2018年秋八年级数学上册第一章分式小结与复习学案(新版)湘教版
- 格式:doc
- 大小:142.50 KB
- 文档页数:3
新版湘教版秋八年级数学上册第一章分式课题分式的乘方教学设计一. 教材分析湘教版秋八年级数学上册第一章分式课题分式的乘方,主要让学生掌握分式的乘方法则,理解分式乘方的运算过程,提高学生的逻辑思维能力和运算能力。
本节课的内容是分式乘方的基础,对于学生后续学习分式方程、分式函数等知识有着重要的影响。
二. 学情分析学生在学习本节课之前,已经掌握了分式的基本概念、分式的乘除法运算。
但部分学生对于分式的乘方运算可能会感到困惑,不易理解。
因此,在教学过程中,需要关注学生的学习差异,针对性地进行教学,提高学生的学习兴趣和积极性。
三. 教学目标1.理解分式乘方的概念,掌握分式乘方的运算规则。
2.培养学生的逻辑思维能力和运算能力。
3.提高学生分析问题、解决问题的能力。
4.培养学生合作学习、积极探讨的学习态度。
四. 教学重难点1.重点:分式乘方的概念和运算规则。
2.难点:分式乘方在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入分式乘方的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生主动思考、探讨,提高学生的逻辑思维能力。
3.互动式教学法:分组讨论,培养学生合作学习的精神。
4.巩固练习法:通过适量练习,让学生掌握分式乘方的运算规则。
六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示。
2.练习题:准备适量的练习题,用于巩固所学知识。
3.教学道具:准备一些实物道具,帮助学生直观地理解分式乘方。
七. 教学过程1.导入(5分钟)利用生活实例,如比例尺问题,引出分式乘方的概念,激发学生的学习兴趣。
2.呈现(10分钟)讲解分式乘方的运算规则,通过示例演示,让学生理解分式乘方的过程。
3.操练(10分钟)学生分组讨论,运用分式乘方的运算规则,解决实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示适量练习题,让学生独立完成,检验学生对分式乘方的掌握程度。
5.拓展(10分钟)引导学生思考分式乘方在实际生活中的应用,提高学生分析问题、解决问题的能力。
分式1.1 分式(一)【学习目标】:1、阅读教材,能识别一个代数式是否为分式,会正确区分整式与分式。
2、学会判断一个分式是否有意义,会求一个分式的有意义、无意义及分式的值为零时的条件。
3、会灵活应用分式的定义,掌握分式有意义的条件。
【情景导入】:计算:7÷ 6=67= 类似地:z ÷(x+y )=y x z + 【带问自学】: 1、在教材动脑筋中得出的三个代数式有什么异同点?2、阅读教材第2页中分式的定义,试找出定义中的关键词和分式的分母需要满足的条件。
3、想一想:分式有意义、无意义、分式的值为零的条件: (1)当 分母 时,分式才有意义。
(2)当分母 时,分式无意义。
(3)当 时,分式的值为零。
【基础演练】:下列式子中是分式的有 (只填序号) x 4 (2)3y x + (3)y x xy - (4)y x 22- (5)πa 2 2、当x 时,分式32-x 不存在,当x__________时,分式223x x -- 的值等于0.3、在函数21-=x y 中,自变量x 的取值范围是( ) A . B . C .≤ D .≥4、求分式6312-+x x 的值。
(1)、3=x ;(2)、52-=x 。
【交流质疑】:1、当x 时,分式33+-x x 的值为零。
学法指导:区分整式与分式的关键是什么?2、若分式122-x x 有意义,则x 的取值范围是 。
3、当x 为任意实数时,下列分式中,一定有意义的是 ( ) A 、221x x + B 、112--x x C 、112++x x D 、11+-x x 4、要使分式)3)(1()3)(1(-++-x x x x 有意义,则必须满足下列条件( ) A .1≠x 或3-≠x B .1-≠x 或3≠xC .1≠x 且3-≠xD .1-≠x 且3≠x【综合提升】:5、当x 为何值时,分式6522++-x x x 的值为零?6、已知,4-=x 分式a xb x +-无意义,2=x 时,分式a x b x +-的值为零,求b a -的值。
课题:《分式》小结与复习(2)学习目标:1、进一步掌握分式加、减、乘除、乘方运算法则;能熟练的进行分式的四则运算和混合运算。
2、学生掌握基本概念、基本方法的基础上将知识融会贯通,进行一些提高训练。
3、培养学生对知识的掌握,综合运用的能力,提高学生的运算能力。
重点:分式的四则运算和混合运算的基本方法。
难点:分式的运算的技巧.教学过程:一、知识点复习:(出示ppt 课件)(每个知识点配有基础训练,在复习中穿插练习,巩固知识点。
)一、分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
用符号语言表达: 。
二、分式的乘方(商的乘方)法则:把分式的分子、分母各自乘方。
用符号语言表达: 。
基础训练:分组计算下面各题(1)222441214a a a a a a -+-⋅-+- (2)2235325953x x x x x ÷⋅--+ (3)221642816282a a a a a a a ---÷⋅++++ (4)222296344944x x x x x x x x -+-++÷⋅--- 注意:乘法和除法运算时,分子或分母能因式分解的要因式分解。
结果要化为最简分式。
三、整数指数幂运算性质1、同底数幂的乘法: 。
2、幂的乘方: 。
3、积的乘方: 。
4、特殊指数幂的性质:零指数幂: 。
负整数指数幂: 。
5、科学记数法: 。
基础训练:1、下列等式是否正确?为什么?(1) a m ÷a n = a m .a -n ; (2) ()n n n a a b b-= 2.0.000000879用科学计数法表示为 .3. 如果(2x -1) -4有意义,则 。
4. (2×10-3) 2×(2×10-2) -3= .5. (a n+1b m ) -2÷a n b =a -5b -3,则m= ,n= 。
新版湘教版秋八年级数学上册第一章分式课题分式的基本概念教学设计一. 教材分析湘教版秋八年级数学上册第一章分式课题“分式的基本概念”是学生在学习了有理数、方程、不等式等知识后,进一步深化对数学概念的理解的重要内容。
本节课主要让学生掌握分式的定义、分式的性质、分式的运算等基本概念。
