液化石油气球罐的设计与制造
- 格式:doc
- 大小:61.50 KB
- 文档页数:4
科技论坛3000m3液化气球罐设计与制造相天龙(大庆中蓝石化有限公司科技规划办,黑龙江大庆163000)随着石油化工产品的层出和规模的扩大化,3000立液化气球罐不断被广泛应用。
随之,球罐在设计、制造及施工方面也越来越成熟,球罐从设计到交付使用前的过程,最终发展趋势是由制造厂单方完成,设计方只提供球罐设计参数。
1球罐设计1.1设计参数。
公称容积V=3000m3,设计压力1.77M Pa,设计温度50℃,工作介质液化气(密度578kg/m3),球壳直径φ18000mm,充装系数0.90,场地类别I类,地震设防烈度7度。
1.2设计、检验应遵循的标准:GB150-1998《钢制压力容器》;GB12337-1998《钢制球形储罐》;GB50094-1998《球形储罐施工及验收规范》;TSG R0004-2009《固定式压力容器安全技术监察规程》;JB4726-2000《压力容器用碳素钢和低合金钢锻件》;JB/T4730-2005《承压设备无损检测》;JB4708-2000《钢制压力容器焊接工艺评定》;JB/T4709-2000《钢制压力容器焊接规程》;JB4744-2000《钢制压力容器产品焊接试板的力学性能检验》;JB/T4747-2002《压力容器用钢焊条订货技术条件》;GB713-2008《锅炉和压力容器用钢板》;JB/T4711-2003《压力容器涂敷与运输包装》;SH/T3138-2003《球形储罐整体补强凸缘》。
1.3设计说明。
球罐接管的补强可采用补强圈补强和凸缘补强,在接管公称直径不大于DN50的情况下,凸缘设计按SH/T3138-2003《球形储罐整体补强凸缘》采用,可免除强度核算。
球罐设计新容规TSG R0004-2009《固定式压力容器安全技术监察规程》。
规定设计单位应提供球罐风险评估报告,其内容应包括:使用范围、依据的法规和标准、介质特性、失效模式、风险识别与防范等。
新容规还要求在设计图纸上注明设计使用年限,一般为20年。
1003m液化石油气储罐设计绪论m或随着我国化学工业的蓬勃发展,各地建立了大量的液化气储配站。
对于储存量小于5003 m时.一般选用卧式圆筒形储罐。
液化气储罐是储存易燃易爆介质.直接关系到单罐容积小于1503人民生命财产安全的重要设备。
因此属于设计、制造要求高、检验要求严的三类压力容器。
本次设m液化石油气储罐设计即为此种情况。
计的为1003液化石油气贮罐是盛装液化石油气的常用设备, 由于该气体具有易燃易爆的特点, 因此在设计这种贮罐时, 要注意与一般气体贮罐的不同点, 尤其要注意安全, 还要注意在制造、安装等方面的特点。
目前我国普遍采用常温压力贮罐, 常温贮罐一般有两种形式: 球形贮罐和圆筒形贮罐。
球形贮罐和圆筒形贮罐相比: 前者具有投资少, 金属耗量少, 占地面积少等优点, 但加工制造及安装复杂,m或单罐容积大于2003m时选用球形贮焊接工作量大, 故安装费用较高。
一般贮存总量大于5003罐比较经济; 而圆筒形贮罐具有加工制造安装简单, 安装费用少等优点, 但金属耗量大占地面积大, m, 单罐容积小于1003m时选用卧式贮罐比较经济。
圆筒形贮罐按安装方所以在总贮量小于5003式可分为卧式和立式两种。
在一般中、小型液化石油气站内大多选用卧式圆筒形贮罐, 只有某些特殊情况下(站内地方受限制等) 才选用立式。
本文主要讨论卧式圆筒形液化石油气贮罐的设计。
卧式液化石油气贮罐设计的特点。
卧式液化石油气贮罐也是一个储存压力容器, 也应按GB150《钢制压力容器》进行制造、试验和验收; 并接受劳动部颁发《压力容器安全技术监察规程》(简称容规) 的监督。
液化石油气贮罐, 不论是卧式还是球罐都属第三类压力容器。
贮罐主要有筒体、封头、人孔、支座以及各种接管组成。
贮罐上设有液相管、液相回液管、气相管、排污管以及安全阀、压力表、温度计、液面计等。
第一章 设计参数的选择1、设计题目:853m 液化石油气储罐的设计2、设计数据:如下表1:表1:设计数据3、设计压力:设计压力取最大工作压力的倍,即 1.10.790.869P MPa =⨯=4、设计温度:工作温度为50C 。
浅谈球形储罐的设计摘要:近几年来,随着我国石油、化工等工业的开发,球形储罐作为储存气体或液化气体的压力容器,有了迅速的发展。
我院随着市场的开发和竞争,也在这方面有了很大的进步。
98年曾在牙哈凝析气田地面建设中设计两台1000m3液化石油气储罐,运行很好。
以后陆续又给吉拉克油田设计了2台2000m3液化石油气储罐。
近年来又为山东、鞍山等地设计了1000m3~3000m3的球罐,这些球罐的设计为我院今后球罐设计大型化发展打下了坚实的基础。
下面就从几个方面谈谈球形储罐的设计。
关键词:球罐设计选材结构1.概述球形储罐是一种储存气体、液体或液化气体的压力容器,由于与同容量的其它储罐相比,具有表面积少、板厚小、消耗钢材少、重量轻、制造方便、施工周期短、占地面积少、维修方便等优点,已被广泛地应用于石油、化工等各个领域。
随着工厂规模及设备处理能力向大型化发展,贮存气、液介质的压力容器也趣向大型化,球罐在容器大型化发展方面具有独特的优越性。
球罐也是比较特殊的压力容器。
须在现场组装、焊接。
具有球壳焊缝长、焊接条件差且焊缝质量要求高、球罐体积大等特点,一旦失效其危害性也大。
因此球罐的设计,在选材和结构方面非常重要。
2.球罐的选材球罐是压力容器的一种结构型式,因而在选材的基本要求方面与压力容器相同,球罐选材必须符合GB150《压力容器》的规定,球罐用钢的选择是在满足强度的前提下,应保证有良好的成型性,优良的焊接性能,足够好的缺口韧性值和长期可靠的使用性能。
