2020年高考数学文科乙台湾省大学入学考试中心109学年度指定科目考试试题(扫描版8页)
- 格式:docx
- 大小:784.88 KB
- 文档页数:8
2020年普通高等学校招生全国统一考试数学文试题(北京卷,含答案)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、 选择题共8小题,每小题5分,共40分。
在每小题列出四个选项中,选出符合题目要求的一项。
(1) 已知全集U=R ,集合{}21P xx =∣≤,那么U P =ð (A)(,1-∞-) (B)(1,+∞) (C)(-1,1) (D)()()11-∞,-,+∞U(2)复数212i i -=+ (A)i (B )i - (C)4355i -- (D)4355i -+ (3)如果1122log log 0x y <<,那么(A )1y x << (B)1x y << (C)1x y << (D)1y x <<(4)若p 是真命题,q 是假命题,则(A )p q ∧是真命题 (B)p q ∨是假命题题 (C)p ⌝是真命题 (D)q ⌝是真命(5)某四棱锥的三视图如图所示,该四棱锥的表面积是(A)32(B)16+162(C)48(D)16322+(6)执行如图所示的程序框图,若输入A 的值为2,则输出的P 值为(A)2(B)3(C)4(D)5(7)某车间分批生产某种产品,每批的生产准备费用为800元。
若每批生产x 件,则平均仓储时间为8x 天,且每件产品每天的仓储费用为1元。
为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品 (A )60件 (B)80件 (C )100件 (D )120件(8)已知点()()0,2,2,0A B 。
若点C 在函数2y x =的图象上,则使得ABC V 的面积为2的点C 的个数为(A )4 (B)3 (C)2 (D)1第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
大学入学考试中心101学年度指定科目考试试题数学乙第 1 頁101年指考共 6 頁數學乙- 1 - 2 3第壹部分:选择题(单选题、多选题及选填题共占74分)一、单选题(占18分)1. 已知实系数多项式方程式3280+++=x ax bx的三根相同,请问b的值等于下列哪一个选项?(1) 6 (2) 8 (3) 10 (4) 12 (5) 142. 请问下列哪一个选项中的矩阵乘积等于2323⎡⎤⎢⎥⎣⎦a bc d?(1)23⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦a bc d(2) ⎡⎤⎢⎥⎣⎦a b c d(3)2323⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦a bc d(4)2003⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦a bc d(5)2003⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦a bc d101年指考第2 頁數學乙共 6 頁3. 一乒乓球队有6位选手,其中甲、乙、丙为右手持拍的选手,丁、戊为左手持拍的选手,而己为左右手皆可持拍的选手。
现在要派出两名选手参加双打,规定由一名可以右手持拍的选手与一名可以左手持拍的选手搭配。
请问共有多少种可能的搭配?(1) 7(2) 9(3) 11(4) 13(5) 15二、多选题(占32分)4. 某个城市的普查(全面调查)发现60%的高中生有打工的经验,也发现70%的高中生有意愿就读大学。
如果使用简单随机抽样,由该城市的高中生中抽出一位同学。
请选出正确的选项。
(1) 被抽出同学有意愿就读大学的机率为0.7(2) 被抽出同学有打工的经验、且有意愿就读大学的机率至多为0.6(3) 被抽出同学有打工的经验、且有意愿就读大学的机率至少为0.35(4) 被抽出同学有打工的经验、但是无意愿就读大学的机率为0.18- 2 -第 3 頁 101年指考 共 6 頁數學乙- 3 -5. 将212()+x y 展开集项后,请选出正确的选项。
(1) 24x 的系数小于107x y 的系数 (2) 126x y 的系数小于107x y 的系数 (3) 145x y 的系数小于107x y 的系数 (4) 88x y 的系数小于107x y 的系数6. 设01<<x 。
2020年普通高等学校招生全国统一考试数学文试题(北京卷,含答案)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、 选择题共8小题,每小题5分,共40分。
在每小题列出四个选项中,选出符合题目要求的一项。
(1) 已知全集U=R ,集合{}21P xx =∣≤,那么U P =ð (A)(,1-∞-) (B)(1,+∞) (C)(-1,1) (D)()()11-∞,-,+∞U(2)复数212i i -=+ (A)i (B )i - (C)4355i -- (D)4355i -+ (3)如果1122log log 0x y <<,那么(A )1y x << (B)1x y << (C)1x y << (D)1y x <<(4)若p 是真命题,q 是假命题,则(A )p q ∧是真命题 (B)p q ∨是假命题题 (C)p ⌝是真命题 (D)q ⌝是真命(5)某四棱锥的三视图如图所示,该四棱锥的表面积是(A)32(B)16+162(C)48(D)16322+(6)执行如图所示的程序框图,若输入A 的值为2,则输出的P 值为(A)2(B)3(C)4(D)5(7)某车间分批生产某种产品,每批的生产准备费用为800元。
若每批生产x 件,则平均仓储时间为8x 天,且每件产品每天的仓储费用为1元。
为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品 (A )60件 (B)80件 (C )100件 (D )120件(8)已知点()()0,2,2,0A B 。
若点C 在函数2y x =的图象上,则使得ABC V 的面积为2的点C 的个数为(A )4 (B)3 (C)2 (D)1第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2020年普通高等学校招生全国统一考试数学文试题(新课标卷,含答案)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷上.....作答无效。
..... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}{}0,1,2,3,4,1,3,5,,M N P M N ===I 则P 的子集共有 (A )2个 (B )4个 (C )6个 (D )8个 故选B(2)复数512ii=- (A )2i - (B )12i - (C )2i -+ (D )12i -+ 故选C(3)下列函数中,即是偶数又在()0,+∞单调递增的函数是A. 3y x = B. 1y x =+ C. 21y x =-+ D. 2xy -=故选B 。
(4).椭圆221168x y +=的离心率为 A.13 B. 1232故选D。
(5)执行右面得程序框图,如果输入的N是6,那么输出的p是(A)120(B)720(C)1440(D)5040故选B(6)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A)13(B)12(C)23(D)34故选A。
(7)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=(A)45-(B)35- (C)35(D)45故选B(8)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为可选D(9)已知直线l过抛物线C的焦点,且与C的对称轴垂直。
绝密★启用前2020年普通高等学校招生全国统一考试文科数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}13|{},1|{2<=≤=xx B x x A ,则=)(B C A R YA .}0|{<x xB .}10|{≤≤x xC .}01|{<≤-x xD .}1|{-≥x x 2.若复数z 与其共轭复数z 满足i z z 312+=-,则=||z A .2B .3C .2D .53.已知双曲线()222210,0x y a b a b-=>>的离心率为53,则其渐近线方程为A .2x+y=0B .20x y ±=C .340x y ±=D .430x y ±= 4.在区间(0,4]内随机取两个数a b 、,则使得“命题‘x R ∃∈,不等式220x ax b ++<成立’为真命题”的概率为 A .14B .12C .13D .345.若向量)2,1(+=x a 与)1,1(-=b 平行,则|2+|=a b r rAB C .D 6.F 是抛物线22y x =的焦点,A B 、是抛物线上的两点,8AF BF +=,则线段AB 的中点到y 轴的距离为A .4B .92 C .72D .3 7.已知n m ,是两条不重合的直线,βα,是两个不重合的平面,则下列命题中,错误的是A .若α⊥⊥m n m ,,则α//nB .若αα⊄n m n m ,//,//,则α//nC .若βα⊥⊥⊥n m n m ,,,则βα⊥D .若βαα//,//m ,则β//m 或β⊂m8.已知函数y =f (x )的部分图像如图,则f (x )的解析式可能是 A .()tan f x x x =+B .()2sin f x x x =+C .()sin f x x x =-D .1()cos 2f x x x =-9.已知函数41()2x xf x -=,0.30.30.3(2),(0.2),(log 2)a f b f c f ===,则,,a b c 的大小关系为 A .c b a << B .b a c << C .b c a << D .c a b << 10.天文学中,为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus )在公元前二世纪首先提出了星等这个概念。
