硅知识点总结120919学习资料
- 格式:doc
- 大小:65.50 KB
- 文档页数:6
有关硅的知识点总结硅的物理性质硅是一种灰白色、具有金属光泽的固体。
其熔点为1414°C,沸点为3265°C,在常温下为半导体,具有高的电阻率。
硅具有良好的热导电性能,对许多化学物质具有良好的耐腐蚀性。
硅的化学性质硅是一种化学性质稳定的元素,不易与多种物质发生反应。
但在高温下,硅可以与氧、氮、氢等元素发生化学反应,生成硅氧化物、氮化硅、氢化硅等化合物。
这些化合物在工业生产中具有广泛的应用。
硅的应用1. 半导体材料硅是最重要的半导体材料之一,被广泛应用于电子器件制造中。
硅芯片是计算机、手机、电视等电子设备的关键组成部分,其微小的电路结构使得信息处理速度大大提高。
2. 太阳能电池硅材料是太阳能电池的主要材料之一,通过将硅材料掺杂成P型和N型半导体,制成硅太阳能电池板,能够将太阳能转化为电能,具有环保和可再生的特点。
3. 硅酮制品硅酮是一种广泛用于建筑材料、陶瓷制品和耐火材料的材料,因其耐高温、耐腐蚀的特性,在工业上有重要应用。
4. 硅橡胶硅橡胶是一种具有优异性能的橡胶制品,具有耐高温、耐老化、优异的电绝缘性能,被广泛用于制造密封件、电线电缆绝缘层等。
5. 医疗器械由于硅材料具有生物相容性,被广泛用于医疗器械制造,例如心脏起搏器、人工关节等。
6. 化妆品硅材料被广泛应用于化妆品中,起到吸油、增稠、保湿等作用,提高了化妆品的质感和保湿效果。
硅的生产硅的生产主要通过硅石焙烧法和金属硅熔炼法两种方法进行。
硅石焙烧法是利用石英石和碳粉在高温下反应生成二氧化碳和二氧化硅,再通过还原反应将二氧化硅还原为金属硅。
金属硅熔炼法是利用金属硅的氧化物与还原剂在高温下进行反应生成金属硅的方法。
这两种方法均需要高温高压条件,并产生大量的二氧化碳排放,造成对环境的污染。
未来发展随着科学技术的不断发展,对新型材料的需求也日益增加。
硅作为一种重要的半导体材料,其在电子器件、光伏发电、新能源领域的应用前景十分广阔。
化学硅有关知识点总结硅的物理性质硅是一种灰白色的晶体固体,具有金属性光泽。
在常温下,硅是一种不活泼的物质,不与酸、碱以及大部分常见氧化剂反应。
硅是半导体材料的重要组成部分,可以用来制造集成电路和太阳能电池板等高科技产品。
硅在自然界中还以二价、四价等多种形式存在,如二氧化硅、多硅酸盐和硅酸盐等。
这些形式具有不同的化学性质,从而在地球化学和材料科学领域有着不同的应用。
硅的化学性质硅的化学性质主要表现为在常温下不与酸、碱及大部分氧化剂发生反应。
但是,当高温高压下,硅与氧、氢、氮、卤素等元素都能发生化学反应。
硅的四价化合物是最常见的化合物,包括二氧化硅(SiO2)和硅酸盐等。
在工业和科学领域,二氧化硅是一种重要的原料,用于制备硅酸盐、硅酸及其他硅化合物。
硅的应用硅是一种十分重要的元素,在材料科学、电子工业、太阳能等领域都有着广泛的应用。
其中,硅材料主要用于制备集成电路芯片、太阳能电池板等高科技产品。
此外,硅在冶金、有机合成、橡胶工业等领域也有着广泛的应用。
在集成电路芯片制造过程中,硅晶圆是重要的材料之一,用于制备芯片的基底。
硅晶圆上通过特殊工艺刻蚀和沉积多层金属、氧化物、多晶硅等物质,从而制备集成电路芯片。
