高三上学期期中试卷45页PPT
- 格式:ppt
- 大小:694.00 KB
- 文档页数:45
高三第一学期期中考试英语试题选择题部分(共80分)第一部分:英语知识运用(共两节, 满分30分)第一节:单项填空(共20小题;每小题0.5分,满分10分)从A、B、C、D四个选项中,选出可以填入空白处的最佳选项。
1.--- We’re organizing a party next Saturday, and I’d like you to come.--- ! I have another one that day. Thank you just the same.A.Good luck B.What a pity C.Great D.I can’t wait2.What I need is book that contains ABC of oil painting.A.a; 不填B.the; 不填C.the; an D.a; the3.First, it is important to recognize what kind of person you are and which special qualities make you different from .A.everyone else B.the other C.someone else D.another4.I like houses with a beautiful garden in front, but I don’t have enough money to buy .A.one B.it C.this D.that5.The school is giving most of these children hope for the future by providing them a chance to knowledge.A.require B.acquire C.achieve D.enquire6.--- I’m surprised to hear that Sue and Paul have .--- So am I. They seemed very happy together when I last saw them.A.broken up B.finished up C.divided up D.closed up7.In our childhood, we were often by grandma to pay attention to our table manners.A.demanded B.reminded C.allowed D.wanted8.All morning as she waited for the medical report from the doctor, her nervousness .A.has grown B.is growing C.grew D.had grown9.So sudden that the enemy no time to escape.A.did the attack; had B.was the attack; had hadC.was the attack; had D.did the attack; had had10.We’re discussing our problem now and we wonder whether people will be happy with the decisions ?A.to make B.making C.made D.to be made 11.China has provided in a number of infrastructure projects in Africa, including the national stadium of Zambia, a bridge in Mali, a hydropower station in Gabon, the new airportof Mauritius etc.A.annoyance B.assistance C.requirement D.assignment12.The number of foreign students attending Chinese universities has been rising since 1990.A.steadily B.quietly C.abruptly D.largely13.At 10:00 tomorrow, the Great British Museum.A.we’re going to pay a visit to B.we’ll be visiting toC.we’ll be on a visit to D.we’re to visit14.He did not regret saying what be did but felt that he it differently.A.could express B.would expressC.could have expressed D.must have expressed15.The system has been designed to give students quick and easy to the digital resources of the library.A.access B.passage C.way D.approach 16.Children need friends their own age to play .A.of; / B.in; with C.in; / D.of; with17.What makes this shop different is it offers more personal services.A.what B.which C.why D.that18.There is much chance Bill will from his injury in time for the race.A.that; relieve B.which; recover C.that; recover D.which; relieve 19.The English play my students acted the New Year’s party was a great success.A.for which; at B.at which; in C.in which; at D.on which; through 20.--- How is everything going on with you in Malaysia?