(完整版)极坐标与参数方程测试题
- 格式:doc
- 大小:344.01 KB
- 文档页数:6
选修4-4复习1.已知直线的参数方程为:,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为.(Ⅰ)求曲线C 的参数方程;(Ⅱ)当4πα=时,求直线与曲线C 交点的极坐标.2、已知曲线C 1的参数方程为⎩⎨⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).3、在极坐标系下,已知圆O 2:ρ=cos θ+sin θ和直线l :ρsin(θ-π4)=22.(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的极坐标.4、在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝ ⎛⎭⎪⎫θ-π4=2 2.(1)求C 1与C 2的直角坐标方程(2)求过C 1与C 2交点的直线的极坐标方程 (3)求C 1与C 2交点的极坐标;5. 已知曲线C 的极坐标方程是. 以极点为平面直角坐标系的原点, 极轴为x轴的正半轴, 建立平面直角坐标系, 直线l的参数方程是: (是参数).(Ⅰ) 将曲线C的极坐标方程化为直角坐标方程, 将直线的参数方程化为普通方程; (Ⅱ) 若直线l与曲线C相交于A、B两点, 且, 试求实数m值.6.已知曲线(t为参数) ,(为参数) .(I)化,的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ) 过曲线的左顶点且倾斜角为的直线交曲绒于A,B 两点,求. 7、已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.直线的参数方程是315415x ty t⎧=-+⎪⎪⎨⎪=-+⎪⎩(为参数),曲线C的极坐标方程为)4πρθ+.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)设直线与曲线C相交于M,N两点,求M,N两点间的距离.8、曲线C1的极坐标方程为ρ=4cosθ,直线C2的参数方程为⎩⎨⎧x=3+4t,y=2+3t(t为参数).(1)将C1化为直角坐标方程.(2)C1与C2是否相交?若相交求出弦长,不相交说明理由.9、在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =2+22t ,y =1+22t(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线C 的方程为ρ2=123cos 2 θ+4sin 2θ.(1)求曲线C 的直角坐标方程;(2)设曲线C 与直线l 交于点A ,B ,若点P 的坐标为(2,1),求|P A |+|PB |.10、在极坐标系中,已知圆心C (3,)6π,半径r =1.(1)求圆的直角坐标方程;(2)若直线12(12x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩为参数)与圆交于B A ,两点,求弦AB 的长.11.在直角坐标系中,曲线C 的参数方程为(为参数)。
参数方程极坐标系解答题1.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.解答:解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为:,曲线C的参数方程为:(α为参数).(I)写出直线l的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.解答:解:(1)∵直线l的极坐标方程为:,∴ρ(sinθ﹣cosθ)=,∴,∴x﹣y+1=0.(2)根据曲线C的参数方程为:(α为参数).得(x﹣2)2+y2=4,它表示一个以(2,0)为圆心,以2为半径的圆,圆心到直线的距离为:d=,∴曲线C上的点到直线l的距离的最大值=.3.已知曲线C1:(t为参数),C2:(θ为参数).(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值.解答:解:(1)把曲线C1:(t为参数)化为普通方程得:(x+4)2+(y﹣3)2=1,所以此曲线表示的曲线为圆心(﹣4,3),半径1的圆;把C2:(θ为参数)化为普通方程得:+=1,所以此曲线方程表述的曲线为中心是坐标原点,焦点在x轴上,长半轴为8,短半轴为3的椭圆;(2)把t=代入到曲线C1的参数方程得:P(﹣4,4),把直线C3:(t为参数)化为普通方程得:x﹣2y﹣7=0,设Q的坐标为Q(8cosθ,3sinθ),故M(﹣2+4cosθ,2+sinθ)所以M到直线的距离d==,(其中sinα=,cosα=)从而当cosθ=,sinθ=﹣时,d取得最小值.4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C上不同于A,B的任意一点.(Ⅰ)求圆心的极坐标;(Ⅱ)求△PAB面积的最大值.解答:解:(Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入可得:圆C的普通方程为x2+y2﹣2x+2y=0,即(x﹣1)2+(y+1)2=2.∴圆心坐标为(1,﹣1),∴圆心极坐标为;(Ⅱ)由直线l的参数方程(t为参数),把t=x代入y=﹣1+2t可得直线l的普通方程:,∴圆心到直线l的距离,∴|AB|=2==,点P直线AB距离的最大值为,.5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.解答:解:将化为普通方程为(4分)点到直线的距离(6分)所以椭圆上点到直线距离的最大值为,最小值为.(10分)6.在直角坐标系xoy中,直线I的参数方程为(t为参数),若以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=cos(θ+).(1)求直线I被曲线C所截得的弦长;(2)若M(x,y)是曲线C上的动点,求x+y的最大值.解答:解:(1)直线I的参数方程为(t为参数),消去t,可得,3x+4y+1=0;由于ρ=cos(θ+)=(),即有ρ2=ρcosθ﹣ρsinθ,则有x2+y2﹣x+y=0,其圆心为(,﹣),半径为r=,圆心到直线的距离d==,故弦长为2=2=;(2)可设圆的参数方程为:(θ为参数),则设M(,),则x+y==sin(),由于θ∈R,则x+y的最大值为1.7.选修4﹣4:参数方程选讲已知平面直角坐标系xOy,以O为极点,x轴的非负半轴为极轴建立极坐标系,P点的极坐标为,曲线C的极坐标方程为.(Ⅰ)写出点P的直角坐标及曲线C的普通方程;(Ⅱ)若Q为C上的动点,求PQ中点M到直线l:(t为参数)距离的最小值.解解(1)∵P点的极坐标为,答:∴=3,=.∴点P的直角坐标把ρ2=x2+y2,y=ρsinθ代入可得,即∴曲线C的直角坐标方程为.(2)曲线C的参数方程为(θ为参数),直线l的普通方程为x﹣2y﹣7=0设,则线段PQ的中点.那么点M到直线l的距离.,∴点M到直线l的最小距离为.8.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.解答:解:(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.(II)如图所示,由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.联立,解得,即Q.