硅材料的高纯度和良好的电学性能使其成为集成电路制造中不可或缺的材料。
在太阳能领域,硅是制备太阳能电池板的重要原料。
太阳能电池板是一种高效的可再生能源,通过将太阳能转化为电能,广泛应用于户外照明、通信设备、航空航天等领域。
硅材料的优良导电性和光学性能使其成为太阳能电池板的理想材料。
此外,硅还被应用于冶金、有机合成、橡胶工业等领域。
在冶金工业中,硅铁合金是一种重要的合金材料,用于制备不锈钢、合金钢等产品。
在有机合成领域,硅化合物被广泛应用于合成有机化合物,如硅烷、硅醇等。
在橡胶工业中,硅材料被用于制备硅橡胶,用于生产密封材料、保温材料等。
总结硅是一种重要的化学元素,具有重要的应用价值。
它在材料科学、电子工业、太阳能等领域有着广泛的应用,是现代工业发展的重要支撑。
硅知识点总结关键信息项1、硅的物理性质名称:____________________外观:____________________硬度:____________________熔点:____________________沸点:____________________导电性:____________________2、硅的化学性质与氧气反应:____________________与氯气反应:____________________与氢氟酸反应:____________________与强碱溶液反应:____________________ 3、硅的用途半导体材料:____________________太阳能电池:____________________计算机芯片:____________________4、硅的制备方法工业制备:____________________实验室制备:____________________11 硅的物理性质硅是一种具有灰色金属光泽的固体,具有硬而脆的特点。
其晶体结构属于金刚石型,原子之间以共价键相结合,形成空间网状结构。
硅的硬度较大,莫氏硬度约为 7。
硅的熔点较高,约为 1414℃,沸点约为 2355℃。
在常温下,硅的导电性较差,属于半导体材料,但在高温下其导电性会增强。
111 硅的外观硅通常呈现出银灰色的外观,具有一定的金属光泽。
112 硅的导电性硅的导电性介于导体和绝缘体之间,其导电性可以通过掺入杂质来进行调节。
例如,掺入少量的磷或硼等杂质可以显著改变硅的导电性,使其分别成为 N 型半导体和 P 型半导体。
12 硅的化学性质硅在常温下化学性质相对稳定,但在一定条件下可以与多种物质发生化学反应。
硅在加热或点燃的条件下可以与氧气发生反应,生成二氧化硅(SiO₂)。
反应方程式为:Si + O₂= SiO₂。
硅可以与氯气在加热条件下反应,生成四氯化硅(SiCl₄)。
高中硅知识点总结1. 硅的性质硅是一种非金属元素,化学性质和碳相似,常温下处于固态。
硅不溶于水,但可溶于浓盐酸和氢氟酸。
硅具有良好的导热性和导电性,因此被广泛应用于半导体行业。
2. 硅的存在形式硅是地壳中最丰富的元素之一,主要以二氧化硅(SiO2)的形式存在于矿物中。
硅也广泛存在于许多天然物质中,如玻璃、水晶、水泥等。
3. 硅的化合物硅主要形成了许多氧化物和硅酸盐。
常见的硅化合物包括二氧化硅、三氧化二硅、硅酸镁、硅酸铝等。
