初中数学二次函数复习专题_9
- 格式:doc
- 大小:47.00 KB
- 文档页数:16
二次函数题型一 二次函数的相关概念1.(2021·上海市洛川学校九年级期中)下列函数中.属于二次函数的是( )A .()()242 y x x x =-++B .()()213y x x =+-C .2y ax bx c =++D .42x y x= 2.(2021·山东·济南市莱芜实验中学九年级期中)若抛物线258(3)23mm y m x x -+=-+-是关于x 的二次函数.那么m 的值是( )A .3B .2-C .2D .2或33.(2021·山东省陵城区江山实验学校九年级月考)下列函数中不属于二次函数的是( )A .(1)(2)y x x =+-B .21(1)2y x =+C .222(2)2y x x =+-D .213y x =-4.(2021·北京海淀·九年级期中)如图.在ABC 中.90C ∠=︒.5AC =.10BC =.动点M .N 分别从A .C 两点同时出发.点M 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度移动.点N 从点C 开始沿CB 向点B 以每秒2个单位长度的速度移动.设运动时间为t .点M .C 之间的距离为y .MCN △的面积为S .则y 与t .S 与t 满足的函数关系分别是( )A .正比例函数关系.一次函数关系B .正比例函数关系.二次函数关系C .一次函数关系.正比例函数关系D .一次函数关系.二次函数关系5.(2021·河北赵县·九年级月考)对于y =ax 2+bx +c .有以下四种说法.其中正确的是( ) A .当b =0时.y =ax 2+c 是二次函数 B .当c =0时.y =ax 2+bx 是二次函数C .当a =0时.y =bx +c 是一次函数D .以上说法都不对6.(2021·北京·首都师范大学附属中学九年级月考)边长为5的正方形ABCD .点F 是BC 上一动点.过对角线交点E 作EG ⊥EF .交CD 于点G .设BF 的长为x .△EFG 的面积为y .则y 与x 满足的函数关系是( )A .正比例函数B .一次函数C .二次函数D .以上都不是 7.(2021·北京海淀·二模)如图.一架梯子AB 靠墙而立.梯子顶端B 到地面的距离BC 为2m .梯子中点处有一个标记.在梯子顶端B 竖直下滑的过程中.该标记到地面的距离y 与顶端下滑的距离x 满足的函数关系是( )A .正比例函数关系B .一次函数关系C .二次函数关系D .反比例函数关系8.(2021·安徽·宣城市第六中学九年级期中)若函数y =(a ﹣1)x 2+2x +a 2﹣1是二次函数.则( )A .a ≠1B .a ≠﹣1C .a =1D .a =±19.以x 为自变量的函数:①(2)(2)y x x =+-.②2(2)y x =+.③2123y x x =+-.④()21y x x x =--.是二次函数的有( )A .②③B .②③④C .①②③D .①②③④ 10.(2021·湖南炎陵·九年级期末)已知二次函数y=(m+2)23m x -.当x<0时.y 随x 的增大而增大.则m 的值为( )A .5B 5C .5±D .211.(2021·湖北嘉鱼·九年级期末)下列各点中.一定不在抛物线222y mx mx =-+上的是( )A .(1.1)B .(2.2)C .(1.2)D .(1.3)12.(2021·浙江湖州·九年级月考)在抛物线245y x x =--上的一个点的坐标为( ) A .()0,4- B .()2,0 C .()1,0 D .()1,0-题型二 二次函数的图像与性质13.(2021·北京·景山学校九年级期中)抛物线y =(x ﹣3)2+1的顶点坐标是( ) A .(3.1) B .(3.﹣1) C .(﹣3.1) D .(﹣3.﹣1) 14.(2021·北京房山·九年级期中)已知二次函数2(2)6y x =--.当14x -≤≤时.y 的最小值为( )A .3B .0C .2-D .6-15.(2021·广东·珠海市九洲中学九年级期中)顶点(﹣5.﹣1).且开口方向、形状与函数y =13x 2的图象相同的抛物线是( )A .2153y x =-B .21(5)13y x =-+ C .21(5)13y x =-- D .21(5)13y x =+- 16.(2021·浙江·杭州市文晖中学九年级期中)对于二次函数y =﹣(x ﹣1)2+4的图象.下列说法正确的是( )A .开口向上B .顶点坐标是(﹣1.4)C .图象与y 轴交点的坐标是(0.4)D .函数有最大值417.(2021·吉林磐石·九年级期中)抛物线y =﹣x 2+3的顶点在( )A .x 轴上B .y 轴上C .第一象限D .第二象限 18.(2021·湖北江汉·九年级期中)已知抛物线y =ax 2+bx +c (a .b .c 为常数且a ≠0)经过P 1(1.y 1).P 2(2.y 2).P 3(3.y 3).P 4(4.y 4)四点.若y 3<y 2<y 1.则下列说法中正确的是( ) A .抛物线开口向下B .对称轴可能为直线x =3C .y 1>y 4D .5a +b >019.(2021·上海市洛川学校九年级期中)已知抛物线()222y ax x a =++-.a 是常数.且0a <.下列选项中可能是它大致图像的是( )A .B .C .D .20.(2021·安徽·宣城市第六中学九年级期中)关于二次函数228y x x =-.下列结论中正确的是( )A .图象与x 轴有两个交点B .当2x =时.y 有最大值8-C .当1x >时.y 随x 的增大而增大D .函数图象开口朝下21.(2021·山东·日照港中学九年级月考)已知二次函数2225y x bx b b =-++-(b 为常数)的图象与x 轴有交点.且当 3.5x <时.y 随x 的增大而减小.则b 的取值范围是( ) A .5b ≤ B .5b ≥ C .3.55b ≤≤ D .3.55b ≤< 22.(2021·北京十四中九年级期中)点()10,A y .()25,B y 在二次函数241y x x =-+的图象上.1y 与2y 的大小关系是( )A .12y y >B .12y y =C .12y y <D .无法比较 23.(2021·浙江·杭州市采荷中学九年级期中)已知二次函数y =2mx 2+(4﹣m )x .它的图象可能是( )A .B .C .D .24.(2021·福建·厦门市第十一中学九年级期中)将二次函数262y x x =+-化成()2y x h k =-+的形式应为( ) A .()237y x =++B .()311y x =-+C .()2311y x =+-D .()224y x =++题型三 二次函数图像与系数的关系25.(2021·山东嘉祥·九年级期中)如图.抛物线2y ax bx c =++的对称轴是1x =.下列结论:①0abc >.②240b ac ->.③a c b +>.④80a c +<.正确的有( )A .1个B .2个C .3个D .4个26.(2021·山东惠民·九年级期中)如图是二次函数2y ax bx c =++图象的一部分.该图象过点()5,0A -.对称轴为直线2x =-.下列结论:①0abc <.②420a b c -+>.③若()13,B y -与()24,C y -是抛物线上两点.则21y y >.④50a c +=.其中正确的有( )A .1个B .2个C .3个D .4个27.(2021·天津市第七中学九年级期中)已知抛物线2(0)y ax bx c a =++>的对称轴为直线1x =-.该抛物线与x 轴的一个交点为()1,0x .且101x <<.有下列结论:①0abc >②930a b c -+>③b a <④30a c +>.其中正确结论的个数是( )A .1B .2C .3D .428.(2021·山东·临沭县第五初级中学九年级月考)关于抛物线y =x 2﹣2x +1.下列说法错误的是( )A .开口向上B .与x 轴有两个重合的交点C .对称轴是直线x =1D .当x >1时.y 随x 的增大而减小 29.(2021·广东惠阳高级中学初中部九年级期中)如图所示.已知二次函数y =ax 2+bx +c 的图象与x 轴交于A 、B 两点.与y 轴交于点C .对称轴为直线x =1.直线y =﹣x +c 与抛物线y =ax 2+bx +c 交于C 、D 两点.D 点在x 轴下方且横坐标小于3.则下列结论:①2a +b +c >0.②a ﹣b +c <0.③ax 2﹣a ≥b ﹣bx .④a <﹣1.其中正确的有( )A .4个B .3个C .2个D .1个30.(2021·广东·珠海市九洲中学九年级期中)如图.二次函数y =ax 2+bx 的图象经过点P .若点P 的横坐标为﹣1.则一次函数y =(a ﹣b )x +b 的图象大致是( )A .B .C .D .31.(2021·云南·云大附中九年级期中)已知反比例函数b y x=的图象如图所示.则一次函数y cx a =+和二次函数2y ax bx c =++在同一直角坐标系中的图象可能是( )A .B .C .D .32.(2021·山东南区·九年级期末)在同一平面直角坐标系中.二次函数y =ax 2+bx .一次函数y =ax +b 和反比例函数y ab x =的图象可能是( )A.B.C.D.33.(2021·山东·青岛大学附属中学二模)一次函数y=ax+b与反比列函数y=cx的图象如图所示.则二次函数y=ax2+bx+c的大致图象是()A.B.C .D .34.(2021·山东·青岛实验学校九年级期末)已知二次函数21y ax bx c =++和22y bx ax c =++.a b >.则下列说法正确的是( )A .当0x <时.12y y <B .当01x <<时.12y y <C .当01x <<时.12y y >D .当1x >时12y y <35.(2021·安徽淮南·九年级月考)在同一平面直角坐标系中.