联立,解得或.∴P.∴|PQ|==2.9.在直角坐标系xoy中,曲线C1的参数方程为(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=4.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P的坐标.解答:解:(1)由曲线C1:,可得,两式两边平方相加得:,即曲线C1的普通方程为:.由曲线C2:得:,即ρsinθ+ρcosθ=8,所以x+y﹣8=0,即曲线C2的直角坐标方程为:x+y﹣8=0.(2)由(1)知椭圆C1与直线C2无公共点,椭圆上的点到直线x+y﹣8=0的距离为,∴当时,d的最小值为,此时点P的坐标为.10.已知直线l的参数方程是(t为参数),圆C的极坐标方程为ρ=2cos(θ+).(Ⅰ)求圆心C的直角坐标;(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.解答:解:(I)∵,∴,∴圆C的直角坐标方程为,即,∴圆心直角坐标为.(5分)(II)∵直线l的普通方程为,圆心C到直线l距离是,∴直线l上的点向圆C引的切线长的最小值是(10分)11.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的参数方程为,(t为参数),曲线C1的方程为ρ(ρ﹣4sinθ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.(1)求点Q的轨迹C2的直角坐标方程;(2)直线l与直线C2交于A,B两点,若|AB|≥2,求实数a的取值范围.解答:解:(1)根据题意,得曲线C1的直角坐标方程为:x2+y2﹣4y=12,设点P(x′,y′),Q(x,y),根据中点坐标公式,得,代入x2+y2﹣4y=12,得点Q的轨迹C2的直角坐标方程为:(x﹣3)2+(y﹣1)2=4,(2)直线l的普通方程为:y=ax,根据题意,得,解得实数a的取值范围为:[0,].12.在直角坐标系xoy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos ()=2.(Ⅰ)求C1与C2交点的极坐标;(Ⅱ)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为(t∈R为参数),求a,b的值.解答:解:(I)圆C1,直线C2的直角坐标方程分别为x2+(y﹣2)2=4,x+y﹣4=0,解得或,∴C1与C2交点的极坐标为(4,).(2,).(II)由(I)得,P与Q点的坐标分别为(0,2),(1,3),故直线PQ的直角坐标方程为x﹣y+2=0,由参数方程可得y=x﹣+1,∴,解得a=﹣1,b=2.13.在直角坐标系xOy中,l是过定点P(4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O为极点,以x轴非负半轴为极轴,取相同单位长度)中,曲线C的极坐标方程为ρ=4cosθ(Ⅰ)写出直线l的参数方程,并将曲线C的方程化为直角坐标方程;(Ⅱ)若曲线C与直线相交于不同的两点M、N,求|PM|+|PN|的取值范围.解答:解:(I)直线l的参数方程为(t为参数).曲线C的极坐标方程ρ=4cosθ可化为ρ2=4ρcosθ.把x=ρcosθ,y=ρsinθ代入曲线C的极坐标方程可得x2+y2=4x,即(x﹣2)2+y2=4.(II)把直线l的参数方程为(t为参数)代入圆的方程可得:t2+4(sinα+cosα)t+4=0.∵曲线C与直线相交于不同的两点M、N,∴△=16(sinα+cosα)2﹣16>0,∴sinαcosα>0,又α∈[0,π),∴.又t1+t2=﹣4(sinα+cosα),t1t2=4.∴|PM|+|PN|=|t1|+|t2|=|t1+t2|=4|sinα+cosα|=,∵,∴,∴.∴|PM|+|PN|的取值范围是.14.在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.解答:解:(I)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(II)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).15.已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为θ=(p∈R),曲线C1,C2相交于A,B两点.(Ⅰ)把曲线C1,C2的极坐标方程转化为直角坐标方程;(Ⅱ)求弦AB的长度.解答:解:(Ⅰ)曲线C2:(p∈R)表示直线y=x,曲线C1:ρ=6cosθ,即ρ2=6ρcosθ所以x2+y2=6x即(x﹣3)2+y2=9(Ⅱ)∵圆心(3,0)到直线的距离,r=3所以弦长AB==.∴弦AB的长度.16.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的极坐标方程为ρsin(θ+)=,圆C的参数方程为,(θ为参数,r>0)(Ⅰ)求圆心C的极坐标;(Ⅱ)当r为何值时,圆C上的点到直线l的最大距离为3.解答:解:(1)由ρsin(θ+)=,得ρ(cosθ+sinθ)=1,∴直线l:x+y﹣1=0.由得C:圆心(﹣,﹣).∴圆心C的极坐标(1,).(2)在圆C:的圆心到直线l的距离为:∵圆C上的点到直线l的最大距离为3,∴.r=2﹣∴当r=2﹣时,圆C上的点到直线l的最大距离为3.17.选修4﹣4:坐标系与参数方程在直角坐标xOy中,圆C1:x2+y2=4,圆C2:(x﹣2)2+y2=4.(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示);(Ⅱ)求圆C1与C2的公共弦的参数方程.解答:解:(I)由,x2+y2=ρ2,可知圆,的极坐标方程为ρ=2,圆,即的极坐标方程为ρ=4cosθ,解得:ρ=2,,故圆C1,C2的交点坐标(2,),(2,).(II)解法一:由得圆C1,C2的交点的直角坐标(1,),(1,).故圆C1,C2的公共弦的参数方程为(或圆C1,C2的公共弦的参数方程为)(解法二)将x=1代入得ρcosθ=1从而于是圆C1,C2的公共弦的参数方程为.。
极坐标与参数方程单元练习1一、选择题(每小题5分,共25分)1、已知点M 的极坐标为⎪⎭⎫⎝⎛35π,,下列所给出的四个坐标中能表示点M 的坐标是( )。
A. 53,-⎛⎝⎫⎭⎪πB. 543,π⎛⎝⎫⎭⎪C. 523,-⎛⎝⎫⎭⎪πD. ⎪⎭⎫⎝⎛-355π, 2、直线:3x-4y-9=0与圆:⎩⎨⎧==θθsin 2cos 2y x ,(θ为参数)的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心3、在参数方程⎩⎨⎧+=+=θθsin cos t b y t a x (t 为参数)所表示的曲线上有B 、C 两点,它们对应的参数值分别为t 1、t 2,则线段BC 的中点M 对应的参数值是( )4、曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A 、线段 B 、双曲线的一支 C 、圆 D 、射线 5、实数x 、y 满足3x 2+2y 2=6,则x 2+y 2的最大值为( )A 、27 B 、29 C 、4 D 、3二、填空题(每小题5分,共30分)1、点()22-,的极坐标为 。
2、若A 33,π⎛⎝⎫⎭⎪,B ⎪⎭⎫⎝⎛-64π,,则|AB|=___________,S AOB ∆=___________。
(其中O 是极点)3、极点到直线()cos sin ρθθ+=________ _____。
