《概率论与统计原理》第5章
- 格式:ppt
- 大小:1018.50 KB
- 文档页数:42
《概率论与数理统计》 第一章随机事件及其概率§1.1 随机事件一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率古典概型公式:P (A )=所含样本点数所含样本点数ΩA 实用中经常采用“罗列组合”的想法计算补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A :“每个盒子恰有1个球”。
求:P(A)=?Ω所含样本点数:n n n n n =⋅⋅⋅...Α所含样本点数:!1...)2()1(n n n n =⋅⋅-⋅-⋅n n n A P !)(=∴补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少?解:设A i :“信箱中信的最大封数为i”。
(i =1,2,3)求:P(A i )=?Ω所含样本点数:6444443==⋅⋅A 1所含样本点数:24234=⋅⋅836424)(1==∴A PA 2所含样本点数:363423=⋅⋅C1696436)(2==∴A PA 3所含样本点数:4433=⋅C161644)(3==∴A P注:由概率定义得出的几个性质:知识归纳整理1、0<P (A )<12、P(Ω)=1,P(φ) =0 §1.3 概率的加法法则定理:设A 、B 是互不相容事件(AB=φ),则: P (A ∪B )=P (A )+P (B )推论1:设A 1、 A 2、…、 A n 互不相容,则 P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n )推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1推论3: P (A )=1-P (A )推论4:若B ⊃A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式):对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律:nnAA A A A A ⋂⋂⋂=⋃⋃⋃ (2)121nnAA A A A A ⋃⋃⋃=⋂⋂⋂ (2)121§1.4 条件概率与乘法法则条件概率公式:P(A/B)=)()(B P AB P (P(B)≠0)P(B/A)= )()(A P AB P (P(A)≠0)∴P (AB )=P (A /B )P (B )= P (B / A )P (A )有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。
《统计学原理》第五章习题河南电大贾天骐一.判断题部分题目1:从全部总体单位中按照随机原则抽取部分单位组成样本,只可能组成一个样本。
()答案:×题目2:在抽样推断中,全及指标值是确定的、唯一的,而样本指标值是一个随机变量。
()答案:√题目3:抽样成数的特点是:样本成数越大,则抽样平均误差越大。
()答案:×题目4:抽样平均误差总是小于抽样极限误差。
()答案:×题目5:在其它条件不变的情况下,提高抽样估计的可靠程度,则降低了抽样估计的精确程度。
()答案:√题目6:从全部总体单位中抽取部分单位构成样本,在样本变量相同的情况下,重复抽样构成的样本个数大于不重复抽样构成的样本个数。
()答案:√题目7:抽样平均误差反映抽样误差的一般水平,每次抽样的误差可能大于抽样平均误差,也可能小于抽样平均误差。
()答案:√题目8:在抽样推断中,抽样误差的概率度越大,则抽样极限误差就越大于抽样平均误差。
()答案:√题目9:抽样估计的优良标准有三个:无偏性、可靠性和一致性。
()答案:×题目10:样本单位数的多少与总体各单位标志值的变异程度成反比,与抽样极限误差范围的大小成正比。
()答案:×题目11:抽样推断的目的是,通过对部分单位的调查,来取得样本的各项指标。
()答案:×题目12:用来测量估计可靠程度的指标是抽样误差的概率度。
()答案:√题目13:总体参数区间估计必须具备三个要素即:估计值、抽样误差范围和抽样误差的概率度。