--- Quite well. Not so smoothly as I hoped, .A.instead B.though C.either D.too第二节完型填空(共20小题;每小题1分,满分20分)What is intelligence anyway? When I was in the army I 21 an intelligence test that all soldiers took, and, against 22 of 100, scored 160.I once had an auto –repair man, who, on these intelligence tests, could not 23 have scored more than 80. 24 , when anything went wrong with my car I hurried to him – and he always 25 it.Well, then, suppose my auto-repair man__26 _ questions for some intelligence tests. By doing every one of them I’d prove myself a27 .In a world where I have to work with my_ 28 , I’d do poorly.Consider my auto-repair man__29 . He had a habit of telling_ 30 _.One time he said, “Doc,a deaf-and-dumb man__ 31 _some nails. Having entered a store, he put two fingers together on the counter and made__ 32 _movements with the other hand. The clerk brought him a hammer. He_ 33 _his head and pointed to the two fingers he was hammering. The clerk__ 34him some nails. He picked out the right size and left. Well, Doc, the__ 35 _man who came in was blind. He wanted scissors.__ 36 _do you su ppose he asked for them?” I lifted my right hand and made scissoring movements with my first two fingers. He burst out laughing and said, “Why, you fool, he used his_ 37 _and asked for them. I’ve been_38 _that on all my customers today, but I knew_ 39 I’d catch you” “Why is that?”I asked. “Because you are so go od damned educated, Doc. I knew you couldn’t be very__ 40 _”And I have an uneasy feeling he had something there.21.A.failed B.wrote C.received D.chose22.A.an average B.a total C.an exam D.a number 23.A.approximately B.possibly C.certainly D.frequently 24.A.Then B.Thus C.Therefore D.Yet25.A.fixed B.checked C.drove D.changed 26.A.answered B.practiced C.designed D.tried 27.A.teacher B.doctor C.winner D.fool 28.A.brains B.effort C.hands D.attention 29.A.again B.as usual C.too D.as well30.A.lies B.jokes C.news D.tales 31.A.bought B.tested C.found D.needed 32.A.cutting B.hammering C.scissoring D.circling 33.A.nodded B.raised C.shook D.turned 34.A.brought B.packed C.sent D.sold 35.A.clever B.other C.right D.next36.A.What B.How C.Who D.Which 37.A.imagination B.hand C.voice D.information 38.A.trying B.proving C.practising D.examining 39.A.with wisdom B.at once C.in reality D.for sure 40.A.clear B.silly C.slow D.smart第二部分:阅读理解(第一节20小题,第二节5小题;每小题2分,满分50分)第一节阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项。
重点高中2021届高三语文(yǔwén)上学期期中试题考试时间是是:2021年11月12日上午9:00-11:30 试卷满分是:150分★祝考试顺利★考前须知:1.答卷前,所有考生必须将自己的、考号、班级、姓名等填写上在答题卡上。
2.选择题的答题:每一小题在选出答案以后,需要用2B铅笔把答题卡上对应题目选项之答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷、草稿纸上无效。
3.填空题和解答题的答题:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效。
在在考试完毕之后以后,将试题卷和答题卡一起交回。
第一卷(阅读题,一共70分)一、现代文阅读(36分)(一)阐述类文本阅读(此题一共3小题,9分)阅读下面的文字,完成1~3题。
厚葬薄葬与有鬼无鬼宋志坚王充?论衡?中的?薄葬?篇,结合有鬼无鬼,专论厚葬薄葬,对于儒墨两家均有批评。
墨家是信奉有鬼论的,王充批评墨家的就是这一点。
他认为厚葬劣习之根源,正在于主张薄葬的墨家“人死辄为神鬼而有知,能形而害人〞的有鬼论。
因为“人死辄为神鬼而有知〞,厚葬才有意义。
死人成为鬼之后因“厚葬〞感受的是厚遇,由薄葬体验的是薄义。
活人希冀祖先福佑后人,又怕死神“成形害人〞,就难免趋“厚〞弃“薄〞,财产多的不怕厚葬把自己搞穷,权力大的不怕人家来掘墓。
即使财力不济,也要勉为其难。
墨家的薄葬主张与有鬼论是互相矛盾的。
倘假设真的有鬼,听从墨家的薄葬主张“(不)丧物索用〞怎么得了?王充认为:这种自相矛盾,是包括薄葬的主张在内的“墨术〞难以流传的重要原因。