4、极坐标方程2sin 2cos 0ρθθ-⋅=表示的曲线是_______ _____。
5、圆锥曲线()为参数θθθ⎩⎨⎧==sec 3tan 2y x 的准线方程是 。
6、直线l 过点()5,10M ,倾斜角是3π,且与直线032=--y x 交于M ,则0MM的长为 。
三、解答题(第1题14分,第2题16分,第3题15分;共45分) 1、求圆心为C 36,π⎛⎝⎫⎭⎪,半径为3的圆的极坐标方程。
2、已知直线l 经过点P(1,1),倾斜角6πα=,(1)写出直线l 的参数方程。
极坐标与参数方程单元练习1一、选择题(每小题5分,共25分)1、已知点M 的极坐标为⎪⎭⎫⎝⎛35π,,下列所给出的四个坐标中能表示点M 的坐标是( )。
A. 53,-⎛⎝ ⎫⎭⎪πB. 543,π⎛⎝ ⎫⎭⎪C. 523,-⎛⎝ ⎫⎭⎪πD. ⎪⎭⎫ ⎝⎛-355π, 2、直线:3x-4y-9=0与圆:⎩⎨⎧==θθsin 2cos 2y x ,(θ为参数)的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心3、在参数方程⎩⎨⎧+=+=θθsin cos t b y t a x (t 为参数)所表示的曲线上有B 、C 两点,它们对应的参数值分别为t 1、t 2,则线段BC 的中点M 对应的参数值是( )4、曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( )A 、线段B 、双曲线的一支C 、圆D 、射线 5、实数x 、y 满足3x 2+2y 2=6x ,则x 2+y 2的最大值为( )A 、27 B 、4 C 、29D 、5二、填空题(每小题5分,共30分)1、点()22-,的极坐标为 。
2、若A 33,π⎛⎝ ⎫⎭⎪,B ⎪⎭⎫ ⎝⎛-64π,,则|AB|=___________,S AOB ∆=___________。
(其中O 是极点)3、极点到直线()cos sin 3ρθθ+=的距离是________ _____。
4、极坐标方程2sin 2cos 0ρθθ-⋅=表示的曲线是_______ _____。
5、圆锥曲线()为参数θθθ⎩⎨⎧==sec 3tan 2y x 的准线方程是 。
6、直线l 过点()5,10M ,倾斜角是3π,且与直线032=--y x 交于M ,则0MM 的长为 。
三、解答题(第1题14分,第2题16分,第3题15分;共45分)1、求圆心为C 36,π⎛⎝ ⎫⎭⎪,半径为3的圆的极坐标方程。
2、已知直线l 经过点P(1,1),倾斜角6πα=,(1)写出直线l 的参数方程。
极坐标与参数方程测试题一、选择题1.直线12+=x y 的参数方程是( )A 、⎩⎨⎧+==1222t y t x (t 为参数) B 、⎩⎨⎧+=-=1412t y t x (t 为参数)C 、 ⎩⎨⎧-=-=121t y t x (t 为参数)D 、⎩⎨⎧+==1sin 2sin θθy x (t 为参数)2.已知实数x,y 满足02cos 3=-+x x .022cos 83=+-y y .则=+y x 2( )A .0B .1C .-2D .83.已知⎪⎭⎫ ⎝⎛-3,5πM .下列所给出的不能表示点的坐标的是( )A 、⎪⎭⎫⎝⎛-3,5π B 、⎪⎭⎫⎝⎛34,5π C 、⎪⎭⎫⎝⎛-32,5π D 、⎪⎭⎫ ⎝⎛--35,5π 4.极坐标系中.下列各点与点P (ρ.θ)(θ≠k π.k ∈Z )关于极轴所在直线对称的是( )A .(-ρ.θ)B .(-ρ.-θ)C .(ρ.2π-θ)D .(ρ.2π+θ)5.点()3,1-P .则它的极坐标是( )A 、⎪⎭⎫⎝⎛3,2πB 、⎪⎭⎫⎝⎛34,2π C 、⎪⎭⎫⎝⎛-3,2π D 、⎪⎭⎫ ⎝⎛-34,2π 6.直角坐标系xoy 中.以原点为极点.x 轴的正半轴为极轴建极坐标系.设点A,B 分别在曲线13cos :sin x C y θθ=+⎧⎨=⎩ (θ为参数)和曲线2:1C ρ=上.则AB 的最小值为( ). A.1 B.2 C.3 D.47.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A .一条直线B .两条直线C .一条射线D .两条射线8.()124123x tt x ky k y t=-⎧+==⎨=+⎩若直线为参数与直线垂直,则常数( )A.-6B.16-C.6D.169.极坐标方程4cos ρθ=化为直角坐标方程是( )A .22(2)4x y -+= B.224x y += C.22(2)4x y +-= D.22(1)(1)4x y -+-=10.柱坐标(2.32π.1)对应的点的直角坐标是( ). A.(1,3,1-) B.(1,3,1-) C.(1,,1,3-) D.(1,1,3-)11.已知二面角l αβ--的平面角为θ.P 为空间一点.作PA α⊥.PB β⊥.A .B 为垂足.且4PA =.5PB =.设点A 、B 到二面角l αβ--的棱l 的距离为别为,x y .则当θ变化时.点(,)x y 的轨迹是下列图形中的12.4sin()4x π=+与曲线122122x ty ⎧=-⎪⎪⎨⎪=+⎪⎩的位置关系是( )。
专题:极坐标与参数方程1、已知在直角坐标系xOy 中,曲线C 的参数方程为14cos 24sin x y θθ=+⎧⎨=+⎩(θ为参数),直线l 经过定点(3,5)P ,倾斜角为3π. (1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求||||PA PB 的值.2、在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos C ρθθ=,过点(2,1)P -的直线2cos 45:1sin 45x t l y t ⎧=+⎪⎨=-+⎪⎩(t 为参数)与曲线C 交于,M N 两点.(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)求22||||PM PN +的值.3、在平面直角坐标系xOy 中,已知曲线:23cos 3sin x y αα⎧=+⎪⎨=⎪⎩(α为参数),以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :(cos sin )6ρθθ-=.(1)求曲线C 上点P 到直线l 距离的最大值;(2)与直线l 平行的直线1l 交C 于,A B 两点,若||2AB =,求1l 的方程.4、在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线1C 的参数方程为22cos 2sin x y θθ⎧=⎪⎨=⎪⎩(为参数),曲线 2C 的极坐标方程为cos 2sin 40ρθρθ--=.(1)求曲线1C 的普通方程和曲线 2C 的直角坐标方程;(2)设P 为曲线1C 上一点,Q 为曲线2C 上一点,求||PQ 的最小值.5.在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),在以原点为极点,轴的正半轴为极轴,建立的极坐标系中,曲线2C 是圆心为3,2π⎛⎫⎪⎝⎭,半径为1的圆.(1)求曲线1C 的普通方程,2C 的直角坐标方程;(2)设M 为曲线1C 上的点,N 为曲线2C 上的点,求||MN 的取值范围.6. 在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数),曲线2C :2220x y y +-=,以原点为极点,轴的正半轴为极轴,建立极坐标系,射线():0l θαρ=≥与曲线1C ,2C 分别交于,A B (均异于原点O ).