人教版数学选修2-3课件-1.3二项式定理(共21张PPT)
- 格式:pdf
- 大小:1.43 MB
- 文档页数:12
第—章1.31・3・1计数原理二项式定理二项式定理学习目标:1.会证明二项式定理. 的通项公式.(重点)教材整理二项式定理阅读教材P26〜P27例1以上部分,完成下列问题. 二项式定理及相关的概念0微体验0判断(正确的打“J”,错误的打“x”)(1)@+份"展开式中共有〃项.()(2)在公式中,交换°, b的顺序对各项没有影响.()(3)C严是(M 展开式中的第呗.()(4)(o—b)"与(。
+矿的二项式展开式的二项式系数相同.(【解析】(l)x因为(a+b)n展开式中共有〃+1项.(2)X因为二项式的第r+1项C旷H和e+川的展开式的第r+1 项cyv是不同的,其中的°, b是不能随便交换的.(3)X因为C r n a n-r b r是@+份"展开式中的第卄1项.(4)7因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是C;【答案】(1)X (2)X (3)X (4)7啖型ly 二项式定理的正用、逆用(3〕5【例1】⑴用二项式定理展开杯一疋I;(2)化简:C…(x+1 )n—CJ(x+1 )n~1+C…(x+1 )w-2 --------- (—l)'C;Xr+l)n_r + ・・・+(T)"C;;.【精彩点拨】⑴二项式的指数为5,且为两项的和,可直接按二项式定理展开;(2)可先把x+1看成一个整体,分析结构形式,逆用二项式定理求解.=32八曲+讐字+器—話(2)原式=C*x+1)"+C掀+1)" 丫―1)+C偸+1)" ®(—1尸+…+ 0+1 厂(T)「+・・・+C;;(T)〃=心+/丿+(—M=f・规律方进1.展开二项式可以按照二项式定理进行.展开时注意二项式定理的结构特征,准确理解二项式的特点是展开二项式的前提条件.2.对较复杂的二项式,有时先化简再展开会更简便.3.对于化简多个式子的和时,可以考虑二项式定理的逆用.对于这类问题的求解,要熟悉公式的特点,项数,各项黑指数的规律以及各项的系数.…+a+;说+【:期他) 乍牡習胡伴+輿*(1) •【片I 丿3 s I: 3 务+窘H 8h 2+108x +54+l^+4・n r =4+ 10W +54T +12X+1)121岂2+10b +5444(2)JMH1+2C +22C +.:+2n ll (l +2)f 3=.逆??zL—式系数与项的系数问题_____________/ 讥【例2】⑴求二项式6的展开式中第6项的二项式系数和第< 儿丿6项的系数;(2)求”一/的展开式中『的系数.【精彩点拨】利用二项式定理求展开式中的某一项,可以通过二项展开式的通项公式进行求解.【解】⑴由己知得二项展开式的通项为人+1Z 3=(-l)G2f3®AT6=-12-X"\:•第6项的二项式系数为C6=6, 第6项的系数为C%(-1)・2=-12.⑵ 7V+LC旷• V =(-1)圈严「,\儿丿・・・9一2尸3,・••尸3,即展开式中第四项含「,其系-84.数为(-1)£=规律方进1.二项式系数都是组合数C,;(r=0,l,2, n),它与二项展开式中某一项的系数不一定相等,要注意区分“二项式系数”与二项式展开式中“项的系数”这两个概念.2.第厂+1项的系数是此项字母前的数连同符号,而此项的二项式系数为C;;.例如,在(l+2x)7的展开式中,第四项是T4=C^-3(2X)3,其二项式系数是C=35,而第四项的系数是C护=280.2. (l+2r)"的展开式中第六项与第七项的系数相等,求展开式中二项 式系数最大的项和系数最大的项.【解】r 6=CW ,T 7=d(2x)6,依题意有C 沖二C 防,・d=8. ・:(1+2浮的展开式中,二项式系数最大的项为T 5=Ci(2x)4=l 120x 4.