教材通过丰富的例题和练习,帮助学生巩固分式的基本概念,并培养学生的数学思维能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对有理数、方程、不等式等知识有一定的了解。
但学生在学习过程中,可能会对分式的抽象概念和运算规则感到困惑。
因此,在教学过程中,教师需要关注学生的学习需求,通过生动有趣的例子和实际操作,激发学生的学习兴趣,帮助学生理解和掌握分式的基本概念。
三. 教学目标1.知识与技能目标:使学生掌握分式的定义、性质和运算方法,能够熟练地运用分式解决实际问题。
2.过程与方法目标:通过自主学习、合作交流,培养学生探究数学问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和克服困难的勇气。
四. 教学重难点1.重点:分式的定义、性质和运算方法。
2.难点:分式的运算规则和实际应用。
五. 教学方法1.情境教学法:通过生活实例引入分式的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生主动探究分式的性质和运算方法,培养学生的数学思维能力。
3.合作学习法:学生进行小组讨论和实践,提高学生的合作能力和沟通能力。
六. 教学准备1.教学课件:制作精美的课件,展示分式的定义、性质和运算方法。
2.练习题:准备分式的相关练习题,巩固学生的学习效果。
3.教学道具:准备实物模型或图示,帮助学生形象地理解分式的概念。
七. 教学过程1.导入(5分钟)教师通过展示一个实际问题,如“小明买了一本书,原价是80元,现在打8折,小明实际支付了多少钱?”引导学生思考和解决问题。
学生通过计算得出答案,教师引入“分式”的概念,指出这个问题可以用分式来表示和解决。
新版湘教版秋八年级数学上册第一章分式小结与复习说课稿一. 教材分析湘教版秋八年级数学上册第一章分式小结与复习,主要内容包括分式的概念、分式的运算、分式的性质和分式的应用。
这一章节是整个初中数学的重要内容,也是学生从实数到虚数的一个过渡。
本章的学习,不仅要求学生掌握分式的基本概念和运算法则,还要求学生能够运用分式解决实际问题。
二. 学情分析八年级的学生已经具备了一定的数学基础,对实数体系有了初步的认识。
但是,对于分式的理解,部分学生可能会感到困难,特别是分式的运算和应用。
因此,在教学过程中,需要针对学生的实际情况,进行有针对性的教学。
三. 说教学目标1.知识与技能目标:使学生掌握分式的概念、性质和运算法则,能够运用分式解决实际问题。
2.过程与方法目标:通过分式的运算和应用,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和探究精神。
四. 说教学重难点1.教学重点:分式的概念、性质和运算法则。
2.教学难点:分式的运算和应用,特别是分式的化简和求解。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件、教学卡片和黑板等。
六. 说教学过程1.导入新课:通过生活中的实际问题,引入分式的概念。
2.自主学习:学生通过阅读教材,了解分式的性质和运算法则。
3.案例分析:教师通过讲解典型例题,引导学生掌握分式的运算方法。
4.分组讨论:学生分组讨论,探讨分式在实际问题中的应用。
5.总结提升:教师引导学生总结分式的概念、性质和运算法则。
6.课堂练习:学生进行课堂练习,巩固所学知识。
7.课后作业:布置相关作业,让学生进一步巩固和提高。
七. 说板书设计板书设计如下:1.分母不为零2.分子分母同时乘以(或除以)同一个不为零的整式,分式的值不变分式的运算法则1.分式的加减法:分母相同,分子相加(减);分母不同,通分后相加(减)2.分式的乘除法:分子乘(除)以分子,分母乘(除)以分母3.实际问题中的应用4.与其他数学知识的综合运用八. 说教学评价教学评价主要包括过程性评价和终结性评价。
新版湘教版秋八年级数学上册第一章分式小结与复习教学设计一. 教材分析湘教版秋八年级数学上册第一章分式小结与复习主要内容包括分式的概念、分式的运算、分式方程的解法等。
本章内容是初中的重要知识点,也是学生学习高中数学的基础。
通过本章的学习,使学生掌握分式的基本概念和运算方法,能够解决简单的实际问题,培养学生分析问题、解决问题的能力。
二. 学情分析八年级的学生已经学习了分式的基本概念和运算方法,但对分式方程的解法还不够熟练。
学生在学习过程中,对分式的理解存在一定的困难,特别是分式方程的解法,部分学生可能会感到迷茫。
因此,在教学过程中,需要教师引导学生加深对分式的理解,提高学生解决实际问题的能力。
三. 教学目标1.知识与技能:使学生掌握分式的基本概念和运算方法,能够解决简单的实际问题。
2.过程与方法:通过复习,引导学生自主探究,总结分式的性质和运算规律,提高学生的数学思维能力。
3.情感态度与价值观:培养学生热爱数学,勇于探究的精神,增强学生团队合作的意识。
四. 教学重难点1.重点:分式的基本概念和运算方法。
2.难点:分式方程的解法及其应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生自主探究,总结分式的性质和运算规律。
2.运用小组合作学习,培养学生的团队合作精神和沟通能力。
3.利用多媒体辅助教学,提高学生的学习兴趣和效果。
六. 教学准备1.准备相关的教学课件和教学素材。
2.安排学生进行预习,了解分式的基本概念和运算方法。
3.设计好课堂练习和课后作业。
七. 教学过程1.导入(5分钟)教师通过复习分式的基本概念,引导学生回顾已学过的知识,为新课的学习做好铺垫。
2.呈现(15分钟)教师通过PPT展示分式的性质和运算规律,让学生自主探究,总结出分式的基本性质和运算方法。
3.操练(20分钟)教师设计一些分式运算的题目,让学生独立完成,检验学生对分式运算方法的掌握程度。
4.巩固(15分钟)教师给出一些实际问题,让学生运用所学的分式知识解决,巩固学生对分式的应用能力。
新版湘教版秋八年级数学上册第一章分式课题分式的基本性质教学设计一. 教材分析湘教版秋八年级数学上册第一章分式课题“分式的基本性质”是整个分式单元的基础部分,主要让学生理解分式的概念,掌握分式的基本性质,包括分式的分子、分母的乘除运算,分式的加减运算,以及分式的约分和通分。
本节课的内容对于学生来说比较抽象,需要通过具体例子和实际操作让学生理解和掌握。
二. 学情分析八年级的学生已经掌握了实数的基本运算,对于新的数学概念有一定的接受能力。
但是,由于分式是一个比较抽象的概念,学生可能难以理解。