(1)求曲线1C ,2C 的极坐标方程; (2)当02πα<<时,求22||||OA OB +的取值范围.7. 在平面直角坐标系xOy 中,曲线1C 过点(,1)P a ,其参数方程为212x a ty t ⎧=+⎪⎨=+⎪⎩(t 为参数,a R ∈),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=.(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线1C 与2C 交于,A B 两点,且||2||PA PB =,求实数a 的值.8. 在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为(sin 3cos )43ρθθ+=,若射线6πθ=,3πθ=,分别与l 交于,A B两点.(1)求||AB ;(2)设点P 是曲线2219y x +=上的动点,求ABP ∆面积的最大值.极坐标与参数方程——练习1.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t ,(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A,B 两点,求线段AB 的长.2.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =tcos α,y =tsin α(t 为参数,t≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A,C 1与C 3相交于点B ,求|AB |的最大值.3.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.4.在平面直角坐标系xOy 中,曲线C 的方程为x 2-2x +y 2=0,以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=π4(ρ∈R ).(1)写出C 的极坐标方程,并求l 与C 的交点M,N 的极坐标; (2)设P 是椭圆x 23+y 2=1上的动点,求△PMN 面积的最大值.5.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),曲线C 的极坐标方程为(1+sin 2θ)ρ2=2. (1)写出直线l 的普通方程与曲线C 的直角坐标方程.(2)设直线l 与曲线C 相交于A ,B 两点,若点P 为(1,0),求1|PA |2+1|PB |2的值.6. 在直角坐标系xoy 中,直线l 的参数方程为325:45x t C y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为sin a ρθ=. (1)若2a =,求圆C 的直角坐标方程与直线 l 的普通方程; (2)设直线l 截圆C 的弦长等于圆Ca 的值.7. 在直角坐标系xOy 中,直线1C :y =,曲线2C 的参数方程是cos 2sin x y ϕϕ⎧=⎪⎨=-+⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求1C 的极坐标方程和2C 的普通方程; (2)把1C 绕坐标原点沿顺时针方向旋转3π得到直线3C ,3C 与2C 交于A ,B 两点,求||AB .8.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.极坐标与参数方程参考答案1.【解答】解:(1)∵曲线C的参数方程为(θ为参数),消去参数θ,得曲线C的普通方程:(x﹣1)2+(y﹣2)2=16;∵直线l经过定点P(3,5),倾斜角为,∴直线l的参数方程为:,t为参数.(2)将直线l的参数方程代入曲线C的方程,得t2+(2+3)t﹣3=0,设t1、t2是方程的两个根,则t1t2=﹣3,∴|PA|•|PB|=|t1|•|t2|=|t1t2|=3.2.【解答】解:(1)曲线C:ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,∴曲线C的直角坐标方程为y2=2x;直线l:(t为参数),消去t,可得直线l的普通方程x﹣y﹣3=0;(2)将直线l:代入曲线C的标准方程:y2=2x得:t2﹣4t﹣6=0,∴|PM|2+|PN|2=|t1|2+|t2|2=(t1﹣t2)2+2t1t2=32.3、【解答】(1)直线l :(cos sin )6ρθθ-=化成普通方程为60x y --=.曲线化成普通方程为22(2)3x y -+=∴圆心(2,0)C 到直线l 的距离为d ==∴曲线C 上点P 到直线l 距离的最大值为(2)设直线1l 的方程为0x y λ-+=, (2,0)C 到直线1l 的距离为d === ∴或∴直线1l 的方程为或4.【解答】(1)由曲线C 1的参数方程为(θ为参数),消去参数θ得,曲线C 1的普通方程得+=1.由ρcos θ﹣ρsin θ﹣4=0得,曲线C 2的直角坐标方程为x ﹣y ﹣4=0…(2)设P (2cos θ,2sin θ),则点P 到曲线C 2的距离为d==,当cos (θ+45°)=1时,d 有最小值0,所以|PQ|的最小值为0.5.【解答】解:(1)消去参数φ可得C1的直角坐标方程为+y2=1,∵曲线C2是圆心为(3,),半径为1的圆曲线C2的圆心的直角坐标为(0,3),∴C2的直角坐标方程为x2+(y﹣3)2=1;(2)设M(2cosφ,sinφ),则|MC2|====,∴﹣1≤sinφ≤1,∴由二次函数可知2≤|MC2|≤4,由题意结合图象可得|MN|的最小值为2﹣1=1,最大值为4+1=5,∴|MN|的取值范围为[1,5]6.【解答】解:(1)∵,∴,由得曲线C1的极坐标方程为,∵x2+y2﹣2y=0,∴曲线C2的极坐标方程为ρ=2sinθ;(2)由(1)得,|OB|2=ρ2=4sin2α,∴∵,∴1<1+sin2α<2,∴,∴|OA|2+|OB|2的取值范围为(2,5).7.【解答】解:(1)曲线C1参数方程为,∴其普通方程x﹣y﹣a+1=0,由曲线C2的极坐标方程为ρcos2θ+4cosθ﹣ρ=0,∴ρ2cos2θ+4ρcosθ﹣ρ2=0∴x2+4x﹣x2﹣y2=0,即曲线C2的直角坐标方程y2=4x.(2)设A、B两点所对应参数分别为t1,t2,联解得要有两个不同的交点,则,即a>0,由韦达定理有根据参数方程的几何意义可知|PA|=2|t1|,|PB|=2|t2|,又由|PA|=2|PB|可得2|t1|=2×2|t2|,即t1=2t2或t1=﹣2t2∴当t1=2t2时,有t1+t2=3t2=,t1t2=2t22=,∴a=>0,符合题意.当t1=﹣2t2时,有t1+t2=﹣t2=,t1t2=﹣2t22=,∴a=>0,符合题意.综上所述,实数a的值为或.8.【解答】解:(1)直线,令,解得,∴,令,解得ρ=4,∴又∵,∴,∴|AB|=2.(2)∵直线,曲线,∴=当且仅当,即时,取“=”,∴,∴△ABP面积的最大值为3.极坐标与参数方程——练习参考答案1.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.2.【解答】解:(1)曲线C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①C 3:ρ=2cosθ,则ρ2=2ρcosθ,即x2+y2=2x,②由①②得或,即C2与C3交点的直角坐标为(0,0),(,);(2)曲线C1的直角坐标方程为y=tanαx,则极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤a<π.