高中数学人教新课标A版必修2 第三章 直线与方程 3.2.3直线的一般式方程A卷
- 格式:doc
- 大小:403.50 KB
- 文档页数:8
3.2.2 直线的两点式方程3.2.3 直线的一般式方程知识导图学法指导1.体会直线的两点式方程、截距式方程的推导过程,并由此求直线的方程.2.明确平面上的直线和二元一次方程的区别与联系.3.弄清楚直线的一般式方程和其他几种形式之间的关系以及每种形式的适用条件,在解题时注意选择恰当的直线方程.4.明确利用直线方程的几种形式判断直线平行和垂直问题的方法.高考导航1.利用两点坐标求直线的方程或利用直线的截距式求直线的方程是常考知识点,分值5分.2.由直线的一般式方程判断直线的位置关系或求参数的值也是高考的常考题型,以选择题或填空题为主,分值5分.知识点一直线的两点式、截距式方程1.截距式方程中间以“+”相连,右边是1.2.a 叫做直线在x 轴上的截距,a∈R ,不一定有a >0.知识点二 线段的中点坐标公式若点P 1(x 1,y 1),P 2(x 2,y 2),设P (x ,y )是线段P 1P 2的中点,则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y22.知识点三 直线的一般式方程 1.直线与二元一次方程的关系在平面直角坐标系中的直线与二元一次方程的对应关系如下:2.直线的一般式方程式子:关于x ,y 的二元一次方程Ax +By +C =0; 条件:A ,B 不同时为零; 简称:一般式.3.直线的一般式方程与其他四种形式的转化认识直线的一般式方程(1)方程是关于x ,y 的二元一次方程;(2)方程中等号的左侧自左向右一般按x ,y ,常数的先后顺序排列; (3)x 的系数一般不为分数和负数;(4)平面直角坐标系内的任何一条直线都有一个二元一次方程与它相对应,即直线的一般式方程可以表示任何一条直线.[小试身手]1.判断下列命题是否正确. (正确的打“√”,错误的打“×”) (1)不经过原点的直线都可以用方程x a +y b=1表示.( )(2)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1) (x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )答案:(1)× (2)√2.经过点A (-3,2),B (4,4)的直线的两点式方程为( ) A.y -22=x +37 B.y -2-2=x -37C.y +22=x -37D.y -2x +3=27解析:由方程的两点式可得直线方程为y -24-2=x --4--,即y -22=x +37.答案:A3.在x 轴和y 轴上的截距分别为-2,3的直线方程是( ) A.x 3+y -2=1 B.x 2+y-3=1 C.x -2+y 3=1 D.x -3+y2=1 解析:由直线的截距式方程,可得直线方程是x -2+y3=1.答案:C4.直线x 3+y4=1化成一般式方程为( )A .y =-43x +4B .y =-43(x -3)C .4x +3y -12=0D .4x +3y =12解析:直线x 3+y4=1化成一般式方程为4x +3y -12=0. 答案:C。
山东省沂水县高中数学第三章直线与方程3.2.3 直线的一般式方程学案(含解析)新人教A版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山东省沂水县高中数学第三章直线与方程3.2.3 直线的一般式方程学案(含解析)新人教A版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山东省沂水县高中数学第三章直线与方程3.2.3 直线的一般式方程学案(含解析)新人教A版必修2的全部内容。
3.2.3 直线的一般式方程学习目标1。
掌握直线的一般式方程;2.理解关于x,y的二元一次方程Ax+By+C=0(A,B 不同时为0)都表示直线;3。
会进行直线方程的五种形式之间的转化.知识点一直线的一般式方程思考1 直线的点斜式、斜截式、两点式、截距式这四种形式都能用Ax+By+C=0(A,B不同时为0)来表示吗?答案能.思考2 关于x,y的二元一次方程Ax+By+C=0(A,B不同时为0)一定表示直线吗?答案一定.思考3 当B≠0时,方程Ax+By+C=0(A,B不同时为0)表示怎样的直线?B=0呢?答案当B≠0时,由Ax+By+C=0得,y=-错误!x-错误!,所以该方程表示斜率为-错误!,在y轴上截距为-错误!的直线;当B=0时,A≠0,由Ax+By+C=0得x=-错误!,所以该方程表示一条垂直于x轴的直线.形式Ax+By+C=0条件A,B不同时为0知识点二直线的一般式与点斜式、斜截式、两点式、截距式的关系类型一直线一般式的性质例1 设直线l的方程为(m2-2m-3)x-(2m2+m-1)y+6-2m=0.(1)若直线l在x轴上的截距为-3,则m=________。