倡导厚葬的儒家(Rújiā)不信鬼,“子不语怪、力、乱、神〞就是一个范本,连鲁迅也称颂“孔丘先生确是伟大,生在巫鬼权力如此旺盛的时代,偏不肯随俗谈鬼神〞。
但儒家(包括孔子)的无鬼论不彻底。
“以为死人有知,与生人无以异,孔子非之,而亦无以定实然〞。
其实,对于孔子来说,此非不能,实乃不为,他心中是有小旮旯的。
学校 姓名 班级 考号--------------------------------------------密----------------------------------封--------------------------------------线 ------------------------育才中学2011--2012学年12级上期期中考试 语 文 试 卷(考试时间:120分钟 满分:120分)命题人:chq 审题人:jzh一.基础知识与运用(共30分) (一)古诗文名句填空(10分) 1.根据原文填空(10分)⑴官船来往乱如麻, 。
(王磐《朝天子·咏喇叭》)⑵列国周齐秦汉楚, , ; , 。
(张养浩《山坡羊》) ⑶莫道不消魂, , 。
(李清照《醉花阴·薄雾浓云愁永昼》) ⑷过尽千帆皆不是,斜晖脉脉水悠悠。
。
(温庭筠《望江南》)⑸苏轼在《江城子·密州出猎》中抒发主人公守卫边疆、杀敌为国的坦荡胸怀和豪情壮志的诗句是: , , 。
⑹李清照在《武陵春》中出奇创意地表现愁绪的句子是 , 。
⑺《陈涉世家》中陈涉石破天惊的一声质问最能表现他的反抗精神,这句话是: ! ⑻《破阵子·为陈同甫赋壮词以寄之》中抒写词人一生的事业与抱负,并发尽无限感叹的句子是: , 。
!⑼《出师表》中表明作者志趣品格的句子是:______________ ,______________ 。
⑽辛弃疾在《南乡子·登京口北固亭有怀》中感叹道:“千古兴亡多少事?悠悠。
不尽长江滚滚流。
”这里化用了杜甫《登高》中的诗句“ , ”,这两句诗也被傅雷在写给儿子的信《傅雷家书两则》中引用过。
(二)选择题(共8分,每题2分)2.下列词语中加点字注音不正确的一项是 ( ) A .刻骨铭.心m íng 心无旁骛.w ù 强聒.不舍gu ō 气吞斗.牛d ǒu B .弥.留之际m í 媚.上欺下m èi 黎.民百姓l í 一抔.黄土p óu C .恼.羞成怒n ǎo 恪.尽职守k è 方枘.圆凿ru ì 怒不可遏.è D .廓.然无累ku ò 重蹈覆辙.zh é 涕泗..横流t ìs ì 舐.犊之情ti ǎn3.下列词语书写完全正确的一项是 ( ) A.无与伦比 山舞银蛇 群居终日 原驰腊象 润如油膏 B.红装素裹 成吉思汗 一代天骄 温声细语 自知之明 C.敬业乐群 断章取义 不二法门 理至易明 曦皇上人 D.言不及义 好行小惠 主一无适 言行相顾 至死不渝4.下列句子中加点成语使用正确的一项是 ( )A.赏读这篇美文,犹如聆听舒缓、悠扬的小夜曲,令人心旷神怡....。
高三数学(文科)阶段性质量检测试题说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)共两卷.其中第l 卷共60分,第II 卷共90分,两卷合计I50分.答题时间为120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题;每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的,把正确选项的代号涂在答题卡上.) 1.已知函数)1lg()(x x f -=的定义域为M ,函数xy 1=的定义域为N ,则N M ⋂=( ) A.{}0,1|≠<x x x 且 B.{}01|≠≤x x x 且 C.{}1|>x x D.{}1|≤x x2.设,)21(,5.225.205.2===c b a ,则c b a ,,的大小关系是( ) A.b c a >> B.b a c >> C.c a b >> D.c b a >> 3.如果命题 “⌝(p ∨ q)”为假命题,则( )A .p ,q 均为真命题B .p ,q 均为假命题C .p ,q 中至少有一个为真命题D . p, q 中至多有一个为真命题 4.若向量(3,6),(4,2),(12,6)u v w =-==--,则下列结论中错误的是( ) A.u v ⊥ B.v wC.3w u v =-D.对任一向量AB ,存在实数,a b 使AB au bv =+5.设x 、y 满足24,1,22,x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩则z x y =+( )A .有最小值2,最大值3B .有最小值2,无最大值C .有最大值3,无最大值D .既无最小值,也无最大值6.已知ααπααcos sin ),0,4(,25242sin +-∈-=则等于( ) A.51- B.51 C. 57- D.577.已知函数)(x f 是R 上的偶函数,若对于0≥x ,都有)()2(x f x f =+,且当)1(log )(,)2,0[2+=∈x x f x 时,则)2012()2011(f f +-的值为( )A.-2B.-1C.1D.2 8.函数)2||00)sin()(πφωφω<>>+=,,(A x A x f 的部分图象如图示,则将)(x f y =的图象向右平移6π个单位后,得到图象解析式为( ) A.x y 2sin = B.x y 2cos = C.)32sin(π+=x y D.)62sin(π-=x y 9.已知2)(-=x a x f ,)1,0(log )(≠>=a a x x g a ,若0)4()4(<-g f ,则)(),(x g y x f y ==在同一坐标系内的大致图象是( )10. 首项为20-的等差数列,从第10项起开始为正数,则公差d 的取值范围是 A.209d >B.52d ≤C.20592d <≤ D.20592d ≤< 11. 若函数f(x)=212log ,0,log (),0x x x x >⎧⎪⎨-<⎪⎩,若f(a)>f(-a),则实数a 的取值范围是( )A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(0,1)D.(-∞,-1)∪(0,1)12.已知向量),4(),2,1(y b x a =-=,若b a ⊥,则yx 39+的最小值为( )A.2B.32C.6D.9第Ⅱ卷(非选择题 共90分)二、填空题:本题共4个小题,每题4分,共16分.把正确答案填在答题卡的相应位置.13.在ABC ∆中,若C B A cos cos 2sin =,则=+C B tan tan ________.14.函数⎩⎨⎧>+-≤-=1,341,22)(2x x x x x x f 的图象和函数)1ln()(-=x x g 的图象的交点个数是______________.15.函数)2,0(),3sin(2ππ∈-=x x y 的单调递增区间为____________.16. 下列命题:(1)若函数)a x x x f ++=2lg()(为奇函数,则1=a ; (2)函数x x f sin )(=的周期π=T ; (3)方程x x sin lg =有且只有三个实数根;(4)对于函数x x f =)(,若2)()()2(0212121x x f x x f x x +<+<<,则. 其中的真命题是 .(写出所有真命题的序号)三、解答题.本大题共6个小题,共74分.解答时要求写出必要的文字说明、证明过程或推理步骤.17. (本小题满分12分)在△ABC 中,a 、b 、c 分别是三个内角A 、B 、C 的对边,a =2,sin,552=B 且△ABC 的面积为4. (Ⅰ)求cos B 的值; (Ⅱ)求边b 、c 的长。