因此A得到极坐标为(2sinα,α),B的极坐标为(2cosα,α).所以|AB|=|2sinα﹣2cosα|=4|sin(α)|,当α=时,|AB|取得最大值,最大值为4.3.【解答】解:(1)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(2)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).4.【解答】解:(1)因为x=ρcosθ,y=ρsinθ,所以C的极坐标方程为ρ=2cosθ,直线l的直角坐标方程为y=x,联立方程组,解得或,所以点M,N的极坐标分别为(0,0),(,).(2)由(1)易得|MN|=因为P是椭圆+y2=1上的点,设P点坐标为(cosθ,sinθ),则P到直线y=x的距离d=,所以S△PMN==≤1,当θ=kπ﹣,k∈Z时,S△PMN取得最大值1.5.【解答】解:(1)直线l的参数方程为(t为参数),消去参数t得直线l的普通方程为x﹣y﹣=0,曲线C的极坐标方程ρ2+ρ2sin2θ=2,化成直角坐标方程为x2+2y2=2,即+y2=1.(2)将直线l的参数方程代入曲线C:x2+2y2=2,得7t2+4t﹣4=0.设A,B两点在直线l的参数方程中对应的参数分别为t1,t2,则t1+t2=﹣,t1t2=﹣,∴+=+==.6.【解答】解:(1)当a=2时,ρ=asinθ转化为ρ=2sinθ整理成直角坐标方程为:x2+(y﹣1)2=1直线的参数方程(t为参数).转化成直角坐标方程为:4x+3y﹣8=0 (2)圆C的极坐标方程转化成直角坐标方程为:直线l截圆C的弦长等于圆C的半径长的倍,所以:2|3a﹣16|=5|a|,利用平方法解得:a=32或.7.【解答】解:(1)∵直线,∴直线C1的极坐标方程为,∵曲线C2的参数方程是(θ为参数),∴消去参数θ,得曲线C2的普通方程为.(2)∵把C1绕坐标原点沿逆时针方向旋转得到直线C3,∴C3的极坐标方程为,化为直角坐标方程为.圆C2的圆心(,2)到直线C3:的距离:.∴.8.【解答】解:(1)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(2)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y﹣1=(x﹣),即x﹣2y+ =0.再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程为ρcosα﹣2ρsinα+=0,即ρ=.。
高考极坐标参数方程(经典39题)在极坐标系中,以点(2,)2C π为圆心,半径为3的圆C 与直线:()3l R πθρ=∈交于,A B 两点.(1)求圆C 及直线l 的普通方程. (2)求弦长AB .2.在极坐标系中,曲线2:sin 2cos L ρθθ=,过点A (5,α)(α为锐角且3tan 4α=)作平行于()4R πθρ=∈的直线l ,且l 与曲线L 分别交于B ,C 两点. (Ⅰ)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L 和直线l 的普通方程; (Ⅱ)求|BC|的长.3.在极坐标系中,点M 坐标是)2,3(π,曲线C 的方程为)4sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M .(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ⋅的值.4.已知直线l的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==,圆C 的极坐标方程为)4cos(2πθρ+=.(1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值.5.在直角坐标系xOy 中,直线l 的参数方程为()为参数t t y ta x ,3⎩⎨⎧=+=.在极坐标极轴)中,圆C 的方程为θρcos 4=. (Ⅰ)求圆C 在直角坐标系中的方程;(Ⅱ)若圆C 与直线l 相切,求实数a 的值.6.在极坐标系中,O 为极点,已知圆C 的圆心为(2,)3π,半径r=1,P 在圆C 上运动。
(I )求圆C 的极坐标方程;(II )在直角坐标系(与极坐标系取相同的长度单位,且以极点O 为原点,以极轴为x 轴正半轴)中,若Q 为线段OP 的中点,求点Q 轨迹的直角坐标方程。
7.在极坐标系中,极点为坐标原点O ,已知圆C 的圆心坐标为)4,2(C π,半径为2,直线l 的极坐标方程为22)4sin(=θ+πρ.(1)求圆C 的极坐标方程;(2)若圆C 和直线l 相交于A ,B 两点,求线段AB 的长.8.平面直角坐标系中,将曲线⎩⎨⎧==ααsin cos 4y x (α为参数)上的每一点纵坐标不变,横坐标变为原来的一半,然后整个图象向右平移1个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线1C .以坐标原点为极点,x 的非负半轴为极轴,建立的极坐标中的曲线2C 的方程为θρsin 4=,求1C 和2C 公共弦的长度.9.在直角坐标平面内,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程是θρcos 4=,直线l 的参数方程是⎪⎪⎩⎪⎪⎨⎧=+-=.21, 233t y t x (t 为参数).求极点在直线l 上的射影点P 的极坐标;若M 、N 分别为曲线C 、直线l 上的动点,求MN 的最小值。
极坐标与参数方程题型及答案数学选择题:1. 下列哪个极坐标表示点(3, 5)?A. (5, 53.13°)B. (3, 53.13°)C. (5, 37.12°)D. (3, 37.12°)答案:A2. 唯一表示点(-4, 60°)的极坐标是A. (4, 60°)B. (4, 120°)C. (-4, 60°)D. (-4, 240°)答案:C3. 参数方程x = 2cosθ、y = 3sinθ (0 ≤ θ ≤ π/2) 表示的图形是A. 长方形B. 正方形C. 长椭圆D. 圆答案:C4. 必要条件方程x = 1 + cosθ、y = 2 + sinθ (0 ≤ θ ≤ 2π)表示的图形是A. 点B. 圆C. 椭圆D. 双曲线答案:B填空题:1. 将极坐标(4, 240°)转化为直角坐标形式,其对应的坐标为(______, ______)。
答案:(-2, -3.46)2. 给出参数方程x = 2cosθ、y = 5sinθ (0 ≤ θ ≤ π/2) 所表示直线的斜率,其斜率为 _______。
答案:2.5判断题:1. 下列哪些图形可以由参数方程表示?I. 点 II. 圆 III. 双曲线 IV. 三角形A. I、II、IIIB. I、II、IVC. II、III、IVD. I、II、III、IV答案:B2. 唯一表示点(4, 30°)的极坐标是(4, π/6) 。
答案:正确简答题:1. 极坐标系表示的是平面直角坐标系的哪些信息不同?答案:极坐标系表示的是点与极点之间的距离和点与极轴的夹角,而直角坐标系则表示的是点在x、y轴之间的坐标。
2. 怎样将一个极坐标转换为另一个等价的极坐标?答案:若(r, θ)为一个点在极坐标系中的坐标,则其等效于(r, θ + 2kπ) (k 为整数)。
3. 参数方程x = cosθ、y = sinθ 表示的图形是什么?有何特点?答案:参数方程x = cosθ、y = sinθ 表示的是单位圆,其特点是对于任意θ值,点到原点的距离都是1。