加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好! 经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!12020年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡,上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|x2-3x-4<0},B={-4,1,3,5},则A∩B=A.{-4,1}B.{1,5}C.{3,5}D.{1,3}2.若z=1+2i+i3,则|z|=A.0B.1 D.23.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥。
绝密★启用前2020 年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,在选涂其它答案标号框.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12 小题,每小题5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=()A.∅B. {–3,–2,2,3)C. {–2,0,2}D. {–2,2}【答案】D【解析】【分析】解绝对值不等式化简集合A, B 的表示,再根据集合交集的定义进行求解即可.【详解】因为A ={x x < 3, x ∈Z}={-2, -1, 0,1, 2},B ={x x >1, x ∈Z}={x x >1或x <-1, x ∈Z},所以A B ={2, -2}.故选:D.【点睛】本题考查绝对值不等式的解法,考查集合交集的定义,属于基础题.2.(1–i)4=()A. –4B. 4C. –4iD. 4i【答案】A【解析】【分析】根据指数幂的运算性质,结合复数的乘方运算性质进行求解即可.【详解】(1-i)4= [(1-i)2 ]2= (1- 2i +i2 )2= (-2i)2=-4 .故选:A.【点睛】本题考查了复数的乘方运算性质,考查了数学运算能力,属于基础题.3.如图,将钢琴上的12 个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k–j=3 且j–i=4,则称a i,a j,a k 为原位大三和弦;若k–j=4 且j–i=3,则称a i,a j,a k 为原位小三和弦.用这12 个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A. 5B. 8C. 10D. 15【答案】C【解析】【分析】根据原位大三和弦满足k -j = 3, j -i = 4 ,原位小三和弦满足k -j = 4, j -i = 3从i = 1 开始,利用列举法即可解出.【详解】根据题意可知,原位大三和弦满足:k -j = 3, j -i = 4 .∴i =1, j = 5, k = 8 ;i = 2, j = 6, k = 9 ;i = 3, j = 7, k =10 ;i = 4, j = 8, k =11;i = 5, j = 9, k =12 .原位小三和弦满足:k -j = 4, j -i = 3 .∴i =1, j = 4, k = 8 ;i = 2, j = 5, k = 9 ;i = 3, j = 6, k =10 ;i = 4, j = 7, k =11 ;i = 5, j = 8, k =12 .故个数之和为10.故选:C.【点睛】本题主要考查列举法的应用,以及对新定义的理解和应用,属于基础题.4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200 份订单配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500 份订单未配货,预计第二天的新订单超过1600 份的概率为0.05,志愿者每人每天能完成50 份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A. 10 名B. 18 名C. 24 名D. 32 名【答案】B【解析】【分析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.【详解】由题意,第二天新增订单数为500 +1600 -1200 = 900 ,故需要志愿者900= 18 名. 50故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.5.已知单位向量a,b 的夹角为60°,则在下列向量中,与b 垂直的是()A. a+2bB. 2a+bC. a–2bD. 2a–b 【答案】D【解析】【分析】根据平面向量数量积的定义、运算性质,结合两平面向量垂直数量积为零这一性质逐一判断即可.【详解】由已知可得:a ⋅b=a ⋅b ⋅cos 60︒=1⨯1⨯1=1. 22A:因为(a + 2b) ⋅b =a ⋅b + 2b2 =1+ 2⨯1 =5≠ 0 ,所以本选项不符合题意;22B:因为(2a +b) ⋅b = 2a ⋅b+b2 = 2⨯1+1 = 2 ≠ 0 ,所以本选项不符合题意;2C:因(a - 2b) ⋅b =a ⋅b - 2b 2=1- 2⨯1 =-3≠ 0 ,所以本选项不符合题意;22D:因为(2a -b) ⋅b = 2a ⋅b -b2= 2⨯1-1 = 0 ,所以本选项符合题意. 2故选:D.a 1 1n【点睛】本题考查了平面向量数量积的定义和运算性质,考查了两平面向量数量积为零则这两个平面向量互相垂直这一性质,考查了数学运算能力.S n 6. 记 S n 为等比数列{a n }的前 n 项和.若 a 5–a 3=12,a 6–a 4=24,则=( )nA. 2n –1B. 2–21–nC. 2–2n –1D. 21–n –1【答案】B【解析】【分析】根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通项公式和前n 项和公式进行求解即可. 【详解】设等比数列的公比为q ,⎧⎪a q 4 - a q 2 = 12⎧q = 2 由 a - a = 12, a - a = 24 可得: ⎨1 1 ⇒ ⎨ , 5 3 6 4 ⎪⎩a q 5- a q 3 = 24 ⎩a 1 = 1 n -1n -1a (1- q n ) 1- 2n n 所以a n = a 1q= 2 , S n = 1= = 2 -1,S 2n -1 因此 n = =2 - 21-n .1- q 1- 2a 2n -1故选:B.【点睛】本题考查了等比数列的通项公式的基本量计算,考查了等比数列前n 项和公式的应用,考查了数学运算能力.7. 执行右面的程序框图,若输入的 k =0,a =0,则输出的 k 为()A. 2B. 3C. 4D. 5【答案】C【解析】分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值,模拟程序的运行过程,分析循环中各变量值的变化情况,即可求得答案.【详解】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值模拟程序的运行过程k = 0, a = 0第1 次循环,a = 2 ⨯ 0 +1 =1 , k = 0 +1 = 1,2 > 10 为否第2 次循环,a = 2 ⨯1+1 = 3 , k =1+1 = 2 ,3 >10 为否第3 次循环,a = 2 ⨯3 +1 = 7 , k = 2 +1 = 3 ,7 > 10 为否第4 次循环,a = 2 ⨯7 +1 =15 , k = 3 +1 = 4 ,15 >10 为是退出循环输出k = 4 .故选:C.【点睛】本题考查求循环框图的输出值,解题关键是掌握模拟循环语句运行的计算方法,考-2 5查了分析能力和计算能力,属于基础题.8. 若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x - y - 3 = 0 的距离为()A.55B. 2 55C. 3 55D. 4 55【答案】B【解析】【分析】由题意可知圆心在第一象限,设圆心的坐标为(a , a ), a > 0 ,可得圆的半径为a ,写出圆的标准方程,利用点(2,1) 在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线2x - y - 3 = 0 的距离.【详解】由于圆上的点(2,1) 在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为(a , a ) ,则圆的半径为a ,圆的标准方程为( x - a )2+ ( y - a )2= a 2 . 由题意可得(2 - a )2 + (1- a )2= a 2 , 可得a 2 - 6a + 5 = 0 ,解得a = 1 或a = 5 ,所以圆心的坐标为(1,1) 或(5, 5) ,圆心到直线2x - y - 3 = 0 的距离均为d = =2 5 ; 5所以,圆心到直线2x - y - 3 = 0 的距离为 2 5. 5 故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.9. 设O 为坐标原点,直线x = a 与双曲线 x 2 y 2 C : - = 1(a > 0,b > 0) a 2 b2 的两条渐近线分别交于D ,E 两点,若 ODE 的面积为 8,则C 的焦距的最小值为()16 2 0)2 0)A. 4B. 8C. 16D. 32【答案】B【解析】【分析】x 2 -y2= > >y =± bxx = a因为C : a21(a b 20,b 0) ,可得双曲线的渐近线方程是 ,与直线 a联立方程求得 D , E 两点坐标,即可求得| ED | ,根据 的面积为 8 ,可得 ab 值,根据2c = 2 ,结合均值不等式,即可求得答案.