平分线,交AC于点M;
②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.
(2)试判断(1)中四边形ABCD的形状,并说明理由(1+3= 4分) .
22.如图,反比例函数的图像和一次函数y2=ax+b的图像交于A(3,4)、B(—6,n)。
(1)求两个函数的解析式;(4分)
(2)观察图像,写出当x为何值时y1>y2?(2分)
(3)C、D分别是反比例函数第一、三象限的两个分支上的点,且以A、B、
C、D为顶点的四边形是平行四边形.请直接写出C、D两点的坐标.(2分)
23.(本小题10分)以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连结这四个点,得四边形EFGH.
(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;
如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);(2分)
(2)如图3 ,当四边形ABCD为一般平行四边形时,
①求证:HE=HG;(4分)
②四边形EFGH是什么四边形?并说明理由.(4分)
八年级数学参考答案:
一、选择题:1. A 2. B 3. D. 4. C. 5. C. 6. A
二、填空题:7. x≠5 8. 3 9. y= 10. 11. 20 12.
13. 1或5 14. ①③④15. 或-
三、解答题:
16. (1)15 (2)-2
17. 化简结果;a不可取0或1
18. (1)x=-5 (2)x=2是增根
19. (1)78;56;0.18;0.28 (2)省略(3)76
20. (1)M= ,N= (2)M
21. 作图省略,证明省略
22. (1)y1= y2=
(2) x<-6或0
(3) C(6, 2); D(-3,-4)
23. (1)四边形EFGH是正方形. ……………2分
(2) ①设∠ADC=α(0°<α<90°),
在□ABCD中,AB∥CD,∴∠BAD=180°-∠ADC=180°-a;
∵△HAD和△EAB都是等腰直角三角形,∴∠HAD=∠EAB=45°,∴∠HAE=360°-∠HAD-∠EAB-∠BAD
=360°-45°-45°-(180°-a)=90°+a.
∵△HAD和△GDC都是等腰直角三角形,
∴∠DHA=∠CDG= 45°,
∴∠HDG=∠HAD+∠ADC+∠CDG=90°+a=∠HAE. ……………5分∵△AEB和△DGC都是等腰直角三角形,∴AE= AB,DG= CD,
在□ABCD中,AB=CD,∴AE=DG,
∵△HAD是等腰直角三角形,∴HA=HD,
∴△HAE≌△HDG,∴HE=HG. ……………7分
②四边形EFGH是正方形.
由②同理可得:GH=GF,FG=FE,∵HE=HG(已证),
∴GH=GF=FG=FE,∴四边形EFGH是菱形;
∵△HAE≌△HDG(已证),∴∠AHE=∠DHG,
又∵∠AHD=∠AHG+∠DHG=90°,
∴∠EHG=∠AHG+∠AHE=90°,
∴四边形EFGH是正方形. ……………10分。