3.2.3 直线的一般式方程教学目标1.知识与技能:(1)通过推导,了解直线都可以表示成一般式方程; (2)理解直线一般式方程系数的意义; (3)会判断一般式方程的平行垂直问题.2.过程与方法:通过实例初步了解概念,通过探究深入理解概念的实质,关键是要培养学生分析问题、解决问题和转化问题的能力.3.情感态度价值观:(1)本节核心问题是让学生学会转化思想,灵活应用所学知识,加强与实际生活的联系,以科学的态度评价身边的一些现象;(2)用有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。
培养学生掌握“理论来源于实践,并把理论应用于实践”的辨证思想 重点难点1.教学重点:了解直线都可以表示成一般式方程,会判断一般式方程的平行垂直问题2.教学难点:理解直线一般式方程系数的意义. 教学过程(一)复习引入:1、直线方程的点斜式、斜截式、两点式、截距式的互相转化: 练习1:由下列条件,写出直线的方程: (1)经过点A (8,– 2),斜率是21-;()8(212--=+x y ) (2)经过点B (4,2),平行于x 轴;(y – 2 = 0) (3)经过点P 1(3,– 2),P 2(5,– 4);(353)2(4)2(--=-----x y )(4)在x 轴,y 轴上的截距分别为23,– 3。
(1323=-+y x )2、直线方程的几种形式:思考:以上方程有什么共同的特点? (二)讲授新课:1、直线与二元一次方程的关系:问题1:平面直角坐标系中的每一条直线都可以用一个关于x 、y 吗?对直线的倾斜角α进行讨论: ① 当︒≠90α时,直线斜率为αtan =k ,其方程可写成:b kx y +=,可变形为:0=++C By Ax ,其中:A = k ,B = – 1,C = b ;A 、B 不同时为零。
(如图) ② 当︒=90α时,直线斜率不存在,其方程可写成1x x =的形式, 也可以变形为:0=++C By Ax ,其中:A = 1,B = 0,1x C =。
3.2.3 直线的一般式方程整体设计教学分析直线是最基本、最简单的几何图形,它是研究各种运动方向和位置关系的基本工具,它既能为进一步学习作好知识上的必要准备,又能为今后灵活地运用解析几何的基本思想和方法打好坚实的基础.直线方程是这一章的重点内容,在学习了直线方程的几种特殊形式的基础上,归纳总结出直线方程的一般形式.掌握直线方程的一般形式为用代数方法研究两条直线的位置关系和学习圆锥曲线方程打下基础.根据教材分析直线方程的一般式是本节课的重点,但由于学生刚接触直线和直线方程的概念,教学中要求不能太高,因此对直角坐标系中直线与关于x和y的一次方程的对应关系确定为“了解”层次.两点可以确定一条直线,给出一点和直线的方向也可以确定一条直线,由两个独立条件选用恰当形式求出直线方程后,均应统一到一般式.直线的一般式方程中系数A、B、C的几何意义不很鲜明,常常要化为斜截式和截距式,所以各种形式应会互化.引导学生观察直线方程的特殊形式,归纳出它们的方程的类型都是二元一次方程,推导直线方程的一般式时渗透分类讨论的数学思想,通过直线方程各种形式的互化,渗透化归的数学思想,进一步研究一般式系数A、B、C的几何意义时,渗透数形结合的数学思想.三维目标1.掌握直线方程的一般式,了解直角坐标系中直线与关于x和y的一次方程的对应关系,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.2.会将直线方程的特殊形式化成一般式,会将一般式化成斜截式和截距式,培养学生归纳、概括能力,渗透分类讨论、化归、数形结合等数学思想.3.通过教学,培养相互合作意识,培养学生思维的严谨性,注意学生语言表述能力的训练.重点难点教学重点:直线方程的一般式及各种形式的互化.教学难点:在直角坐标系中直线方程与关于x和y的一次方程的对应关系,关键是直线方程各种形式的互化.课时安排1课时教学过程导入新课思路1.前面所学的直线方程的几种形式,有必要寻求一种更好的形式,那么怎样的形式才能表示一切直线方程呢?这节课我们就来研究这个问题. 思路2.由下列各条件,写出直线的方程,并画出图形.(1)斜率是1,经过点A (1,8);(2)在x 轴和y 轴上的截距分别是-7,7;(3)经过两点P 1(-1,6)、P 2(2,9);(4)y 轴上的截距是7,倾斜角是45°.由两个独立条件请学生写出直线方程的特殊形式分别为y-8=x-1、77yx +-=1、121696++=--x y 、y=x+7,教师利用计算机动态显示,发现上述4条直线在同一坐标系中重合.原来它们的方程化简后均可统一写成:x-y+7=0.这样前几种直线方程有了统一的形式,这就是我们今天要讲的新课——直线方程的一般式. 推进新课 新知探究 提出问题①坐标平面内所有的直线方程是否均可以写成关于x,y 的二元一次方程?