【详解】 C : x a 2 - y 2= 1(a > 0,b > b∴双曲线的渐近线方程是 y =± bxa x = a x 2 y 2 C : - = 1(a > 0,b >直线与双曲线a2b20) 的两条渐近线分别交于 D , E 两点不妨设 D 为在第一象限, E 在第四象限⎧x = a ⎪ ⎧x = a 联立⎨y = b x ,解得⎨y = b⎪⎩ a ⎩故 D (a , b )⎧x = a⎪⎧x = a 联立⎨ y =- b x ,解得⎨y = -b⎪⎩ a ⎩故 E (a , -b )∴| ED |= 2b∴ ODE 面积为: S △ODE= 1a ⨯ 2b = ab = 82双曲线C : x a 2 - y 2= 1(a > 0,b > b∴其焦距为2c = 2 ≥ 2 = 2 = 8当且仅当a = b = 2 取等号∴ C 的焦距的最小值: 8ODE a 2 + b 2 a 2 + b 2 2ab 2 2 2【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.10.设函数f (x) =x3-1x3,则f (x) ()A. 是奇函数,且在(0,+∞)单调递增B. 是奇函数,且在(0,+∞)单调递减C. 是偶函数,且在(0,+∞)单调递增D. 是偶函数,且在(0,+∞)单调递减【答案】A【解析】【分析】根据函数的解析式可知函数的定义域为{x x ≠ 0},利用定义可得出函数f (x)为奇函数,再根据函数的单调性法则,即可解出.【详解】因为函数f (x)=x3-1 x3所以函数f (x)为奇函数.定义域为{x x ≠ 0},其关于原点对称,而f (-x)=-f (x),又因为函数y =x3在( 0, +? ) 上单调递增,在( -? , 0) 上单调递增,而y =1x3=x-3在( 0, +?) 上单调递减,在( -? , 0) 上单调递减,所以函数f (x)=x3-1x3在( 0, +?) 上单调递增,在( -? , 0) 上单调递增.故选:A.【点睛】本题主要考查利用函数的解析式研究函数的性质,属于基础题.11.已知△ABC 是面积为9 3 的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为416π,则O 到平面ABC 的距离为()A. B.3C. 1D.3 2 2【答案】C 【解析】3R 2 - r 2 3 9 3 a - 2 a 2 4 9 - 9 4 3 根据球O 的表面积和 ABC 的面积可求得球O 的半径 R 和 ABC 外接圆半径r ,由球的性质可知所求距离d = .【详解】设球O 的半径为 R ,则4π R 2 = 16π ,解得: R = 2 . 设 ABC 外接圆半径为 r ,边长为a ,ABC 是面积为 9 3 的等边三角形,41 2 2 ∴ a 2 ⨯ = ,解得: a = 3 ,∴r = ⨯ = ⨯ = ,2 2 4∴球心O 到平面 ABC 的距离d = 3 = 3= 1.故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.12. 若2x - 2y < 3-x - 3- y ,则()A. ln( y - x +1) > 0B. ln( y - x +1) < 0C. ln | x - y |> 0D.ln | x - y |< 0【答案】A【解析】【分析】将不等式变为 2x - 3-x < 2y - 3- y ,根据 f (t ) = 2t- 3-t的单调性知 x < y ,以此去判断各个选项中真数与1的大小关系,进而得到结果.【详解】由2x - 2y < 3-x - 3- y 得: 2x - 3-x < 2y - 3- y ,令 f (t ) = 2t- 3-t,y = 2x 为 R 上的增函数, y = 3-x 为 R 上的减函数,∴ f (t ) 为 R 上的增函数, ∴ x < y ,Q y - x > 0 ,∴ y - x +1 > 1,∴ln ( y - x +1) > 0 ,则A 正确,B 错误;R 2 - r 2 4 - 32Q x - y 与1的大小不确定,故 CD 无法确定.故选:A.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函 数的单调性得到 x , y 的大小关系,考查了转化与化归的数学思想.二、填空题:本题共 4 小题,每小题 5 分,共 20 分.13. 若sin x =- ,则cos 2x =.31 【答案】 9【解析】【分析】直接利用余弦的二倍角公式进行运算求解即可.【详解】cos 2x = 1- 2sin 2 x = 1- 2⨯(- 2)2 = 1- 8 = 1. 3 9 9故答案为: 1.9【点睛】本题考查了余弦的二倍角公式的应用,属于基础题.14. 记 S n 为等差数列{a n } 的前 n 项和.若a 1 = -2,【答案】25 【解析】a 2 + a 6 = 2 ,则 S 10 =.【分析】因为{a n } 是等差数列,根据已知条件 a 2 + a 6 = 2 ,求出公差,根据等差数列前n 项和,即可求得答案.【详解】 {a n } 是等差数列,且a 1 = -2 , a 2 + a 6 = 2 设{a n } 等差数列的公差 d根据等差数列通项公式: a n = a 1 + (n -1)d 可得a 1 + d + a 1 + 5d = 2 即: -2 + d + (-2) + 5d = 2 整理可得: 6d = 6⎨ ⎩ 解得: d = 1根据等差数列前n 项和公式: S n= na 1+ n (n -1) d , n ∈ N *2可得: S 10= 10(-2) + 10⨯ (10 -1)= -20 + 45 = 252∴ S 10 = 25 .故答案为: 25 .【点睛】本题主要考查了求等差数列的前n 项和,解题关键是掌握等差数列的前n 项和公式,考查了分析能力和计算能力,属于基础题.⎧x + y ≥ -1 15. 若 x ,y 满足约束条件⎪x - y ≥ -1,则z = x + 2 y 的最大值是 .⎪2x - y ≤ 1,【答案】8 【解析】【分析】在平面直角坐标系内画出不等式组表示的平面区域,然后平移直线 y =- 1x ,在平面区域内2找到一点使得直线 y = - 1 x + 1z 在纵轴上的截距最大,求出点的坐标代入目标函数中即可.22【详解】不等式组表示的平面区域为下图所示:平移直线 y =- 1 x ,当直线经过点 A 时,直线 y = - 1 x + 1z 在纵轴上的截距最大,2⎧x - y = -1 2 2⎧x = 2此时点 A 的坐标是方程组⎨2x - y = 1 的解,解得: ⎨ y = 3 ,⎩ ⎩因此 z = x + 2 y 的最大值为: 2 + 2 ⨯ 3 = 8 .故答案为:8 .【点睛】本题考查了线性规划的应用,考查了数形结合思想,考查数学运算能力.16.设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内. p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l ⊂平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是.①p1∧p4②p1∧p2③⌝p2∨p3④⌝p3∨⌝p4【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题p1的真假;利用三点共线可判断命题p2的真假;利用异面直线可判断命题p3的真假,利用线面垂直的定义可判断命题p4的真假.再利用复合命题的真假可得出结论.【详解】对于命题p1,可设l1与l2相交,这两条直线确定的平面为α;若l3 与l1 相交,则交点A 在平面α内,同理,l3 与l2 的交点B 也在平面α内,所以,AB ⊂α,即l3⊂α,命题p1真命题;对于命题p2,若三点共线,则过这三个点的平面有无数个,命题p2为假命题;对于命题p3,空间中两条直线相交、平行或异面,命题 p 3 为假命题;对于命题 p 4 ,若直线m ⊥ 平面α ,则 m 垂直于平面α 内所有直线, 直线l ⊂ 平面α ,∴直线m ⊥ 直线l ,命题 p 4 为真命题.综上可知, p 1 ∧ p 4 为真命题, p 1 ∧ p 2 为假命题,⌝p 2 ∨ p 3 为真命题, ⌝p 3 ∨ ⌝p 4 为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求作答. (一)必考题:共 60 分.17. △ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知cos2( π + A ) + cos A = 5. 2 4(1)求 A ;(2)若b - c =3a ,证明:△ABC 是直角三角形. 3π【答案】(1)A = ;(2)证明见解析3【解析】【分析】( 1 ) 根据诱导公式和同角三角函数平方关系, cos 2⎛ π + A ⎫+ cos A = 5可化为 2 ⎪ 41- cos 2 A + cos A = 5,即可解出;4(2)根据余弦定理可得b 2 + c 2 - a 2 = bc ,将b - c =⎝ ⎭3 a 代入可找到a , b , c 关系,3再根据勾股定理或正弦定理即可证出.【详解】(1)因为cos 2⎛ π + A ⎫+ cos A = 5 ,所以sin 2 A + cos A = 5 ,2 ⎪ 4 4⎝⎭即1- cos 2 A + cos A = 5,4解得cos A = 1,又0 < A < π , 2所以 A = π;3πb 2 +c 2 - a 21 (2) 因为 A =,所以cos A ==,3即b 2 + c 2 - a 2 = bc ①,2bc2又b - c =3 a ②, 将②代入①得, b 2 + c 2 - 3(b - c )2= bc ,3即2b 2 + 2c 2 - 5bc = 0 ,而b > c ,解得b = 2c , 所以a = 3c ,故b 2 = a 2 + c 2 ,即 ABC 是直角三角形.【点睛】本题主要考查诱导公式和平方关系的应用,利用勾股定理或正弦定理,余弦定理判断三角形的形状,属于基础题.18. 