4. 硅的制备硅的制备主要通过还原二氧化硅来实现。
传统的方法是用碳还原法,即在高温下通过碳还原二氧化硅。
近年来,高纯度硅的制备也采用了其他先进的制备方法,如氢气还原法、熔融盐电解法等。
5. 硅的物理性质硅是典型的半导体材料,具有一些特殊的物理性质。
硅的晶体结构属于钻石型结构,具有稳定的晶格和特定的电子能带结构。
此外,硅对光的透射性和折射性也具有特殊的表现,广泛应用于光电子器件中。
6. 硅的化学性质硅在化学反应中表现出一定的反应性,但相对于其他金属元素来说,它的反应性较低。
硅能与氢气、氯气等发生置换和加成反应,产生氢化硅、氯化硅等化合物。
7. 硅的应用硅是现代技术中的重要材料之一,在电子、通讯、光电子、太阳能等领域都有广泛的应用。
硅材料主要应用于半导体器件、太阳能电池、集成电路板等高科技领域。
8. 硅的环境影响硅在环境中的排放和使用会对环境造成一定的影响。
硅的制备和应用过程中会产生高温排放和石棉尘等有害物质,对环境造成污染。
因此,在硅的生产和应用过程中,需要采取有效的环保措施,减少对环境的影响。
综上所述,硅是一种重要的非金属元素,具有广泛的应用价值和发展潜力。
随着技术的不断进步,硅材料在现代科技领域的应用将会越来越广泛,对经济和社会发展都将产生重要的影响。
同时,也需要持续关注硅材料在生产和应用过程中对环境和生态系统的影响,并采取有效的措施加以控制。
si元素知识点总结一、硅元素的基本知识1.1 硅元素的发现硅元素最早被认识到并得到应用是在古代希腊化学家提亚哥尼当时。
在18世纪早期,瑞典化学家狄卡曼曾经从植物灰得到了明显有硅的白色物质,这被认为是硅的初次发现。
1808年,英国化学家戈比伦从硅酸盐中提取出了纯度较高的硅。
1831年,斯塔克将硅当作是一种新元素,起初被叫做硅素(silicium)。
后在1867年,进一步研究发现确凿无误地证明了硅是一种单质。
1.2 硅元素的结构硅元素的原子序数为14,原子量为28.09。
在元素周期表中位于第14族,第3周期。
硅元素的化学性质与其结构密切相关。
硅元素是有七个电子壳的元素,有4个价电子,硅在化学反应中得失电子以达到稳定的电子构型。
硅的原子结构为1s2 2s22p6 3s23p2,在固态中以硅原子中心为顶点的四面体结构成为共价化合物。
硅的晶体结构可以是钻石型或闪锌矿型。
1.3 硅元素的同位素硅元素有多种同位素,其中自然界存在的有3种同位素,分别是硅-28(92.23%)、硅-29(4.67%)、硅-30(3.10%)。
此外,人工合成了多种放射性同位素,可用于放射性示踪、医学诊断等领域。
二、硅元素的性质2.1 物理性质硅元素是一种具有金属和非金属性质的典型准金属元素。
在常温常压下呈现为灰白色固体,有金属光泽,质地脆硬。
硅元素的结构稳定性较高,熔点为1414°C,沸点为3265°C。
硅元素是热传导性能极好的材料,同时也是半导体材料。
2.2 化学性质硅元素的化学性质活泼,容易与氧、氮等元素发生反应。
硅元素在常温下不溶于多种酸、碱溶液中,但遇到浓硝酸和氢氟酸时会发生剧烈反应。
硅元素与氧发生化学反应时,形成二氧化硅(SiO2),通常被称为石英,也是硅元素广泛存在的一种化合物。
2.3 其他性质硅元素的结构稳定性较高,同时还具有良好的光学性能、导电性能。