2021年高三上学期期中试卷(语文)A.辟.邪/开辟.新路解.数/押解.症.结/症.状B.作.坊/作.客他乡囤.积/粮囤.粘.性/粘.贴C.着.凉/十分着.急字帖./碑帖.角.逐/角.色D.载.体/载.歌载舞中.肯/中.伤狼藉./慰藉.2.下列各句中,加点成语熟语使用正确的是 ( )A.《士兵突击》成功播出后,王宝强因为饰演许三多而声名鹊起,成为了一位炙手可热....的新星。
B.最近几年,我国内地学生对香港地区的入学趋之若鹜....。
这说明国内考生的传统观念正在逐渐发生变化。
C.为了加快城市现代化建设的步伐,我市“城市总体规划修编计划”启动,新一轮城市总体规划呼之欲出....。
D.随着公众对政府行为和社会事务的关注度与参与度的不断提高,一些地方己开始征收卡拉OK版权费,这对著作权人来说是大快人心....的好事。
3.下列各句中,,沒有语病的一句是( )A.加强对青少年的教育,增强青少年识别利抵制各种错误倾向的能力,是目前我国中小学思想品德教育工作的当务之急。
B.“十一”黄金周期间,奥林匹克中心区将推出奥运图片展览、奥运规划建设成果展、闭幕式部分道具展、奥运精品图片展、中国故事小屋、“福娃流动秀”和“北京礼物-xx 北京旅游商品展卖周”等系列活动。
C.今年的沙尘暴提高了干部群众对植树造林重要性的认识,仅一个春季全县就植树造林3700多万棵,其中防风林和果树10500棵。
D.国家质检总局近日紧急在全国开展了婴幼儿奶粉三聚氰胺含量专项检查。
为保证乳制品安全,有关部门采取了进一步加强监管。
4.依次填入下面横线上的句子,与上文衔接最恰当的一组是( )那个春天的黄昏,当满树繁花无意间闯入我的眼帘,我的心不禁为之震颤,我惊诧三年的时间,树天天在,花年年开,。
一连好几天,我带着一种愧疚的心情站在阳台上望它们,望它们于无声处悄然散发着生命的芬芳。
美丽的花树,寂寞的花树,使我领悟了一句话:。
①可我竟然从未留意过这近在咫尺的美②可对于这近在咫尺的美,我竟然从未留意过③美丽如河流,越深越无声④美丽如醇酒,越久越香浓A.①③B.②④C.①④D.②③二、阅读下面的文字,完成5-7题。
2021年高三(上)期中数学试卷(理科)一、填空题(每小题5分,共70分)1.(5分)已知集合A={x||x﹣3|≤1},B={x|x2﹣5x+4≥0},则A∩B={4} .考点:交集及其运算.专题:计算题.分析:根据题意,解|x﹣3|≤1可得2≤x≤4,即可得集合A,解x2﹣5x+4≥0可得集合B,由交集的定义,即可得答案.解答:解:根据题意,对于集合A,|x﹣3|≤1⇔2≤x≤4,则A={x|2≤x≤4},对于集合B,由x2﹣5x+4≥0⇔x≤1或x≥4,则B={x|x≤1或x≥4},则A∩B={4},故答案为{4}.点评:本题考查集合交集的计算,关键是正确解出不等式,得到集合A、B.2.(5分)已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是若a+b+c≠3,则a2+b2+c2<3.考点:四种命题.专题:综合题.分析:若原命题是“若p,则q”的形式,则其否命题是“若非p,则非q”的形式,由原命题“若a+b+c=3,则a2+b2+c2≥3”,根据否命题的定义给出答案.解答:解::根据四种命题的定义,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是“若a+b+c≠3,则a2+b2+c2<3”故答案为:若a+b+c≠3,则a2+b2+c2<3点评:本题考查的知识点是四种命题,熟练掌握四种命题的定义及相互之间的关系是解答本题的关键.3.(5分)已知,则=.考点:运用诱导公式化简求值.专题:计算题.分析:根据诱导公式可知=sin(﹣α﹣),进而整理后,把sin(α+)的值代入即可求得答案.解答:解:=sin(﹣α﹣)=﹣sin(α+)=﹣故答案为:﹣点评:本题主要考查了运用诱导公式化简求值的问题.属基础题.4.(5分)函数y=x﹣2lnx的单调减区间为(0,2).考点:利用导数研究函数的单调性.专题:计算题.分析:函数的单调减区间就是函数的导数小于零的区间,可以先算出函数f(x)=x﹣2lnx 的导数,再解不等式f′(x)<0,可得出函数的单调减区间.解答:解:求出函数f(x)=x﹣2lnx的导数:而函数的单调减区间就是函数的导数小于零的区间由f′(x)<0,得(0,2)因为函数的定义域为(0,+∞)所以函数的单调减区间为(0,2)故答案为:(0,2)点评:本题的考点是利用导数研究函数的单调性,解题的关键是求导函数,在做题时应该避免忽略函数的定义域而导致的错误.5.(5分)已知||=,||=3,和的夹角为45°,若向量(λ+)⊥(+λ),则实数λ的值为.考点:平面向量数量积的运算.专平面向量及应用.题:分析:先利用两个向量的数量积的定义求出•的值,再由两个向量垂直的性质可得(λ+)•(+λ)=0,解方程求得实数λ的值.解答:解:∵已知||=,||=3,和的夹角为45°,∴•=•3cos45°=3.由向量(λ+)⊥(+λ),可得(λ+)•(+λ)=0,即λ+(λ2+1)+λ=0,即2λ+3(λ2+1)+9λ=0,解得λ=,故答案为.点评:本题主要考查两个向量的数量积的定义,两个向量垂直的性质,属于中档题.6.(5分)设函数f(x)是定义在R上的奇函数,且对任意x∈R都有f(x)=f(x+4),当x∈(﹣2,0)时,f(x)=2x,则f(xx)﹣f(xx)=.考点:奇偶性与单调性的综合.专题:计算题;函数的性质及应用.分析:函数f(x)是定义在R上的奇函数,可得f(0)=0;对任意x∈R都有f(x)=f(x+4),可得函数的周期为4,由此可得结论.解答:解:由题意,函数f(x)是定义在R上的奇函数,∴f(0)=0∵对任意x∈R都有f(x)=f(x+4),∴函数的周期为4,∴f(xx)=f(4×503)=f (0)=0∵当x∈(﹣2,0)时,f(x)=2x,∴f(﹣1)=,∴f(1)=﹣∴f(xx)=f(4×503+1)=f(1)=﹣∴f(xx)﹣f(xx)=故答案为:点评:本题考查函数的奇偶性与周期性,考查学生的计算能力,属于基础题.7.(5分),设{a n}是正项数列,其前n项和S n满足:4S n=(a n﹣1)(a n+3),则数列{a n}的通项公式a n=2n+1.