某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的 200 个地块,从这些地块中用简单随机抽样的方法抽取 20 个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中 x i 和 y i 分别表示第 i 个样区2020的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑ x i = 60 , ∑ y i = 1200 ,i =1i =1202020∑(x - x )2 = 80 , ∑(y - y )2 = 9000 , ∑(x - x () y - y ) = 800 . ii =1ii =1iii =1(1) 求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2) 求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到 0.01);(3) 根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区∑i =12020(x - x ) ( y - y ) 2∑ 2iii =180 ⨯ 90002 ∑ i =1∑y 这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数 r =∑(x i - x () i =1y i - y ),=1.414.【答案】(1)12000 ;(2) 0.94 ;(3)详见解析【解析】【分析】(1) 利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;(2) 利用公式r =20(xi- x )( y i - y )i =1计算即可;(3) 各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样.1201【详解】(1)样区野生动物平均数为20 ∑ y i = 20⨯1200 = 60 ,地块数为 200,该地区这种野生动物的估计值为200 ⨯ 60 = 12000 (2)样本( x i , y i ) 的相关系数为20(x i- x )( y i- y )800 2r =i =1= = ≈ 0.943(3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层, 在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.19. 已知椭圆 C 1:x a 2 2+ = 1(a >b >0)的右焦点 F 与抛物线 C 2 的焦点重合,C 1 的中心与 C 2 的 b 2n ∑ in (x - x ) (y - y )i =12∑ in2i =12 ∑ i =12020(x - x ) ( y - y )2∑ 2iii =12顶点重合.过 F 且与 x 轴重直的直线交 C 1 于 A ,B 两点,交 C 2 于 C ,D 两点,且|CD |= 4|AB |.3(1) 求 C 1 的离心率;(2) 若 C 1 的四个顶点到 C 2 的准线距离之和为 12,求 C 1 与 C 2 的标准方程.1Cx 2 y 2C 2【答案】(1) 2 ;(2) 1 : += 1, 2 : y 16 12= 8x .【解析】【分析】(1) 根据题意求出C 2 的方程,结合椭圆和抛物线的对称性不妨设 A , C 在第一象限,运用代入法求出 A , B , C , D 点的纵坐标,根据| CD |= 4| AB | ,结合椭圆离心率的公式进行求解即可;3(2) 由(1)可以得到椭圆的标准方程,确定椭圆的四个顶点坐标,再确定抛物线的准线方程,最后结合已知进行求解即可;【详解】解:(1)因为椭圆C 1 的右焦点坐标为: F (c, 0) ,所以抛物线C 2 的方程为 y 2 = 4cx ,其中c =.A , CC x 2 y2不妨设 在第一象限,因为椭圆 1 的方程为: a 2 + b2 = 1,x = cc 2 y 2 b 2A ,B b 2 b 2所以当时,有 + = 1 ⇒ y = ± ,因此 的纵坐标分别为 , - ; a 2 b 2 a a a又因为抛物线C 2 的方程为 y 2 = 4cx ,所以当 x = c 时,有 y 2 = 4c ⋅ c ⇒ y = ±2c ,所以C , D 的纵坐标分别为2c , -2c ,故| AB |=2b 2 ,| CD |= 4c . a48b 2cc 2 c c 1由| CD |= | AB |得4c = ,即3⋅ = 2 - 2( ) ,解得 = -2 (舍去), = .3 3aa a a a 2 所以C 的离心率为 1.1 2x 2 y 2C (2)由(1)知a = 2c , b = 3c ,故C 1 : 4c 2 + 3c2 = 1,所以1 的四个顶点坐标分别为(2c , 0) , (-2c , 0) , (0, 3c ) , (0, - 由已知得3c + c + c + c = 12 ,即c = 2 .3c ) , C 2 的准线为 x = -c . a 2 - b 21 11 1 Cx 2 y 2C 2所以 1 的标准方程为+ = 1, 2 的标准方程为 y 16 12= 8x .【点睛】本题考查了求椭圆的离心率,考查了求椭圆和抛物线的标准方程,考查了椭圆的四个顶点的坐标以及抛物线的准线方程,考查了数学运算能力.20. 如图,已知三棱柱 ABC –A 1B 1C 1 的底面是正三角形,侧面 BB 1C 1C 是矩形,M ,N 分别为 BC ,B 1C 1 的中点,P 为 AM 上一点.过 B 1C 1 和 P 的平面交 AB 于 E ,交 AC 于 F .(1) 证明:AA 1//MN ,且平面 A 1AMN ⊥平面 EB 1C 1F ;(2) 设 O 为△A 1B 1C 1 的中心,若 AO =AB =6,AO //平面 EB 1C 1F ,且∠MPN =π,求四棱锥3B –EB 1C 1F 的体积.【答案】(1)证明见解析;(2) 24 . 【解析】【分析】(1)由M , N 分别为 BC ,B 1C 1 的中点,MN //CC 1 ,根据条件可得 AA 1 / / BB 1 ,可证 MN //AA 1 ,要证平面 EB 1C 1F ⊥ 平面 A 1 AMN ,只需证明 EF ⊥ 平面 A 1 AMN 即可;(2)根据已知条件求得 S 四边形EB C F 和 M 到 PN 的距离,根据椎体体积公式,即可求得V B - E B C F .【详解】(1)∴ MN //BB 1M , N 分别为 BC , B 1C 1 的中点,又 AA 1 / / BB 1∴ M N //AA 1MN //BB 1在等边 ABC 中, M 为 BC 中点,则 BC ⊥ AM 又 侧面 BB 1C 1C 为矩形,∴ BC ⊥ BB 1MN ⊥ BC由 MN ⋂ AM = M , MN , AM ⊂ 平面 A 1 A MN∴ BC ⊥ 平面 A 1 A MN又 B 1C 1 //BC ,且 B 1C 1 ⊄ 平面 ABC , BC ⊂ 平面 ABC ,∴ B 1C 1 // 平面 ABC又 B 1C 1 ⊂ 平面 EB 1C 1F ,且平面 EB 1C 1F ⋂ 平面 ABC = EF∴ B 1C 1 / / E F∴ EF //BC又 BC ⊥ 平面 A 1 AMN∴ EF ⊥ 平面 A 1 AMNEF ⊂ 平面 EB 1C 1F∴平面 EB 1C 1F ⊥ 平面 A 1 AMN(2)过 M 作 PN 垂线,交点为 H ,画出图形,如图3 3 3 ⨯ 63 3AO // 平面 EB 1C 1FAO ⊂ 平面 A 1 A MN ,平面 A 1AMN ⋂ 平面 EB 1C 1F = NP∴ AO //NP又NO //AP∴ AO = NP = 6O 为△A 1B 1C 1 的中心.∴ ON = 1 AC sin 60︒ = 1⨯ 6⨯sin 60︒ =3 1 1 3故: ON = AP = ,则 AM = 3AP = 3 ,平面 EB 1C 1F ⊥ 平面 A 1 A MN ,平面 EB 1C 1F ⋂ 平面 A 1 A MN = NP ,MH ⊂ 平面 A 1 AMN∴ MH ⊥ 平面 EB 1C 1F又 在等边 ABC 中EF =APBCAMAP ⋅ BC 即 EF === 2 AM由(1)知,四边形 EB 1C 1F 为梯形∴四边形 EB C F 的面积为: S=EF + B 1C 1⋅ NP = 2 + 6 ⨯ 6 = 241 1∴V= 1 S 四边形EB 1C 1F22⋅ h , B -EB 1C 1F3 四边形EB 1C 1Fh 为 M 到 PN 的距离 MH = 2 3 ⋅sin 60︒= 3 ,∴ V = 1⨯ 24⨯ 3 = 24 .3【点睛】本题主要考查了证明线线平行和面面垂直,及其求四棱锥的体积,解题关键是掌握面面垂直转为求证线面垂直的证法和棱锥的体积公式,考查了分析能力和空间想象能力,属于中档题.21. 已知函数 f (x )=2ln x +1.3(1)若f(x)≤2x+c,求c 的取值范围;f (x) -f (a)(2)设a>0 时,讨论函数g(x)=x -a的单调性.【答案】(1)c ≥-1 ;(2)g(x) 在区间(0, a) 和(a, +∞) 上单调递减,没有递增区间【解析】【分析】(1)不等式f (x) ≤ 2x +c 转化为f (x) - 2x -c ≤ 0 ,构造新函数,利用导数求出新函数的最大值,进而进行求解即可;(2)对函数g(x) 求导,把导函数g'(x)分子构成一个新函数m(x) ,再求导得到m'( x) ,根据m'( x) 的正负,判断m(x) 的单调性,进而确定g'(x) 的正负性,最后求出函数g(x) 的单调性.