因此,在教学过程中,需要通过具体的例子和实际操作让学生理解和掌握。
三. 教学目标1.理解分式的概念,掌握分式的基本性质。
2.能够进行分式的乘除运算,分式的加减运算,以及分式的约分和通分。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重点:分式的概念,分式的基本性质,分式的运算。
2.难点:分式的约分和通分,分式的混合运算。
五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考和探索。
2.使用多媒体教学,通过动画和图形帮助学生形象地理解分式的概念和性质。
3.采用小组合作学习的方式,让学生通过讨论和交流共同解决问题。
六. 教学准备1.多媒体教学设备。
2.分式的相关教学材料和实例。
3.分式运算的练习题。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考实数运算的局限性,从而引入分式的概念。
2.呈现(15分钟)通过多媒体展示分式的定义和基本性质,让学生直观地理解分式的概念。
3.操练(20分钟)让学生进行分式的乘除运算,分式的加减运算,以及分式的约分和通分,巩固所学知识。
4.巩固(10分钟)让学生解决一些实际问题,运用分式的知识进行计算和分析。
5.拓展(10分钟)让学生进行一些分式运算的综合练习,提高学生的解题能力。
6.小结(5分钟)对本节课的内容进行总结,强调分式的基本性质和运算规则。
八年级数学上册第一章分式小结与复习学案新版湘教版0516153第1章小结与复习【学习目标】1.系统了解本章的知识体系及知识内容.2.进一步知道分式的概念和分式的基本性质,能进行分式的约分、通分以及分式的加减、乘除、乘方混合运算.3.会用科学记数法表示绝对值小于1的数,能进行有关负整数次幂的有关运算.4.会列分式方程解决简单的实际问题,会解分式方程.5.通过构建知识结构图,提高归纳、整理的能力,体会知识之间的内在联系和价值.【学习重点】分式的基本性质及运算,分式方程的解法及应用.【学习难点】分式的有关运算及分式方程的应用.方法指导:(1)分母中含有字母是分式的重要标志,分式存在的条件是分母不为0;分式的值为0的条件是:分子为0,分母不为0.(2)分式的分子与分母都乘同一个非零整式,所得分式与原分式相等. 即对于分式f g ,有f g =f ·h g ·h (h≠0).情景导入 生成问题 本章知识结构图分式⎩⎪⎪⎪⎨⎪⎪⎪⎧分式的概念分式的性质⎩⎪⎨⎪⎧约分通分分式的符号法则:-f g =f (-g )=(-)f g ;-f -g =⎝ ⎛⎭⎪⎫f g 分式的运算⎩⎪⎨⎪⎧乘除法乘方:⎝ ⎛⎭⎪⎫f g n =f n g n 加减法分式方程⎩⎪⎨⎪⎧分式方程的解法分式方程的应用 (3)约分是约去分式的分子与分母的公因式,约分过程实际是做除法运算,目的在于把分式化为最简分式或整式,根据是分式的基本性质.约分时,如果分式的分子分母都是单项式,约分时约去它们系数的最大公因式,相同因式的最低次幂;如果分式的分子分母是多项式,先因式分解,再约分.(4)通分的依据是分式的基本性质,通分的关键是确定最简公分母.最简公分母由下面的方法确定:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母,取各分母所有字母的最高次幂的积. 行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案. 教会学生落实重点.方法指导:(1)注意分式的混合运算的顺序:先进行乘方运算,其次进行乘、除运算,再进行加、减运算,遇有括号,先算括号内的.(2)如果分式的分子或分母中含有多项式,并且能分解因式,可先分解因式,能约分的先约分,再进行运算.分式运算时注意:(1)注意运算顺序.(2)通分不丢分母.(3)记住分数线具有括号的作用;分式相减时,若分子是多项式,其括号不能省略.(4)最后的运算结果应化为最简分式.行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.自学互研 生成能力知识模块一 分式的运算例1:化简求值:a 2-b 2a 2b -ab 2÷⎝ ⎛⎭⎪⎫1+a 2+b 22ab ,其中a =-3,b =2. 解:原式=(a +b )(a -b )ab (a -b )÷2ab +a 2+b 22ab=(a +b )(a -b )ab (a -b )·2ab (a +b )2=2a +b. 当a =-3,b =2时,原式=2-3+2=-2. 知识模块二 整数指数幂例2:用科学记数法表示下列各数.(1)0.0000037=3.7×10-6;(2)0.000103=1.03×10-4;(3)-0.0000201=-2.01×10-5. 例3:计算:⎝ ⎛⎭⎪⎫x 2+xy x -1÷⎝ ⎛⎭⎪⎫x -y x ·x y -x -5. 解:原式=1x +y ·(-1)=-1x +y. 知识模块三 分式方程的解法及应用例4:某工程要求限期完成,甲队独做正好按期完成,乙队独做则要误期3天,现甲、乙两队合做2天后,余下的工程由乙队独做,正好按期完成,问该工程限期多少天?解:设该工程限期x 天,由题意得2⎝ ⎛⎭⎪⎫1x +1x +3+x -2x +3=1.解得x =6. 经检验,x =6是原方程的解.答:该工程限期6天.交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主学习、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 分式的运算知识模块二 整数指数幂知识模块三 分式方程的解法及应用课后反思 查漏补缺1.收获:_____________________________________________________________2.存在困惑:________________________________________________________________________。
第1章分式分式复习(1)(第16课时)教学目标1 使学生系统了解本章的知识体系及知识内容;2 进一步了解分式的基本性质、分式的运算法则以及整数指数幂,会熟练地进行分式的运算。
重点、难点重点:梳理知识内容,形成知识体系。
难点:熟练进行分式的运算。
教学过程一知识结构与知识要点2 这章学习了哪些内容?(学生交流)教师投影本章知识结构图3 你还记得下面知识要点吗?(1)什么叫分式?设f、g都是整式,且g中含有字母,我们把f除以g所得的商记作,把叫做分式。