设第卄i项系数最尢则有・:5水6.,・r=5 或r=6(Vr=0,1,2, •••:•:系数最大的项为丁6=1792x‘,T7=1792X6.寒型3/ 求展开式中的特定项—匚—一^上 ------- ——----------------(探究问题丿(1〕41.如何求x+f展开式中的常数项?< X)【提示】利用二项展开式的通项卅巾求解,令4—2厂A(山.4X3=0,贝lj r=2,所以*展开式中的常数项为C:=〒=6.2. (a+b)(c+d)展开式中的每一项是如何得到的?【提示】S+b)(c+d展开式中的各项都是由°+0中的每-项分别乘以c+d中的每一项而得到.3.如何求x+;(2x+l)3展开式中含x的项?V兀丿/ \【提示】x+; (2x+1)3展开式中含x的项是由中的x与£分别A) A A与(2x+l)3展开式中常数项C;=l及<项C S22?=12?分别相乘再把积相加得x・C汁!C(2X)2=X+12X=13X.即|X+』2X+1)3展开式中含x的项为A A J 13x.3r 3 H【例3】已知在二的展开式中,第6项为常数项.⑴求M;(2)求含*项的系数;(3)求展开式中所有的有理项.【精彩点拨】|写出通项小卜隔匚5, x的指数为零T⑴求出〃值IT修正通项公式IT⑵求“项的系教 f考查X 指数为整数f分析求岀k值T(3)写岀有理项【解】通项公式为:T「+1=C;尸(―3 疗』c;;(—3)1 丁.(1):•第6项为常数项,/I—2rAr=5 时,有=0,即〃=10・10—2丫 1(2)令一=2,得尸尹0—6)=2,・:所求的系数为C W(-3)2=405.•Ed7里SWGO^・霜黑规律方进1.求二项展开式的特定项的常见题型(1)求第P 项,7;=C:T厂+0T;(2)求含/•的项(或#护的项);(3)求常数项;(4)求有理项.2.求二项展开式的特定项的常用方法⑴对于常数项,隐含条件是字母的指数为0(即0次项);(2)对于有理项,一般是先写岀通项公式,其所有的字母的指数恰好都是整数的项.解这类问题必须合并通项公式中同一字母的指数,根据具体要求,令其属于整数,再根据数的整除性来求解;(3)对于二项展开式中的整式项,其通项公式中同一字母的指数应是非负整数,求解方式与求有理项一致.3. (1)在(l-?)(l+x)10的展开式中,f 的系数是 _______(2)若L —专f 展开式的常数项为60,则常数a 的值为— k 兀丿【解析】⑴『应是(1+x)10中含f项、含『项分别与1, -X3相乘的结果,・••其系数为do+C?o(-l)=2O7.(2)|x-却的展开式的通项是7>1=G?Y(—胪9(—令6-3r=0,得尸2,即当尸2时,乃+1为常数项,即常数项是C紅根据已知得C]a=60,解得o=4.【答案】(1)207 (2)41.在(X-A/3)10的展开式中,含『的项的系数是(A. —27蘇B. 27CjoD. 9Cjo【解析】含【答案】DA. —28的展开式中常数项是(B. -7C. 7【解析】D. 288-rTr+1=G•另•------r 1 4 4材=(-l)g•护存,当8_严,即尸6时,丁7=(—1)6・C讣2=7.【答案】C3. (2019-全国卷皿)(1+2?)(l+x)4的展开式中x3的系数为()A. 12B. 16C. 20D. 24【解析】展开式中含F的项可以由“1与和“2*与*的乘积组成,则『的系数为C;+2C;=4+8=12.【答案】A4.在2f—$的展开式中,中间项是 _____ .k 兀丿【解析】由〃=6知中间一项是第4项,因2=C%2?)3. |一$=Q•(— 1)3-23.%3,所以T4=-160X3.【答案】-160f。