【详解】(1)函数f (x) 的定义域为:(0, +∞)f (x) ≤ 2x +c ⇒f (x) - 2x -c ≤ 0 ⇒ 2 ln x +1- 2x -c ≤ 0(*) ,设h(x) = 2 ln x +1- 2x -c(x > 0) ,则有h'(x) =2- 2 =2(1-x),x x当x > 1 时,h' (x) < 0, h(x) 单调递减,当0 <x < 1时,h' (x) > 0, h(x) 单调递增,所以当x = 1 时,函数h(x) 有最大值,即h(x)max=h(1) = 2 ln1+1- 2 ⨯1-c =-1-c ,要想不等式(*) 在(0, +∞) 上恒成立,只需h(x)max≤ 0 ⇒-1-c ≤ 0 ⇒c ≥-1 ;(2)g(x) =2 ln x +1- (2 ln a -1)=2(ln x - ln a)(x > 0 且x ≠a) x -a x -a因此g'(x) =2(x -a -x ln x +x ln a),设m(x) = 2(x -a -x ln x +x ln a) ,x(x -a)2则有m'(x) = 2(ln a - ln x) ,当x >a 时,ln x > ln a ,所以m' (x) < 0 ,m(x) 单调递减,因此有m(x) <m(a) = 0 ,即⎩ g '(x ) < 0 ,所以 g (x ) 单调递减;当0 < x < a 时, ln x < ln a ,所以m ' (x ) > 0 , m (x ) 单调递增,因此有m (x ) < m (a ) = 0 ,即g '(x ) < 0 ,所以 g (x ) 单调递减,所以函数 g (x ) 在区间(0, a ) 和(a , +∞) 上单调递减,没有递增区间.【点睛】本题考查了利用导数研究不等式恒成立问题,以及利用导数判断含参函数的单调性,考查了数学运算能力,是中档题.(二)选考题:共 10 分.请考生在第 22、23 题中选定一题作答,并用 2B 铅笔在 答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分,不涂、多涂均按所答第一题评分;多答按所答第一题评分.[选修 4—4:坐标系与参数方程]⎧x = t + 1 ,⎧x = 4 cos 2 θ 22. 已知曲线 C 1,C 2 的参数方程分别为 C 1: ⎨ y = 4sin 2 θ⎪ t (θ 为参数),C 2: ⎨ (t ⎪ y = t - 1 ⎩ t为参数).(1) 将 C 1,C 2 的参数方程化为普通方程;(2) 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设 C 1,C 2 的交点为 P ,求圆心在极轴上,且经过极点和 P 的圆的极坐标方程.【答案】(1) C 1 : x + y = 4 ; C 2 : x 2 - y 2 = 4 ;(2) ρ = 17 cos θ . 5【解析】【分析】(1) 分别消去参数θ 和t 即可得到所求普通方程;(2) 两方程联立求得点 P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.【详解】(1)由cos 2 θ + sin 2 θ = 1 得C 1 的普通方程为: x + y = 4 ;⎪⎩ 2 2 2 2 2 ⎧x = t + 1 ⎧x 2 = t 2 + 1 + 2 ⎪ t ⎪ t 2 C 2 2 由⎨ 1 得: ⎨ 1 ,两式作差可得 2 的普通方程为: x - y = 4 . ⎪ y = t - ⎪ y 2 = t 2 + - 2⎪⎩ t ⎪⎩t 2 ⎧x = 5 ⎧x + y = 4 ⎪ (2)由 得: 2 ,即 P ⎛ 5 , 3 ⎫; ⎨x 2 - y 2 = 4 ⎨ ⎪ ⎪ y = 3⎝ ⎭ ⎪⎩ 2设所求圆圆心的直角坐标为(a ,0) ,其中a > 0 ,⎛ 5 ⎫2 ⎛ 3 ⎫2 17 ∴ 17 则 a - 2 ⎪ + 0 - 2 ⎪ = a ,解得: a = , 10 所求圆的半径r = , 10 ⎝ ⎭ ⎝ ⎭ ∴⎛ 17 ⎫2 ⎛ 17 ⎫2 2 2 17 所求圆的直角坐标方程为: x - 10 ⎪ + y = 10 ⎪ ,即 x + y = x , 5 ⎝ ⎭ ⎝ ⎭ ∴所求圆的极坐标方程为 ρ = 17 cos θ .5【点睛】本题考查极坐标与参数方程的综合应用问题,涉及到参数方程化普通方程、直角坐标方程化极坐标方程等知识,属于常考题型. [选修 4—5:不等式选讲]23. 已知函数 f (x ) = x - a 2 + | x - 2a +1|.(1) 当a = 2 时,求不等式 f (x )…4 的解集;(2) 若 f (x )…4 ,求 a 的取值范围.【答案】(1) ⎧x x ≤ 3 或 x ≥ 11⎫ ;(2) (-∞, -1] [3, +∞) .⎨ ⎬ ⎩ ⎭ 【解析】【分析】(1) 分别在 x ≤ 3 、3 < x < 4 和 x ≥ 4 三种情况下解不等式求得结果;(2) 利用绝对值三角不等式可得到 f( x ) ≥ (a -1)2 ,由此构造不等式求得结果.【详解】(1)当a = 2 时, f (x ) = x - 4 + x - 3 . 22 2 当 x ≤3 时, f (x ) = 4 - x + 3 - x = 7 - 2x ≥ 4 ,解得: x ≤ 3 ; 2当3 < x < 4 时, f (x ) = 4 - x + x - 3 = 1 ≥ 4 ,无解; 当 x ≥ 4 时, f (x ) = x - 4 + x - 3 = 2x - 7 ≥ 4 ,解得: x ≥ 11 ;2 综上所述: f ( x ) ≥ 4 的解集为⎧x x ≤3 或 x ≥ 11⎫ . ⎨ ⎬ ⎩ ⎭ (2) f (x ) = x - a 2 + x - 2a +1 ≥ (x - a 2 ) - ( x - 2a +1) = -a 2 + 2a -1 = (a -1)2(当且 仅当2a -1 ≤ x ≤ a 2 时取等号),∴(a -1)2 ≥ 4 ,解得: a ≤ -1 或 a ≥ 3 ,∴a 的取值范围为(-∞, -1] [3, +∞) .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.。
2020年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A. 2 B. 3 C. 4 D. 5【答案】B 【解析】 【分析】采用列举法列举出AB 中元素的即可.【详解】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.2.若()11+=-z i i ,则z =( ) A. 1–i B. 1+iC. –iD. i【答案】D 【解析】 【分析】先利用除法运算求得z ,再利用共轭复数的概念得到z 即可.【详解】因为21(1)21(1)(1)2i i iz i i i i ---====-++-,所以z i . 故选:D【点晴】本题主要考查复数的除法运算,涉及到共轭复数的概念,是一道基础题.3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( ) A. 0.01 B. 0.1C. 1D. 10【答案】C 【解析】 【分析】根据新数据与原数据关系确定方差关系,即得结果.【详解】因为数据(1,2,,)i ax b i n +=,的方差是数据(1,2,,)i x i n =,的方差的2a 倍,所以所求数据方差为2100.01=1⨯ 故选:C【点睛】本题考查方差,考查基本分析求解能力,属基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3) A. 60 B. 63C. 66D. 69【答案】C 【解析】 【分析】将t t *=代入函数()()0.23531t KI t e--=+结合()0.95I t K *=求得t*即可得解.【详解】()()0.23531t K I t e--=+,所以()()0.23530.951t K I t K e**--==+,则()0.235319t e*-=,所以,()0.2353ln193t *-=≈,解得353660.23t *≈+≈. 故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题. 5.已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭( )A.12B.3C.23D.2【答案】B【解析】 【分析】将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值. 【详解】由题意可得:13sin sin cos 122θθθ++=, 则:33sin cos 12θθ+=,313sin cos 2θθ+=, 从而有:3sin coscos sin66ππθθ+=, 即3sin 6πθ⎛⎫+= ⎪⎝⎭. 故选:B.【点睛】本题主要考查两角和与差的正余弦公式及其应用,属于中等题.6.在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为( ) A. 圆 B. 椭圆C. 抛物线D. 直线【答案】A 【解析】 【分析】首先建立平面直角坐标系,然后结合数量积的定义求解其轨迹方程即可.【详解】设()20AB a a =>,以AB 中点为坐标原点建立如图所示的平面直角坐标系,则:()(),0,,0A a B a -,设(),C x y ,可得:()(),,,AC x a y BC x a y →→=+=-, 从而:()()2AC BC x a x a y →→⋅=+-+, 结合题意可得:()()21x a x a y +-+=,整理可得:2221x y a +=+,即点C 的轨迹是以AB 为半径的圆. 故选:A.【点睛】本题主要考查平面向量及其数量积的坐标运算,轨迹方程的求解等知识,意在考查学生的转化能力和计算求解能力.7.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( ) A. (14,0) B. (12,0) C. (1,0) D. (2,0)【答案】B 【解析】 【分析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4COx COx π∠=∠=,从而可以确定出点D的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x =与抛物线22(0)y px p =>交于,C D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx COx π∠=∠=,所以(2,2)C ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目. 8.