选择球罐用钢应考虑球罐的使用条件(如设计温度、设计压力、物料特性等)、材料的焊接性能、球罐的制造工艺和组焊要求以及经济合理性。
球罐用钢是球罐制造和设计的主要参数,材料是球罐设计制造的基础,材料的性能和质量的优劣直接影响着球罐的质量和安全作用,因而对材料提出了特殊要求。
2.1.为了控制球壳厚度,要求材料具备一定的强度级别。
随着板厚增加,材料综合力学性能不够稳定,焊接质量及热处理难以保证,因此选中厚板较好。
本科毕业设计说明书3000m3液化气球罐的优化设计THE OPTIMAL DESIGN OF 3000m3 LPG SPHERICALTANK学院(部):专业班级:学生姓名:指导教师:年月日3000m3液化气球罐的优化设计摘要球形储罐作为一种有压储存容器,相对于一般圆筒形储存容器,具有用材少、受力情况好、占地面积小等显著优点,在石油、化工、冶金等领域广泛用于储存气体、液体或者液化气体。
本文设计了在常温下工作的3000m3的液化气球罐及其相应附件。
查阅相关资料后,确定采用16MnR钢作为球壳用钢,对其储罐形式进行了优化设计,计算比较后确定采用混合式三带球罐,支柱形式为赤道正切式,支柱根数为10根,拉杆采用可调式拉杆,根据相关设计标注进行结构设计和强度校核,最后完成相关附件的设计。
最终的成果为一张装配图和三张主要零件的零件图。
关键字:球形储罐,材料选择,结构优化,强度校核THE OPTIMAL DESIGN OF 3000m3 LPG SPHERICALTANKABSTRACTCompared to the general cylindrical storage container, the spherical tank is a kind of pressure storage containers with less material, good force, cover a small area, etc, which is widely used in storage of gases, liquids, or liquefied gas in petroleum, chemical industry, metallurgy and other fields.This paper designs the 3000㎡LPG spherical tank working at room temperature and its corresponding accessories. Referring to relevant data, I determine using 16 MnR steel as the steel spherical shell. The optimization design is carried out on the form of storage tank. After computation and comparison, I determine using hybrid three zones spherical tank with the pillar form of the equator tangent type, prop root number of 10, and adjustable draw-pole. The structure is designed and the strength is checked according to related design marks, and finally the design of the related accessories is completed. The final result of this study is a assembly drawing and three parts drawing of major parts.KEYWORDS: the spherical tank, material selection, structure optimization,strength chec目录摘要................................................ 错误!未定义书签。
液化石油气球罐安全技术管理暂行规定1. 引言液化石油气球罐(简称:LPG罐)是用于储存和运输液化石油气的设备,在各种工业和商业领域广泛应用。
为了提高LPG罐的安全性能,保障人员生命财产安全,特制定本暂行规定,规范LPG罐的安全技术管理。
2. 法律和标准的适用范围本暂行规定适用于LPG罐的安全技术管理,涉及液化石油气企业、设计单位、生产单位以及使用单位等。
液化石油气相关的法律、法规和标准主要包括《液化石油气行业安全管理条例》、《液化石油气球罐技术规程》等。
本暂行规定以法律法规和标准为基础,结合LPG罐的实际情况进行制定。
3. LPG罐的分类和常见问题根据不同的设计和用途,LPG罐可以分为站地罐和运输罐。
常见问题主要包括罐体强度计算、防静电措施、泄漏控制、自动控制系统等。
在对LPG罐进行安全技术管理时,需要考虑这些问题并针对性地采取相应措施。
4. LPG罐的设计和制造LPG罐的设计和制造应符合国家有关标准和规定,确保其安全可靠、稳定运行。
设计单位和生产单位应具备相应的资质和技术能力,对LPG罐的设计和制造进行合理规划和控制。