(2)分式基本性质设h0,则即:分式的分子与分母同时乘以一个非零的多项式,所得分式与原分式相等;分式的分子分母同时约去公因式,所得分式与原分式相等。
(3)分式的符号变换法则是什么?形象的理解为:分式的分子分母的符号可以移动(4)分式的运算法则①分式的乘法:可以先把分子、分母分别相乘再约分,也可以先约分再分子、分母分别相乘。
②分式的除法:,分式除以分式,把被除式的分子分母颠倒位置后,与被除式相乘。
③分式加减法:同分母:,分母不变,分子相加减。
异分母:先通分,化为同分母的分子然后相加减。
怎样找最简公分母?系数:取各分母的系数最少公倍数。
字母因式:取所有的,指数最高的。
(5)整数指数幂的运算法则①同底数的幂的除法:②零次幂和负整数指数幂:,,③整数指数幂有哪些运算法则:设a0,m,n都是整数,则:二例题精讲例1 填空:当x=_____,分式无意义。
当x=_____时, =0提醒:分式值为零除了分子为零外,还需要分母不等于零。
而分式有意义的条件只要分母不等于零,与分子无关。
思考:分式在什么条件下值为零呢?例2 请你先化简,再选一个你喜欢的a的值代入求值。
解:估计学生会有人选a=1,这时可以让学生交流,这样的取值是否合适。
例3 已知。
解法1:解法2:三课堂练习,巩固提高1、(2008金华)若分式的值为0,那么x的值为____.2、(2008成都) 化简:四反思小结,拓展提高这节课你有什么收获?教学后记:分式复习(2)(第17课时)教学目标1 使学生了解分式方程的概念,进一步掌握分式方程的解法;2 会列分式方程解应用题.重点:分式方程的解法和应用难点:分式方程的应用教学过程一知识要点做一做:1解方程:解:两边同乘以x(x-2),得:5+3(x-2)=x去分母,得:5+3x-6=x移项,得: 2x=1 所以,x=检验:当x=时,x(x-2) 0,所以x=是原方程的解.思考:1 什么叫分式方程?分母里含有未知数的方程叫分式方程.2 解方式方程的思路是什么?有哪些步骤?解分式方程为什么会产生增根?解分式方程的思路:去分母化为整式方程.解分式方程的步骤:①方程两边同乘以最简公分母去掉分母,化为整式方程;②解整式方程③检验④下结论.解分式方程产生增根的原因:去分母后,方程中未知数的范围扩大了.2 甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了两小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行速度和骑自行车的速度分别是多少?解:设步行得速度是x千米/时,则骑车的速度是4x/时依题意得:两边同乘以4x,得:28+12=8x所以,x=5,检验:当x=5时,4x0,所以,x=5是原方程的解.4x=20答:步行速度是5千米/时,骑车的速度是20千米/时.思考:解分式方程有哪些步骤?(1)审题----注意理解题意,抓关键语句.可以借助图表,(2)设元-----注意带单位.(3)解分式方程(4)检验---既要检验是不是原方程的解,还要检验是否合题意.二讲解例题例1 解方程:,两边同乘以x(x+3)(x-1),得:5(x-1)-(x+3)=0去括号,得:5x-5-x-3=0,4x-8=0,4x=8,x=2,检验:当x=2时,x(x-1)(x+3) 0,所以,x=2是原方程的解.例2 为了支援四川人民抗震救灾,某休闲用品公司主动承担了灾区生产2万顶帐篷的任务,计划10天完成.(1)按此计划,该公司平均每天应生产帐篷______顶.(2)生产2天后,公司又从其他部门抽调了50名工人参加帐篷生产,同时通过技术革新等手段使每位工人的效率比原计划提高了25%,结果提前2天完成了任务,求该公司原计划安排多少名工人生产帐篷?解:(1)该公司原计划平均每天应生产:2000010=2000(顶)(2)设原来有x名工人,每人每天生产:,依题意得:2 + =10-2,或者:解得:x=750,经检验:x=750是原方程的解.答:该公司原计划安排750名工人生产帐篷.三课堂练习1方程的根为增根,则m的值为()A 3 B 4 C 5 D 6解:方程两边同乘以x-3,得:2x-(x-3)=m, x=m-3因为方程的根为增根,所以,m-3=3,m=6 故选D.2 一列火车从车站开出,预计行程450千米,当它出发3小时后,因特殊情况而多停了一站,因此耽误了30分钟,后来把速度提高了20%,结果准时到达目的地,求这列火车原来的速度.解:设这列火车原来的速度为x千米/时.依题意,得:解得:x=75,当x=75时,1.2x0,所以,x=75是原方程的解.答:这列火车原来的速度是75千米/时.四反思小结,巩固提高这节课你有什么收获?这节课我们主要复习了分式方程的解法和应用.解分式方程时,应该主要检验.作业:P39 复习题1 A 组: 7,8 B组:10教学后记:分式复习(3)(第18课时)学习目标:1、能熟练地解可化为一元一次方程的分式方程。
第1章分式1.1 分式第1课时分式的概念1.了解分式的概念,明确分式和整式的区别.2.使学生能够求出分式有意义的条件.3.让学生经历用字母表示实际问题中数量关系的过程,体会分式是表示现实世界中的一类量的数学模型.4.培养学生观察、归纳、类比的思维,让学生学会自主探索,合作交流.【教学重点】理解分式有意义的条件,分式的值为零的条件.【教学难点】能熟练地求出分式有意义的条件,分式的值为零的条件.一、情景导入,初步认知下列式子中哪些是整式?【教学说明】因为分式概念的学习是学生通过观察,比较分式与整式的区别从而获得的,所以必须熟练掌握整式的概念.二、思考探究,获取新知1.思考:(1)某长方形画的面积为Sm2,长为8m,则它的宽为____m.(2)某长方形画的面积为Sm2,长为xm,则它的宽为____m.(3)如果两块面积为x公顷,y公顷的稻田,分别产稻谷akg,bkg,那么这两块稻田平均每公顷产稻谷_____kg.【教学说明】要给学生一定的思考时间,让学生积极投身于问题情景中,根据学生的情况,教师可以给予适当的提示和引导.2.讨论内容:前面出现的代数式如下,它们有什么共同特征?它们与整式有什么不同?【教学说明】让学生通过观察、归纳、总结出整式与分式的异同,从而得出分式的概念.【归纳结论】一般地,一个整式f除以一个非零整式g(g中含有字母)所得的商记作fg,那么代数式fg叫做分式.3.当x取什么值时,分式223xx--的值满足下列条件:(1)不存在;(2)等于0.解:(1)当分母2x-3=0时,即x=32时,分子的值为32-2≠0,因此x=32时,分式223xx--的值不存在.(2)当x -2=0,即x=2时,分式223xx--的值等于0.【教学说明】让学生通过观察,归纳、总结出整式与分式的异同,从而得到分式的概念.