第9章 理想运算放大器的分析与应用
- 格式:ppt
- 大小:1.83 MB
- 文档页数:60
第九章理想运算放大电路及应用9-1.填空(1)理想集成运放的A od= ,r id= ,r od= ,K CMR= 。
(2)运算放大器组成运算电路必须引入反馈,在电压比较器中则应。
(3)欲实现电压放大倍数Au=-100应该选用电路。
(4)欲实现电压放大倍数Au=+100应该选用电路。
(5)比例运算电路中集成运放反相输入端为虚地。
答案:(1)∞,∞,0,∞。
(2)负反馈,开环或加入正反馈。
(3)反相比例放大电路。
(4)同相比例放大电路。
(5)反相。
9-2.判断下列说法是否正确。
(1)运算电路中集成运放一般工作在线性区。
()(2)反相比例运算电路输入电阻很大,输出电阻很小。
()(3)虚短是指集成运放两个输入端短路。
()(4)同相比例运算电路中集成运放的共模输入电压为零。
()(5)单限比较器的抗干扰能力比迟滞比较器强。
()(6)无源滤波电路带负载后滤波特性将发生变化。
()(7)因为由集成运放组成的有源滤波电路往往引入深度电压负反馈,所以输出电阻趋于零。
()(8)由于有源滤波电路带负载后滤波特性基本不变,即带负载能力强,所以可将其用作直流电源的滤波电路。
()(9)无源滤波器不能用于信号处理。
()(10)按照将积分运算电路置于集成运放的负反馈通路中就可实现微分运算的思路,将低通滤波电路置于集成运放的负反馈通路中就可实现高通滤波。
()答案:(1)对;在运算电路中,为使集成运放工作在线性区,一定要引入负反馈,只有在引入深度负反馈的条件下,输出电压与输入电压运算关系才几乎仅仅决定于反馈网络和输入网络。
(2)错;反相运算电路输入电阻与反相输入端所接电阻大小有关。
(3)错;“虚短”的含义不是说两个端短路,而是指两个端电位近似相等。
(4)错;同相比例运算电路输入单端输入模式。
(5)错;迟滞比较器的抗干扰能力强于单限比较器。
(6)对;本题考查是否理解“有源”和“无源”滤波电路的特点。
有源滤波电路有其局限性,主要表现在:一是频率响应受组成它的晶体管、集成运放频率参数的限制。
理想运算放大器的两个重要结论以理想运算放大器的两个重要结论为标题,我们将分别讨论理想运算放大器的两个重要特性:无限增益和无限输入阻抗。
1. 无限增益理想运算放大器的一个重要特性是其具有无限增益。
什么是无限增益呢?简单来说,无限增益意味着放大器输出信号的幅度是输入信号的无限倍。
这是理想运算放大器的特殊之处,它可以放大任意小的输入信号,并输出一个等比例放大的信号。
为了更好地理解无限增益的概念,我们可以以一个简单的例子来说明。
假设我们有一个理想运算放大器,输入信号为1mV,而放大器的增益为无限大。
根据无限增益的定义,输出信号将是输入信号的无限倍,即无限大。
这意味着无论输入信号有多小,放大器都能将其无限放大。
因此,理想运算放大器的无限增益特性在信号放大和处理中具有重要的应用价值。
2. 无限输入阻抗另一个重要的特性是理想运算放大器具有无限输入阻抗。
输入阻抗是指放大器对输入信号源的负载能力或接受能力。
通常情况下,放大器的输入阻抗越大,表示输入信号源对放大器的负载影响越小,从而能够更有效地保持输入信号的稳定性。
在理想运算放大器中,输入阻抗被假设为无限大。
这意味着放大器几乎不对输入信号源产生任何负载,从而保持了输入信号的稳定性。
无限输入阻抗的特性使得理想运算放大器能够在不干扰输入信号源的情况下进行放大和处理,尤其在对于高阻抗信号源的应用中更为重要。
理想运算放大器的无限输入阻抗以及无限增益的特性使其在电子电路设计中具有重要的地位。
通过将理想运算放大器与其他电子元件组合,我们可以构建各种功能强大的电路,如滤波器、比较器、积分器等。
理想运算放大器的特性使得它成为现代电子设备中不可或缺的一部分。
总结起来,理想运算放大器的两个重要结论是无限增益和无限输入阻抗。
无限增益使得放大器能够将输入信号无限放大,从而实现信号放大和处理的目的;无限输入阻抗保持了输入信号源的稳定性,使得放大器能够在不干扰输入信号源的情况下进行放大和处理。
运算放大器基本原理及应用一. 原理(一) 运算放大器 1.原理运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。
图1运算放大器的特性曲线 图2运算放大器输入输出端图示图1是运算放大器的特性曲线,一般用到的只是曲线中的线性部分。
如图2所示。
U -对应的端子为“-”,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。