此外,硅元素还具有辐射抗性、耐高温等优良性质。
硅知识点总结框架一、硅的含量与存在1. 硅的含量:地壳中硅的含量居第二位(质量分数为26.3%),仅次于氧。
2. 存在形态:硅的化合物几乎全部是二氧化硅和硅酸盐,广泛存在于地壳的各种矿物和岩石中。
二、硅单质1. 分类:硅单质主要有晶体和无定形两大类。
2. 物理性质:带有金属光泽的灰黑色固体,熔点高,硬度大,有脆性。
晶体硅的结构与金刚石相似。
3. 化学性质:* 常温下不活泼,一般不与其他物质反应,但可以与氟、氢氟酸、碱反应。
* 在加热或点燃的条件下可以与氢气、氧气、氯气等反应。
4. 主要应用:半导体材料(如硅芯片)、硅太阳能电池。
5. 高纯硅的制备:涉及的主要化学反应为二氧化硅与碳在高温下的反应。
三、二氧化硅1. 存在:自然界中,碳元素既有游离态,又有化合态,而硅元素仅有化合态,主要以氧化物和硅酸盐的形式存在。
天然SiO2有晶体和无定形两种,统称硅石。
2. 物理性质:熔点高,硬度大,难溶于水。
3. 结构:SiO2晶体有多种晶型,其基本结构单元为硅氧四面体,通过氧原子相互连接为空间的网状结构。
每个硅原子与4个氧原子相连,而每个氧原子与2个硅原子相连,故SiO2晶体中Si和O的比例为1∶2。
4. 化学性质:* SiO2为酸性氧化物,是硅酸的酸酐。
* 可以与碱反应生成硅酸盐。
* 在高温条件下可以与碳酸盐、碱性氧化物反应。
* 常温下与氢氟酸反应。
5. 主要应用:光导纤维。
四、硅酸、硅酸盐1. 硅酸(H2SiO3)。
2. 硅酸盐:由硅、氧和金属元素组成的化合物,是构成地壳岩石的重要成分。
硅酸盐组成的表示方法通常用二氧化硅和金属氧化物的组合形式表示。
如硅酸钠(Na2SiO3)可表示为Na2O·SiO2。
用途:黏合剂(矿物胶),耐火阻燃材料。
硅的知识点总结硅的性质:硅是一种灰白色半金属,具有金属性和非金属性的特性。
它在高温下呈现金属性,能够导电、导热和反射光线。
但在常温下,硅呈现非金属性,是一种典型的非金属元素,具有高熔点和硬度。
硅的化合物:硅的化合物非常广泛,其中最重要的化合物就是二氧化硅(SiO2),又称为石英。
石英是地壳中非常常见的矿物,它在玻璃、陶瓷、水泥等制品中具有重要的应用。
此外,硅还可以形成硅酸盐矿物,如长石、云母等。
硅的用途:1. 半导体材料:硅是半导体材料中最重要的一种,它在电子、光电子等领域有广泛的应用。
硅晶体可以制成大规模集成电路、太阳能电池等器件,被广泛应用于电子产品和光伏产业。
2. 硅橡胶:硅橡胶是一种优质的弹性材料,具有耐高温、耐低温、耐腐蚀等特性,被广泛用于汽车、电子、医疗器械等领域。
3. 硅钢:硅钢是一种制造变压器、发电机等电工设备的重要材料,硅能够提高钢的磁导率,降低磁能损耗,因此被广泛用于电力行业。
4. 硅酸盐制品:硅的化合物在建筑、玻璃、陶瓷等行业有广泛应用,石英玻璃、瓷砖、陶瓷等制品都是硅的重要应用领域。
硅的加工:硅的加工主要包括两个领域,一是硅单晶的制备,二是硅化合物的制备和加工。
1. 硅单晶的制备:硅单晶是制造集成电路和太阳能电池的重要原材料,它主要靠克拉法无机熔融法和气相淀积法来制备。
在克拉法无机熔融法中,硅锭通过高温熔化后逐渐冷凝成单晶,最终可以切割成晶圆用于制造集成电路。