考点:数列的概念及简单表示法.分析:把数列仿写一个,两式相减,合并同类型,用平方差分解因式,约分后得到数列相邻两项之差为定值,得到数列是等差数列,公差为2,取n=1代入4S n=(a n﹣1)(a n+3)得到首项的值,写出通项公式.解答:解:∵4S n=(a n﹣1)(a n+3),∴4s n﹣1=(a n﹣1﹣1)(a n﹣1+3),两式相减得整理得:2a n+2a n﹣1=a n2﹣a n﹣12,∵{a n}是正项数列,∴a n﹣a n﹣1=2,∵4S n=(a n﹣1)(a n+3),令n=1得a1=3,∴a n=2n+1,故答案为:2n+1.点评:数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏.8.(5分)已知命题p:在x∈(﹣∞,0]上有意义,命题q:函数y=lg(ax2﹣x+a)的定义域为R.如果p和q有且仅有一个正确,则a的取值范围(﹣∞,]∪(1,+∞).考点:命题的真假判断与应用.专题:计算题;函数的性质及应用.分析:由函数在x∈(﹣∞,0]上有意义可得p;由函数y=lg(ax2﹣x+a)的定义域为R.可得ax2﹣x+a>0恒成立,结合二次函数的性质可求q,而p和q有且仅有一个正确即是①p正确而q不正确,②q正确而p不正确,两种情况可求a的范围解答:解:x∈(﹣∞,0]时,3x∈(0,1],∵函数在x∈(﹣∞,0]上有意义,∴1﹣a•3x≥0,∴a≤,∴a≤1,即使p正确的a的取值范围是:a≤1.(2分)由函数y=lg(ax2﹣x+a)的定义域为R.可得ax2﹣x+a>0恒成立(1)当a=0时,ax2﹣x+a=﹣x不能对一切实数恒大于0.(2)当a≠0时,由题意可得,△=1﹣4a2<0,且a>0∴a>.故q正确:a>.(4分)①若p正确而q不正确,则,即a≤,(6分)②若q正确而p不正确,则,即a>1,(8分)故所求的a的取值范围是:(﹣∞,]∪(1,+∞).故答案为:(﹣∞,]∪(1,+∞).点评:本题考查命题的真假判断和应用,是基础题.解题时要认真审题,仔细解答,注意函数的定义域的合理运用.9.(5分)设函数y=sinx(0≤x≤π)的图象为曲线C,动点A(x,y)在曲线C上,过A且平行于x轴的直线交曲线C于点B(A、B可以重合),设线段AB的长为f(x),则函数f (x)单调递增区间[].考正弦函数的图象;正弦函数的单调性.点:专题:计算题;三角函数的图像与性质.分析:依题意,对x∈[0,]与x∈[,π]讨论即可.解答:解:依题意得f(x)=|AB|,(0≤|AB|≤π).当x∈[0,]时,|AB|由π变到0,∴[0,]为f(x)单调递减区间;当当x∈[,π]时,|AB|由0变到π,∴[,π]为f(x)单调递增区间.故答案为:[,π].点评:本题考查正弦函数的图象与性质,考查数形结合思想与分析问题的能力,属于中档题.10.(5分)(xx•苏州模拟)当时,恒成立,则实数a的取值范围是.考点:绝对值不等式的解法.专题:计算题;压轴题.分析:由题意当时,恒成立,可得﹣≤ax﹣2x3≤,化为两个恒成立问题,从而求解.解答:解:∵当时,恒成立,∴﹣≤ax﹣2x3≤,∴ax﹣2x3+≥0和ax﹣2x3﹣≤0,在[0,]上恒成立;∴,下求出2x2﹣的最大值和2x2+的最小值,∵,∵2x2﹣在上增函数,∴2x2﹣≤2×﹣1=﹣,∴a≥﹣;∵,∵2x2+≥2×+1=,∴a≤,∴,故答案为:.点评:此题考查绝对值不等式的性质及函数的恒成立问题,这类题目是高考的热点,难度不是很大,要注意函数的增减性.11.(5分)已知存在实数a,满足对任意的实数b,直线y=﹣x+b都不是曲线y=x3﹣3ax 的切线,则实数a的取值范围是.考点:利用导数研究曲线上某点切线方程.专题:计算题.分析:由直线y=﹣x+b得直线斜率为﹣1,直线y=﹣x+b不与曲线f(x)相切知曲线f(x)上任一点斜率都不为﹣1,即f′(x)≠﹣1,求导函数,并求出其范围[﹣3a,+∞),得不等式﹣3a>﹣1,即得实数a的取值范围.解答:解:设f(x)=x3﹣3ax,求导函数,可得f′(x)=3x2﹣3a∈[﹣3a,+∞),∵存在实数a,满足对任意的实数b,直线y=﹣x+b都不是曲线y=x3﹣3ax的切线,∴﹣1∉[﹣3a,+∞),∴﹣3a>﹣1,即实数a的取值范围为故答案为:点评:本题考查导数知识的运用,考查学生分析解决问题的能力,属于中档题.12.(5分)(xx•辽宁)设,则函数的最小值为.考点:三角函数的最值.专题:计算题;压轴题.分析:先根据二倍角公式对函数进行化简,然后取点A(0,2),B(﹣sin2x,cos2x)且在x2+y2=1的左半圆上,将问题转化为求斜率的变化的最小值问题,进而看解.解答:解:∵,取A(0,2),B(﹣sin2x,cos2x)∈x2+y2=1的左半圆,如图易知.故答案为:.点评:本小题主要考查二倍角公式的应用和三角函数的最值问题.考查知识的综合运用能力和灵活能力.13.(5分)设实数a>1,若仅有一个常数c使得对于任意的x∈[a,3a],都有y∈[a,a2]满足方程log a x+log a y=c,这时,实数a的取值的集合为{3}.考点:对数的运算性质.专题:函数的性质及应用.分析:由题意可得x>0,y>0,,作出其图象如图所示,进而得出及a>1,c只有一个值.解出即可.解答:解:∵log a x+log a y=c,∴x>0,y>0,.(a>1),作出其函数图象:由图象可以看出:函数在区间[a,3a]上单调递减,∴必有及a>1,c只有一个值.解得c=3,a=3.适合题意.∴实数a的取值的集合为{3}.点评:由题意确定函数的单调性和画出其图象是解题的关键.14.(5分)已知函数,把函数g(x)=f(x)﹣x+1的零点按从小到大的顺序排列成一个数列,则该数列的前n项的和S n,则S10=45.考点:数列的求和.专题:综合题;等差数列与等比数列.分析:函数y=f(x)与y=x在(0,1],(1,2],(2,3],(3,4],…,(n,n+1]上的交点依次为(0,0),(1,1),(2,2),(3,3),(4,4),…,(n+1,n+1).即方程f(x)﹣x=0在(2,3],(3,4],…,(n,n+1]上的根依次为3,4,…n+1.方程f(x)﹣x=0的根按从小到大的顺序排列所得数列为0,1,2,3,4,…,可得数列通项公式.解答:解:当0<x≤1时,有﹣1<x﹣1<0,则f(x)=f(x﹣1)+1=2x﹣1,当1<x≤2时,有0<x﹣1≤1,则f(x)=f(x﹣1)+1=2x﹣2+1,当2<x≤3时,有1<x﹣1≤2,则f(x)=f(x﹣1)+1=2x﹣3+2,当3<x≤4时,有2<x﹣1≤3,则f(x)=f(x﹣1)+1=2x﹣4+3,以此类推,当n<x≤n+1(其中n∈N)时,则f(x)=f(x﹣1)+1=2x﹣n﹣1+n,所以,函数f(x)=2x的图象与直线y=x+1的交点为:(0,1)和(1,2),由于指数函数f(x)=2x为增函数且图象下凸,故它们只有这两个交点.