点(0,﹣1)到直线()1y k x =+距离的最大值为( )A. 1B.C.D. 2【答案】B 【解析】 【分析】首先根据直线方程判断出直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即可求得结果.【详解】由(1)y k x =+可知直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大, 即为||2AP =.故选:B.【点睛】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题.9.下图为某几何体的三视图,则该几何体的表面积是( )A. 6+42B. 4+42C. 6+23D. 4+23【答案】C 【解析】 【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积. 【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△ 根据勾股定理可得:22AB AD DB ===∴ADB △是边长为22根据三角形面积公式可得:211sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题. 10.设a =log 32,b =log 53,c =23,则( ) A. a <c <b B. a <b <cC. b <c <aD. c <a <b【答案】A 【解析】 【分析】分别将a ,b 改写为331log 23a =,351log 33b =,再利用单调性比较即可. 【详解】因为333112log 2log 9333a c =<==,355112log 3log 25333b c =>==,所以a c b <<. 故选:A【点晴】本题考查对数式大小的比较,考查学生转化与回归的思想,是一道中档题. 11.在△ABC 中,cos C =23,AC =4,BC =3,则tan B =( )A.【答案】C 【解析】 【分析】先根据余弦定理求c ,再根据余弦定理求cos B ,最后根据同角三角函数关系求tan .B 【详解】设,,AB c BC a CA b ===22222cos 916234933c a b ab C c =+-=+-⨯⨯⨯=∴=2221cos sin tan 299a cb B B B ac +-==∴===故选:C【点睛】本题考查余弦定理以及同角三角函数关系,考查基本分析求解能力,属基础题.12.已知函数f (x )=sin x +1sin x,则( ) A. f (x )的最小值为2B. f (x )的图像关于y 轴对称C. f (x )的图像关于直线x π=对称D. f (x )的图像关于直线2x π=对称【答案】D 【解析】 【分析】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C,D. 【详解】sin x 可以为负,所以A 错;1sin 0()()sin ()sin x x k k Z f x x f x xπ≠∴≠∈-=--=-∴()f x 关于原点对称; 11(2)sin (),()sin (),sin sin f x x f x f x x f x x xππ-=--≠-=+=故B 错;()f x ∴关于直线2x π=对称,故C 错,D 对故选:D【点睛】本题考查函数定义域与最值、奇偶性、对称性,考查基本分析判断能力,属中档题.二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩, ,则z =3x +2y 的最大值为_________.【答案】7 【解析】 【分析】作出可行域,利用截距的几何意义解决. 【详解】不等式组所表示的可行域如图因为32z x y =+,所以322x zy =-+,易知截距2z 越大,则z 越大, 平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大, 由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,(1,2)A ,所以max 31227z =⨯+⨯=. 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.14.设双曲线C :22221x y a b-= (a >0,b >0)的一条渐近线为y 2x ,则C 的离心率为_________.3 【解析】 【分析】 根据已知可得2ba=,,a b c 的关系,即可求解. 【详解】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为2y x =,所以2b a =2213c b e a a==+=3【点睛】本题考查的是有关双曲线性质,利用渐近线方程与离心率关系是解题的关键,要注意判断焦点所在位置,属于基础题.15.设函数e ()xf x x a =+.若(1)4e f '=,则a =_________.【答案】1 【解析】【分析】由题意首先求得导函数的解析式,然后得到关于实数a 的方程,解方程即可确定实数a 的值 【详解】由函数的解析式可得:()()()()()221x xx e x a e e x a f x x a x a +-+-'==++,则:()()()()12211111e a aef a a ⨯+-'==++,据此可得:()241aee a =+, 整理可得:2210a a -+=,解得:1a =. 故答案为:1.【点睛】本题主要考查导数的运算法则,导数的计算,方程的数学思想等知识,属于中等题. 16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________. 【答案】2π 【解析】 【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值. 【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3BC AB AC ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于223122AM =-=1222222S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()1332222r =⨯++⨯=解得:22r,其体积:3433V r π==.. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.设等比数列{a n }满足124a a +=,318a a -=. (1)求{a n }的通项公式;(2)记n S 为数列{log 3a n }的前n 项和.若13m m m S S S +++=,求m . 【答案】(1)13-=n n a ;(2)6m =. 【解析】 【分析】(1)设等比数列{}n a 的公比为q ,根据题意,列出方程组,求得首项和公比,进而求得通项公式; (2)由(1)求出3{log }n a 的通项公式,利用等差数列求和公式求得n S ,根据已知列出关于m 的等量关系式,求得结果.【详解】(1)设等比数列{}n a 的公比为q ,根据题意,有1121148a a q a q a +=⎧⎨-=⎩,解得113a q =⎧⎨=⎩,所以13-=n n a ;(2)令313log log 31n n n b a n -===-,所以(01)(1)22n n n n n S +--==,根据13m m m S S S +++=,可得(1)(1)(2)(3)222m m m m m m -++++=, 整理得2560m m --=,因为0m >,所以6m =,【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析. 【解析】 【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率; (2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论. 【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥; (2)点1C 在平面AEF 内.【答案】(1)证明见解析;(2)证明见解析. 【解析】 【分析】(1)根据正方形性质得AC BD ⊥,根据长方体性质得1AC BB ⊥,进而可证AC ⊥平面11BB D D ,即得结果; (2)只需证明1//EC AF 即可,在1CC 上取点M 使得12CM MC =,再通过平行四边形性质进行证明即可.【详解】(1)因为长方体1111ABCD A B C D -,所以1BB ⊥平面ABCD ∴1AC BB ⊥,因为长方体1111,ABCD A B C D AB BC -=,所以四边形ABCD 为正方形AC BD ∴⊥ 因为11,BB BD B BB BD =⊂、平面11BB D D ,因此AC ⊥平面11BB D D ,因为EF ⊂平面11BB D D ,所以AC EF ⊥;(2)在1CC 上取点M 使得12CM MC =,连,DM MF ,因为111112,//,=D E ED DD CC DD CC =,所以11,//,ED MC ED MC =所以四边形1DMC E 为平行四边形,1//DM EC ∴因为//,=,MF DA MF DA 所以四边形MFAD 为平行四边形,1//,//DM AF EC AF ∴∴ 因此1C 在平面AEF 内【点睛】本题考查线面垂直判定定理、线线平行判定,考查基本分析论证能力,属中档题. 20.已知函数32()f x x kx k =-+. (1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围. 【答案】(1)详见解析;(2)4(0,)27. 