U +对应的端子为“+”,当输入U +单独由该端加入时,输出电压与U +同相,故称它为同相输入端。
输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益(开环电压放大倍数)。
在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。
2.理想运放在线性应用时的两个重要特性输出电压U O 与输入电压之间满足关系式:U O =A ud (U +-U -),由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。
即U +≈U -,称为“虚短”。
由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”,这说明运放对其前级吸取电流极小。
上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
3. 运算放大器的应用 (1)比例电路所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。
(a) 反向比例电路反向比例电路如图3所示,输入信号加入反相输入端:图3反向比例电路电路图对于理想运放,该电路的输出电压与输入电压之间的关系为:为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R ’=R 1 // R F 。
理想运算放大器的基本概念理想运算放大器(Ideal Operational Amplifier,简称Op Amp)是电子工程中一种非常有用的基本电路元件。
它可以在电路中完成多种信号处理和放大的功能,并且可以应用于各种不同的电路中。
在本篇文章中,将讨论运算放大器的基本概念,包括其定义、结构、特性以及应用。
1. 定义:理想运算放大器是一种有无限大的增益、无限大输入阻抗和零输出阻抗的电路。
在理想情况下,运算放大器的电压增益A可以看做是无限大,输入阻抗Zin无限大,输出阻抗Zout为零。
同时,在理想情况下,使用运算放大器时,无需外接电源。
这意味着,它可以通过对输入信号进行简单的代数计算来产生一个输出信号(电压、电流或电荷分布等)。
2. 结构:理想运算放大器由五个基本部分组成:两个输入端口,一个输出端口,一个差动放大器、一个电压控制电流源。
图1. 理想运算放大器电路模型图1展示了理想运算放大器的电路模型。
其中,输入端口V1和V2是通过两个终端接入信号源的地方。
输出端口是放大器输出的地方。
差动放大器是一个用于增益放大和信号调节的基本电路。
电压控制电流源通常用于控制运放输出电压。
这些部分通过电源电路连接到一起,以便形成一个系统。
3. 特性:理想运算放大器具有很多特性。
其中最重要的是输入阻抗、输出阻抗、增益和带宽等。
(1)输入阻抗:输入阻抗是指输入端口的电阻值。
理想运算放大器的输入阻抗为无限大,因此,它不会在任何程度上影响信号源的性能。
输入阻抗为无限大的运算放大器可以用于提供高增益放大度或使用被动组件(如电阻和电容)的滤波器电路。
(2)输出阻抗:输出阻抗是指输出端口处的电阻值。
理想运算放大器的输出阻抗为零,这意味着终端处的电压仅取决于外部负载的特性,并且与放大器的特性无关。
这样的输出阻抗可以通过信号放大和放大电压进行精密控制应用于高增益电路,例如,用作缓冲器,在成本低于其他自限制放大器时实现高性能。
(3)增益:理想运算放大器的增益为无限大。
理想运算放大器的限幅区理想运算放大器是一种电子电路的概念模型,它可以在没有任何限制的情况下,将输入信号无限放大并输出。
这种模型的假设条件是输入和输出的电阻和电容是无限大的,输入电流和输入电压是无限小的,输出电阻是零,其关键的优点就是阻抗匹配。
因此,理想运算放大器中并不存在限幅现象。
然而,在现实的电路中,理想运算放大器的假设条件并不一定全部成立,实际上它的通路存在许多限制。
在理想运算放大器的通路中,由于放大器输出功率受限,因此当信号强度传递到一定程度时就会受到限制。
此限制被称为限幅现象,通常是短暂的、不可预测的电流不稳定现象。
在理想运算放大器的限幅区中,当输入信号超出其输出范围时,所得到的输出值就会饱和。
这种饱和状态被称为限幅,在此状态下,所得到的输出电位被限制在一个固定的最大值和最小值之间。
当信号再次恢复到正常范围内后,输出电压会立即跟随输入电压的变化而恢复正常。