函数y =ax 2+b 与y =bx 2+ax 的图象可能是( )A .B .C .D . 36.(2021·广东·汕头市龙湖实验中学九年级期中)如图.抛物线2(0)y ax bx c a =++≠的顶点为(1,)n .与x 轴的一个交点(3,0)B .与y 轴的交点在(0,3)-和(0,2)-之间.下列结论中:①0ab c>.②22()0a c b +-=.③22c a n -<.则正确的个数为( )A .0B .1C .2D .3题型四 二次函数的对称性与最值37.(2021·广东·广州市南武中学九年级期中)二次函数y =ax 2+bx +c 的图象如图所示.则该二次函数的顶点坐标为( )A .(1.3)B .(0.1)C .(0.—3)D .(2.1) 38.(2021·广东·珠海市九洲中学九年级期中)已知二次函数y =ax 2+bx +c (a ≠0)图象上部分点的坐标(x .y )的对应值如表所示.则方程ax 2+bx +2.32=0的根是( ) x …… 0 5 4 …… y …… 0.32 ﹣2 0.32 ……A .0或4B .1或5C .5或4﹣5D .5或5﹣2 39.(2021·陕西·安康高新区初级中学(汉滨初中高新校区)九年级期中)已知点()11,A y -、()23,B y -、()32,C y 均在抛物线22y x x m =-+-上.则1y .2y .3y 的大小关系是( ) A .123y y y >> B .231y y y >> C .213y y y >> D .312y y y >>40.(2021·山西·九年级期中)如果三点()()1122,1,1,P y P y -和()335,P y 在抛物线25y x x c =-++的图象上.那么123,,y y y 之间的大小关系是( )A .312y y y <<B .231y y y <<C .132y y y <<D .321y y y <<41.(2021·四川·江油外国语学校九年级月考)已知抛物线和直线l 在同一直角坐标系中的图象如图所示.抛物线的对称轴为直线x =﹣1.P 1(x 1.y 1)、P 2(x 2.y 2)是抛物线上的点.P 3(x 3.y 3)是直线l 上的点.且﹣1<x 1<x 2.x 3<﹣1.则y 1、y 2、y 3的大小关系为( )A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 142.(2021·湖北武昌·九年级月考)若点(2.5).(4.5)在抛物线y =ax 2+bx +c 上.则它的对称轴是( ) A .x =0B .x =1C .x =2D .x =343.(2021·福建福州·九年级期末)二次函数y =x 2+2bx +4c 的图象与x 轴的两个交点的横坐标分别为x 1.x 2.且x 1>1.x 2-x 1=4.当1≤x ≤3时.该函数的最小值为m .则m 与b .c 的数量关系是( ) A .m =1+2b +4c B .m =4+4b +4c C .m =9+6b +4cD .m =-b 2+4c44.(2021·福建省泉州实验中学九年级期中)若二次函数2y ax bx c =++的图象经过()11,A x y 、()22,B x y 、()2,C m n -、()()1,D m n y n ≠则下列命题正确的是( )A .若0a >且1211x x ->-.则12y y <B .若0a <且12y y <.则1211x x -<-C .若1211x x ->-且12y y >.则0a <D .若()12122x x x x +=≠.则//AB CD45.(2021·浙江平阳·九年级期中)二次函数221y x x =-++.当12x -≤≤时.下列说法正确的是( )A .有最大值1.有最小值-2B .有最大值2.有最小值-2C .有最大值1.有最小值-1D .有最大值2.有最小值146.(2021·湖北十堰·九年级期中)若二次函数24y mx x m =-+有最大值-3.则m 等于( ) A .4m =B .1m =或-4C .4m =-D .1m =47.(2021·辽宁台安·九年级月考)函数21215555y x x =---的最大值是( )A .15-B .155C .5-D .155-48.(2021·江苏·南闸实验学校九年级月考)如图.矩形ABCD 中.AB =8.AD =4.E 为边BC 上一个动点.连接AE .取AE 的中点G .点G 绕点E 顺时针旋转90°得到点F .连接DF 、DE .EFD 面积的最小值是( )A .15B .16C .14D .12题型五 二次函数的解析式与图像平移49.(2021·广东海珠·九年级期中)已知二次函数的图象的顶点是(1,2)-.且经过点(0,5)-.则二次函数的解析式是( ). A .23(1)2y x =-+-B .23(1)2y x =+-C .23(1)2y x =---D .23(1)2=--y x50.(2021·安徽·合肥蜀山行知学校九年级期中)已知抛物线与二次函数y =2x 2的图象的开口大小相同.开口方向相反.且顶点坐标为(﹣1.2021).则该抛物线对应的函数表达式为( )A .y =﹣2(x ﹣1)2 +2021B .y =2(x ﹣1)2 +2021C .y =﹣2(x +1)2+2021D .y =2(x +1)2+202151.(2021·福建·龙岩市第五中学九年级月考)设函数y =a (x ﹣h )2+k (a .h .k 是实数.a ≠0).当x =1时.y =1.当x =6时.y =6.( ) A .若h =2.则a <0 B .若h =3.则a >0 C .若h =4.则a>0D .若h =5.则a >052.(2021·浙江·杭州市公益中学九年级开学考试)已知抛物线2y ax bx =+经过点(3,3)A --.且该抛物线的对称轴经过点A .则该抛物线的解析式为( )A .2123y x x =--B .2123y x x =-+C .2123yx xD .2123y x x =+53.(2021·四川巴中·中考真题)已知二次函数y =ax 2+bx +c 的自变量x 与函数y 的部分对应值见表格.则下列结论:①c =2.②b 2﹣4ac >0.③方程ax 2+bx =0的两根为x 1=﹣2.x 2=0.④7a +c <0.其中正确的有( ) x … ﹣3 ﹣2 ﹣1 1 2 … y …1.875 3m1.875…54.(2021·湖南绥宁·九年级期末)在平面直角坐标系中.如果点P 的横坐标与纵坐标相等.则称点P 为和谐点.例如:点P (1.1)、(﹣2.﹣2)、(0.5.0.5)….都是和谐点.若二次函数y =ax 2+7x +c (a ≠0)的图象上有且只有一个和谐点(﹣1.﹣1).则此二次函数的解析式为( ) A .y =3x 2+7x +3B .y =2x 2+7x +4C .y =x 2+7x +5D .y =4x 2+7x +255.(2021·湖南长沙·模拟预测)如图.是抛物线21y ax bx c =++(0a ≠)图象的一部分.抛物线的顶点坐标是A (1.3).与x 轴的一个交点B (4.0).直线2y mx n =+(0m ≠)与抛物线交于A .B 两点.下列结论:①20a b +=. ②抛物线与x 轴的另一个交点是(2-.0).③方程23ax bx c ++=有两个相等的实数根.④当时14x <<.有21y y <.⑤若221122ax bx ax bx +=+.且12x x ≠.则121x x =+.则命题正确的个数为( )A .5个B .4个C .3个D .2个56.(2021·天津津南·九年级期中)把抛物线21(2)12y x =+-向上平移2个单位长度.则平移后抛物线的解析式是( )A .2112y x =-B .21(2)2y x =+C .21(2)12y x =++ D .21(4)12y x =+-57.(2021·山东惠民·九年级期中)在平面直角坐标系中.将抛物线244y x x =--向左平移3个单位.再向上平移5个单位.得到抛物线的表达式为( ) A .()2113y x =+- B .()2513y x =-- C .()253y x =--D .()213y x =+-58.(2021·浙江·杭州市采荷中学九年级期中)将抛物线y =3x 2的图象先向右平移2个单位.再向上平移5个单位后.得到的抛物线解析式是( ) A .y =3(x ﹣2)2﹣5 B .y =3(x ﹣2)2+5 C .y =3(x +2)2﹣5D .3(x +2)2+559.(2021·广东·广州市第九十七中学九年级期中)抛物线22y x =-向左平移2个单位长度.再向下平移3个单位长度后得到的抛物线解析式为( ) A .()2223y x =-+- B .()2223y x =--- C .()2223y x =-++D .()2223y x =--+.60.(2021·辽宁连山·九年级月考)如图.在平面直角坐标系中.二次函数212y x b =-+的图象经过正方形ABOC 的顶点A .B .C .且A 点为其顶点.将该抛物线经过平移.使其顶点为C 点.则平移后抛物线的表达式为( )A .21(2)22y x =--+B .21(2)22y x =-++ C .22(2)2y x =-+- D .22(2)2y x =--+题型六 二次函数与一元二次方程61.(2021·黑龙江·鸡西市第一中学校九年级期中)如果二次函数2y ax bx c =++中.有0a b c -+=.那么二次函数图像一定经过的点是( )A .(1,0)B .(1,0)-C .(0,1)-D .(0,1)62.(2021·山东费县·九年级期中)抛物线221y x x =-+与坐标轴的交点个数为( )A .0个B .1个C .2个D .3个63.(2021·北京市大兴区第三中学九年级期中)如图.抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1.