【解析】 【分析】(1)'2()3f x x k =-,对k 分0k ≤和0k >两种情况讨论即可;(2)()f x 有三个零点,由(1)知0k >,且(00f f ⎧>⎪⎪⎨⎪<⎪⎩,解不等式组得到k 的范围,再利用零点存在性定理加以说明即可.【详解】(1)由题,'2()3f x x k =-,当0k ≤时,'()0f x ≥恒成立,所以()f x 在(,)-∞+∞上单调递增;当0k >时,令'()0f x =,得x ='()0f x <,得x << 令'()0f x >,得x <x >()f x在(上单调递减,在(,-∞,)+∞上单调递增. (2)由(1)知,()f x 有三个零点,则0k >,且(00f f ⎧>⎪⎪⎨⎪<⎪⎩即22203203k k ⎧+>⎪⎪⎨⎪-<⎪⎩,解得4027k <<, 当4027k <<>20f k =>, 所以()f x在上有唯一一个零点,同理1k --<32(1)(1)0f k k k --=--+<, 所以()f x在(1,k --上有唯一一个零点, 又()f x在(上有唯一一个零点,所以()f x 有三个零点, 综上可知k 的取值范围为4(0,)27. 【点晴】本题主要考查利用导数研究函数的单调性以及已知零点个数求参数的范围问题,考查学生逻辑推理能力、数学运算能力,是一道中档题.21.已知椭圆222:1(05)25x y C m m +=<<的离心率为4,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】 【分析】(1)因为222:1(05)25x y C m m +=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案; (2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积.【详解】(1)222:1(05)25x y C m m +=<<∴5a =,b m =,根据离心率22154115c b m e a a ⎛⎫⎛⎫==-=-= ⎪ ⎪⎝⎭⎝⎭,解得54m =或54m =-(舍), ∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=; (2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N 根据题意画出图形,如图||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”, 可得:PMB BNQ ≅△△,221612525x y +=, ∴(5,0)B ,∴651PM BN ==-=,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时, 故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2), 画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:22231111055125211d ⨯-⨯+===+ 根据两点间距离公式可得:()()22652055AQ =++-=,∴APQ 面积为:155522⨯=;故5+38MB ==,PMB BNQ ≅△△, ∴||||8MB NQ ==,可得:Q 点为(6,8), 画出图象,如图(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:()2283111405185185811d ⨯--⨯+===+, 根据两点间距离公式可得:()()226580185AQ =++-=,∴APQ 面积为:1518522185=, 综上所述,APQ 面积为:52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线C 的参数方程为2222x t t y t t⎧=--⎨=-+⎩,(t 为参数且t ≠1),C 与坐标轴交于A ,B 两点. (1)求|AB |:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程. 【答案】(1)2)3cos sin 120ρθρθ-+= 【解析】 【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值; (2)由,A B的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A . 令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.AB ∴==(2)由(1)可知12030(4)AB k -==--,则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4-5:不等式选讲]23.设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c . 【答案】(1)证明见解析(2)证明见解析. 【解析】 【分析】(1)由2222()2220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bcbc+++=⋅==,结合基本不等式,即可得出证明. 【详解】(1)2222()2220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. ,,a b c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<; (2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即3max{,,}4a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.。
2020年台湾地区学测(数学)选择题赏析作者:***来源:《中学数学杂志(高中版)》2020年第03期1 前言台湾地区学科能力测试(简称“学测”)包括国文、英文、数学、社会、自然五科,旨在测验考生是否具有接受大学教育的基本学科能力,是大学校系初步筛选学生的门槛. 2020年台湾地区数学测试考试共20道題,其中单选题7道(试题1-7),多选题6道(试题8-13),选填题7道.考试时间共100分钟,满分100分.本文对台湾地区学测考试(数学)的选择题进行解析和点评,并对其特点进行总结,旨在让读者大致了解台湾地区学测考试的主要内容和特点.2 试题赏析试题1 已知两个直角三角形三边长分别为3、4、5,5、12、13,α,β分别为它们的一角,如图1所示. 试选出正确的选项().解析根据图形可知,sinα=35,sinβ=513,因为sin30°=12,又因为513<12<35,所以sinβ<sin30°<sinα,所以选(2).点评本题考查了正弦在直角三角形中的定义,根据正弦函数y=sinx,x∈0,π2的单调性比较数值大小即可得到答案,属于一道较容易题.试题2 空间中有相异四点A,B,C,D,已知内积AB·AC=AB·AD.试选出正确的选项.(1)AB·CD=0;(2)AC=AD;(3)AB与CD平行;(4)AD·BC=0;(5)A,B,C,D四点在同一平面上.解析根据题意可知AB·AC=AB·AD,所以AB·AC-AB·AD=0AB·AC-AD=0AB·CD=0,所以选项(1)正确,故选(1).点评本题无需计算出数量积的具体数值,只需要稍作变形即可得到答案.实际上,根据AB·AC=AB·AD可知AC,AD在AB上的投影相等,且C,D是不同的两点,所以有AB·CD=0.试题3 如图2所示,O为正六边形之中心.试问下列哪个向量的终点P落在△ODE内部(不含边界)?解析要使终点P在△ODE内(不含边界),不仅要结果向量的方向在边界内,而且还要使结果向量的终点落在△ODE区域内.据向量加法的几何意义,选项(1)对应的点P在射线OD上,且OP=OD=OC+OE,同理,根据向量加法的几何意义知选项(3)(4)(5)对应的点P(OP的方向)均不在△ODE区域内,所以选项(2)正确.点评本题考查了向量的有关运算(向量的加法和数乘),本题不需要设坐标进行代数运算,只需要了解和理解向量加法的几何意义即可.本题以特殊的平面图形——正六边形为载体,从形的方面考查对向量加法几何意义本质的理解.试题4 令I=1001,A=1134,B=I+A+A-1,试选出代表BA的选项.(1)1001;(2)6006;(3)4-1-31;(4)1134;(5)661824.解析因为B=I+A+A-1,等式两边同乘以矩阵A可得.因为BA=IA+A2+A-1A=10011134+11342+1001=661824,所以BA=661824,故选(5).点评本题考查了矩阵的加法和乘法运算,特别注意的是运算技巧,不要首先将矩阵B算出来,再与矩阵A相乘,这样比较复杂. 同样也不要将计算矩阵BA的值算成计算矩阵AB的值.一般情况下,矩阵的乘法不满足交换律.实际上,上面的计算过程还可以简化为BA=IA+A2+A-1A=IA+A2+I=(I+A)A+I,同样可以得到正确的结果.试题5 试问数线上有多少个整数点与101的距离小于5,但与点38的距离大于3?(1)1个;(2)4个;(3)6个;(4)8个;(5)10个.解析因为10<101<11,所以数线上与101小于5的整数点有x=6,7,8,9,10,11,12,14,15,共10个;又因为6<38<7,所以数线上到38的距离大于3的整数点满足x10或x≤3. 所以,满足与101的距离小于5,且与点38的距离大于3的整数点有x=10,11,12,13,14,15,共6个,故选(3).点评本题考查了绝对值不等式的解法,将同时满足两个条件的整数点在数线(即数轴)上表示出来,不难得出共6个整数点满足条件.实质上,本题考查了数形结合的思想和估算的能力,考生若能运用数形结合的思想,并在估算方面能力较强,不需要运算就可以又快又准地得出答案.试题6 连续投掷一公正骰子两次,设出现的点数依序为a,b.试问发生log(a2)+logb>1的概率为多少?(1)13;(2)12;(3)23;(4)34;(5)56.解析投掷一公正骰子两次,共有6×6=36种可能结果.又因为loga2+logb>1,所以a2b>10.