而气相淀积法是通过化学气相沉积技术制备薄膜太阳能电池的重要工艺。
2. 硅化合物的制备和加工:硅化合物的制备和加工通常是通过硅矿石提炼出纯净的硅,然后再通过氧化或还原等反应制备出所需的化合物,如二氧化硅、硅酸盐等。
硅化合物在高温条件下可以制备成各种硅陶瓷、硅橡胶、硅玻璃等制品。
硅的环境问题:由于硅的加工和利用过程中会产生大量工业废水和废气,因此对环境造成一定的影响。
特别是在硅单晶的生产过程中,会产生有害气体和固体废弃物,对周围环境和人体健康造成潜在危害。
硅知识点总结120919硅(Ge)是一种常见的半导体材料,它广泛应用于电子器件和集成电路中。
在学习硅的知识点时,我们需要了解硅的物理和化学性质、硅晶体的结构和生长方法、硅的掺杂和掺杂技术、硅的杂质和缺陷等。
下面我将为您总结一些关键的知识点。
1.硅的基本信息硅是地壳中含量最高的元素之一,化学符号为Ge,原子序数为32、它是一种灰白色的硬质金属,熔点为937.4℃,沸点为2830℃。
硅的密度为5.323克/立方厘米,具有良好的热导性和电导性。
2.硅的结构硅的结构类似于碳,它具有钻石型晶体结构。
硅原子通过共价键连接在一起,形成一个三维网格结构。
硅晶体可以分为两种结构:多晶硅和单晶硅。
多晶硅由许多晶粒组成,晶粒之间存在晶界;单晶硅由一个连续的晶体结构组成,没有晶界。
3.硅的生长方法硅晶体可以通过多种方法生长,包括Czochralski法、区域熔凝法、气相外延法等。
其中,Czochralski法是最常用的方法。
该方法通过在熔融硅中放入一个种子晶体,然后缓慢提拉并旋转晶体,使其逐渐生长为一个完整的单晶体。
4.硅的掺杂硅可以通过掺杂来调节其导电性能。
掺杂是指将少量杂质原子引入硅晶体中,以改变硅的电子能带结构。
通常使用磷(P)、硼(B)、砷(As)等元素进行掺杂。
磷掺杂的硅是N型硅,硼掺杂的硅是P型硅。
N型硅中的电子浓度高于空穴浓度,P型硅中的空穴浓度高于电子浓度。
5.硅的掺杂技术硅的掺杂技术主要有扩散法、离子注入法和外延法。
扩散法是将掺杂材料的薄层放在硅晶体表面,并在高温下使其扩散到晶体内部。
离子注入法是将掺杂材料的离子注入到硅晶体中,然后通过热退火来修复晶格损伤。
外延法是在硅晶体表面上沉积一层掺杂材料,使其在晶体生长过程中被夹在两个硅层之间。
6.硅的杂质和缺陷硅晶体中可能存在一些杂质和缺陷,它们会对硅的性能产生影响。
常见的杂质有氧气、碳、金属杂质等。
氧气和碳是硅晶体的主要杂质,会影响硅的电子迁移率和载流子浓度。
硅及其化合物年月日硅元素在地壳中的含量排第二,在自然界中没有游离态的硅,只有以化合态存在的硅,常见的是二氧化硅、硅酸盐等。
硅的原子结构示意图为,硅元素位于元素周期表第三周期第ⅣA族,硅原子最外层有4个电子,既不易失去电子又不易得到电子,主要形成四价的化合物。
1、单质硅(Si):(1)物理性质:有金属光泽的灰黑色固体,熔点高,硬度大。
(2)化学性质:①常温下化学性质不活泼,只能跟F2、HF和NaOH溶液反应。
Si+2F2=SiF4Si+4HF=SiF4↑+2H2↑Si+2NaOH+H2O=Na2SiO3+2H2↑②在高温条件下,单质硅能与O2和Cl2等非金属单质反应。
Si+O2高温SiO2Si+2Cl2高温SiCl4(3)用途:太阳能电池、计算机芯片以及半导体材料等。