与x 轴的一个交点坐标为(﹣1.0).其部分图象如图所示.下列结论: ①4ac <b 2.②方程ax 2+bx +c =0的两个根是x 1=﹣1.x 2=3. ③3a +c >0④当y >0时.x 的取值范围是﹣1≤x <3.其中结论正确的个数是( )A .4个B .3个C .2个D .1个64.(2021·安徽·蒙城县第六中学九年级期中)若抛物线y =ax 2+bx +c 与x 轴两个交点之间的距离为10.且4a +b =0.则关于x 的方程ax 2+bx +c =0的根为( ) A .x 1=﹣7.x 2=3B .x 1=﹣6.x 2=4C .x 1=6.x 2=﹣4D .x 1=7.x 2=﹣365.(2021·天津市南开田家炳中学九年级月考)已知抛物线212y x x =-.它与x 轴的两个交点间的距离为( ) A .0B .1C .2D .466.(2021·安徽合肥·九年级月考)已知抛物线y=x2-x-1.与x轴的一个交点为(m.0).则代数式m2-m+2021的值为()A.2019 B.2020 C.2021 D.2022 67.(2021·河北·育华中学九年级月考)如图.点A.B的坐标分别为(1.4)和(4.4).抛物线y=a(x﹣m)2+n的顶点在线段AB上运动.与x轴交于C、D两点(C在D的左侧).点C的横坐标最小值为﹣3.则点D的横坐标最大值为()A.13 B.7 C.5 D.8 68.(2021·广东·珠海市九洲中学九年级期中)抛物线y=x2+4x﹣m2+2(m是常数)与坐标轴交点的个数为()A.0 B.1 C.3 D.2或3 69.(2021·湖北武昌·九年级月考)抛物线y=x2﹣2x+1与坐标轴的交点个数是()A.0 B.1 C.2 D.3 70.(2021·陕西·交大附中分校模拟预测)将抛物线y=x2+2mx+m2﹣1向左平移8个单位.平移后的抛物线对称轴为直线x=1.则平移后的抛物线与y轴的交点坐标为()A.(0.0) B.(0.4) C.(0.15) D.(0.16) 71.(2021·天津·南开翔宇学校九年级开学考试)如图.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1.0).与y轴的交点B在(0.﹣2)和(0.﹣1)之间(不包含这两点).对称轴为直线x=1.在下列结论中:①abc>0.②16a+4b+c<0.③4ac﹣b2<8a.④13<a<23.⑤b<c.正结论的个数为()A.1 B.2 C.3 D.4 72.(2021·广东·佛山市华英学校九年级月考)根据表格对应值:x 1.1 1.2 1.3 1.4 ax 2+bx +c﹣0.590.842.293.76判断关于x 的方程ax 2+bx +c =3的一个解x 的范围是( ) A .1.1<x <1.2B .1.2<x <1.3C .1.3<x <1.4D .无法判定题型七 二次函数与不等式73.(2021·广东·广州市第九十七中学九年级期中)如图.直线1y x b =-+与抛物线()220y ax a =≠交于点A (-2.4).B (1.1).若12y y <.则x 的取值范围是( )A .2x <-B .21x -<<C .2x <-或1x >D .1x >74.(2021·吉林·长春市第八十七中学九年级月考)二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示.它与x 轴的一个交点坐标为(﹣3.0).当y >0时.则x 的取值范围是( )A .x <﹣3B .x >1C .﹣3<x <1D .x <﹣3或x >175.二次函数y =a x 2+bx +c 的图象如图所示.且方程a x 2+bx +c =k 有两个不相等的实数根.则k 的取值范围是( )A .k <2B .k ≤2C .k <3D .1<k <376.(2021·江苏·苏州高新区实验初级中学九年级月考)如图.反比例函数4y x=的图象和二次函数23y x x =+图象交于点()1,4A .则不等式32340x x +->的解集为( )A .1x >B .01x <<C .0x <D .1x >或0x <77.(2021·山东济南·二模)已知函数227y x ax =-+.当3x ≤时.函数值随x 增大而减小.且对任意的112x a ≤≤+和212x a ≤≤+.1x .2x 相应的函数值1y .2y 总满足129y y -≤.则实数a 的取值范围是( ) A .34a -≤≤B .35a -≤≤C .34a ≤≤D .35a ≤≤78.(2021·山东·胶州市初级实验中学模拟预测)函数2y x bx c =++与y x =的图象如图所示.下面结论:①240b c ->.②10b c ++=.③360b c ++=.④当13x <<时.()210x b x c +-+<.其中正确的是( )A .②③④B .③④C .①②③④D .①79.(2021·福建·厦门市槟榔中学九年级期中)已知二次函数y =x 2+bx +1当102x <<的范围内.都有y ≥0.则b 的取值范围是( ) A .b ≥0B .b ≥﹣2C .b ≥﹣52D .b ≥﹣380.(2021·浙江杭州·九年级期中)若二次函数2y x bx c =-++中函数y 与自变量x 之间的部分对应值如下表x … 0 1 2 3 … y…1-232…点()11,A x y 点()22,B x y 在该函数图象上.当12101,23,x x y <<<<与2y 的大小关系是( ) A .12y y <B .12y y >C .12y y ≥D .12y y ≤81.(2021·江苏建湖·二模)如图为某二次函数的部分图像.有如下四个结论:①此二次函数表达式为y =14x 2﹣x +9:②若点B (﹣1.n )在这个二次函数图像上.则n >m .③该二次函数图像与x 轴的另一个交点为(﹣4.0).④当0<x <5.5时.m <y <8.所有正确结论的序号是( )A .①③B .①④C .②③D .②④82.(2021·陕西·安康高新区初级中学(汉滨初中高新校区)九年级期中)如图.抛物线()20y ax bx c a =++≠的对称轴为直线1x =.与x 轴的一个交点坐标为(-1.0).其图象如图所示.下列结论:①0abc >.②24ac b <.③方程20ax bx c ++=的两个根是11x =-.23x =.④30a c +>.⑤当0y >时.x 的取值范围是13x .⑥()a b m am b +>+(1m ≠.m 为实数).其中结论正确的个数是( )A .4个B .3个C .2个D .1个83.(2021·浙江·杭州市余杭区维翰学校九年级月考)已知函数y 1=ax 2+bx +c 与函数y 2=kx +b 的图象大致如图所示.若y 1<y 2.则自变量x 的取值范围是( )A .﹣2<x <32B .x >2或x <﹣32C .x <﹣2或x >32D .﹣32<x <284.(2021·重庆云阳·九年级月考)如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分.抛物线的顶点坐标A (1.3).与x 轴的一个交点B (4.0).直线y 2=mx +n (m ≠0)与抛物线交于A .B 两点.下列结论:①2a +b =0.②abc >0.③方程ax 2+bx +c =3有两个相等的实数根.④抛物线与x 轴的另一个交点是(﹣1.0).⑤当1<x <4时.有y 2<y 1.其中正确结论的个数是( )A .5B .4C .3D .2题型八 二次函数综合85.(2021·黑龙江·鸡西市第一中学校九年级期中)已知抛物线()230y ax bx a =++≠交x轴于(1,0)A 和(3,0)B -.交y 轴于C .(1)求抛物线的解析式.(2)D 是抛物线的顶点.P 为抛物线上的一点(不与D 重合).当PAB ABD S S ∆∆=时.求P 的坐标.86.(2021·广东·广州市南武中学九年级期中)如图.已知抛物线的顶点为A (1.4).抛物线与y 轴交于点B (0.3).与x 轴交于C 、D 两点. (1)求此抛物线的解析式. (2)求△BCD 的面积.87.(2021·吉林·九年级期中)如图.在平面直角坐标系中.过原点的抛物线的顶点M 的坐标为()1,1--.点A 的坐标为()1,1.以OA 为边的菱形OABC 的顶点C 在x 轴的正半轴上.把菱形OABC 沿AB 向上翻折得到菱形EABD . (1)求抛物线对应的函数关系式.(2)若把抛物线向右平移使抛物线经过点D .求平移的距离.88.(2021·甘肃·平凉市第十中学九年级期中)如图.已知顶点是M的抛物线()230y ax bx a=+-≠与x轴交于()1,0A-.()3,0B两点.与y轴交于点C.(1)求抛物线对应的函数解析式.(2)点P是x轴上方抛物线上的一点.若PAB△的面积等于3.求点P的坐标.(3)是否在y轴存在一点Q.使得QBM为直角三角形?若存在.求出Q的坐标.若不存在.说明理由.89.(2021·吉林·长春市第八十七中学九年级月考)在平面直角坐标系中.函数y=x2﹣ax+2a﹣2(a为常数)与y轴交于点A.(1)当函数图象经过点(1.0)时.①求此函数的表达式并写出当y随x的增大而增大时.自变量x的取值范围.②此时函数有最值为.(2)已知点M(1.2)、N(3.2).连结M、N.若函数y=x2﹣ax+2a﹣2(a为常数)的图像与线段MN只有一个交点.直接写出a的取值范围.90.(2021·河南·息县教育体育局基础教育教学研究室九年级月考)已知二次函数2 13y x bx=+-的图象与直线21y x=+交于点()1,0A-和点()4,B m.(1)求1y 的表达式和m 的值.(2)当12y y 时.则自变量x 的取值范围为__________.(3)将直线AB 沿y 轴上下平移.当平移后的直线与抛物线只有一个公共点时.求平移后的直线表达式.。