然后:①将函数f(x)=2x和y=x+1的图象同时向下平移一个单位,即得到函数f(x)=2x﹣1和y=x的图象,取x≤0的部分,可见它们有且仅有一个交点(0,0).即当x≤0时,方程f(x)﹣x=0有且仅有一个根x=0.②取①中函数f(x)=2x﹣1和y=x图象﹣1<x≤0的部分,再同时向上和向右各平移一个单位,即得f(x)=2x﹣1和y=x在0<x≤1上的图象,此时它们仍然只有一个交点(1,1).即当0<x≤1时,方程f(x)﹣x=0有且仅有一个根x=1.③取②中函数f(x)=2x﹣1和y=x在0<x≤1上的图象,继续按照上述步骤进行,即得到f(x)=2x﹣2+1和y=x在1<x≤2上的图象,此时它们仍然只有一个交点(2,2).即当1<x≤2时,方程f(x)﹣x=0有且仅有一个根x=2.④以此类推,函数y=f(x)与y=x在(2,3],(3,4],…,(n,n+1]上的交点依次为(3,3),(4,4),…(n+1,n+1).即方程f(x)﹣x=0在(2,3],(3,4],…(n,n+1]上的根依次为3,4,…,n+1.综上所述方程f(x)﹣x=0的根按从小到大的顺序排列所得数列为:0,1,2,3,4,…,其通项公式为:a n=n﹣1,前n项的和为S n=,∴S10=45.故答案为:45.点评:本题考查了数列递推公式的灵活运用,解题时要注意分类讨论思想和归纳总结;本题属于较难的题目,要细心解答.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(12分)(xx•江苏)设向量(1)若与垂直,求tan(α+β)的值;(2)求的最大值;(3)若tanαtanβ=16,求证:∥.考点:平面向量数量积坐标表示的应用;平行向量与共线向量;两向量的和或差的模的最值.专题:综合题.分析:(1)先根据向量的线性运算求出,再由与垂直等价于与的数量积等于0可求出α+β的正余弦之间的关系,最后可求正切值.(2)先根据线性运算求出,然后根据向量的求模运算得到||的关系,最后根据正弦函数的性质可确定答案.(3)将tanαtanβ=16化成弦的关系整理即可得到(4cosα)•(4cosβ)=sinαsinβ,正是∥的充要条件,从而得证.解答:解:(1)∵=(sinβ﹣2cosβ,4cosβ+8sinβ),与垂直,∴4cosα(sinβ﹣2cosβ)+sinα(4cosβ+8sinβ)=0,即sinαcosβ+cosαsinβ=2(cosαcosβ﹣sinαsinβ),∴sin(α+β)=2cos(α+β),∴tan(α+β)=2.(2)∵=(sinβ+cosβ,4cosβ﹣4sinβ),∴||==,∴当sin2β=﹣1时,||取最大值,且最大值为.(3)∵tanαtanβ=16,∴,即sinαsinβ=16cosαcosβ,∴(4cosα)•(4cosβ)=sinαsinβ,即=(4cosα,sinα)与=(sinβ,4cosβ)共线,∴∥.点评:本题主要考查向量的线性运算、求模运算、向量垂直和数量积之间的关系.向量和三角函数的综合题是高考的热点,要强化复习.16.(14分)已知函数f(log a x)=,其中a>0且a≠1.(1)求函数f(x)的解析式,并判断其奇偶性和单调性;(2)对于函数f(x),当x∈(﹣1,1)时,f(1﹣m)+f(1﹣m2)<0,求实数m的取值范围;(3)当x∈(﹣∞,2)时,f(x)﹣6的值恒为负数,求函数a的取值范围.考点:奇偶性与单调性的综合;函数单调性的判断与证明;函数奇偶性的判断.专题:函数的性质及应用.分析:(1)根据对数式与相应指数式的关系,由函数f(log a x)=,将括号中对应的对数式化为x后,解析式中x要化为a x,求出解析式后,可根据奇偶性的定义及导数法,求出函数的奇偶性和单调性;(2)根据(1)中函数的性质,及x∈(﹣1,1)可将不等式f(1﹣m)+f(1﹣m2)<0,化为﹣1<1﹣m<1﹣m2<1,进而得到实数m的取值范围;(3)由当x∈(﹣∞,2)时,f(x)﹣6的值恒为负数,根据函数的单调性可得f(2)﹣6≤0整理可得a的取值范围.解答:解:(1)由f(log a x)=,得,…2’因为定义域为R,=﹣f(x)所以f(x)为奇函数,…4’因为,当0<a<1及a>1时,f′(x)>0,所以f(x)为R上的单调增函数;…6’(2)由f(1﹣m)+f(1﹣m2)<0,得f(1﹣m)<﹣f(1﹣m2)=f(m2﹣1),,又x∈(﹣1,1),则﹣1<1﹣m<1﹣m2<1,得1<m<;…10’(3)因为f(x)为R上的单调增函数,所以当x∈(0,2)时,f(x)﹣6的值恒为负数,所以f(x)﹣6<0恒成立,则f(2)﹣6=≤0,…12’整理得a2﹣6a+1≤0,所以≤a≤,又a>0且a≠1,所以实数a的取值范围是[,1)∪(1,≤].…14’点评:本题是函数奇偶性与单调性的综合应用,特别是后面抽象不等式及恒成立问题,难度较大.17.(16分)设数列{a n}的前n项和为S n,且满足S n=2﹣a n,n=1,2,3,….(1)求数列{a n}的通项公式;(2)若数列{b n}满足b1=1,且b n+1=b n+a n,求数列{b n}的通项公式;(3)设c n=n (3﹣b n),求数列{c n}的前n项和为T n.考点:数列的求和;数列的函数特性;等比数列的通项公式.专题:计算题.分析:(1)利用数列中a n与Sn关系解决.(2)结合(1)所求得出b n+1﹣b n=.利用累加法求b n(3)由上求出c n=n (3﹣b n)=,利用错位相消法求和即可.解答:解:(1)因为n=1时,a1+S1=a1+a1=2,所以a1=1.因为S n=2﹣a n,即a n+S n=2,所以a n+1+S n+1=2.两式相减:a n+1﹣a n+S n+1﹣S n=0,即a n+1﹣a n+a n+1=0,故有2a n+1=a n.因为a n≠0,所以=(n∈N*).所以数列{a n}是首项a1=1,公比为的等比数列,a n=(n∈N*).(2)因为b n+1=b n+a n(n=1,2,3,…),所以b n+1﹣b n=.从而有b2﹣b1=1,b3﹣b2=,b4﹣b3=,…,b n﹣b n﹣1=(n=2,3,…).将这n﹣1个等式相加,得b n﹣b1=1+++…+==2﹣.又因为b1=1,所以b n=3﹣(n=1,2,3,…).(3)因为c n=n (3﹣b n)=,所以T n=.①=.②①﹣②,得=﹣.故T n=﹣=8﹣﹣=8﹣(n=1,2,3,…).点评:本题考查利用数列中a n与Sn关系求数列通项,累加法、错位相消法求和,考查转化、变形构造、计算能力.18.(16分)(xx•盐城三模)某广告公司为xx年上海世博会设计了一种霓虹灯,样式如图中实线部分所示.其上部分是以AB为直径的半圆,点O为圆心,下部分是以AB为斜边的等腰直角三角形,DE,DF是两根支杆,其中AB=2米,∠EOA=∠FOB=2x(0<x<).现在弧EF、线段DE与线段DF上装彩灯,在弧AE、弧BF、线段AD与线段BD上装节能灯.