三、运用新知,深化理解1.下列各式中,哪些是整式?哪些是分式?解:(2)、(4)是整式,(1)、(3)是分式.2.若分式13x-有意义,则x的取值范围是()A.x≠3B.x≠-3C.x>3D.x>-3解:当分母x-3≠0,即x≠3时,分式有意义,故选A.3.x取什么值时,下列分式无意义?解:(1)因为当分母的值为零时,分式没有意义.由2x-3=0,得x =32, 所以当x=32时,分式无意义.(2)因为当分母的值为零时,分式没有意义.由5x+10=0,得x=-2,所以当x=-2 时,分式无意义.4.若分式||11xx-+的值为零,则x的值为 1 .【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.解:要使||11xx-+的值为0,则|x|-1=0,即x=±1,且x+1≠0,即x≠-1.故x=1.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.布置作业:教材“习题1.1”中第1、2题.在学习分式的概念时,借助整式的概念,用类比的思想进行教学,学生掌握的较好,能够紧抓概念,很容易的区分整式与分式.而在分式的值等于0的教学中,一部分学生都只考虑分式的分子等于0,而没有考虑分式的分母.因此,在后面的教学中对这方面的教学有待加强.第2课时分式的基本性质和约分1.使学生理解并掌握分式的基本性质,并能运用这些性质进行分式约分.2.通过对分式的基本性质的归纳,培养学生观察、类比、推理的能力.3.让学生在讨论活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力.【教学重点】掌握分式的基本性质.【教学难点】运用分式的基本性质来化简分式.一、情景导入,初步认知1.分数的基本性质是什么?2.31=62的依据是什么?【教学说明】通过分数的约分,复习分数的基本性质,通过类比来学习分式的基本性质.二、思考探究,获取新知1.填空,并说一说下列等式从左到右变形的依据是什么?2.思考:34与分式34aa相等吗?分式22a bab与分式ab相等吗?【归纳结论】分式的分子与分母同乘以或除以一个非零整式,所得分式与原分式相等.即:f f gg g h⋅=⋅(h≠0).【教学说明】通过对分数的基本性质的理解,可类比得出分式的基本性质,但学生只想到分式的分子分母同时乘以或除以一个数,不容易想到整式,另外这个整式不能为零,老师要引导学生想到这一点.3.想一想:下列等式成立吗?为什么?;f f f fg g g g--==-- 【教学说明】先让学生讨论,待学生回答后,教师引导学生得出结论:分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.4.根据分式的基本性质填空:【教学说明】有的学生在应用分式的基本性质时往往分式的分子与分母没有同时乘以或除以同一个公因式,有的学生不能正确找到分子、分母的公因式,导致约分的错误和不彻底,所以教师适当引导.【归纳结论】把一个分式的分子和分母的公因式约去,叫作分式的约分. 分子和分母没有公因式的分式叫作最简分式. 三、运用新知,深化理解【教学说明】在教学中让学生将约分的步骤分为这样几步,首先找出分子和分母公因式并提取,再将分式的分子和分母同时除以公因式,最后看看结果是否为最简分式或整式.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.布置作业:教材“习题1.1”中第5、6题.学生对分式的基本性质,能说能背.从表面上来看,掌握的比较好.但从练习中可以发现很多问题.如:不会找分式的分子、分母的公因式;分子、分母不同时乘或除;约分不彻底等.所以在这些方面要多练习.1.2分式的乘法和除法第1课时分式的乘除法1.理解分式的乘、除运算法则,会进行简单的分式的乘、除法运算.2.经历探索分式的乘、除法法则的过程,并结合具体情境说明其合理性.3.通过师生讨论、交流,培养学生合作探究的意识和能力.【教学重点】掌握分式的乘、除法运算法则.【教学难点】熟练地运用乘除法法则进行计算,提高运算能力.一、情景导入,初步认知计算,并说出分数的乘除法的运算法则:【教学说明】复习小学学过的分数的乘除法运算,为学习分式乘除法的法则做准备.二、思考探究,获取新知1.探究:分式的乘除法法则你能总结分式乘除法的运算法则吗?与同伴交流.【归纳结论】分式乘分式,把分子乘分子、分母乘分母分别作为积的分子、分母分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即:【教学说明】让学生观察运算,通过小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的运算法则.【教学说明】学生独立完成,教师点评.3.计算:【教学说明】如果分子、分母含有多项式因式,应先分解因式,然后按法则计算.三、运用新知,深化理解3.先化简,再求值:222396a aba ab b--+,其中a=-8,b=12.解:当a=-8,b=12时,4.甲队在n天内挖水渠a米,乙队在m天内挖水渠b米,如果两队同时挖水渠,要挖x米,需要多少天才能完成?(用代数式表示)【教学说明】需要给学生强调的是分式运算的结果通常要化成最简分式或整式,对于这一点,很多学生在开始学习分式计算时往往没有注意到结果要化简.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.2”中第1、4、5 题.在练习中暴露出一些问题,例如我在传授过程中急于求成,法则的引入没有给学生过多的时间,如果时间足够,学生自己得出法则并不是一件难事.在解决习题时,对学生容易出现的错误没有重点强调,所以学生在后面的练习中仍然出现这样那样的错误.学生答题的规范性还差了些,在黑板上的板书不到位,在以后的教学中应加强学生答题的规范性练习.第2课时分式的乘方1.使学生牢记分式乘方的运算法则,并能根据此法则进行熟练无误的运算.2.学生能够熟练进行简单的分式乘除与乘方的混合运算.3.经历分式乘方法则的探究过程,采用自主探索与合作交流的方式,亲历“做数学”的过程,培养探究数学问题的能力.4.体验数学充满着探索与创造,感受数学的严谨性,对数学产生强烈的好奇心和求知欲.【教学重点】准确熟练地进行分式的乘方运算.【教学难点】准确熟练地进行简单的分式乘除与乘方的混合运算.一、情景导入,初步认知1.分式乘除法则是什么?2.什么叫最简分式?3.分数的乘方法则是什么?让学生举例.【教学说明】复习旧知,为本节新知打基础.二、思考探究,获取新知1.