初中数学二次函数复习专题〖知识点〗二次函数、抛物线的顶点、对称轴和开口方向〖大纲要求〗1. 理解二次函数的概念;2. 会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;3. 会平移二次函数y =ax 2(a ≠0)的图象得到二次函数y =a(x-h)2+k 的图象,了解特殊与一般相互联系和转化的思想;4. 会用待定系数法求二次函数的解析式;5. 利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x 轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。
内容(1)二次函数及其图象如果y=ax 2+bx+c(a,b,c 是常数,a ≠0),那么,y 叫做x 的二次函数。
二次函数的图象是抛物线,可用描点法画出二次函数的图象。
(2)抛物线的顶点、对称轴和开口方向抛物线y=ax 2+bx+c(a ≠0)的顶点是)44,2(2a b ac a b --,对称轴是a b x 2-=,当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。
抛物线y=a (x-h )2+k(a ≠0)的顶点是(h ,k ),对称轴是x=h.〖考查重点与常见题型〗1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数y =(m -2)x 2+m 2-m -2的图像经过原点,则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数y =kx +b 的图像在第一、二、三象限内,那么函数y =kx 2+bx -1的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为x =53,求这条抛物线的解析式。
热点09 二次函数【命题趋势】中考中对二次函数的考查除定义、识图、性质、求解析式等常规题外,还会出现与二次函数有关的贴近生活实际的应用题,阅读理解和探究题,二次函数与其他函数方程、不等式、几何知识的综合题在压轴题中出现的可能性很大. 【满分技巧】一、二次函数表达式的确定 步骤:(1)设二次函数的表达式;(2)根据已知条件,得到关于待定系数的方程组;(3)解方程组,求出待定系数的值,从而写出函数的表达式. 二、二次函数的实际应用(1)利用二次函数解决实际生活中的利润问题,应理清变量所表示的实际意义,注意隐含条件的使用,同时考虑问题要周全,此类问题一般是运用“总利润=总售价-总成本”或“总利润=每件商品所获利润×销售数量”,建立利润与价格之间的函数关系式;(2)最值:若函数的对称轴在自变量的取值范围内,顶点坐标即为其最值,若顶点坐标不是其最值,那么最值可能为自变量两端点的函数值;若函数的对称轴不在自变量的取值范围内,可根据函数的增减性求解,再结合两端点的函数值对比,从而求解出最值. 三、二次函数的图象与几何图形的关系将函数知识与几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将问题转化函数模型,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. 【限时检测】(建议用时:30分钟) 一、选择题 1.抛物线y =﹣21(23)2x -+1的顶点坐标为 A .(3,1) B .(﹣3,1) C .(32,1) D .(﹣32,1) 【答案】C【解析】∵抛物线y =﹣21(23)2x -+1中,2x ﹣3=0时,x =32,故抛物线y =﹣21(23)2x -+1的顶点坐标为:(32,1). 故选C .2.对于函数y =–2(x –3)2,下列说法不正确的是 A .开口向下 B .对称轴是3x = C .最大值为0 D .与y 轴不相交【答案】D【解析】对于函数y =–2(x –3)2的图象,∵a =–2<0,∴开口向下,对称轴x =3,顶点坐标为(3,0),函数有最大值0, 故选项A 、B 、C 正确,选项D 错误, 故选D .3.若二次函数y =|a |x 2+bx +c 的图象经过A (m ,n )、B (0,y 1)、C (3-m ,n )、D ,y 2)、E (2,y 3),则y 1、y 2、y 3的大小关系是A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 3<y 1【答案】D【解析】∵经过A (m ,n )、C (3-m ,n ),∴二次函数的对称轴x =32,∵B (0,y 1)、D ,y 2)、E (2,y 3)与对称轴的距离B 最远,D 最近,∵|a |>0, ∴y 1>y 3>y 2,故选D .4.当x =a 和x =b (a ≠b )时,二次函数y =2x 2﹣2x +3的函数值相等、当x =a +b 时,函数y =2x 2﹣2x +3的值是 A .0 B .﹣2 C .1 D .3【答案】D【解析】∵当x =a 或x =b (a ≠b )时,二次函数y =2x 2﹣2x +3的函数值相等, ∴以a 、b 为横坐标的点关于直线x =12对称,则122a b +=,∴a +b =1, ∵x =a +b ,∴x =1,当x =1时,y =2x 2﹣2x +3=2﹣2+3=3,故选D . 5.若函数y =(m ﹣1)x 2﹣6x +32m 的图象与x 轴有且只有一个交点,则m 的值为A .﹣2或3B .﹣2或﹣3C .1或﹣2或3D .1或﹣2或﹣3【答案】C【解析】当m =1时,函数解析式为:y =﹣6x +32是一次函数,图象与x 轴有且只有一个交点, 当m ≠1时,函数为二次函数, ∵函数y =(m ﹣1)x 2﹣6x +32m 的图象与x 轴有且只有一个交点, ∴62﹣4×(m ﹣1)×32m =0, 解得,m =﹣2或3,故选C . 6.将抛物线2yx 向右平移2个单位长度,再向上平移3个单位长度,得到的抛物线的解析式为A .2(2)3y x =++B .2(2)3y x =-+C .2(2)3y x =+-D .2(2)3y x =--【答案】B【解析】抛物线y =x 2先向右平移2个单位长度,得:y =(x –2)2;再向上平移3个单位长度,得:y =(x –2)2+3.故选B .7.反比例函数k y x=的图象如图所示,则二次函数y =2kx 2﹣4x +k 2的图象大致是A .B .C.D.【答案】D【解析】∵函数kyx=的图象经过二、四象限,∴k<0,由图知当x=﹣1时,y=﹣k<1,∴k>﹣1,∴抛物线y=2kx2﹣4x+k2开口向下,对称轴为x=﹣422k-⨯=1k,﹣1<1k<0,∴对称轴在﹣1与0之间,∵当x=0时,y=k2>1.故选D.8.已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1<y2≤y0,则x0的取值范围是A.x0>﹣1 B.x0>﹣5C.x0<﹣1 D.﹣2<x0<3【答案】A【解析】∵点C(x0,y0)是该抛物线的顶点.且y1<y2≤y0,∴a<0,x0﹣(﹣5)>|3﹣x0|,∴x0>﹣1.故选A.9.(福建省厦门市集美区2019年初中毕业班总复习练习(二模)数学试题)二次函数y=x2+bx﹣t的对称轴为x=2.若关于x的一元二次方程x2+bx﹣t=0在﹣1<x<3的范围内有实数解,则t的取值范围是A.﹣4≤t<5 B.﹣4≤t<﹣3C.t≥﹣4 D.﹣3<t<5【答案】A【解析】∵抛物线的对称轴x =2b -=2, ∴b =﹣4,则方程x 2+bx ﹣t =0,即x 2﹣4x ﹣t =0的解相当于y =x 2﹣4x 与直线y =t 的交点的横坐标, ∵方程x 2+bx ﹣t =0在﹣1<x <3的范围内有实数解, ∴当x =﹣1时,y =1+4=5, 当x =3时,y =9﹣12=﹣3, 又∵y =x 2﹣4x =(x ﹣2)2﹣4,∴当﹣4≤t <5时,在﹣1<x <3的范围内有解. ∴t 的取值范围是﹣4≤t <5, 故选A .10.已知抛物线()()1y x a x a =+--(a 为常数,0a ≠).有下列结论:①抛物线的对称轴为12x =;②方程()()11x a x a +--=有两个不相等的实数根;③抛物线上有两点P (x 0,m ),Q (1,n ),若m n <,则001x <<,其中,正确结论的个数为 A .0 B .1 C .2 D .3【答案】D【解析】∵()()1y x a x a =+--=x 2–x –a 2–a ,∴对称轴为直线x =121--⨯=12. ∴①正确,∵()()1x a x a +--=x 2–x –a 2–a =1, ∴x 2–x –a 2–a –1=0,∴∆=(–1)2–4×1×(–a 2–a –1)=1+4a 2+4a +4=(2a +1)2+4>0,∴方程(x +a )(x –a –1)=1有两个不相等的实数根; ∴②正确,∵P (x 0,m ),Q (1,n )在抛物线上,∴m =x 02–x 0–a 2–a ,n =12–1–a 2–a =–a 2–a , ∵m <n ,∴x02–x0–a2–a<–a2–a,∴x02–x0<0,∴x0(x0–1)<0∵x0>x0–1,∴x0>0且x0–1<0,即0<x0<1,∴③正确,综上所述:正确的结论有①②③,共3个,故选D.11.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示则下列结论:①4a﹣b=0;②c<0;③c>3a;④4a﹣2b>at2+bt(t为实数);⑤点(﹣72,y1),(﹣52,y2),(312y,)是该抛物线上的点,则y2<y1<y3,其中,正确结论的个数是A.1 B.2C.3 D.4【答案】C【解析】∵抛物线的对称轴为直线x=﹣2,∴4a﹣b=0,所以①正确;∵与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间, ∴抛物线与y轴的交点在y轴的负半轴,即c<0,故②正确;∵由②知,x=﹣1时y>0,且b=4a,即a﹣b+c=a﹣4a+c=﹣3a+c>0,所以③正确;由函数图象知当x=﹣2时,函数取得最大值,∴4a ﹣2b +c ≥at 2+bt +c ,即4a ﹣2b ≥at 2+bt (t 为实数),故④错误; ∵抛物线的开口向下,且对称轴为直线x =﹣2, ∴抛物线上离对称轴水平距离越小,函数值越大, ∴y 2>y 1>y 3,故⑤错误,故选C . 