②关于x,y 的一次方程的一般形式Ax+By+C=0(其中A 、B 不同时为零)是否都表示一条直线?③我们学习了直线方程的一般式,它与另四种形式关系怎样,是否可互相转化? ④特殊形式如何化一般式?一般式如何化特殊形式?特殊形式之间如何互化?⑤我们学习了直线方程的一般式Ax+By+C=0,系数A 、B 、C 有什么几何意义?什么场合下需要化成其他形式?各种形式有何局限性?讨论结果:①分析:在直角坐标系中,每一条直线都有倾斜角α.1°当α≠90°时,它们都有斜率,且均与y 轴相交,方程可用斜截式表示:y=kx+b.2°当α=90°时,它的方程可以写成x=x 1的形式,由于在坐标平面上讨论问题,所以这个方程应认为是关于x 、y 的二元一次方程,其中y 的系数是零. 结论1°:直线的方程都可以写成关于x 、y 的一次方程.②分析:a 当B≠0时,方程可化为y=-B A x-B C ,这就是直线的斜截式方程,它表示斜率为-BA,在y 轴上的截距为-B C 的直线.b 当B=0时,由于A 、B 不同时为零必有A≠0,方程化为x=-AC,表示一条与y 轴平行或重合的直线.结论2°:关于x,y 的一次方程都表示一条直线.综上得:这样我们就建立了直线与关于x,y 的二元一次方程之间的对应关系.我们把Ax+By+C=0(其中A,B 不同时为0)叫做直线方程的一般式. 注意:一般地,需将所求的直线方程化为一般式.在这里采用学生最熟悉的直线方程的斜截式(初中时学过的一次函数)把新旧知识联系起来. ③引导学生自己找到答案,最后得出能进行互化.④待学生通过练习后师生小结:特殊形式必能化成一般式;一般式不一定可以化为其他形式(如特殊位置的直线),由于取点的任意性,一般式化成点斜式、两点式的形式各异,故一般式化斜截式和截距式较常见;特殊形式的互化常以一般式为桥梁,但点斜式、两点式、截距式均能直接化成一般式.各种形式互化的实质是方程的同解变形(如图1).图1⑤列表说明如下:应用示例例1 已知直线经过点A(6,-4),斜率为-34,求直线的点斜式和一般式方程.解:经过点A(6,-4)且斜率为-34的直线方程的点斜式方程为y+4=-34(x-6). 化成一般式,得4x+3y-12=0. 变式训练1.已知直线Ax+By+C=0,(1)系数为什么值时,方程表示通过原点的直线? (2)系数满足什么关系时,与坐标轴都相交? (3)系数满足什么条件时,只与x 轴相交? (4)系数满足什么条件时,是x 轴? (5)设P(x 0,y 0)为直线Ax+By+C=0上一点, 证明这条直线的方程可以写成A(x-x 0)+B(y-y 0)=0. 答案:(1)C=0; (2)A≠0且B≠0; (3)B=0且C≠0; (4)A=C=0且B≠0;(5)证明:∵P(x 0,y 0)在直线Ax+By+C=0上, ∴Ax 0+By 0+C+0,C=-Ax 0-By 0. ∴A(x-x 0)+B(y-y 0)=0.2.(2007上海高考,理2)若直线l 1:2x+my+1=0与l 2:y=3x-1平行,则m=____________. 答案:-32例2 把直线l 的方程x-2y+6=0化成斜截式,求出直线l 的斜率和它在x 轴与y 轴上的截距,并画出图形.解:由方程一般式x -2y +6=0, ① 移项,去系数得斜截式y=2x+3. ② 由②知l 在y 轴上的截距是3,又在方程①或②中,令y=0,可得x=-6. 即直线在x 轴上的截距是-6.因为两点确定一条直线,所以通常只要作出直线与两个坐标轴的交点(即在x 轴,y 轴上的截距点),过这两点作出直线l (图2).图2点评:要根据题目条件,掌握直线方程间的“互化”. 变式训练直线l 过点P(-6,3),且它在x 轴上的截距是它在y 轴上的截距的3倍,求直线l 的方程. 答案:x+3y-3=0或x+2y=0. 知能训练课本本节练习1、2、3. 拓展提升求证:不论m 取何实数,直线(2m -1)x -(m+3)y -(m -11)=0恒过一个定点,并求出此定点的坐标.解:将方程化为(x+3y-11)-m(2x-y-1)=0,它表示过两直线x+3y-11=0与2x-y-1=0的交点的直线系. 解方程组⎩⎨⎧=--=-+,012,0113y x y x ,得⎩⎨⎧==3,2y x .∴直线恒过(2,3)点. 课堂小结通过本节学习,要求大家:(1)掌握直线方程的一般式,了解直角坐标系中直线与关于x 和y 的一次方程的对应关系; (2)会将直线方程的特殊形式化成一般式,会将一般式化成斜截式和截距式; (3)通过学习,培养相互合作意识,培养学生思维的严谨性,注意语言表述能力的训练. 作业习题3.2 A 组11.。
高中数学人教新课标A版必修2 第三章直线与方程 3.2.3直线的一般式方程A卷姓名:________ 班级:________ 成绩:________
一、单选题 (共8题;共16分)
1. (2分)直线过点且与圆相切,则的斜率是()
A . ;
B . ;
C . ;
D . .