计算:由乘方的意义和分数乘法的法则,可得根据上面的规律,请总结分式乘方的运算法则.【归纳结论】分式的乘方就是把分子、分母各自乘方.即:【教学说明】通过类比分数的乘方运算方法,总结出分式的乘方运算法则.2.做一做:取一条长度为1个单位的线段AB,如图:第一步:把线段AB三等分,以中间一段为边作等边三角形,然后去掉这一段,就得到了由___条长度相等的线段组成的折线,每一段等于_____,总长度等于_____.第二步:把上述折线中的每一条重复第一步的做法,得到______.继续下去.情况怎么样呢?(1)把结果填入下表:(2)进行到第n步时得到的线段总长度是多少呢?【教学说明】引导学生寻找并总结规律.三、运用新知,深化理解1.教材P10例3、例4.6.计算:【教学说明】培养运用新知识解决问题的能力.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.2”中第2 题.在分式的乘方运算这一课的教学中,我采用了类比的方法,让学生回忆以前学过的分数的乘方的运算方法,提示学生分式的乘方法则与分数的乘方法法则类似,要求他们用语言描述分式的乘方法则.学生反应较好,能基本上完整地讲出分式的乘方法则.本节课存在的不足:学生主动性还不够强,教师对学生自学能力估计不足,舍不得放手,抑制部分学生的思维发展.1.3整数指数幂1.3.1同底数幂的除法1.了解同底数幂的除法的运算性质,并能解决一些实际问题.2.经历探索同底数幂的除法的运算性质的过程,进一步体会幂的意义.3.发展推理能力和有条理的表达能力.【教学重点】同底数幂的除法法则以及利用该法则进行计算.【教学难点】同底数幂的除法法则的应用.一、情景导入,初步认知【教学说明】复习分式的约分,为本节课的学习作铺垫.二、思考探究,获取新知1.计算机硬盘的容量最小单位为字节(B),千字节记作(KB),兆字节(MB),吉字节(GB)它们的换算单位如下:1GB=210MB=1024MB;1MB=210KB;1KB=210B .一张普通的CD光盘的存储容量约为640MB,请问一个320GB的移动硬盘的存储容量相当于多少张光盘容量?因为320GB=320×210MB因此一个320GB的移动硬盘的存储容量相当于512张光盘容量.2、如果把数字改为字母:一般地,设a≠0,m,n是正整数,且m>n,则mnaa等于多少?这是什么运算呢?通过上面的计算,归纳同底数幂除法的法则.【归纳结论】同底数幂相除,底数不变,指数相减.即:·m n m nm n n na a aaa a--==【教学说明】让学生从有理数的运算出发,由特殊逐渐过渡到一般,得到同底数幂的运算法则,再运用幂的意义加以说明.在此过程中,发展学生类比、归纳、符号演算、推理能力和有条理的表达能力.三、运用新知,深化理解1.教材P15例1、例2.4.已知a x=2,a y=3,求a3x-2y的值.5.计算:6.计算机硬盘的容量单位KB,MB,GB的换算关系,近视地表示成:1KB≈1000B,1MB≈1000KB,1GB≈1000MB(1)硬盘总容量为40GB的计算机,大约能容纳多少字节?(2)1个汉字占2个字节,一本10万字的书占多少字节?(3)硬盘总容量为40GB的计算机,能容纳多少本10万字的书?一本10万字的书约高1cm,如果把(3)小题中的书一本一本往上放,能堆多高?解:略.【教学说明】让学生通过上述题的训练,以达到巩固提高的效果.五、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.3”中第1 题.在同底数幂的除法这节教学活动中,通过让学生从特殊到一般,从生活到课堂,从未知到已知,一步步的探索,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步的发展,同时,也加深了我对新教材的理解,从而更好地完善新的教学模式.1.3.2 零次幂和负整数指数幂1.通过探索掌握零次幂和负整数指数幂的意义.2.会熟练进行零次幂和负整数指数幂的运算.3.会用科学记数法表示绝对值较少的数.4.通过探索,让学生体会到从特殊到一般是研究数学的一个重要方法.5.通过探索,让学生体会到从特殊到一般是研究数学的一个重要方法.【教学重点】零次幂和负整数指数幂的公式推导和应用,科学记数法表示绝对值较小的数.【教学难点】零次幂和负整数指数幂的理解.一、情景导入,初步认知1.同底数的幂相除的法则是什么?用式子怎样表示?用语言怎样叙述?a m÷a n=m na (a≠0,m、n是正整数,且m>n)2.这个公式中,要求m>n,如果m=n,m<n,就会出现零次幂和负指数幂,如:有没有意义?这节课我们来学习这个问题.【教学说明】通过复习让学生更好的用旧知识迁移推导出新的知识:零指数幂、负整数指数幂的计算.二、思考探究,获取新知1.探究:mmaa等于多少?【分析】根据分式的基本性质.可以得到mmaa=11·mmaa=11=1.根据同底数幂的除法,可以得到a m÷a m=11·mm a a=0a (a ≠0)由此,你能得到什么结论?【归纳结论】任何不等于零的数的零次幂等于1.即:0a =1(a ≠0) 【教学说明】通过引导学生进行计算,合理推导出零指数幂等于1. 2.试试看:填空:3.探究:负整数指数幂的意义. (1)填空:(2)思考:2333与23÷33的意义相同吗?因此他们的结果应该有什么关系呢?【归纳结论】n a =1na (a ≠0) 【教学说明】通过计算让学生推导出负指数幂计算公式(法则).3.做一做:(1)用小数表示下列各数:110-,210-,310-,410-.你发现了什么?(10n -= )(2)用小数表示下列各数:1.08×210-,2.4×310-,3.6×410-思考:1.08×10-2,2.4×10-3,3.6×10-4这些数的表示形式有什么特点?(a ×10n (a 是只有一位整数,n 是整数))叫什么记数法?(科学记数法)当一个数的绝对值很小的时候,如:0.00036怎样用科学记数法表示呢?你能从上面问题中找到规律吗?【归纳结论】我们可以用科学记数法表示一些绝对值较小的数,即将它们表示成a ×10-n 的形式,其中n 是正整数,1≤|a|≤10,其公式为00.0001n ⋯个=10n -.三、运用新知,深化理解 1.教材P17例3 ,P18例4、例6. 2.-2.040×510表示的原数为( A ) A .-204000 B .-0.000204 C .-204.000 D .-20400 3.用科学记数法表示下列各数. (1)30920000 (2)0.00003092 (3)-309200 (4)-0.000003092【分析】用科学记数法表示数时,关键是确定a 和n 的值. 