二、填空题12.二次函数2245y x x =--+的最大值是__________.【答案】7【解析】222452(1)7y x x x =--+=-++, 即二次函数245y x x =--+的最大值是7, 故答案为:7.13.已知函数y =﹣x 2+2x ﹣2图象上两点A (2,y 1),B (a ,y 2),其中a >2,则y 1与y 2的大小关系是__________.(填“<”“>”或“=”) 【答案】>【解析】y =﹣x 2+2x ﹣2=﹣(x ﹣1)2﹣1, 对称轴x =1,∵A (2,y 1),B (a ,y 2),其中a >2, ∴点A 与B 在对称轴的右侧, ∵–1<0,∴x >2时,y 随x 的增大而减小, ∴y 1>y 2, 故答案为:>.14.已知抛物线y =ax 2+bx +c (a >0)的对称轴是直线x =2,且经过点P (3,1),则a +b +c 的值为__________.【答案】1【解析】∵抛物线y =ax 2+bx +c (a >0)的对称轴是直线x =2, ∴P (3,1)对称点坐标为(1,1), ∴当x =1时,y =1, 即a +b +c =1, 故答案为:1.15.已知关于x 的一元二次方程ax 2+bx +c =5的一个根是2,且二次函数y =ax 2+bx +c 的对称轴是直线x =2,则抛物线y =ax 2+bx +c 的顶点坐标为__________. 【答案】(2,5)【解析】∵二次函数y =ax 2+bx +c 的对称轴是直线x =2,方程ax 2+bx +c =5的一个根是2, ∴当x =2时,y =ax 2+bx +c =5, ∴抛物线的顶点坐标是(2,5). 故答案为:(2,5).16.将抛物线y =2(x ﹣1)2+3绕它的顶点旋转180°后得到的抛物线的函数表达式为__________.【答案】y =﹣2(x ﹣1)2+3【解析】抛物线y =2(x ﹣1)2+3的顶点坐标为(1,3),由于抛物线y =2(x ﹣1)2+3绕其顶点旋转180°后抛物线的顶点坐标不变,只是开口方向相反, 则所得抛物线解析式为y =﹣2(x ﹣1)2+3, 故答案为:y =﹣2(x ﹣1)2+3.17.如图,若被击打的小球飞行高度h (单位:m )与飞行时间t (单位:s )之间具有的关系为2205h t t =-,则小球从飞出到落地所用的时间为__________s .【答案】4【解析】依题意,令0h =得:∴20205t t =-, 得:(205)0t t -=,解得:0t =(舍去)或4t =, ∴即小球从飞出到落地所用的时间为4s ,故答案为:4. 三、解答题18.已知抛物线224y x x c =-+与x 轴有两个不同的交点.(1)求c 的取值范围;(2)若抛物线224y x x c =-+经过点()2,A m 和点()3,B n ,试比较m 与n 的大小,并说明理由.【解析】(1)()2244816 8b ac c c -=--=-,由题意,得240b ac ->, ∴16 80c ->,∴c 的取值范围是2c <. (2)m n <,理由如下: ∵抛物线的对称轴为直线1x =, 又∵20a =>,∴当1x ≥时,y 随x 的增大而增大, ∵23<,∴m n <.19.已知抛物线26y x x c =-++.(1)若该抛物线与x 轴有公共点,求c 的取值范围;(2)设该抛物线与直线21y x =+交于M ,N 两点,若MN =,求C 的值;(3)点P ,点Q 是抛物线上位于第一象限的不同两点,PA QB ,都垂直于x 轴,垂足分别为A ,B ,若OPA OQB △≌△,求c 的取值范围.【解析】(1)∵抛物线26y x x c =-++与x 轴有交点, ∴一元二次方程260x x c -++=有实根.240b ac ∴∆=-,即264(1)0c -⨯-⨯.解得9c -.(2)根据题意,设()()1122,21,,21M x x N x x ++由2621y x x cy x ⎧=-++⎨=+⎩,消去y ,得2410x x c -+-=①. 由2(4)4(1)1240c c ∆=---=+>,得3c >-.∴方程①的解为1222x x ==()()()()22221212122121520(3)MN x x x x x x c ∴=-++-+=-=+⎡⎤⎣⎦, 20(3)20c ∴+=,解得2c =-.(3)设点P 的坐标为(, )m n ,则点Q 的坐标为(,)n m ,且0,0,m n m n >>≠,2266m m c n n n c m⎧-++=∴⎨-++=⎩,两式相减,得227()0n m m n -+-=,即()(7)0m n m n -+-= 7m n ∴+=,即7n m =-2770m m c ∴-+-=,其中07m <<由0∆,即274(1)(7)0c -⨯-⨯-,得214c -. 当214c =-时,72m n ==,不合题意. 又70c ->,得7c <. ∴c 的取值范围是2174c -<<. 20.我市某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为x 元/件(x ≥6,且x 是按0.5元的倍数上涨),当天销售利润为y 元.(1)求y 与x 的函数关系式(不要求写出自变量的取值范围); (2)要使当天销售利润不低于240元,求当天销售单价所在的范围;(3)若每件文具的利润不超过80%,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.【解析】(1)由题意,y =(x -5)(100-60.5x -×5)=-10x 2+210x -800, 故y 与x 的函数关系式为:y =-10x 2+210x -800. (2)要使当天利润不低于240元,则y ≥240, ∴y =-10x 2+210x -800=-10(x -10.5)2+302.5=240, 解得,x 1=8,x 2=13,∵-10<0,抛物线的开口向下,∴当天销售单价所在的范围为8≤x ≤13. (3)∵每件文具利润不超过80%, ∴50.8x x-≤,得x ≤9, ∴文具的销售单价为6≤x ≤9,由(1)得y =-10x 2+210x -800=-10(x -10.5)2+302.5, ∵对称轴为x =10.5,∴6≤x ≤9在对称轴的左侧,且y 随着x 的增大而增大,∴当x =9时,取得最大值,此时y =-10(9-10.5)2+302.5=280,即每件文具售价为9元时,最大利润为280元.21.如图,已知抛物线经过点A (–1,0),B (4,0),C (0,2)三点,点D 与点C 关于x 轴对称,点P 是线段AB 上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q ,交直线BD 于点M .(1)求该抛物线所表示的二次函数的表达式;(2)在点P 运动过程中,是否存在点Q ,使得△BQM 是直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由;(3)连接AC ,将△AOC 绕平面内某点H 顺时针旋转90°,得到△A 1O 1C 1,点A 、O 、C 的对应点分别是点A 、O 1、C 1、若△A 1O 1C 1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点A 1的横坐标.【解析】(1)设抛物线解析式为y =ax 2+bx +c ,将点A (–1,0),B (4,0),C (0,2)代入解析式,∴001642a b c a b c c =-+⎧⎪=++⎨⎪=⎩,∴1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴y =–212x +32x +2. (2)∵点C 与点D 关于x 轴对称,∴D (0,–2).设直线BD 的解析式为y =kx –2.∵将(4,0)代入得:4k –2=0,∴k =12. ∴直线BD 的解析式为y =12x –2.当P 点与A 点重合时,△BQM 是直角三角形,此时Q (–1,0); 当BQ ⊥BD 时,△BQM 是直角三角形,则直线BQ 的直线解析式为y =–2x +8,∴–2x +8=–21x 2+32x +2,可求x =3或x =4(舍), ∴x =3;∴Q (3,2)或Q (–1,0).(3)两个和谐点; AO =1,OC =2,设A 1(x ,y ),则C 1(x +2,y –1),O 1(x ,y –1),①当A 1、C 1在抛物线上时,∴()2213222131(2)2222y x x y x x ⎧=-++⎪⎪⎨⎪-=-++++⎪⎩, ∴13x y =⎧⎨=⎩, ∴A 1的横坐标是1;当O 1、C 1在抛物线上时,()22131222131(2)2222y x x y x x ⎧-=-++⎪⎪⎨⎪-=-++++⎪⎩, ∴12218x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴A 1的横坐标是12.。