一.选择题(共4小题)1.在极坐标系中,圆C :ρ2+k 2cos ρ+ρsin θ﹣k=0关于直线l :θ=(ρ∈R )对称的充要条件是( )2.过点A (4,﹣)引圆ρ=4sin θ的一条切线,则切线长为( ). B C二.填空题(共11小题) 5.极坐标系下,直线与圆的公共点个数是 __ .6.(坐标系与参数方程选做题)已知曲线C 1、C 2的极坐标方程分别为,,则曲线C 1上的点与曲线C 2上的点的最远距离为 _________ .7.在极坐标系中,点M (4,)到直线l :ρ(2cos θ+sin θ)=4的距离d= _________ . 8.极坐标方程所表示曲线的直角坐标方程是 _________ .9.已知直线(t 为参数)与曲线(y ﹣2)2﹣x 2=1相交于A ,B 两点,则点M (﹣1,2)到弦AB 的中点的距离为 _________ . 10.(坐标系与参数方程选做题)已知曲线C 的极坐标方程是ρ=6sin θ,以极点为坐标原点,极轴为x的正半轴,建立平面直角坐标系,直线l 的参数方程是为参数),则直线l 与曲线C 相交所得的弦的弦长为 _________ . 11.(坐标系与参数方程)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建极坐标系,两种坐标系取相同的单位长度.已知曲线C :psin 2θ=2acos θ(a >0),过点P (﹣2,﹣4)的直线l 的参数方程为,直线l 与曲线C 分别交于M 、N .若|PM|、|MN|、|PN|成等比数列,则实数a 的值为_________ .12.已知曲线(t 为参数)与曲线(θ为参数)的交点为A ,B ,,则|AB|=13.在平面直角坐标下,曲线,曲,若曲线C 1、C 2有公共点,则实数a 的取值范围为 _________ .14.(选修4﹣4:坐标系与参数方程) 在直角坐标系xoy 中,直线l 的参数方程为(t 为参数),在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为. (Ⅰ)求圆C 的直角坐标方程;(Ⅱ)设圆C 与直线l 交于点A 、B ,若点P 的坐标为,求|PA|+|PB|.15.已知过定点P (﹣1,0)的直线l :(其中t 为参数)与圆:x 2+y 2﹣2x ﹣4y+4=0交于M ,N 两点,则PM .PN= _________ .三.解答题(共3小题)16.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy中,已知曲线C 的参数方程为.以直角坐标系原点为极点,x轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.点P为曲线C上的一个动点,求点P到直线l距离的最小值.17.在平面直角坐标系xOy中,圆C 的参数方程为(θ为参数),直线l经过点P(1,1),倾斜角,(1)写出直线l的参数方程;(2)设l与圆圆C相交与两点A,B,求点P到A,B两点的距离之积.18.选修4﹣4:坐标系与参数方程已知在直角坐标系xOy中,曲线C 的参数方程为(θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为.(Ⅰ)求曲线C在极坐标系中的方程;(Ⅱ)求直线l被曲线C截得的弦长.参考答案与试题解析一.选择题(共4小题)1.在极坐标系中,圆C:ρ2+k2cosρ+ρsinθ﹣k=0关于直线l:θ=(ρ∈R)对称的充要条件是()在直线所以,即2.过点A(4,﹣)引圆ρ=4sinθ的一条切线,则切线长为(),运算求得结果.)即==43.在平面直角坐标系xOy中,点P的坐标为(﹣1,1),若取原点O为极点,x轴正半轴为极轴,建(|OP|=﹣.∴圆心的极坐标二.填空题(共11小题)5.(坐标系与参数方程选做题)极坐标系下,直线与圆的公共点个数是1.解:直线,即x+y=圆心到直线的距离等于=6.(坐标系与参数方程选做题)已知曲线C 1、C 2的极坐标方程分别为,,则曲线C 1上的点与曲线C 2上的点的最远距离为.d=|CQ||PQ|=d+r=故答案为:7.(2004•上海)在极坐标系中,点M (4,)到直线l :ρ(2cos θ+sin θ)=4的距离d=.,)化成直角坐标方程为()==故填:8.极坐标方程所表示曲线的直角坐标方程是.解:∵极坐标方程=59.已知直线(t 为参数)与曲线(y ﹣2)2﹣x 2=1相交于A ,B 两点,则点M (﹣1,2)到弦AB 的中点的距离为 .=,,根据中点坐标的性质可得中点对应的参数为中点的距离为×…故答案为:.10.(坐标系与参数方程选做题)已知曲线C 的极坐标方程是ρ=6sin θ,以极点为坐标原点,极轴为x的正半轴,建立平面直角坐标系,直线l 的参数方程是为参数),则直线l 与曲线C 相交所得的弦的弦长为 4 .,我们可以求出直线的一般方程,代入点到圆心距为.所以11.(坐标系与参数方程)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建极坐标系,两种坐标系取相同的单位长度.已知曲线C :psin 2θ=2acos θ(a >0),过点P (﹣2,﹣4)的直线l 的参数方程为,直线l 与曲线C 分别交于M 、N .若|PM|、|MN|、|PN|成等比数列,则实数a 的值为1 .2|x 则由•,|x |x 12.已知曲线(t 为参数)与曲线(θ为参数)的交点为A ,B ,,则|AB|=.解:把曲线化为普通方程得:=,即把曲线联立得:,消去,﹣.213.在平面直角坐标下,曲线,曲线,若曲线C 1、C 2有公共点,则实数a 的取值范围为 . 解:曲线曲线∴,﹣22,故答案为:14.(选修4﹣4:坐标系与参数方程) 在直角坐标系xoy 中,直线l 的参数方程为(t 为参数),在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为. (Ⅰ)求圆C 的直角坐标方程;(Ⅱ)设圆C 与直线l 交于点A 、B ,若点P 的坐标为,求|PA|+|PB|. 的方程为∴的直角坐标方程:(Ⅱ),即由于所以15.已知过定点P (﹣1,0)的直线l :(其中t 为参数)与圆:x 2+y 2﹣2x ﹣4y+4=0交于M ,N 两点,则PM .PN= 7 .(其中×t=7=0三.解答题(共3小题)16.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线C 的参数方程为.以直角坐标系原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.点P为曲线C 上的一个动点,求点P 到直线l 距离的最小值.)=2化简为:ρ,即===﹣17.在平面直角坐标系xOy 中,圆C 的参数方程为(θ为参数),直线l 经过点P (1,1),倾斜角,(1)写出直线l 的参数方程;(2)设l 与圆圆C 相交与两点A ,B ,求点P 到A ,B 两点的距离之积. 化为普通方程为,把直线,∴18.选修4﹣4:坐标系与参数方程已知在直角坐标系xOy中,曲线C的参数方程为(θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为.(Ⅰ)求曲线C在极坐标系中的方程;(Ⅱ)求直线l被曲线C截得的弦长.的距离为=。
高二数学选修4-4《极坐标与参数方程》测试题(时间:120分钟,总分:150分) 姓名: 学号:一.选择题(每小题5分,共50分)1.曲线的极坐标方程θρsin 4=化为直角坐标为( )。