2. (2分)曲线在点处的切线方程为()
A .
B .
C .
D .
3. (2分)在y轴上的截距为2,且与直线y=﹣3x﹣4垂直的直线的斜截式方程为()
A . y=x+2
B . y=-x-2
C . y=﹣3x+2
D . y=3x﹣2
4. (2分)三直线ax+2y+8=0,4x+3y=10,2x-y=10相交于一点,则a的值是()
A . -2
B . -1
C . 0
D . 1
5. (2分)点P(1,2)关于x轴和y轴的对称点依次是()
A . (2,1),(﹣1,﹣2)
B . (﹣1,2),(1,﹣2)
C . (1,﹣2),(﹣1,2)
D . (﹣1,﹣2),(2,1)
6. (2分)“”是“直线与直线互相垂直”的()
A . 充要条件;
B . 充分不必要条件;
C . 必要不充分条件;
D . 既不充分也不必要条件.
7. (2分) (2016高二上·武城期中) 若两直线ax+2y﹣1=0与x+(a﹣1)y+a2=0平行,则两直线间的距离为()
A .
B .
C .
D . 或
8. (2分)直线x+y+1=0关于点(1,2)对称的直线方程为()
A . x+y﹣7=0
B . x﹣y+7=0
C . x+y+6=0
D . x﹣y﹣6=0
二、填空题 (共3题;共3分)
9. (1分) (2019高二上·雨城期中) 直线与轴交点的横坐标是________.
10. (1分) (2018高三上·湖南月考) 已知点,,若圆C:
上存在一点P,使得PA⊥PB,则正实数m的取值范围是________.
11. (1分)在△ABC中,已知角A,B,C所对的边依次为a,b,c,且2lg(sinB)=lg(sinA)+lg(sinC),则两条直线l1:xsinA+ysinB=a与l2:xsinB+ysinC=c的位置关系是________ .
三、解答题 (共3题;共25分)
12. (5分)(2018·天津模拟) 已知椭圆左顶点为M ,上顶点为N ,直线MN的斜率为.
(Ⅰ)求椭圆的离心率;
(Ⅱ)直线l:与椭圆交于A , C两点,与y轴交于点P ,以线段AC为对角线作正方形ABCD ,若.
()求椭圆方程;
()若点E在直线MN上,且满足,求使得最长时,直线AC的方程.
13. (5分)已知直线l:ay=(3a﹣1)x﹣1.
(1)求证:无论a为何值,直线l总过第三象限;
(2)a取何值时,直线l不过第二象限?
14. (15分) (2018高三上·连云港期中) 规定:在桌面上,用母球击打目标球,使目标球运动,球的位置是指球心的位置,我们说球 A 是指该球的球心点 A.两球碰撞后,目标球在两球的球心所确定的直线上运动,目标球的运动方向是指目标球被母球击打时,母球球心所指向目标球球心的方向.所有的球都简化为平面上半径为 1 的圆,且母球与目标球有公共点时,目标球就开始运动,在桌面上建立平面直角坐标系,解决下列问题:
(1)如图,设母球 A 的位置为 (0, 0),目标球 B 的位置为 (4, 0),要使目标球 B 向 C(8, -4) 处运动,求母球 A 球心运动的直线方程;
(2)如图,若母球 A 的位置为 (0, -2),目标球 B 的位置为 (4, 0),能否让母球 A 击打目标 B 球后,使目标 B 球向 (8,-4) 处运动?
(3)若 A 的位置为 (0,a) 时,使得母球 A 击打目标球 B 时,目标球 B(4 , 0) 运动方向可以碰到目标球 C(7 ,-5 ),求 a 的最小值(只需要写出结果即可)
参考答案一、单选题 (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、填空题 (共3题;共3分)
9-1、
10-1、
11-1、
三、解答题 (共3题;共25分)
12-1、
13-1、
14-1、
14-2、
14-3、。