拓展提高2、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c的符号为()A、a>0,b=0,c>0B、a<0,b>0,c<0C、a>0,b=0,c<0D、a<0,b=0,c<01、二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列判断不正确的是()A、abc>0,B、b2-4ac<0,C、a-b+c<0,D、4a+2b+c>0.3、我校初三篮球比赛中,如图1所示,队员甲在距篮圈中心水平距离4米处跳起投篮,球运行的路线是抛物线,当球运动的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05米.(1)求抛物线的表达式.(2)此时,若对方队员乙在甲前方0.5m处跳起盖帽拦截,已知乙的最大摸高为3m,那么乙能否拦截成功?学生独立思考后交流小组合作完成感悟与收获通过今天的学习你有哪些收获?大家交流一下。
学生思考交流通过回顾,引导学生进行反思自我检测1.二次函数22(4)5y x=-+的图象的开口方向、对称轴、顶点坐标分别是().A.向上、直线4x=、(45),B.向上、直线4x=-、(45)-,C.向上、直线4x=、(45)-, D.向下、直线4x=-、(45)-,2.抛物线2(1)3y x=-+的顶点坐标为_________.3.将抛物线2y x=向左平移4个单位后,再向下平移2个单位,则此时抛物线的函数表达式是______ __.4.在同一直角坐标系中,一次函数y ax b=+和二次函数2y ax bx=+的图象可能为().1、要接受自己行动所带来的责任而非自己成就所带来的荣耀。
2、每个人都必须发展两种重要的能力适应改变与动荡的能力以及为长期目标延缓享乐的能力。
3、将一付好牌打好没有什么了不起能将一付坏牌打好的人才值得钦佩。
二次函数综合复习形如y=ax 2+bx+c(a ≠0,a 、b 、c 为常数)的函数叫做二次函数.其中,x 是自变量,a ,b ,c 分别是函数解析式的二次项系数、一次项系数和常数项。
例1.如果函数1)3(232++-=+-kx x k y k k是二次函数,则k 的值是______。
变式练习1.若y =(m −1)x m2+1是二次函数,则m 的值为。
2.函数y = a −5 x a2+4a +5+2x −1, 当a =_______时, 它是一次函数; 当a =_______时, 它是二次函数。
3.当m 为何值时,y =(m +1)x m2−3m−2是二次函数1. 一般式:y =ax 2+bx +c 已经抛物线任意三点求解析式2. 顶点式:y =a (x −ℎ)2+k 已知抛物线顶点和一点或已知对称轴和另外两点求解析式3. 交点式:y =a (x −x 1)(x −x 2)已知抛物线与x 轴的两交点和另一点1.巧取交点式法:知识归纳:二次函数交点式:y =a(x -x 1)(x -x 2) (a ≠0),x 1,x 2分别是抛物线与x 轴两个交点的横坐标。
已知抛物线与x 轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。
①典型例题一:告诉抛物线与x 轴的两个交点的横坐标,和第三个点,可求出函数的交点式。
例1:已知抛物线与x 轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。
②典型例题二:告诉抛物线与x 轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。
例2:已知二次函数的顶点坐标为(3,-2),并且图象与x 轴两交点间的距离为4,求二次函数的解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。
当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。
在此类问题中,常和对称轴,最大值或最小值结合起来命题。
初三——二次函数归类复习一、二次函数与面积面积的求法:①公式法:S=1/2*底*高 ②分割法/拼凑法 1、说出如何表示各图中阴影部分的面积?图五图四图六图二图一图三2、抛物线322+--=x x y 与x 轴交与A 、B (点A 在B 右侧),与y 轴交与点C , D 为抛物线的顶点,连接BD ,CD ,(1)求四边形BOCD 的面积.(2)求△BCD 的面积.(提示:本题中的三角形没有横向或纵向的边,可以通过添加辅助线进行转化,把你想到的思路在图中画出来,并选择其中的一种写出详细的解答过程)3、已知抛物线4212--=x x y 与x 轴交与A 、C 两点,与y 轴交与点B , (1)求抛物线的顶点M 的坐标和对称轴; (2)求四边形ABMC 的面积.4、已二次函数322--=x x y 与x 轴交于A 、B 两点(A 在B 的左边),与y 轴交于点C ,顶点为P. (1)结合图形,提出几个面积问题,并思考解法;(2)求A 、B 、C 、P 的坐标,并求出一个刚刚提出的图形面积; (3)在抛物线上(除点C 外),是否存在点N ,使得ABC NAB S S ∆∆=,若存在,请写出点N 的坐标;若不存在,请说明理由。
变式一:在抛物线的对称轴上是否存点N ,使得ABC NAB S S ∆∆=,若存在直接写出N 的坐标;若不存CPxO ABy在,请说明理由.变式二:在双曲线3y x=上是否存在点N ,使得ABC NAB S S ∆∆=,若存在直接写出N 的坐标;若不存在,请说明理由.5、抛物线322+--=x x y 与x 轴交与A 、B (点A 在B 右侧),与y 轴交与点C ,若点E 为第二象限抛物线上一动点, 点E 运动到什么位置时,△EBC 的面积最大,并求出此时点E 的坐标和△EBC 的最大面积.【模拟题训练】1.(2015•三亚三模)如图,直线y=﹣x+2与x 轴交于点B ,与y 轴交于点C ,已知二次函数的图象经过点B 、C 和点A (﹣1,0). (1)求B 、C 两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x 轴的交点为点D ,则在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由;(4)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.AxyOBC变式二图二、二次函数与相似【相似知识梳理】二次函数为背景即在平面直角坐标系中,通常是用待定系数法求二次函数的解析式,在求点的坐标过程中需要用到相似三角形的一些性质,如何利用条件找到合适相似三角形是需要重点突破的难点。
第09讲 二次函数(压轴题组)1.(2021·福建晋安·九年级期中)如图1,抛物线23y ax bx =++,顶点为P (1,4),与x 轴的负半轴交于点A ,与y 轴交于点B .(1)求抛物线的解析式;(2)点N 是抛物线上一点,若∠ABN =45°,求点N 的坐标;(3)如图2,将原抛物线沿对称轴向下平移m 个单位长度后得到新的抛物线,C ,D 是新抛物线在第一象限内互不重合的两点,CE ⊥x 轴,DF ⊥x 轴,垂足分别为E ,F ,若存在这样的点C ,D ,满足△CEO ≌△OFD ,求m 的取值范围.2.(2021·天津南开·九年级期中)如图1,抛物线y =ax 2+bx ﹣8与x 轴交于A (2,0),B (4,0),D 为抛物线的顶点.(1)求抛物线的解析式;(2)如图2,若H 为射线DA 与y 轴的交点,N 为射线AB 上一点,设N 点的横坐标为t ,△DHN 的面积为S ,求S 与t 的函数关系式;(3)如图3,在(2)的条件下,若N 与B 重合,G 为线段DH 上一点,过G 作y 轴的平行线交抛物线于F ,连接AF ,若NG =NQ ,NG ⊥NQ ,且∠AGN =∠F AG ,求F 点的坐标.3.(2021·广东·广州市南武中学九年级期中)已知:抛物线l 1:y =—x 2+bx +3交x 轴于点A 、B ,(点A 在点B 的左侧),交y 轴于点C ,其对称轴为直线x =1,抛物线l 2经过点A ,与x 轴的另一个交点为E (5,0),交y 轴于点D (0,5—2) (1)求抛物线2l 的函数表达式;(2)P 为直线1x =上一动点,连接PA ,PC ,当PA PC =时,求点P 的坐标;(3)M 为抛物线2l 上一动点,过点M 作直线//MN y 轴,交抛物线1l 于点N ,求点M 自点A 运动至点E 的过程中,线段MN 长度的最大值.4.(2021·广东惠阳高级中学初中部九年级期中)如图,二次函数y =ax 2+bx ﹣3的图象经过点(2,﹣3)和(1,﹣278),与x 轴从左至右分别交于点A ,B ,点M 为抛物线的顶点. (1)求二次函数的解析式.(2)在抛物线的对称轴上是否存在这样的点P,使得P AC的周长最小?若存在,请求出点P的坐标,若不存在,请说明理由.(3)连接BM,若点Q为线段OB上的一动点(Q不与点B、点O重合),过点Q作x轴的垂线交线段BM 于点N,当点Q以1个单位/s的速度从点B向点O运动时,设运动时间为t,四边形OCNQ的面积为S,求S与t之间的函数关系及自变量t的取值范围,并求出S的最值.(4)若点R在抛物线上,且以点R、C、B为顶点的三角形是直角三角形,请直接写出所有符合条件的点R 的坐标(不需要计算过程).5.(2021·江苏射阳·九年级月考)如图,在平面直角坐标系中,O是坐标原点,抛物线y=ax2+bx经过A(﹣4,0),B(﹣3AB,BO.(1)求抛物线表达式和直线OB解析式;(2)点C是第二象限内直线OB上方抛物线上的一个动点,是否存在一点C使△COB面积最大?若存在请求出点C坐标及最大面积,若不存在请说明理由;(3)若点D从点O出发沿线段OA向点A作匀速运动,速度为每秒1个单位长度,同时线段OA上另一个点H从点A出发沿线段AO向点O作匀速运动,速度为每秒2个单位长度(当点H到达点O时,点D也同时停止运动).过点D作x轴的垂线,与直线OB交于点E,延长DE到点F,使得EF=DE,以DF为边,在DF左侧作等边△DGF(当点D运动时点G、点F也随之运动).过点H作x轴的垂线,与直线AB交于点L,延长HL到点M,使得LM=HL,以HM为边,在HM的右侧作等边△HMN(当点H运动时,点M、点N也随之运动).当点D运动t秒时,△DGF有一条边所在直线恰好过△HMN的重心,直接写出此刻t 的值.6.