A.4)2(22=++y xB. 4)2(22=-+y xC. 4)2(22=+-y xD. 4)2(22=++y x 2.已知点P 的极坐标是(1,π),则过点P 且垂直极轴的直线方程是( )。
A.1=ρ B. θρcos = C. θρcos 1-= D. θρcos 1= 3.直线12+=x y 的参数方程是( )。
A.⎩⎨⎧+==1222t y t x B.⎩⎨⎧+=-=1412t y t x C. ⎩⎨⎧-=-=121t y t x D. ⎩⎨⎧+==1sin 2sin θθy x 4.方程⎪⎩⎪⎨⎧=+=21y t t x 表示的曲线是( )。
A.一条直线 B.两条射线 C.一条线段 D.抛物线的一部分5.参数方程⎩⎨⎧+-=+=θθ2cos 1sin 22y x (θ为参数)化为普通方程是( )。
A.042=+-y xB. 042=-+y xC. 042=+-y x ]3,2[∈xD. 042=-+y x]3,2[∈x6.设点P 对应的复数为-3+3i ,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P 的极坐标为( ) A.(23,π43) B. (23-,π45) C. (3,π45) D. (-3,π43) 7.直线l :02=++kx y 与曲线C :θρcos 2=相交,则k 的取值范围是( )。
A.43-≤k B. 43-≥k C. R k ∈ D. R k ∈但0≠k 8.在极坐标系中,曲线)3sin(4πθρ-=关于( )。
A.直线3πθ=对称 B.直线65πθ=对称 C.点(2,3π)中心对称 D.极点中心对称9.若圆的方程为⎩⎨⎧+=+-=θθsin 23cos 21y x ,直线的方程为⎩⎨⎧-=-=1612t y t x ,则直线与圆的位置关系是( )。
2018-2019学年下期数学(理)拓展训练评价单(8)一、选择题:本大题共9个小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.将点P (-2,2)变换为P ′(-6,1)的伸缩变换公式为( ) A.⎩⎪⎨⎪⎧ x ′=13x ,y ′=2y B.⎩⎪⎨⎪⎧ x ′=12x ,y ′=3y C.⎩⎪⎨⎪⎧x ′=3x ,y ′=12y D.⎩⎪⎨⎪⎧x ′=3x ,y ′=2y 2..极坐标系中,点M ⎝⎛⎭⎫1,π2与N ⎝⎛⎭⎫1,3π2两点间的距离为( ) A .1 B .2 C .3D .43.在极坐标系中,ρ1=ρ2且θ1=θ2是两点M (ρ1,θ1)和N (ρ2,θ2)重合的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4.将点M 的直角坐标(-3,-1)化成极坐标为( ) A.⎝⎛⎭⎫3,π6 B.⎝⎛⎭⎫2,7π6 C.⎝⎛⎭⎫-2,7π6 D.⎝⎛⎭⎫2,π6 5.在极坐标系中,点⎝⎛⎭⎫2,π3和圆(x -1)2+y 2=1的圆心的距离为( ) A.3 B .2 C.1+π29D.4+π296.圆心在点(-1,2),半径为5的圆的参数方程为( )A.⎩⎪⎨⎪⎧x =5-cos θ,y =5+2sin θ(0≤θ<2π) B.⎩⎪⎨⎪⎧ x =2+5cos θ,y =-1+5sin θ(0≤θ<2π) C.⎩⎪⎨⎪⎧ x =-1+5cos θ,y =2+5sin θ(0≤θ<π) D.⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π) 7.直线3x -4y -9=0与圆⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)的位置关系是( )A .相切B .相离C .直线过圆心D .相交不过圆心 8.曲线的极坐标方程ρ=4sin θ化为直角坐标方程为( ) A .x 2+(y +2)2=4 B .x 2+(y -2)2=4 C .(x -2)2+y 2=4D .(x +2)2+y 2=49.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =6+4cos θ,y =5tan θ-3(θ为参数,π≤θ<2π).已知点M (14,a )在曲线C上,则a =( )A .-3-5 3B .-3+53C .-3+53 3D .-3-533二、填空题(每题5分,满分25分,将答案填在答题纸上)10.求4x 2-9y 2=1经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 后的图形所对应的方程 .11.(2016·高考北京卷)在极坐标系中,直线ρcos θ-3ρsin θ-1=0与圆ρ=2cos θ交于A ,B 两点,则|AB |=________.12.在极坐标系中,直线l 的方程是ρsin ⎝⎛⎭⎫θ-π6=1,求点P ⎝⎛⎭⎫2,-π6到直线l 的距离 . 13.在极坐标系中,圆ρ=2cos θ与直线3ρcos θ+4ρsin θ+a =0相切,则实数a =________. 14.在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为2x ty ⎧=⎪⎨=⎪⎩t 为参数),则1C 与2C 交点的直角坐标为 .三、解答题 (本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.)15. 把下列直角坐标方程与极坐标方程进行互化: (1)x 2+(y -2)2=4; (2)ρ=9(sin θ+cos θ); (3)2ρcos θ-3ρsin θ=5.16.【2017课标1,文22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数)(1)若1-=a ,求C 与l 的交点坐标;17. 【2018高考陕西】选修4-4:坐标系与参数方程在直角坐标版权法xOy 中,直线l的参数方程为132(2x t t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,C e的极坐标方程为ρθ=.(I)写出C e 的直角坐标方程;2018-2019学年下期数学拓展训练评价单(8)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.将点P (-2,2)变换为P ′(-6,1)的伸缩变换公式为( ) A.⎩⎪⎨⎪⎧ x ′=13x ,y ′=2y B.⎩⎪⎨⎪⎧ x ′=12x ,y ′=3y C.⎩⎪⎨⎪⎧x ′=3x ,y ′=12y D.⎩⎪⎨⎪⎧x ′=3x ,y ′=2y 解析:因为P (-2,2),P ′(-6,1),而-6=-2×3,1=2×12,故⎩⎪⎨⎪⎧x ′=3x ,y ′=12y .故选C. 2..极坐标系中,点M ⎝⎛⎭⎫1,π2与N ⎝⎛⎭⎫1,3π2两点间的距离为( ) A .1 B .2 C .3D .4解析:M ⎝⎛⎭⎫1,π2,N ⎝⎛⎭⎫1,3π2,O (0,0)三点共线,故|MN |=|MO |+|NO |=1+1=2. 答案:B3.在极坐标系中,ρ1=ρ2且θ1=θ2是两点M (ρ1,θ1)和N (ρ2,θ2)重合的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:前者显然能推出后者,但后者不一定推出前者,因为θ1与θ2可相差2π的整数倍. 答案:A4.将点M 的直角坐标(-3,-1)化成极坐标为( ) A.⎝⎛⎭⎫3,π6 B.⎝⎛⎭⎫2,7π6 C.⎝⎛⎭⎫-2,7π6 D.⎝⎛⎭⎫2,π6 解析:ρ=(-3)2+(-1)2=3+1=2,tan θ=-1-3=33,点M 在第三象限,θ=7π6.