()答案:×二.单项选择题部分题目1:抽样平均误差是()。
A、抽增指标的标准差B、总体参数的标准差C、样本变量的函数D、总体变量的函数答案:A题目2:抽样调查所必须遵循的基本原则是()。
A、准确性原则B、随机性原则C、可靠性原则 C、灵活性原则答案:B题目3:在简单随机重复抽样条件下,当抽样平均误差缩小为原来的1/2时,则样本单位数为原来的()。
第 5 章 大数定律与中心极限定理一、 填空题:1.设随机变量μξ=)(E ,方差2σξ=)(D ,则由切比雪夫不等式有≤≥-}|{|σμξ3P91 . 2.设n ξξξ,,,Λ21是n 个相互独立同分布的随机变量,),,,(,)(,)(n i D E i i Λ218===ξμξ对于∑==ni i n 1ξξ,写出所满足的切彼雪夫不等式 228εεξεμξn D P =≤≥-)(}|{| ,并估计≥<-}|{|4μξP n211- . 3. 设随机变量129,,,X X X L 相互独立且同分布, 而且有1i EX =,1(1,2,,9)i DX i ==L , 令91i i X X ==∑, 则对任意给定的0ε>, 由切比雪夫不等式直接可得{}≥<-ε9X P 291ε- . 解:切比雪夫不等式指出:如果随机变量X 满足:()E X μ=与2()D X σ=都存在, 则对任意给定的0ε>, 有 22{||}P X σμεε-≥≤, 或者22{||}1.P X σμεε-<≥- 由于随机变量129,,,X X X L 相互独立且同分布, 而且有1,1(1,2,9),i i EX DX i ===L 所以999111()()19,i i i i i E X E X E X μ===⎛⎫===== ⎪⎝⎭∑∑∑9992111()()19.i i i i i D X D X D X σ===⎛⎫===== ⎪⎝⎭∑∑∑4. 设随机变量X 满足:2(),()E X D X μσ==, 则由切比雪夫不等式,有{||4}P X μσ-≥ 116≤. 解:切比雪夫不等式为:设随机变量X 满足2(),()E X D X μσ==, 则对任意的0ε>, 有22{||}.P X σμεε-≥≤由此得 221{||4}.(4)16P X σμσσ-≥≤=5、设随机变量2σξμξξ==)(,)(,D E ,则≥<-}|{|σμξ2P43 . 6、设n ξξξ,,,Λ21为相互独立的随机变量序列,且),,(Λ21=i i ξ服从参数为λ的泊松分布,则≤-∑=∞→}{lim x n n P n i i n λλξ1∞--xt dt e 22 .7、设n η表示n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中出现的概率,则≈≤<}{b a P n η ⎰-----)1()1(2221p np npb p np npa t dt e π.8. 设随机变量n ξ, 服从二项分布(,)B n p , 其中01,1,2,p n <<=L , 那么, 对于任 一实数x , 有lim {|||}n n P np x ξ→+∞-<= 0 . 9. 设12,,,n X X X L 为随机变量序列,a 为常数, 则{}n X 依概率收敛于a 是指{}=<->∀+∞>-εεa X P n n lim ,0 1 ,或{}=≥->∀+∞>-εεa X P n n lim ,0 0 。
《概率论和数理统计》笔记一、课程导读“概率论和数理统计”是研究随机现象的规律性的一门学科在自然界,在人们的实践活动中,所遇到的现象一般可以分为两类:确定性现象随机现象确定性现象在一定的条件下,必然会出现某种确定的结果.例如,向上抛一枚硬币,由于受到地心引力的作用,硬币上升到某一高度后必定会下落.我们把这类现象称为确定性现象(或必然现象).同样,任何物体没有受到外力作用时,必定保持其原有的静止或等速运动状态;导线通电后,必定会发热;等等也都是确定性现象.随机现象在一定的条件下,可能会出现各种不同的结果,也就是说,在完全相同的条件下,进行一系列观测或实验,却未必出现相同的结果.