我们先考虑a2b≤10的情况:当a=1时,b=1,2,3,4,5,6,共6种结果;当a=2时,b=1,2,共2种结果;当a=3时,b=1,共1种结果.所以,发生log(a2)+logb>1的概率p=36-(6+2+1)36=2736=34,故选(4).点评本题为一道求古典概率题,从正面求满足a2b>10的整数对(a,b)的个数较多,所以从反面求a2b≤10的整数对(a,b)的个数(共6+2+1=9(个)),体现了处理数学问题时正难则反的思想.本题将求古典概率与对数函数的变形交汇,在知识的交汇处命题.值得注意的是这里loga表示以10为底a的对数,等同于大陆教材中常用符号lga.试题7 坐标平面上,函数图形y=-3x3上有两点P,Q到原点距离皆为1.已知点P坐标为cosθ,sinθ,试问点Q坐标为?(1)(cos(-θ),sin(-θ));(2)(-cosθ,sinθ);(3)(cos(-θ),-sinθ);(4)(-cosθ,sin(-θ));(5)(cosθ,-sinθ).解析因为y=-3x3是奇函数,其图形关于原点成中心对称,P,Q到原点距离皆为1,所以P,Q两点关于原点成中心对称,因为Pcosθ,sinθ,所以Q(-cosθ,-sinθ),即Q(-cosθ,sin (-θ)),所以选(4).点评本题考查的知识点有幂函数和三角函数的性质,关键是根据P,Q两点到原点距离皆为1推导出P,Q关于原点成中心对称.试题8 有一个游戏的规则如下:丢三颗公正的骰子,若所得的点数恰满足下列(A)或(B)两个条件之一,可得到奖金100元;若两个条件都满足,则共得200元奖金;若两个条件都不满足,则无奖金.(A)三个点数皆为奇数或者皆为偶数(B)三个点数由小排到大为等差数列若已知有两颗骰子的点数分别为1,3,且所得的奖金为100元,则未知的骰子点数可能为何?(1)2;(2)3;(3)4;(4)5;(5)6.解析因为所得奖金为100元,则三个点数满足条件(A)(B)之一.当未知的骰子的点数为2时,符合条件(B),但不符合条件(A),所以选项(1)正确;当未知的骰子的点数为3时,符合条件(A),但不符合条件(B),所以选项(2)正确;当未知的骰子的点数为4时,条件(A)(B)均不满足,选项(3)错误;当未知的骰子的点数为5时,条件(A)(B)均满足,选项(4)错误;当未知的骰子的点数为6时,条件(A)(B)均不满足,选项(5)错误.故选(1)(2).点评本题是多项选择题,较为容易,认真审题即可得到正确答案.试题9 在坐标平面上,有一通过原点O的直线L,以及一半径为2、圆心为原点O的圆Γ.P,Q为Γ上相异两点,且OP,OQ分别与L所夹的锐角皆为30°,试选出内积OP·OQ之值可能发生的选项.(1)23;(2)-23;(3)0;(4)-2;(5)-4.解析根据题意可知,OP,OQ的夹角可能为60°,120°,180°,所以OP·OQ=|OP||OQ|cos 〈OP,OQ〉.当〈OP,OQ〉=60°时,OP·OQ=22cos60°=2;当〈OP,OQ〉=120°时,OP·OQ=22cos120°=-2;当〈OP,OQ〉=180°时,OP·OQ=22cos180°=-4;所以,正确的选项为(4)(5).点评本题考查了考生的分类讨论的思想和向量的数量积等知识的运用,注意到直线和向量的区别. 根据题意,OP,OQ的夹角有3种情形,如图3所示,即〈OP,OQ〉=180°,〈OP,OQ1〉=60°,〈OP,OQ2〉=120°.值得一提的是,选项中并没有答案为“2”这一选项,也就是说,在多项选择题的命制中,选项不一定要覆盖所有可能值.試题10 已知多项式f(x)=3x4+11x2-4,试选出正确的选项.(1)y=f(x)的图形与y轴交点的y坐标小于0;(2)f(x)=0有4个实根;(3)f(x)=0至少有一个有理根;(4)f(x)=0有一根介于0与1之间;(5)f(x)=0有一根介于1与2之间.解析对于选项(1)来说,y=f(x)的图形与y轴交点的y坐标,即当x=0时y的值,显然有y=f(0)=-4<0,选项(1)正确;对于选项(2),因为f(x)=3x4+11x2-4=(3x2-1)(x2+4),当f(x)=0时,有3x2-1=0或x2+4=0,显然,f(x)=0只有两个不同的实根x1,2=±33,其余两个根为虚根x3,4=±2i(i为虚数单位,即i2=-1),故选项(2)错误;对于选项(3),由选项(2)可知,f(x)=0没有一个有理根,4个根分别为两个无理根,两个虚根,故选项(3)错误;对于选项(4),因为0<33<1,故f(x)=0有一根介于0与1之间,选项(4)正确,选项(5)错误.点评本题从多个方面考查了多项式函数(次数为4)的图形和性质,如图形与y轴交点的纵坐标的正负,根的类型和根的范围等等. 首先,遇到与多项式函数有关的问题时,因式分解是关键,将高次降为低次进行问题解决. 其次,若不能够因式分解,则运用多形式函数的有关定理,如余数定理、综合除法、虚根成对定理、代数基本定理和插值公式来解决问题.试题11 设a,b,c为实数且满足loga=1.1,logb=2.2,logc=3.3.试选出正确的选项.(1)a+c=2b;(2)1<a<10;(3)1000<c<2000;(4)b=2a;(5)a,b,c成等比数列.解析对于选项(1),因为loga+logc=2logb,所以有b2=ac,并不能推导出a+c=2b,故选项(1)错误;实际上,因为c=a3,b=a2,若a+c=2b,则有a+a3=2a2,又因为a>10,所以a+a3=2a2无解,所以a+c=2b错误;试题7 坐标平面上,函数图形y=-3x3上有两点P,Q到原点距离皆为1.已知点P坐标为cosθ,sinθ,试问点Q坐标为?(1)(cos(-θ),sin(-θ));(2)(-cosθ,sinθ);(3)(cos(-θ),-sinθ);(4)(-cosθ,sin(-θ));(5)(cosθ,-sinθ).解析因为y=-3x3是奇函数,其图形关于原点成中心对称,P,Q到原点距离皆为1,所以P,Q两点关于原点成中心对称,因为Pcosθ,sinθ,所以Q(-cosθ,-sinθ),即Q(-cosθ,sin (-θ)),所以选(4).点评本题考查的知识点有幂函数和三角函数的性质,关键是根据P,Q两点到原点距离皆为1推导出P,Q关于原点成中心对称.试题8 有一个游戏的规则如下:丢三颗公正的骰子,若所得的点数恰满足下列(A)或(B)两个条件之一,可得到奖金100元;若两个条件都满足,则共得200元奖金;若两个条件都不满足,则无奖金.(A)三个点数皆为奇数或者皆为偶数(B)三个点数由小排到大为等差数列若已知有两颗骰子的点数分别为1,3,且所得的奖金为100元,则未知的骰子点数可能为何?(1)2;(2)3;(3)4;(4)5;(5)6.解析因为所得奖金为100元,则三个点数满足条件(A)(B)之一.当未知的骰子的点数为2时,符合条件(B),但不符合条件(A),所以选项(1)正确;当未知的骰子的点数为3时,符合条件(A),但不符合条件(B),所以选项(2)正确;当未知的骰子的点数为4时,条件(A)(B)均不满足,选项(3)错误;当未知的骰子的点数为5时,条件(A)(B)均满足,选项(4)错误;当未知的骰子的点数为6时,条件(A)(B)均不满足,选项(5)错误.故选(1)(2).点评本题是多项选择题,较为容易,认真审题即可得到正确答案.试题9 在坐标平面上,有一通过原点O的直线L,以及一半径为2、圆心为原点O的圆Γ.P,Q为Γ上相异两点,且OP,OQ分别与L所夹的锐角皆为30°,试选出内积OP·OQ之值可能发生的选项.(1)23;(2)-23;(3)0;(4)-2;(5)-4.解析根据题意可知,OP,OQ的夹角可能为60°,120°,180°,所以OP·OQ=|OP||OQ|cos 〈OP,OQ〉.当〈OP,OQ〉=60°时,OP·OQ=22cos60°=2;当〈OP,OQ〉=120°时,OP·OQ=22cos120°=-2;当〈OP,OQ〉=180°时,OP·OQ=22cos180°=-4;所以,正确的选项为(4)(5).点评本题考查了考生的分类讨论的思想和向量的数量积等知识的运用,注意到直线和向量的区别. 根据题意,OP,OQ的夹角有3种情形,如图3所示,即〈OP,OQ〉=180°,〈OP,OQ1〉=60°,〈OP,OQ2〉=120°.值得一提的是,选项中并没有答案为“2”这一选项,也就是说,在多项选择题的命制中,选项不一定要覆盖所有可能值.试题10 已知多项式f(x)=3x4+11x2-4,试选出正确的选项.(1)y=f(x)的图形与y轴交点的y坐标小于0;(2)f(x)=0有4个实根;(3)f(x)=0至少有一个有理根;(4)f(x)=0有一根介于0与1之间;(5)f(x)=0有一根介于1与2之间.解析对于选项(1)来说,y=f(x)的图形与y轴交点的y坐标,即当x=0时y的值,显然有y=f(0)=-4<0,选项(1)正确;对于选项(2),因为f(x)=3x4+11x2-4=(3x2-1)(x2+4),当f(x)=0时,有3x2-1=0或x2+4=0,显然,f(x)=0只有两个不同的实根x1,2=±33,其余两个根为虚根x3,4=±2i(i为虚数单位,即i2=-1),故选项(2)错误;对于选项(3),由选项(2)可知,f(x)=0没有一个有理根,4个根分别为两个无理根,两个虚根,故选项(3)错误;对于选项(4),因为0<33<1,故f(x)=0有一根介于0与1之间,选项(4)正确,选项(5)错误.点评本题从多个方面考查了多项式函数(次数为4)的图形和性质,如图形与y轴交点的纵坐标的正负,根的类型和根的范围等等. 首先,遇到与多项式函数有关的问题时,因式分解是关键,将高次降为低次进行问题解决. 其次,若不能够因式分解,则运用多形式函数的有关定理,如余数定理、综合除法、虚根成对定理、代数基本定理和插值公式来解决问题.试题11 设a,b,c为实数且滿足loga=1.1,logb=2.2,logc=3.3.试选出正确的选项.(1)a+c=2b;(2)1<a<10;(3)1000<c<2000;(4)b=2a;(5)a,b,c成等比数列.解析对于选项(1),因为loga+logc=2logb,所以有b2=ac,并不能推导出a+c=2b,故选项(1)错误;实际上,因为c=a3,b=a2,若a+c=2b,则有a+a3=2a2,又因为a>10,所以a+a3=2a2无解,所以a+c=2b错误;。