(2021·湖南·长沙市开福区青竹湖湘一外国语学校九年级期中)如图1,在平面直角坐标系中,直线=-+与x轴,y轴分别交于A、C两点,抛物线2y x55=++经过A、C两点,与x轴的另一交点为B.y x bx c(1)求抛物线解析式;(2)若点M为x轴下方抛物线上一动点,MN⊥x轴交BC于点N,当点M运动到某一位置时,线段MN的长度最大,求此时点M的坐标及线段MN的长度;(3)如图2,以B为圆心,2为半径的⊙B与x轴交于E、F两点(F在E右侧),若P点是⊙B上一动点,连接P A,以P A为腰作等腰Rt PAD△,使(P、A、D三点为逆时针顺序),连接FD.①将线段AB绕A点顺时针旋转90°,请直接写出B点的对应点的坐标;②求FD 长度的取值范围.7.(2021·湖南·长沙麓山国际实验学校九年级月考)如图1,在平面直角坐标系xOy 中,抛物线y =ax 2+bx+c 与x 轴分别相交于A 、B 两点,与y 轴相交于点C ,下表给出了这条抛物线上部分点(x ,y )的坐标值:(1)求出这条抛物线的解析式;(2)如图1,直线1y kx =+()0k <与抛物线交于P ,Q 两点,交抛物线对称轴于点T ,若QMT 的面积是PMT面积的两倍,求k 的值;(3)如图2,点D 是第四象限内抛物线上一动点,过点D 作DF ⊥x 轴,垂足为F ,ABD 的外接圆与DF 相交于点E .试问:线段EF 的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.8.(2021·四川·南部县第二中学九年级月考)如图,直线3y kx =+交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线的顶点坐标(1,4).(1)求k 的值和抛物线的解析式;(2)在抛物线的对称轴上求一点P ,使得P AB 的周长最小,并求出最小值;(3)在抛物线的对称轴上是否存在点Q ,使ABQ 是等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.9.如图1,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,3OA OC ==,顶点为D ,对称轴交x 轴于点E .图1 图2 图3(1)求抛物线的解析式、对称轴及顶点D 的坐标.(2)判断ACD △的形状,并说明理由.(用三种不同的方法)(3)如图2,在抛物线上有一动点P ,过点P 作PM x ⊥轴于点M ,交直线AC 于点N ,在线段PN 、MN 中,若其中一条线段是另一条线段的2倍,求点P 的坐标.(4)在抛物线上是否存在一点P,使PA PC=,若存在,求出点P的坐标;若不存在,说明理由.(5)如图3,在抛物线的对称轴上的一点151,4H⎛⎫--⎪⎝⎭,过点H的任一条与y轴不平行的直线l交抛物线于点M、N,说明MH NHMN⋅是否为定值?若是定值,请求出这个定值,若不是,请说明理由.10.(2021·北京·101中学九年级月考)对子某一函数给出如下定义:如果存在实数p,当其自变量的值为p 时,其函数值等于p,则称p为这个函数的不动值,在函数存在不动值时,该函数的最大不动值与最小不动值之差q称为这个函数的不动长度.特别地,当函数只有一个不动值时,其不动长度q为零.例如,如图中的函数有0,1两个不动值,其不动长度q等于1.(1)下列函数①y12=x,②y=x2+1,③y=x2﹣2x中存在不动值的是;(填序号)(2)函数y=3x2+bx.①若其不动长度为0,则b的值为;②若﹣2≤b≤2,求其不动长度q的取值范围;(3)记函数y=x2﹣4x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不动长度q满足0≤q≤5,则m的取值范围为.11.(2021·湖北·武汉一初慧泉中学九年级月考)平面直角坐标系中,已知抛物线的顶点为A(2,4),且经过坐标原点.(1)求抛物线的函数解析式;(2)如图1,设抛物线与x轴的另一交点为B,点C为抛物线上A,B之间一点,连接OA,OC,若∠AOC =∠AOy,求点C的坐标;(3)如图2,若直线y=kx﹣2k+5与抛物线交于M,N两点,点N关于抛物线对称轴的对称点为P,当k <0时,试说明直线MP过一定点Q,并求出点Q的坐标.12.(2021·湖南广益实验中学九年级月考)已知抛物线y=﹣x2+bx+c与x轴交于点A(m﹣2,0)和B(2m+1,0)(点A在点B的左侧),与y轴相交于点C,顶点为P,对称轴为l:x=1.(1)求抛物线解析式;(2)直线y=kx+2(k≠0)与抛物线相交于两点M(x1,y1),N(x2,y2)(x1<x2),当|x1﹣x2|最小时,求抛物线与直线的交点M和N的坐标;(3)首尾顺次连接点O、B、P、C构成多边形的周长为L,若线段OB在x轴上移动,求L最小值时点O、B移动后的坐标及L的最小值.。
九年级数学二次函数考点专题分类汇总考点一:二次函数的解析式及其求解一般的,形如),0(2是常数、、c b a a c bx ax y ≠++=的函数叫做二次函数,其中,x 是自变量,c b a 、、分别为二次函数的二次项系数、一次项系数和常数项。
(1)一般式:c bx ax y ++=2。
已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2。
已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.(4)对称点式:已知图像上有两个关于y 轴对称的点()()k x k x ,,,21,那么函数的方程可以选用对称点式()()k x x x x a y +--=21,代入已知的另外的点就可以求出函数的方程来了。
例题1:根据题意,求解二次函数的解析式。
(1)求过点A(1,0),B(2,3),C(3,1)的抛物线的方程(2)已知抛物线与x 轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式.(3)已知二次函数的顶点坐标为(3,-2),并且图象与x 轴两交点间的距离为4,求二次函数的解析式。
(4)已知二次方程32=++c bx ax 的两个根是-1和2,而且函数c bx ax y ++=2过点(3,4),求函数c bx ax y ++=2的解析式。
(5)已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式.(6)已知二次函数当x =2时有最大值3,且它的图象与x 轴两交点间的距离为6,求这个二次函数的解析式。
变式1:(1)、已知二次函数的图像经过点A(2,1),B(3,4),且与y 轴交点为(0,7),则求函数的解析式(2)已知过点(2,0),(3,5)的抛物线c bx ax y ++=2与直线33+=x y 相交与x 轴上,求二次函数的解析式(3)已知二次函数c bx ax y ++=2,其顶点为(2,2),图象在x 轴截得的线段长为2,求这个二次函数的解析式。
基础知识知识点一、二次函数的有关概念1、二次函数的概念:一般地,我们把形如c bx ax y ++=2(其中c b a ,,是常数,0≠a )的函数叫做二次函数,其中a 称为二次项系数,b 为一次项系数,c 为常数项。
x 称为自变量,y 称为因变量。
知识点二、二次函数的基本性质 1、二次函数的图像:抛物线。
2、二次函数的常见的几种表达式 ①、一般式:c bx ax y ++=2②、顶点式:()k h x a y +-=2a b h 2-= ab ac k 442-=3、抛物线的三要素:开口方向(与a 有关系)、对称轴(与a 、b 有关系)、顶点()k h ,。
4、二次函数的基本性质5、二次函数c bx ax y ++=2与()k h x a y +-=2之间的转化6、二次函数的平移7、二次函数c bx ax y ++=2中a 、b 、c 正负的判定a :看开口方向 0>a 开口向上;0<a 开口向下。
b :看对称轴 对称轴在y 轴左边,则与a 正负相同,对称轴在y 轴右边,则与a 正负相反。
c :看于y 轴的交点 0>c 于y 轴交于正半轴; 0<c 于y 轴交于负半轴。
知识点四:二次函数解析式的求法 1、设一般式:c bx ax y ++=2一般题目提供已知三个点坐标,则设所求抛物线解析式一般式,将已知条件带入解析式,得到关于a 、b 、c 的三元一次方程组,解方程组求出a 、b 、c 的值即可得到解析式。
2、设顶点式:()k h x a y +-=2一般题目提供已知一个点和顶点坐标,则设所求抛物线解析式顶点式,将已知条件带入解析式,得到一个关于a 的一元一次方程,求出a 即可得到解析式。
知识点四:二次函数的实际问题 二次函数的实际应用题解题步骤:1、分析:分析此题的类型:行程问题、销售问题……2、提取:提取题目中的已知条件,并标记:如行程问题,则跟速度、时间、路程有关,应标清楚是什么量。
初中数学二次函数复习专题〖知识点〗二次函数、抛物线的顶点、对称轴和开口方向〖大纲要求〗1. 理解二次函数的概念;2. 会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;3. 会平移二次函数y =ax 2(a ≠0)的图象得到二次函数y =a(ax +m)2+k 的图象,了解特殊与一般相互联系和转化的思想;4. 会用待定系数法求二次函数的解析式;5. 利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x 轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。
内容(1)二次函数及其图象如果y=ax 2+bx+c(a,b,c 是常数,a ≠0),那么,y 叫做x 的二次函数。
二次函数的图象是抛物线,可用描点法画出二次函数的图象。