(4)硅的制备:工业上,用C在高温下还原SiO2可制得粗硅。
SiO2+2C=Si(粗)+2CO↑Si(粗)+2Cl2=SiCl4SiCl4+2H2=Si(纯)+4HCl2、二氧化硅(SiO2):(1)SiO2的空间结构:立体网状结构,SiO2直接由原子构成,不存在单个SiO2分子。
(2)物理性质:熔点高,硬度大,不溶于水。
(3)化学性质:SiO2常温下化学性质很不活泼,不与水、酸反应(氢氟酸除外),能与强碱溶液、氢氟酸反应,高温条件下可以与碱性氧化物反应:①与强碱反应:SiO2+2NaOH=Na2SiO3+H2O(生成的硅酸钠具有粘性,所以不能用带磨口玻璃塞试剂瓶存放NaOH溶液和Na2SiO3溶液,避免Na2SiO3将瓶塞和试剂瓶粘住,打不开,应用橡皮塞)。
②与氢氟酸反应[SiO2的特性]:SiO2+4HF=SiF4↑+2H2O(利用此反应,氢氟酸能雕刻玻璃;氢氟酸不能用玻璃试剂瓶存放,应用塑料瓶)。
③高温下与碱性氧化物反应:SiO2+CaO高温CaSiO3(4)用途:光导纤维、玛瑙饰物、石英坩埚、水晶镜片、石英钟、仪器轴承、玻璃和建筑材料等。
高一化学硅的相关知识点总结硅是一种非金属元素,化学符号为Si,位于周期表的第14组。
它在地壳中广泛存在,是地壳中第二丰富的元素,仅次于氧气。
硅在日常生活和工业生产中具有广泛的应用,因此对硅的相关知识点进行总结很有必要。
1. 硅的性质硅的外层电子层结构为2-8-4,具有4个价电子,属于典型的非金属。
硅是一种固体,常温下为灰色晶体,呈金属光泽。
它具有热稳定性和化学稳定性,在大多数常见的酸和碱中不溶解。
2. 硅的同素异形体硅存在多种同素异形体,其中最常见的是晶态硅和非晶态硅。
晶态硅由于具有规则的晶格结构,具有良好的导电性,在电子器件制造中得到广泛应用;非晶态硅由于没有规则的晶格结构,导电性较差,常用于太阳能电池等领域。
3. 硅的化合物硅与氧结合形成了许多重要的化合物,其中最常见的是二氧化硅(化学式SiO2)。
二氧化硅是一种无机化合物,常见于矿物和土壤中。
它具有良好的绝缘性能和耐高温性,广泛用于玻璃制造、陶瓷制造和电子工业等领域。
4. 硅的应用硅具有许多重要的应用,以下是其中几个常见的应用领域:4.1 电子工业:硅是制造半导体器件的关键材料,例如晶体管和集成电路。
晶体管的发明对现代电子技术的发展产生了重大影响,而集成电路的发展使得电子设备越来越小型化和高效化。
4.2 太阳能电池:非晶态硅在太阳能电池中作为光吸收材料使用。
光照射到硅上时,硅中的电子被激发形成电流,从而将光能转化为电能。
4.3 玻璃制造:二氧化硅是玻璃的主要成分之一,它赋予玻璃良好的透明性和硬度。
不同的掺杂剂和添加剂可以使玻璃具有不同的功能和特性,如透光玻璃、耐高温玻璃等。
4.4 化妆品:硅在化妆品中被广泛使用,例如硅油(聚二甲基硅氧烷)。
硅油具有良好的润滑性和滑润感,可以改善产品的质感和延展性。
4.5 医疗器械:硅材料在医疗器械上有着广泛的应用,如人工关节、心脏起搏器等。
硅材料具有优良的生物相容性和耐腐蚀性能,对人体无毒副作用。
综上所述,硅作为一种重要的非金属元素,在现代工业和科学技术中具有广泛的应用。
硅知识点总结120919