若每种灯的“心悦效果”均与相应的线段或弧的长度成正比,且彩灯的比例系数为2k,节能灯的比例系数为k(k>0),假定该霓虹灯整体的“心悦效果”y是所有灯“心悦效果”的和.(1)试将y表示为x的函数;(2)试确定当x取何值时,该霓虹灯整体的“心悦效果”最佳.考点:在实际问题中建立三角函数模型;三角函数的最值.专题:计算题;新定义.分析:(1)由题意知,建立三角函数模型,根据所给的条件看出要用的三角形的边长和角度,用余弦定理写出要求的边长,表述出函数式,整理变化成最简的形式,得到结果.(2)要求函数的单调性,对上一问整理的函数式求导,利用导数求出函数的单增区间和单减区间,看出变量x取到的结果.解答:解:(1)∵∠EOA=∠FOB=2x,∴弧EF、AE、BF的长分别为π﹣4x,2x,2x连接OD,则由OD=OE=OF=1,∴,∴=;(2)∵由,解得,即,又当时,y'>0,此时y在上单调递增;当时,y'<0,此时y在上单调递减.故当时,该霓虹灯整体的“心悦效果”最佳.点评:本题是一道难度较大的题,表现在以下几个方面第一需要自己根据条件建立三角函数模型写出解析式,再对解析式进行整理运算,得到函数性质,这是一个综合题,解题的关键是读懂题意.19.(16分)(xx•绵阳二模)已知函数f(x)=x3﹣2x2+3x(x∈R)的图象为曲线C.(1)求曲线C上任意一点处的切线的斜率的取值范围;(2)若曲线C上存在两点处的切线互相垂直,求其中一条切线与曲线C的切点的横坐标取值范围;(3)试问:是否存在一条直线与曲线C同时切于两个不同点?如果存在,求出符合条件的所有直线方程;若不存在,说明理由.考点:利用导数研究曲线上某点切线方程;函数与方程的综合运用.专题:压轴题;函数的性质及应用.分析:(1)先求导函数,然后根据导函数求出其取值范围,从而可求出曲线C上任意一点处的切线的斜率的取值范围;(2)根据(1)可知k与﹣的取值范围,从而可求出k的取值范围,然后解不等式可求出曲线C的切点的横坐标取值范围;(3)设存在过点A(x1,y1)的切线曲线C同时切于两点,另一切点为B(x2,y2),x1≠x2,分别求出切线,由于两切线是同一直线,建立等式关系,根据方程的解的情况可得是符合条件的所有直线方程.解答:解:(1)f'(x)=x2﹣4x+3,则f′(x)=(x﹣2)2﹣1≥﹣1,即曲线C上任意一点处的切线的斜率的取值范围是[﹣1,+∞);﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(2)由(1)可知,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)解得﹣1≤k<0或k≥1,由﹣1≤x2﹣4x+3<0或x2﹣4x+3≥1得:x∈(﹣∞,2﹣]∪(1,3)∪[2+,+∞);﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)(3)设存在过点A(x1,y1)的切线曲线C同时切于两点,另一切点为B(x2,y2),x1≠x2,则切线方程是:y﹣(﹣2+3x1)=(﹣4x1+3)(x﹣x1),化简得:y=(﹣4x1+3)x+(﹣+2),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)而过B(x2,y2)的切线方程是y=(﹣4x1+3)x+(﹣+2),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(,由于两切线是同一直线,则有:﹣4x1+3=﹣4x1+3,得x1+x2=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)又由﹣+2=﹣+2,即﹣(x1﹣x2)(+x1x2+)+(x1﹣x2)(x1+x2)=0﹣(+x1x2+)+4=0,即x1(x1+x2)+﹣12=0即(4﹣x2)×4+﹣12=0,﹣4x2+4=0得x2=2,但当x2=2时,由x1+x2=4得x1=2,这与x1≠x2矛盾.所以不存在一条直线与曲线C同时切于两点.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(16分)点评:本题主要考查了利用导数研究曲线上某点切线方程,以及互相垂直的直线的斜率关系,同时考查了运算能力,属于中档题.20.(16分)已知数列{a n},{b n}满足b n=a n+1﹣a n,其中n=1,2,3,….(Ⅰ)若a1=1,b n=n,求数列{a n}的通项公式;(Ⅱ)若b n+1b n﹣1=b n(n≥2),且b1=1,b2=2.(ⅰ)记c n=a6n﹣1(n≥1),求证:数列{c n}为等差数列;(ⅱ)若数列中任意一项的值均未在该数列中重复出现无数次.求a1应满足的条件.考点:数列递推式;等差关系的确定.专题:计算题;压轴题;分类讨论.分析:(Ⅰ)根据数列的基本性质以及题中已知条件便可求出数列{a n}的通项公式;(Ⅱ)(ⅰ)先根据题中已知条件推导出b n+6=b n,然后求出c n+1﹣c n为定值,便可证明数列{c n}为等差数列;(ⅱ)数列{a6n+i}均为以7为公差的等差数列,然后分别讨论当时和当时,数列是否满足题中条件,便可求出a1应满足的条件.解答:解:(Ⅰ)当n≥2时,有a n=a1+(a2﹣a1)+(a3﹣a2)+…+(a n﹣a n﹣1)=a1+b1+b2+…+b n﹣1(2分)=.(3分)又因为a1=1也满足上式,所以数列{a n}的通项为.(4分)(Ⅱ)由题设知:b n>0,对任意的n∈N*有b n+2b n=b n+1,b n+1b n+3=b n+2得b n+3b n=1,于是又b n+3b n+6=1,故b n+6=b n(5分)∴b6n﹣5=b1=1,b6n﹣4=b2=2,b6n﹣3=b3=2,b6n﹣2=b4=1,(ⅰ)c n+1﹣c n=a6n+5﹣a6n﹣1=b6n﹣1+b6n+b6n+1+b6n+2+b6n+3+b6n+4=(n≥1),所以数列{c n}为等差数列.(7分)(ⅱ)设d n=a6n+i(n≥0),(其中i为常数且i∈{1,2,3,4,5,6}),所以d n+1﹣d n=a6n+6+i﹣a6n+i=b6n+i+b6n+i+1+b6n+i+2+b6n+i+3+b6n+i+4+b6n+i+5=7(n≥0)所以数列{a6n+i}均为以7为公差的等差数列.(9分)设,(其中n=6k+i(k≥0),i为{1,2,3,4,5,6}中的一个常数),当时,对任意的n=6k+i有=;(10分)由,i∈{1,2,3,4,5,6}知;此时重复出现无数次.当时,=①若,则对任意的k∈N有f k+1<f k,所以数列为单调减数列;②若,则对任意的k∈N有f k+1>f k,所以数列为单调增数列;(12分)(i=1,2,3,4,5,6)均为单调数列,任意一个数在这6个数列中最多各出现一次,即数列中任意一项的值最多出现六次.综上所述:当时,数列中必有某数重复出现无数次.当a1∉B时,数列中任意一项的值均未在该数列中重复出现无数次.