所以点M 的极坐标为⎝⎛⎭⎫2,7π6. 答案:B5.在极坐标系中,点⎝⎛⎭⎫2,π3和圆(x -1)2+y 2=1的圆心的距离为( ) A.3 B .2 C.1+π29D.4+π29将点(2,π3)化为直角坐标是(1,3)又(x -1)2+y 2=1的圆心的坐标是(1,0), ∴点(2,π3)到圆心的距离d =(1-1)2+(3-0)2= 3.6.圆心在点(-1,2),半径为5的圆的参数方程为( )A.⎩⎪⎨⎪⎧ x =5-cos θ,y =5+2sin θ(0≤θ<2π)B.⎩⎪⎨⎪⎧x =2+5cos θ,y =-1+5sin θ(0≤θ<2π) C.⎩⎪⎨⎪⎧ x =-1+5cos θ,y =2+5sin θ(0≤θ<π) D.⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π) 解析:圆心在点C (a ,b ),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =a +r cos θ,y =b +r sin θ(θ∈[0,2π)).故圆心在点(-1,2),半径为5的圆的参数方程为⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π).答案:D7.直线3x -4y -9=0与圆⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)的位置关系是( )A .相切B .相离C .直线过圆心D .相交不过圆心解析:圆心(0,0)到直线3x -4y -9=0的距离d =95<2,所以位置关系为相交,但不过圆心.答案:D8.曲线的极坐标方程ρ=4sin θ化为直角坐标方程为( ) A .x 2+(y +2)2=4 B .x 2+(y -2)2=4 C .(x -2)2+y 2=4D .(x +2)2+y 2=4解析:将ρ=4sin θ两边乘以ρ,得ρ2=ρ·4sin θ,再把ρ2=x 2+y 2,ρ·sin θ=y ,代入得x 2+y 2-4y =0,即x 2+(y -2)2=4.故选B.答案:B9.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =6+4cos θ,y =5tan θ-3(θ为参数,π≤θ<2π).已知点M (14,a )在曲线C 上,则a =( )A .-3-5 3B .-3+53C .-3+53 3D .-3-53 3解析:∵14=6+4cos θ,cos θ=12,∴θ=5π3,∴a =5tan 5π3-3=5×(-3)-3=-53-3,故选A.答案:A二、填空题(每题5分,满分15分,将答案填在答题纸上)10.求4x 2-9y 2=1经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y后的图形所对应的方程 .解析:由伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 得⎩⎨⎧x =12x ′,y =13y ′,将其代入4x 2-9y 2=1, 得4·(12x ′)2-9·(13y ′)2=1.整理得:x ′2-y ′2=1.∴经过伸缩变换后图形所对应的方程为x ′2-y ′2=1.11.(2016·高考北京卷)在极坐标系中,直线ρcos θ-3ρsin θ-1=0与圆ρ=2cos θ交于A ,B 两点,则|AB |=________.答案:212.在极坐标系中,直线l 的方程是ρsin ⎝⎛⎭⎫θ-π6=1,求点P ⎝⎛⎭⎫2,-π6到直线l 的距离. 解析:点P ⎝⎛⎭⎫2,-π6的直角坐标为(3,-1). 直线l :ρsin ⎝⎛⎭⎫θ-π6=1可化为 ρsin θ·cos π6-ρcos θ·sin π6=1,即直线l 的直角坐标方程为x -3y +2=0. ∴点P (3,-1)到直线x -3y +2=0的距离为 d =|3+3+2|1+(-3)2=3+1.故点P ⎝⎛⎭⎫2,-π6到直线ρsin ⎝⎛⎭⎫θ-π6=1的距离为3+1. 13.在极坐标系中,圆ρ=2cos θ与直线3ρcos θ+4ρsin θ+a =0相切,则实数a =________. 解析:由ρ=2cos θ得ρ2=2ρcos θ, ∵x =ρcos θ,y =ρsin θ,∴ρ2=x 2+y 2.∴圆ρ=2cos θ与直线3ρcos θ+4ρsin θ+a =0的直角坐标方程分别为x 2+y 2=2x,3x +4y +a =0. 将圆的方程配方得(x -1)2+y 2=1, 依题意得,圆心C (1,0)到直线的距离为1, 即|3+a |32+42=1,整理,得|3+a |=5,解得a =2或a =-8. 答案:2或-814.在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为2x ty ⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 .【答案】()2,4-【解析】曲线1C 的直角坐标方程为2x y +=-,曲线2C 的普通方程为28y x =,由228x y y x +=-⎧⎨=⎩得:24x y =⎧⎨=-⎩,所以1C 与2C 交点的直角坐标为()2,4-,所以答案应填:()2,4-.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)13. 把下列直角坐标方程与极坐标方程进行互化: (1)x 2+(y -2)2=4; (2)ρ=9(sin θ+cos θ); (3)2ρcos θ-3ρsin θ=5. [解析] (1)∵x 2+(y -2)2=4, ∴x 2+y 2=4y ,代入x =ρcos θ,y =ρsin θ得ρ2-4ρsin θ=0,即ρ=4sin θ.(2)∵ρ=9(sin θ+cos θ), ∴ρ2=9ρ(sin θ+cos θ), ∴x 2+y 2=9x +9y , 即⎝⎛⎭⎫x -922+⎝⎛⎭⎫y -922=812. (3)∵2ρcos θ-3ρsin θ=5, ∴2x -3y =5.14.【2017课标1,文22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数)(1)若1-=a ,求C 与l 的交点坐标;试题解析:(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由2243019x y x y +-=⎧⎪⎨+=⎪⎩解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩.从而C 与l 的交点坐标为(3,0),2124(,)2525-.15. 【2015高考陕西】选修4-4:坐标系与参数方程在直角坐标版权法xOy 吕,直线l 的参数方程为132(3x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,C e 的极坐标方程为3ρθ=.(I)写出C e 的直角坐标方程;(II)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求点P 的坐标. 【答案】(I) (2233x y +-=; (II) (3,0).试题解析:(I)由23ρθ=,得223sin ρρθ=,从而有223x y +=所以(2233x y +-=(II)设1332P t ⎛⎫+⎪⎝⎭,又3)C , 则22213331222PC t t t ⎛⎫⎛⎫=++-=+ ⎪ ⎪⎝⎭⎝⎭故当0t =时,PC 取得最小值, 此时P 点的坐标为(3,0).。