硅及其化合物年月日硅元素在地壳中的含量排第二,在自然界中没有游离态的硅,只有以化合态存在的硅,常见的是二氧化硅、硅酸盐等。
硅的原子结构示意图为,硅元素位于元素周期表第三周期第ⅣA族,硅原子最外层有4个电子,既不易失去电子又不易得到电子,主要形成四价的化合物。
1、单质硅(Si):
(1)物理性质:有金属光泽的灰黑色固体,熔点高,硬度大。
(2)化学性质:
①常温下化学性质不活泼,只能跟F2、HF和NaOH溶液反应。
Si+2F2=SiF4 Si+4HF=SiF4↑+2H2↑ Si+2NaOH+H2O=Na2SiO3+2H2↑
②在高温条件下,单质硅能与O2和Cl2等非金属单质反应。
Si+O2高温SiO2 Si+2Cl2高温SiCl4
(3)用途:太阳能电池、计算机芯片以及半导体材料等。
(4)硅的制备:工业上,用C在高温下还原SiO2可制得粗硅。
SiO2+2C=Si(粗)+2CO↑ Si(粗)+2Cl2=SiCl4 SiCl4+2H2=Si(纯)+4HCl
2、二氧化硅(SiO2):
(1)SiO2的空间结构:立体网状结构,SiO2直接由原子构成,不存在单个SiO2分子。
(2)物理性质:熔点高,硬度大,不溶于水。
(3)化学性质:SiO2常温下化学性质很不活泼,不与水、酸反应(氢氟酸除外),能与强碱溶液、氢氟酸反应,高温条件下可以与碱性氧化物反应:
①与强碱反应:SiO2+2NaOH=Na2SiO3+H2O(生成的硅酸钠具有粘性,所以不能用带磨口玻璃塞试剂瓶存放NaOH溶液和Na2SiO3溶液,避免Na2SiO3将瓶塞和试剂瓶粘住,打不开,应用橡皮塞)。
②与氢氟酸反应[SiO2的特性]:SiO2+4HF=SiF4↑+2H2O(利用此反应,氢氟酸能雕刻玻璃;氢氟酸不能用玻璃试剂瓶存放,应用塑料瓶)。
③高温下与碱性氧化物反应:SiO2+CaO高温CaSiO3
(4)用途:光导纤维、玛瑙饰物、石英坩埚、水晶镜片、石英钟、仪器轴承、玻璃和建筑材料等。
3、硅酸(H2SiO3):
(1)物理性质:不溶于水的白色胶状物,能形成硅胶,吸附水分能力强。
(2)化学性质:H2SiO3是一种弱酸,酸性比碳酸还要弱,其酸酐为SiO2,但SiO2不溶于水,故不能直接由SiO2溶于水制得,而用可溶性硅酸盐与酸反应制取:(强酸制弱酸原理)Na2SiO3+2HCl=2NaCl+H2SiO3↓
Na2SiO3+CO2+H2O=H2SiO3↓+Na2CO3(此方程式证明酸性:H2SiO3<H2CO3)
(3)用途:硅胶作干燥剂、催化剂的载体。
4、硅酸盐
硅酸盐:硅酸盐是由硅、氧、金属元素组成的化合物的总称。
硅酸盐种类很多,大多数难溶于水,最常见的可溶性硅酸盐是Na2SiO3,Na2SiO3的水溶液俗称水玻璃,又称泡花碱,是一种无色粘稠的液体,可以作黏胶剂和木材防火剂。
硅酸钠水溶液久置在空气中容易变质:
Na2SiO3+CO2+H2O=Na2CO3+H2SiO3↓(有白色沉淀生成)
传统硅酸盐工业三大产品有:玻璃、陶瓷、水泥。
硅酸盐由于组成比较复杂,常用氧化物的形式表示:活泼金属氧化物→较活泼金属氧化物→二氧化硅→水。
氧化物前系数配置原则:除氧元素外,其他元素按配置前后原子个数守恒原则配置系数。
硅酸钠:Na2SiO3 Na2O·SiO2硅酸钙:CaSiO3 CaO·SiO2