(14分)点评:本题考查了等差数列的基本性质和数列的递推公式,考查了学生的计算能力和对数列的综合掌握,解题时分类讨论思想和转化思想的运用,属于中档题.三、(理科附加题)21.(xx•西山区模拟)自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点,过点M引圆O的割线交该圆于B、C两点,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.考点:与圆有关的比例线段;相似三角形的判定.专题:计算题.分析:根据MA为圆O的切线,由切割线定理得MA2=MB•MC.从而MP2=MB•MC.依据相似三角形的判定方法得:△BMP∽△PMC得出∠MPB=∠MCP.最后在△MCP中,即得∠MPB.解答:选修4﹣1:几何证明选讲,解:因为MA是圆O的切线,所以MA2=MB•MC(2分)又M是PA的中点,所以MP2=MB•MC因为∠BMP=∠PMC,所以△BMP∽△PMC(6分)于是∠MPB=∠MCP,在△MCP中,由∠MPB+∠MCP+∠BPC+∠BMP=180°,即100°+2∠MPB+40°=180°;得∠MPB=20°(10分)点评:本题考查了圆当中的比例线段,以及三角形相似的有关知识点,属于中档题.找到题中的相似三角形来得到角的相等,是解决本题的关键.22.(xx•盐城一模)如图,已知OA、OB是⊙O的半径,且OA⊥OB,P是线段OA上一点,直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E,求证:∠OBP+∠AQE=45°.考点:圆周角定理.专题:证明题.分析:本题考查的知识点是圆周角定理,要证明:∠OBP+∠AQE=45°,我们可以连接AB,然后根据圆周角定理,得到∠OBP+∠AQE=∠OBP+∠ABP=∠AQE,进行得到结论.解答:证明:连接AB,则∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE =∠OBP+∠ABP=∠ABO=45°点评:根据求证的结论,使用分析推敲证明过程中所需要的条件,进而分析添加辅助线的方法,是平面几何证明必须掌握的技能,大家一定要熟练掌握,而在(2)中根据已知条件分析转化的方向也是解题的主要思想.解决就是寻找解题的思路,由已知出发,找寻转化方向和从结论出发寻找转化方向要结合在一起使用.23.(2011•许昌三模)选修4﹣1:几何证明选讲如图:⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F.(1)判断BE是否平分∠ABC,并说明理由(2)若AE=6,BE=8,求EF的长.考点:与圆有关的比例线段.专题:证明题.分析:(1)BE平分∠ABC.由已知中边的相等,可得∠CAD=∠D,∠ABC=∠ACB,再利用同弧所对的圆周角相等,可得∠CAD=∠D=∠DBE,即有∠ABE+∠EBD=∠CAD+∠D,利用等量减等量差相等,可得∠EBD=∠D=∠ABE,故得证.(2)由(1)中的所证条件∠ABE=∠FAE,再加上两个三角形的公共角,可证△BEA∽△AEF,利用比例线段可求EF.解解:(1)BE平分∠ABC;答:证明:∵AC=CD,∴∠CAD=∠ADC∴∠ACB=∠CAD+∠ADC=2∠CAD…(2分)又∵AB=AC∴∠ABC=∠ACB=2∠CAD∵∠CAD=∠EBC,∴∠ABC=2∠EBC∴BE平分∠ABC;…(5分)(2)连接EC,由(1)BE平分∠ABC∴E是弧AC的中点∴AE=EC=6又∠EBC=∠CAD=∠ADC∴ED=BD=8…(7分)∵A、B、C、E四点共圆∴∠CED=∠ABC=∠ACB=∠AEF ∴△AEF∽△DEC∴∴…(10分)点评:本题考查了圆周角定理,以及等腰三角形的性质,等边对等角,角平分线的判定,还有相似三角形的判定和性质等知识.本题解题的关键是正确读图,做题时最好自己作图以帮助理解题意.24.某高三学生希望报名参加某6所高校中的3所学校的自主招生考试,由于其中两所学校的考试时间相同,因此该学生不能同时报考这两所学校.该学生不同的报考方法种数是16.(用数字作答)考点:排列、组合及简单计数问题.专题:计算题;概率与统计.分析:分类讨论,报考的3所中,不含考试时间相同的两所与含考试时间相同的两所中的一个,利用分类计数原理,可得结论.解答:解:由题意分两种情况:若报考的3所中,不含考试时间相同的两所,则有C43=4种报考方法,若报考的3所中,含考试时间相同的两所中的一个,则有C21•C42=12种报考方法,由分类计数原理,可得该学生不同的报考方法种数12+4=16种,故答案为:16点评:本题考查组合的运用,考查分类计数原理,属于基础题.25.(2011•扬州三模)理科附加题:已知展开式的各项依次记为a1(x),a2(x),a3(x),…a n(x),a n+1(x).设F(x)=a1(x)+2a2(x)+3a3(x),…+na n(x)+(n+1)a n+1(x).(Ⅰ)若a1(x),a2(x),a3(x)的系数依次成等差数列,求n的值;(Ⅱ)求证:对任意x1,x2∈[0,2],恒有|F(x1)﹣F(x2)|≤2n﹣1(n+2).考点:二项式定理;等差数列的性质.专题:证明题;综合题.分析:(I)利用二项展开式的通项公式求出展开式的通项,求出前三项的系数,据a1(x),a2(x),a3(x)的系数依次成等差数列,列出方程求出n的值.(II)先利用到序相加法求出F(2)﹣F(0)的值,利用导数判断出F(x)的单调性,得证.解答:解:(Ⅰ)依题意,k=1,2,3,…,n+1,a1(x),a2(x),a3(x)的系数依次为C n0=1,,,所以,解得n=8;(Ⅱ)F(x)=a1(x)+2a2(x)+3a3(x),…+na n(x)+(n+1)a n+1(x)=F(2)﹣F(0)=2C n1+3C n2…+nC n n﹣1+(n+1)C n n设S n=C n0+2C n1+3C n2…+nC n n﹣1+(n+1)C n n,则S n=(n+1)C n n+nC n n﹣1…+3C n2+2C n1+C n0考虑到C n k=C n n﹣k,将以上两式相加得:2S n=(n+2)(C n0+C n1+C n2…+C n n﹣1+C n n)所以S n=(n+2)2n﹣1所以F(2)﹣F(0)=(n+2)2n﹣1﹣1又当x∈[0,2]时,F'(x)≥0恒成立,从而F(x)是[0,2]上的单调递增函数,所以对任意x1,x2∈[0,2],|F(x1)﹣F(x2)|≤F(2)﹣F(0)═(n+2)2n﹣1﹣1<(n+2)2n﹣1.点评:解决二项展开式的特定项问题常利用的工具是二项展开式的通项公式;求数列的前n 项和问题关键是利用数列的通项公式的形式,选择合适的方法.z22405 5785 垅23744 5CC0 峀35800 8BD8 诘29995 752B 甫2Y40627 9EB3 麳32058 7D3A 紺20172 4ECC 仌24552 5FE8 忨26423 6737 朷c39287 9977 饷。