例如,抛掷一枚硬币,当硬币落在地面上时,可能是正面(有国徽的一面)朝上,也可能是反面朝上,在硬币落地前我们不能预知究竟哪一面朝上.我们把这类现象称为随机现象(或偶然现象).同样,自动机床加工制造一个零件,可能是合格品,也可能是不合格品;射击运动员一次射击,可能击中10环,也可能击中9环8环……甚至脱靶;等等也都是随机现象.统计规律性对随机现象,从表面上看,由于人们事先不能知道会出现哪一种结果,似乎是不可捉摸的;其实不然.人们通过实践观察到并且证明了,在相同的条件下,对随机现象进行大量的重复试验(观测),其结果总能呈现出某种规律性.例如,多次重复抛一枚硬币,正面朝上和反面朝上的次数几乎相等;对某个靶进行多次射击,虽然各次弹着点不完全相同,但这些点却按一定的规律分布;等等.我们把随机现象的这种规律性称为统计规律性.●使用例子摸球游戏中谁是真正的赢家在街头巷尾常见一类“摸球游戏”.游戏是这样的:一袋中装有16个大小、形状相同,光滑程度一致的玻璃球.其中8个红色、8个白色.游戏者从中一次摸出8个,8个球中.当红白两种颜色出现以下比数时.摸球者可得到相应的“奖励”或“处罚”:结果(比数) A(8:0)B(7:1)C(6:2)D(5:3)E(4:4)奖金(元)10 1 0.5 0.2 -2 注:表中“-2”表示受罚2元解: 此游戏(实为赌博),从表面上看非常有吸引力,5种可能出现的结果.有4种可得奖.且最高奖达10元.而只有一种情况受罚.罚金只是2元.因此就吸引了许多人特别是好奇的青少年参加.结果却是受罚的多,何以如此呢?其实.这就是概率知识的具体使用:现在是从16个球中任取8个.所有可能的取法为816C 种.即基本事件总数有限.又因为是任意抽取.保证了等可能性.是典型的古典概型问题.由古典概率计算公式.很容易得到上述5种结果.其对应的概率分别是:3807048730121800099460000155404848385828681878.C C C P(E);.C C 2C P(D);.C C 2C P(C);.C C 2C P(B);.C 2P(A)816816816816816==========假设进行了1000次摸球试验, 5种情况平均出现的次数分别为:0、10、122、487、381次,经营游戏者预期可得2×381-(10×0+1×10+0.5×122+0.2×487) =593.6(元). 这个例子的结论可能会使我们大吃一惊,然而正是在这一惊之中.获得了对古典概率更具体、更生动的知识.戏院设座问题乙两戏院在竞争500名观众,假设每个观众完全随意地选择一个戏院,且观众之间选择戏院是彼此独立的,问每个戏院至少应该设多少个座位才能保证观众因缺少座位而离开的概率小于5%?解 由于两个戏院的情况相同,故只需考虑甲戏院即可。
《概率论与数理统计》课程考试大纲一、考核内容与考核要求第1章随机事件与概率【考核的知识点和要求】考核知识点1.随机事件及其运算2.概率的定义及其确定方法3.概率的性质4.条件概率5.独立性考核要求1. 随机事件及其运算(1)简单应用:随机事件的运算。
2.概率的定义及其确定方法(1)简单应用:概率的定义。
(2)综合应用:确定概率的古典方法。
3.概率的性质(1)简单应用:概率的性质。
4.条件概率(1)简单应用:条件概率。
5.独立性(1)分析:独立性。
第2章随机变量及其分布【考核的知识点和要求】考核知识点1.随机变量及其分布2.随机变量的数学期望3.随机变量的方差与标准差4.常用离散分布5.常用连续分布6.随机变量函数分布考核要求1. 随机变量及其分布(1)简单应用:随机变量的分布。
2. 随机变量的数学期望(1)简单应用:随机变量的数学期望。
3. 随机变量的方差与标准差(1)简单应用:随机变量的方差与标准差。
4. 常用离散分布(1)简单应用:泊松分布。
(2)综合应用:二项分布。
5.常用连续分布(1)简单应用:指数分布。
(2)综合应用:正态分布。
6.随机变量函数分布(2)综合应用:随机变量函数分布。
第3章多维随机变量及其分布【考核的知识点和要求】考核知识点1.多维随机变量及其联合分布2.边际分布与随机变量的独立性3.多维随机变量函数的分布4.多维随机变量的特征数考核要求1. 多维随机变量及其联合分布(1)简单应用:多维随机变量的联合分布。