高岭石:Al2(Si2O5)(OH)4 Al2O3·2SiO2·2H2O
正长石:KAlSiO3不能写成 K2O· Al2O3·3SiO2,应写成K2O·Al2O3·6SiO2
5、硅酸盐工业
1).水泥
生产水泥的主要原料:黏土、石灰石
生产水泥的设备:水泥回转窑
加入石膏的作用:调节水泥的硬化速度
普通水泥的主要成分:硅酸三钙(3 CaO·SiO2)、硅酸二钙(2CaO·SiO2)、铝酸三钙(3
CaO·Al
2O
3)。
2).玻璃
生产普通玻璃的主要原料:纯碱、石灰石、石英生产设备:玻璃熔炉
生产条件:高温熔融
形成玻璃的过程中的主要化学变化:
Na
2CO
3
+SiO
2
高温Na
2
SiO
3
+CO
2
↑ CaCO
3
+SiO
2
高温CaSiO
3
+CO
2
↑
普通玻璃的主要成分:Na2SiO3、CaSiO3、SiO2或Na2O·CaO·6SiO2
种类:普通玻璃、钢化玻璃、有色玻璃、光学玻璃、防弹玻璃、铅玻璃等。
3).陶瓷
制造陶瓷的主要原料:黏土
陶瓷的优点:抗氧化、抗酸碱腐蚀、耐高温、绝缘、易成型等。
扩展:规律总结
[练习]1.下列说法正确的是()
A.陶瓷、玻璃、水泥都是硅酸盐产品
B.水晶、玛瑙、光纤、硅胶的主要成分都是SiO2
(1)碳
与O2反应
O2(足量):
O2(不足):
与氧化
物反应
CuO:(冶炼金属)
SiO2:(制取粗硅)
H2O:C+H2O(g)=====CO+H2(制取水煤气)与强氧化
性酸反应
浓H2SO4:
浓HNO3:C+4HNO3(浓)
=====CO2↑+4NO2↑+2H2O)
C.SiO2很稳定,与所有的酸都不反应
D.将石棉(CaMg3Si4O12)化学式改写成氧化物的形式:3(MgO·CaO)·4SiO2
2.地壳中含量第一和第二的两种元素所形成的化合物不具有的性质是()
A.熔点很高
B.与水反应生成对应的酸
C.可与烧碱反应生成盐
D.坚硬
3.要除去SiO2中混有的少量CaO杂质,最适宜的试剂是()
A.纯碱溶液
B.盐酸
C.硫酸
D.苛性钠溶液
4.能证明硅酸的酸性弱于碳酸酸性的实验事实是()
A.CO2溶于水形成碳酸,SiO2难溶于水
B.CO2通入可溶性硅酸盐中析出硅酸沉淀
C.高温下SiO2与碳酸盐反应生成CO2
D.氯化氢通入可溶性碳酸盐溶液中放出气体,通入可溶性硅酸盐溶液中生成沉淀
5.下列试剂能贮存在磨口玻璃塞的试剂瓶里的是()
A.HF溶液
B.KOH溶液
C.盐酸
D.水玻璃
6.能将Na2SiO3、CaCO3、SiO2三种白色粉末鉴别开来的试剂是()
A.NaOH溶液
B.水
C.氢氟酸
D.稀盐酸
7.下列物质的变化,不能通过一步化学反应完成的是()
A.CO2→H2CO3
B.SiO2→Na2SiO3
C.Na2O→Na2CO3
D.SiO2→H2SiO3
第四章第1讲无机非金属材料的主角——硅
1.碳、硅单质的化学性质
碳、硅在参与化学反应时,一般表现还原性。
高温
△
(2)Si ⎩⎨⎧
与非金属单质反应⎩⎨⎧ O 2: F 2
:Si +2F 2
===SiF
4
Cl 2:Si +2Cl 2=====△
SiCl
4
与氢氟酸反应:Si +4HF===SiF 4
↑+2H 2
↑
2.二氧化碳和二氧化硅的比较。