理想运算放大器的限幅区可以通过输入电压范围处理来确定,因为当输入电压超出理想运算放大器的工作范围时,放大器就会进入限幅区。
对于一个简单的非反馈放大器,其限幅区会出现在正负电源电压之间,在这个范围内,放大器的输出将被限制到电源电压区间内,也就是说输出电压将不能超出供电电压。
因此,限幅区通常与所使用的电源电压和放大器的放大系数有关。
值得一提的是,在实际电路中,限幅现象不仅存在于理想运算放大器中,而且也会出现在其他放大器中。
此时,限幅区的宽度将取决于放大器电路的特性,而且在实际电路中,这些限制通常是不可避免的。
因此,对于设计放大器电路的工程师来说,必须认真考虑限幅现象的影响,以确保电路能够正常工作并尽可能降低限幅现象的影响。
总之,理想运算放大器的限幅区是指输入信号超出放大器的工作范围时,放大器输出电流被限制在一个固定的最大值和最小值之间的现象。
在实际电路中,限幅现象是难以避免的,因此在设计和实现电路时,必须认真考虑限制现象的影响,才能确保电路的正常工作。
理想运算放大器工作
理想运算放大器(Ideal Operational Amplifier,简称理想运放)是一种虚构的电子元件,它被广泛应用于电子电路设计中。
理想
运放的特点是电压增益无限大、输入阻抗无限大、输出阻抗为零、无
限大的带宽和无限大的公共模抑制比。
在理想情况下,理想运放可以被用于各种应用中。
例如,在放大
器电路中,理想运放可以被用来放大电压信号,从而实现信号放大。
在比较器电路中,理想运算放大器可以被用作一个非常高速的比较器,用于比较两个电压大小。
理想运放的原理是利用微调电路来达到以上特性。
在实际的电路
设计中,理想运放并不存在,但是经过一定的调整和设计,我们可以
将实际运放的性能趋近于理想运放的性能。
理想运放通常有三个输入端,两个输入分别为非反馈输入端和反
馈输入端,还有一个输出端。
其中非反馈输入端一般对应于运放的+输
入端,反馈输入端对应于-输入端。
在运放电路中,负反馈电阻网络可以用来控制电路的输出,从而
使其达到特定的增益。
理想情况下,理想运放的输出电压可以通过此
公式来计算: Vout = A (V+ - V-) ,其中A为电压增益。
如果A趋
近于无限大,那么我们可以得到理想运放的输出电压非常高,甚至可
以使运放输出电压达到电源电压的极限。
总之,理想运算放大器是实际运算放大器的理论基础,有着非常
广泛的应用。
通过对理想运放的研究和应用,我们可以更好地设计实
际电路,从而实现电路的增益、比较等各种功能。
理想运算放大器的基本概念理想运算放大器(Ideal Operational Amplifier,简称为IOA)是一种理论上的电路模型,它是一种理想的电子放大器,能够在不同的电压电流条件下将电信号增大、滤波、求导、积分等处理,被广泛应用于模拟电路分析、控制系统设计、信号处理等方面。
本文将介绍理想运算放大器的基本概念,包括其特点、主要参数、应用场景和局限性等方面。
一、特点理想运算放大器有许多特点,包括:1. 增益无穷大:理想运算放大器的增益是无限大的,即输出电压可以无限制地放大。
这使得IOA成为一种非常有用的电路元件,可以用来实现大量的电子电路设计,从而满足各种需求。
2. 输入阻抗无穷大:理想运算放大器的输入电阻是无限大的,即输入电流可以忽略不计。
这意味着,理想运算放大器可以被看作是一个纯粹的电压控制器,能够输入电压并输出电压,而不会对输入信号产生任何负载效应。
3. 输出阻抗为零:理想运算放大器的输出电阻是接近于零的,可以看作是理想电压源。
这意味着输出电路可以给到非常大的负载,输出电压仍然能够得到很好的保持。
4. 无死区:理想运算放大器没有死区,通过它的电压可以控制运算放大器输出。
换句话说,输入电压的变化将会直接影响输出电压。
5. 无偏置电流:理想运算放大器没有偏置电流,因此,可以精确地采集输入电压信号,避免信号失真和噪声污染等问题。
二、主要参数理想运算放大器有多个参数,其中最重要的是:1. 增益(Gain):理想运算放大器的增益是无穷大的,即输出电压与输入电压比值是无限大。
2. 带宽(Bandwidth):理想运算放大器的带宽是无限大的,它可以放大任何频率的信号。
3. 输入阻抗(Input impedance):理想运算放大器的输入电阻是无穷大的,可以被看作是一个开路电路。
4. 输出阻抗(Output impedance):理想运算放大器的输出电阻是接近于零的,可以被看作是一个短路电路。
5. 输入偏置电流(Input bias current):理想运算放大器没有输入偏置电流。