解:(1)30920000=3.092×710 (2)0.00003092=3.092×510- (3)-309200=-3.092×510 (4)-0.000003092=-3.092×610-6.已知9m ÷223m +=13n(),求n 的值8.把下列各式写成分式形式:2x -,32xy - 解:2x -=21x;32xy -=32x y . 9.(1)原子弹的原料——铀,每克含有2.56×2110个原子核,一个原子核裂变时能放出3.2×1110-J 的热量,那么每克铀全部裂变时能放出多少热量?(2)1块900mm 2的芯片上能集成10亿个元件,每一个这样的元件约占多少mm 2?约多少m 2?(用科学计数法表示)【分析】第(1)题直接列式计算;第(2)题要弄清m 2和mm 2之间的换算关系,即1m=1000mm=103mm ,1m 2=106mm 2,再根据题意计算.解:(1)由题意得2.56×2110×3.2×1110-=8.192×1010(J)答:每克铀全部裂变时能放出的热量8.192×1010J.答:每一个这样的元件约占9×10-7平方毫米;约9×1310-平方米. 【教学说明】通过练习,牢固掌握本节课所学知识,并能运用知识计算. 四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.3”中第2、3、4 题.1.进行有关0次幂和负整数幂的运算要注意底数一定不能为0,特别是当底数是代数式时,要使底数的整体不能为0;2.在正整数幂的基础上,我们又学习了零次幂和负整数幂的概念,使指数概念推广到整数的范围;3.对0指数幂、负整数指数幂的规定的合理性有充分理解,才能明了正整数指数幂的运算性质对整数指数幂都是适用的.1.3.3整数指数幂的运算法则1.会用整数指数幂的运算法则熟练进行计算.2.通过探索把正整数指数幂的运算法则推广到整数指数幂的运算法则.3.发展推理能力和计算能力. 【教学重点】用整数指数幂的运算法则进行计算. 【教学难点】整数指数幂的运算法则的理解.一、情景导入,初步认知 正整数指数幂有哪些运算法则? (1)a m ·a n =m n a +(m 、n 都是正整数) (2)()nm mn aa =(m 、n 都是正整数)(3))··(n n n a b a b =(n 是正整数) (4)a m a n =m n a -(m 、n 都是正整数,a ≠0且m>n )(5) (nn n a a b b=)(b ≠0,n 是正整数)这些公式中的m 、n 都要求是正整数,能否是所有的整数呢?这5个公式中有没有内在联系呢?这节课我们来探究这些问题.【教学说明】复习正整数指数幂的运算法则,为本节课的教学作准备. 二、思考探究,获取新知1.幂的指数从正整数推广到了整数.可以说明:当a ≠0、b ≠0时,正整数指数幂的上述运算法则对于整数指数幂也成立,即:(1)a m ·a n =m n a +(a ≠0,m 、n 都是正整数) (2)()nm mn aa =(a ≠0,m 、n 都是正整数)(3))(a≠0,n是整数)a b a b(n n n··2.思考:(1)同底数幂的除法法则可以转换成什么运算法则?(2)分式的乘方法则可以转换成什么运算法则?【归纳结论】幂的除法运算可以利用幂的乘法进行计算,分式的乘方运算可以利用积的乘方进行运算.【教学说明】鼓励学生相互交流讨论.三、运用新知,深化理解1.教材P20例7、例8.3.计算:5.计算下列各式,并把结果化为只含有正整数指数幂的形式:6.当x=14,y=8时,求式子2522?x yx y----的值.解:2522?x yx y----=-2x33y当x=14,y=8时,上式=-16.7.计算下列各式,并把结果化为只含有正整数指数幂的形式.【分析】正整数指数幂的相关运算对负整数指数幂和零指数幂同样适用.对于第(2)题,在运算过程中要把(x+y)、(x-y)看成一个整体进行运算.【教学说明】通过练习,巩固本节课所学内容.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.作以补充.布置作业:教材“习题1.3”中第6、7 题.课堂的有效性是当下教学的瞩目点,一堂高效的课,不仅仅是要让学生获得知识与技能,更多的是学习动机被唤醒、学习习惯的养成和思维方式的提升.本节课不足之处是学生容易把原有的5条性质混淆,导致指数幂范围扩大,就更混了,单独做做还可以过关,一旦混合运算,就基本上搞不清楚是哪一条了.总之,课堂还是要放手让给学生.1.4分式的加法和减法第1课时同分母分式的加减1.理解同分母的分式加减法的运算法则,能进行同分母的分式加减及分母互为相反式的分式加减法运算.2.类比同分母分数加减法的法则归纳出同分母分式的加减法法则.3.通过学习认识到数与式的联系,理解事物拓延的内在本质,丰富数学情感与思想.【教学重点】同分母的分式加减法的运算.【教学难点】同分母的分式加减法的运算.一、情景导入,初步认知做一做:【教学说明】通过“做一做”的几道同分母分数加减的题,引导学生用类比的思想,猜一猜同分母分式的加减运算,并试图让学生认识其合理性.从而抛出同分母分式加减法的运算法则,点明本节课的主要内容.二、思考探究,获取新知1.你能根据分数的加减法运算法则,总结出当分母相同时,分式的加减法运算法则吗?【归纳结论】同分母的分式相加减,分母不变,把分子相加减.【教学说明】类比时注意引导学生正确猜想,使法则的提出顺理成章,也为后面的学习做好铺垫.三、运用新知,深化理解1.教材P23例1、P24例2.计算:4.计算:【教学说明】通过演练巩固,让学生对同分母分式的加减法有更好的认识与掌握.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.4”中第1题.本节课的关键是法则的探究,重点是法则的应用.易错点是分母互为相反数,要化为同分母.在这个过程中要注意变号,学生先独立自学,完成不了的再小组内讨论交流.充分发挥学生自主、合作的意识.第2课时 通分、最简公分母的概念1.会找最简公分母,能进行分式的通分.2.认真阅读课本,比照分数通分的方法,类比归纳分式通分的方法.3.通过学习认识到数与式的联系,理解事物拓延的内在本质,丰富教学情感与思想.【教学重点】 分式的通分. 【教学难点】 找最简公分母.一、创设情境,导入新课 分式2214a b 与36xab c的最简公分母是_________,通分后的结果分别是_________.二、思考探究,获取新知 1.什么是分式的通分呢?【归纳结论】根据分式的基本性质,把几个异分母的分式化成同分母的分式的过程,叫作分式的通分.2.