(2)抛物线的顶点、对称轴和开口方向抛物线y=ax 2+bx+c(a ≠0)的顶点是)44,2(2a b ac a b --,对称轴是a b x 2-=,当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。
抛物线y=a (x+h )2+k(a ≠0)的顶点是(-h ,k ),对称轴是x=-h.〖考查重点与常见题型〗1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数y =(m -2)x 2+m 2-m -2额图像经过原点,则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数y =kx +b 的图像在第一、二、三象限内,那么函数y =kx 2+bx -1的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为x =53,求这条抛物线的解析式。
4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:已知抛物线y =ax 2+bx +c (a ≠0)与x 轴的两个交点的横坐标是-1、3,与y 轴交点的纵坐标是-32(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标.5.考查代数与几何的综合能力,常见的作为专项压轴题。
习题1:一、填空题:(每小题3分,共30分)1、已知A(3,6)在第一象限,则点B(3,-6)在第象限2、对于y=-1x,当x>0时,y随x的增大而 3、二次函数y=x 2+x-5取最小值是,自变量x的值是4、抛物线y=(x-1)2-7的对称轴是直线x=5、直线y=-5x-8在y轴上的截距是6、函数y=12-4x中,自变量x的取值范围是 7、若函数y=(m+1)x m2+3m+1是反比例函数,则m 的值为8、在公式1-a2+a=b中,如果b是已知数,则a=9、已知关于x的一次函数y=(m-1)x+7,如果y随x的增大而减小,则m的取值范围是 10、某乡粮食总产值为m吨,那么该乡每人平均拥有粮食y(吨),与该乡人口数x的函数关系式是二、选择题:(每题3分,共30分) 11、函数y=x-5 中,自变量x的取值范围 ( )(A )x>5 (B )x<5 (C )x≤5 (D )x≥512、抛物线y=(x+3)2-2的顶点在 ( )(A )第一象限 (B ) 第二象限 (C ) 第三象限 (D ) 第四象限 13、抛物线y=(x-1)(x-2)与坐标轴交点的个数为 ( ) (A )0 (B )1 (C )2 (D )314、下列各图中能表示函数和在同一坐标系中的图象大致是( )(A ) (B ) (C ) (D )15.平面三角坐标系内与点(3,-5)关于y轴对称点的坐标为( ) (A )(-3,5)(B )(3,5) (C )(-3,-5) (D )(3,-5) 16.下列抛物线,对称轴是直线x=12的是( )(A ) y=12 x 2(B )y=x 2+2x(C )y=x 2+x+2(D )y=x 2-x-217.函数y=3x1-2x 中,x的取值范围是( )(A )x≠0 (B )x>12 (C )x≠12 (D )x<1218.已知A (0,0),B (3,2)两点,则经过A 、B 两点的直线是( ) (A )y=23 x(B )y=32 x (C )y=3x (D )y=13 x+119.不论m为何实数,直线y=x+2m与y=-x+4 的交点不可能在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限20.某幢建筑物,从10米高的窗口A 用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直,(如图)如果抛物线的最高点M 离墙1米,离地面403 米,则水流下落点B 离墙距离OB 是( )(A )2米 (B )3米 (C )4米 (D )5米三.解答下列各题(21题6分,22----25每题4分,26-----28每题6分,共40分)21.已知:直线y=12x+k过点A (4,-3)。
(1)求k的值;(2)判断点B (-2,-6)是否在这条直线上;(3)指出这条直线不过哪个象限。
22.已知抛物线经过A (0,3),B (4,6)两点,对称轴为x=53,(1) 求这条抛物线的解析式;(2) 试证明这条抛物线与X 轴的两个交点中,必有一点C ,使得对于x轴上任意一点D 都有AC +BC ≤AD +BD 。
23.已知:金属棒的长1是温度t的一次函数,现有一根金属棒,在O ℃时长度为200cm,温度提高1℃,它就伸长0.002cm。
(1) 求这根金属棒长度l与温度t的函数关系式; (2) 当温度为100℃时,求这根金属棒的长度;(3) 当这根金属棒加热后长度伸长到201.6cm时,求这时金属棒的温度。
24.已知x 1,x 2,是关于x的方程x 2-3x+m=0的两个不同的实数根,设s=x 12+x 22(1) 求S 关于m的解析式;并求m的取值范围;(2) 当函数值s=7时,求x 13+8x 2的值;25.已知抛物线y=x 2-(a+2)x+9顶点在坐标轴上,求a的值。
26、如图,在直角梯形ABCD中,∠A=∠D=Rt∠,截取AE=BF=DG=x,已知AB=6,CD=3,A D=4,求:(1) 四边形CGEF的面积S关于x的函数表达式和X的取值范围; (2) 当x为何值时,S的数值是x的4倍。
DABCE FGX XX27、国家对某种产品的税收标准原定每销售100元需缴税8元(即税率为8%),台洲经济开发区某工厂计划销售这种产品m吨,每吨2000元。
国家为了减轻工人负担,将税收调整为每100元缴税(8-x)元(即税率为(8-x)%),这样工厂扩大了生产,实际销售比原计划增加2x%。
(1) 写出调整后税款y(元)与x的函数关系式,指出x的取值范围;(2) 要使调整后税款等于原计划税款(销售m吨,税率为8%)的78%,求x的值.28、已知抛物线y=x 2+(2-m)x-2m(m≠2)与y轴的交点为A,与x轴的交点为B,C(B点在C点左边) (1) 写出A,B,C三点的坐标;(2) 设m=a 2-2a+4试问是否存在实数a,使△ABC为Rt△?若存在,求出a的值,若不存在,请说明理由;(3) 设m=a 2-2a+4,当∠BAC最大时,求实数a的值。
习题2:一.填空(20分)1.二次函数=2(x - 32 )2+1图象的对称轴是。
2.函数的自变量的取值范围是。
3.若一次函数y=(m-3)x+m+1的图象过一、二、四象限,则的取值范围是。
4.已知关于的二次函数图象顶点(1,-1),且图象过点(0,-3),则这个二次函数解析式为。
5.若y 与x 2成反比例,位于第四象限的一点P (a ,b )在这个函数图象上,且a,b 是方程x 2-x -12=0的两根,则这个函数的关系式。
6.已知点P (1,a )在反比例函数y=k x(k ≠0)的图象上,其中a=m 2+2m+3(m 为实数),则这个函数图象在第象限。
7. x,y 满足等式x=3221y y +-,把y 写成x 的函数 ,其中自变量的取值范围是。
8.二次函数y=ax 2+bx+c+(a ≠0)的图象如图,则点P (2a-3,b+2在坐标系中位于第象限 9.二次函数y=(x-1)2+(x-3)2,当x= 时,达到最小值10.抛物线y=x 2-(2m-1)x- 6m 与x 轴交于(x 1,0)和(x 2,0)两点,已知x 1x 2=x 1+x 2+49,要使抛物线经过原点,应将它向右平移个单位。
二.选择题(30分)11.抛物线y=x 2+6x+8与y 轴交点坐标( ) (A )(0,8) (B )(0,-8) (C )(0,6) (D )(-2,0)(-4,0) 12.抛物线y= -12(x+1)2+3的顶点坐标( ) (A )(1,3) (B )(1,-3) (C )(-1,-3) (D )(-1,3)13的图象在第一、二、三象限,那么函数y=kx 2+bx-1的图象大致是( )14.函数x 的取值范围是( )x y ox yo x y o 1-1-1B C D(A )x ≤2 (B )x<2 (C )x> - 2且x ≠1 (D )x ≤2且x ≠–115.把抛物线y=3x 2先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式是( )(A )=3(x+3)2 -2 (B )=3(x+2)2+2 (C )=3(x-3)2 -2 (D )=3(x-3)2+2 16.已知抛物线=x 2+2mx+m -7与x 轴的两个交点在点(1,0)两旁,则关于x 的方程14x 2+(m+1)x+m 2+5=0的根的情况是( )(A )有两个正根 (B )有两个负数根 (C )有一正根和一个负根 (D )无实根17.函数y= - x 的图象与图象y=x+1的交点在( )(A ) 第一象限 (B )第二象限 (C )第三象限 (D )第四象限18.如果以y 轴为对称轴的抛物线y=ax 2+bx+c 的图象,如图, 则代数式b+c-a 与0的关系( )(A )b+c-a=0 (B )b+c-a>0 (C )b+c-a<0 (D )不能确定19.已知:二直线y= -35x +6和y=x - 2,它们与y 轴所围成的三角形的面积为( ) (A )6 (B )10 (C )20 (D )1220.某学生从家里去学校,开始时匀速跑步前进,跑累了后,再匀速步行余下的路程。
下图所示图中,横轴表示该生从家里出发的时间t ,纵轴表示离学校的路程s ,则路程s 与时间t 之间的函数关系的图象大致是( )三.解答题(21~23每题5分,24~28每题7分,共50分) 21.已知抛物线y=ax2+bx+c (a ≠0)与x 轴的两交点的横坐标分别是-1和3,与y 轴交点的纵坐标是-32; (1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向,对称轴和顶点坐标。