2.边际分布与随机变量的独立性(1)综合应用:边际分布与随机变量的独立性。
3.多维随机变量函数的分布(1)综合应用:多维随机变量函数的分布。
4.多维随机变量的特征数(1)识记:多维随机变量函数的数学期望、协方差和相关系数。
(2)简单应用:数学期望与方差的运算性质。
第4章大数定律与中心极限定理【考核的知识点和要求】考核知识点1.大数定律2.中心极限定理考核要求1. 大数定律(1)简单应用:大数定律。
概率论与数理统计第五章知识点第五章的概率论与数理统计的知识点主要涉及到概率函数、统计推断、分布函数和多元正态分布等内容,这其中包括了多项式概率分布、超几何分布、二项分布、线性回归、假设检验、多重切线回归、卡方检验、小抽样检验、检验均值和协方差等内容。
首先,多项式概率分布是一种特殊的概率分布,它建立了在有限次试验中某个事件出现次数的概率,它由定义性的概率空间和一组完备的事件集合组成,并可以使用不同的统计技术来计算它们。
其次,超几何分布是一种分布,用于计算取样观测中某种特征发生次数的概率,它与多项式分布有着很大的不同,它建立了一个独立的取样模型,它是一种独立取样模型,它利用概率论中的概率空间来分析一个独立取样实验中观测到一个特征发生次数的概率。
再次,二项分布也是一种概率分布,它用来计算一系列试验中出现某种特征的次数的概率。
它是一种特殊的多项式分布,可以使用概率论的工具来应用二项式分布,以确定两个不同事件之间的概率。
此外,线性回归也是第五章概率论与数理统计中一个重要的概念,它是一种统计方法,用来预测一个变量的变化可能会导致另一个变量的变化。
线性回归的基本原理是拟合两个变量的关系,使回归线能够最佳地拟合所有数据,以找到其中的趋势。
另外,假设检验是一种重要的统计技术,在假设检验中,需要使用概率空间,以便计算假设检验中备择假设的概率,并判断假设是否成立。
另外,多重切线回归也是一种重要的统计方法,它是以多元关系作为因变量和因变量之间的关系来拟合数据,以确定多元回归线的最佳拟合方式,让其效果最好。
此外,卡方检验、小抽样检验和检验均值和协方差等也是第五章概率论与数理统计的重要内容。
其中,卡方检验是一种特殊的假设检验,用来判断一组数据的差异是否大于预期,以确定数据的分布情况。
而小抽样检验是一种统计方法,用于给出总体参数的精确估计,以帮助确定相关的总体统计量,用来估计总体参数。
最后,检验均值和协方差也是一种重要的统计方法,它可以帮助分析两个变量之间的关系,以确定两个变量之间的相关程度。
第一章 概率论的基本概念2、设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。
表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
故 表示为:AB +BC +AC 3、设A ,B ,C 是三事件,且0)()(,41)()()(=====BC P AB P C P B P A P , 81)(=AC P . 求A ,B ,C 至少有一个发生的概率。
解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )-P (AC )+ P (ABC )=8508143=+- 16、据以往资料表明,某一3口之家,患某种传染病的概率有以下规律:P (A )=P {孩子得病}=,P (B |A )=P {母亲得病|孩子得病}=,P (C |AB )=P {父亲得病|母亲及孩子得病}=。
求母亲及孩子得病但父亲未得病的概率。
解:所求概率为P (AB C )(注意:由于“母病”,“孩病”,“父病”都是随机事件,这里不是求P (C |AB )P (AB )= P (A )=P (B |A )=0.6×0.5=0.3, P (C |AB )=1-P (C |AB )=1-0.4=0.6. 从而P (AB C )= P (AB ) · P (C |AB )=0.3×0.6=0.18.17、已知10只晶体管中有2只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事件的概率。