如何把分式12x 、13y通分呢? 【归纳结论】通分时,关键是确定公分母.一般取各分母的所有因式的最高次幂的积作为公分母,这样的公分母称为最简公分母.上面的两个分式的分母中,有哪些因式呢?所有因式的最高次幂的积是多少?最简公分母是什么?三、示例讲解,掌握新知1.见教材P26例3、例4.2.把下列各式通分.3.不改变分式的值,把下列分式中分子、分母的各项系数化为整数.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结,教师作以补充.布置作业:教材“习题1.4”中第1 、2 题.教师应注重提高在验证、交流环节中学生的参与率,尤其是一些后进生可能普遍会感觉无从下手,在交流时不主动,从而停留在一知半解的状态.在巩固练习环节上,教师要注意学生的练习密度,确保能达到一定的练习量.第3课时异分母分式的加减1.理解并掌握异分母分式加减法的法则.2.经历异分母分式的加减运算的探讨过程,训练学生的分式运算能力.3.培养学生在学习中转化未知问题为已知问题的能力和意识;进一步通过实例发展学生的符号感和用数学的意识.【教学重点】异分母分式加减法的计算.【教学难点】异分母分式加减法的计算.一、创设情境,导入新课1.同分母分式是怎样进行加减运算的?2.异分母分数又是如何进行加减?3.那么314a a+=?你是怎么做的?【教学说明】通过回忆同分母分式的加减法法则、异分母分数的加减法运算,来引出本节课的内容,同时对问题3运用类比的思想方法,使进入新知识的学习顺理成章.二、思考探究,获取新知1.类比异分母的分数相加减的法则,异分母的分式如何进行加减呢?【归纳结论】异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.2.思考:从甲地到乙地依次经过1千米的上坡路和2千米的下坡路.已知小明骑车在上坡路上的速度为vkm/h,在下坡路上的速度为3vkm/h,则他骑车从甲地到乙地需要多长时间?【分析】他骑车从甲地到乙地的时间分为2段,即,走上坡路所用时间、走下坡路所用时间.解:根据题意可得,。
第1章小结与复习
【学习目标】
1.系统了解本章的知识体系及知识内容.
2.进一步知道分式的概念和分式的基本性质,能进行分式的约分、通分以及分式的加减、乘除、乘方混合运算.
3.会用科学记数法表示绝对值小于1的数,能进行有关负整数次幂的有关运算.
4.会列分式方程解决简单的实际问题,会解分式方程.
5.通过构建知识结构图,提高归纳、整理的能力,体会知识之间的内在联系和价值.
【学习重点】
分式的基本性质及运算,分式方程的解法及应用.
【学习难点】
分式的有关运算及分式方程的应用.
方法指导:
(1)分母中含有字母是分式的重要标志,分式存在的条件是分母不为0;分式的值为0的条件是:分子为0,分母不为0.
(2)分式的分子与分母都乘同一个非零整式,所得分式与原分式相等.
即对于分式f g ,有f g =f ·h g ·h
(h≠0).情景导入 生成问题 本章知识结构图
分式⎩⎪⎪⎪⎨⎪⎪⎪⎧分式的概念分式的性质⎩⎪⎨
⎪⎧约分通分分式的符号法则:-f g =f (-g )=(-)f g ;-f -g =⎝ ⎛⎭⎪⎫f g 分式的运算⎩⎪⎨⎪⎧乘除法乘方:⎝ ⎛⎭⎪⎫f g n =f n g n 加减法
分式方程⎩
⎪⎨⎪⎧分式方程的解法分式方程的应用 (3)约分是约去分式的分子与分母的公因式,约分过程实际是做除法运算,目的在于把分式化为最简分式或整式,根据是分式的基本性质. 约分时,如果分式的分子分母都是单项式,约分时约去它们系数的最大公因式,相同因式的最低次幂;如果分式的分子分母是多项式,先因式分解,再约分.
(4)通分的依据是分式的基本性质,通分的关键是确定最简公分母.最简公分母由下面的方法确定: ①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母,取各分母所有字母的最高次幂的积.
行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案. 教会学生落实重点. 方法指导:(1)注意分式的混合运算的顺序:先进行乘方运算,其次进行乘、除运算,再进行加、减运算,遇有括号,先算括号内的.
(2)如果分式的分子或分母中含有多项式,并且能分解因式,可先分解因式,能约分的先约分,再进行运算.
分式运算时注意:
(1)注意运算顺序.
(2)通分不丢分母.
(3)记住分数线具有括号的作用;分式相减时,若分子是多项式,其括号不能省略.
(4)最后的运算结果应化为最简分式.
行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组
内演练的时间.自学互研 生成能力
知识模块一 分式的运算
例1:化简求值:a 2-b 2a 2b -ab 2÷⎝ ⎛⎭⎪⎫1+a 2+b 22ab ,其中a =-3,b =2. 解:原式=(a +b )(a -b )ab (a -b )÷2ab +a 2+b 22ab
=(a +b )(a -b )ab (a -b )·2ab (a +b )2=2a +b
. 当a =-3,b =2时,原式=
2-3+2=-2. 知识模块二 整数指数幂
例2:用科学记数法表示下列各数.
(1)0.0000037=3.7×10-6;
(2)0.000103=1.03×10-4;
(3)-0.0000201=-2.01×10-5.
例3:计算:⎝ ⎛⎭⎪⎫x 2+xy x -1÷⎝ ⎛⎭⎪⎫x -y x
·x y -x -5. 解:原式=1x +y ·(-1)=-1x +y
. 知识模块三 分式方程的解法及应用
例4:某工程要求限期完成,甲队独做正好按期完成,乙队独做则要误期3天,现甲、乙两队合做2天后,余下的工程由乙队独做,正好按期完成,问该工程限期多少天?
解:设该工程限期x 天,由题意得
2⎝ ⎛⎭⎪⎫1x +1x +3+x -2x +3
=1.解得x =6.
经检验,x=6是原方程的解.
答:该工程限期6天.
交流展示生成新知
1.将阅读教材时“生成的问题”和通过“自主学习、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块一分式的运算
知识模块二整数指数幂
知识模块三分式方程的解法及应用
课后反思查漏补缺
1.收获:_____________________________________________________________
2.存在困惑:________________________________________________________________________。