在设计和制造LPG罐时,需要考虑以下几个方面:•罐体材料的选择,应具备耐腐蚀、耐高压和耐低温等特性;•罐体结构的强度计算,应满足设计要求并进行合理的安全系数设计;•罐体的防静电设计,采取静电接地装置和静电防火措施等;•泄漏控制设备的设置,应具备泄漏检测和报警功能;•自动控制系统的设计和安装,确保LPG罐的稳定运行。
5. LPG罐的安全运营和维护LPG罐的安全运营和维护是确保罐体安全性能的重要环节。
使用单位应根据实际情况制定相应的操作规程和维护计划,定期对LPG罐进行检查和维护。
具体的安全运营和维护措施包括以下几个方面:•定期对罐体进行外观检查,发现异常情况及时处理;•对罐体进行密封性能测试,并定期检查罐内压力;•定期对安全阀、泄压阀等设备进行检查和维护;•定期对罐体进行涂层保养,确保罐体表面的防腐层完好;•建立健全的应急预案,以应对突发事件。
1500M3球型储罐设计摘要球罐作为大容量、承压的球形储存容器,广泛应用于石油、化工、冶金等部门,它可以用来作为液化石油气、液化天然气、液氧、液氨、液氮及其他介质的储存容器。
也可作为压缩气体(空气、氧气、氮气、城市煤气)的储罐。
这次设计主要按照GB12337—1998《钢制球形储罐设计》进行设计本设计共分两部分,第一部分包括球罐的设计;第二部分为外文资料及其对应的中文翻译。
其中第一部分介绍了球罐的发展状况和应用场合、材料选择、球罐设计、结构确定、强度计算、绘图等内容。
以结构强度的设计计算为主,从基础理论、设计方法、结构分析、标准规定等方面进行了系统的阐述。
本球罐在1.77MPa的设计压力、常温的设计温度下设计,设计厚度为46mm,焊接接头系数 采用100%无损检测选用1.00,压力试验采用水压试验,水压试验压力为2.22MPa,球壳材料选Q345R,支柱采用赤道正切式支柱式支承,为了承受风载荷和地震载荷,保证球罐的稳定性,在支柱之间设置拉杆相连,球壳采用的是三带混合式,球壳分块少,板材利用率高,制造工作量小,焊缝短,焊缝个数少,检验量小,施工速度快,使球罐的施工质量易于保证,拉杆结构采用可调节式拉杆,使球罐平衡易于调节。
但在本次设计中由于设计者水平有限,所以难免会出现漏洞和不足,望指正。
关键词:球形储罐、压力容器AbstractAs a large-capacity tank, pressure the ball storage container, widely used in petroleum, chemical, metallurgical and other departments, it can be used as a liquefied petroleum gas, liquefied natural gas, liquid oxygen, liquid ammonia, liquid nitrogen, and other media storage container . Also available as compressed gas (air, oxygen, nitrogen, city gas) storage tankDesigned in accordance with the GB12337-1998 “Design of steel spherical tank”,this design is divided into two parts, the first part includes an overview and design of spherical tank including the calculation of spherical tank; the second part includes an English paper with 20,000 characters and its corresponding Chinese translation. The first section describes the development of the sphere and applications, material selection, spherical design, structure identification, strength calculation and so on.The most important is the calculation,and I also introduce the structural design ,the basic theory, design methods, structural analysis, standards.The spherical design at 1.77MPa pressure and Room temperature and the design thickness is 46mm. The use of welded joints coefficient selection of 100% non-destructive testing 1.00, and use the hydraulic pressure test with 2.22MPa, ball shell material selection,.I use the equator tangent pillar strut-type support.In order to bear wind and seismic loads and ensure the stability of spherical,I set a rod between the pillars ,and the three mixed spherical shell is made up witth only several parts.The using rate of the plate is small.There are a small number of welds and the length of the weldsis small.There is no need to do much test,so it is easy to make. In order to adjust the balance of the tank, I use the adjustable lind.However, in the design of this level ,as a result of the limitation of author’ knowledge,there must be fault and inadequacies, I hope you can help me find out the fault..Key words:Storage tanks, Pressure vessels目录1 前言 (7)1.1 球罐的特点 (7)1.2 球罐的分类 (8)1.2.1 按储藏温度分类 (8)1.2.2 按结构形式分类 (8)1.3 球罐的建造历史 (9)1.4 本球罐的设计要求 (9)1.5 球罐的设计参数 (10)1.5.1 压力 (11)1.5.2 温度 (12)1.5.3 厚度 (12)1.5.4 焊接接头系数 (14)1.5.5 压力试验 (15)1.5.6 气密性试验 (15)1.6 材料选用 (16)1.6.1 球罐材料准则 (16)1.6.2 球壳选材 (17)1.6.3 锻件用钢 (21)1.7 结构设计 (21)1.7.1 概况 (21)1.7.2 赤道正切柱式支座设计 (24)1.7.3 拉杆结构 (25)1.8 人孔和接管 (26)1.8.1 人孔结构 (26)2 强度计算 (33)2.1 设计条件 (33)2.2 球壳计算 (33)2.3 球罐的质量计算 (35)2.4 地震载荷计算 (36)2.4.1 自振周期 (37)2.4.2 地震力 (37)2.5 风载荷计算 (38)2.6 弯矩计算 (38)2.7 支柱的计算 (39)2.7.1 单个支柱的垂直载荷 (39)2.7.2 组合载荷 (40)2.7.3 单个支柱弯矩 (40)2.7.4 支柱稳定性校核 (42)2.8 地脚螺栓计算 (44)2.9 支柱底板 (45)2.9.1 支柱底板直径 (45)2.9.2 底板厚度 (46)2.10 拉杆计算 (46)2.10.1 拉杆载荷计算 (46)2.10.2 拉杆连接部位的计算 (47)2.10.3 翼板的厚度 (47)2.10.4 焊接强度验算 (48)2.11 支柱与球壳连接最低点a的应力校核 (49)2.11.1 a点的应力 (49)2.11.2 a点的应力校核 (50)2.12 支柱与球壳连接焊缝的强度校核 (50)3 焊接 (51)3.1 焊接工艺的确定 (51)3.2 焊后热处理 (52)3.3 开罐检查 (53)4 结论 (55)参考文献 (56)致谢 (57)1前言球罐在我国的国防、科研、石油、化工、冶金等企业中有着广泛的应用。
Q/SY 中国石油天然气股份有限公司企业标准Q/SY TZ 0236—2010液化石油气球形储罐及附属设施设计规定Design Specification ofLiquefied Petroleum Gas Spherical Tanks and Auxiliary Facilities2010-07-01发布2010-08-01实施目次前言 (III)引言 (IV)1 范围 (1)2 规范性引用文件 (1)3 术语和定义 (1)4 球罐的设计 (2)4.1 基本规定 (2)4.2 球壳及其受压元件的材料 (2)4.3 球罐的结构 (2)4.4 球罐的开口 (3)4.5 球罐的制造与组焊 (3)5 安全附件 (4)5.1 总体要求 (4)5.2 安全阀 (4)5.3 压力检测仪表 (4)5.4 液位检测仪表 (4)5.5 温度计 (4)5.6 梯子平台 (5)6 阀门及工艺管线 (5)6.1 设计原则 (5)6.2 进口工艺管线 (5)6.3 出口工艺管线 (5)6.4 切水工艺管线 (5)6.5 注水工艺管线 (5)6.6 气相平衡工艺管线 (5)6.7 放空工艺管线 (6)6.8 取样口 (6)6.9 其它 (6)7 控制系统 (6)8 厂区布置及消防系统 (6)8.1 设计依据 (6)8.2 厂区布置 (6)8.3 球罐区布置 (7)8.4 防护墙 (7)8.5 消防系统 (8)8.6 检测系统和静电释放 (8)9 装卸栈台的要求 (8)附录A(资料性附录)液化石油气球罐及附件流程图 (9)前言本标准依据GB/T 1.1-2009规定的起草规则编制。
本标准由塔里木油田公司标准化技术委员会提出。
本标准由质量安全环保处归口。
本标准起草单位:中国石油塔里木油田公司、兰州石油机械研究所。
本标准主要起草人:李循迹、陈东风、邹应勇、雷霆、任天树、寇国、宣培传、赵现如、刘福录、朱保国、王万磊。
引言为规范中国石油天然气股份有限公司塔里木油田分公司液化石油气球罐及附属设施的设计,提高液化石油气球罐及附属设施的使用安全性,避免或减少事故的发生,特制定本标准。
全压力液化烃球罐定义-概述说明以及解释1.引言1.1 概述概述部分的内容可以写为:全压力液化烃球罐是一种关键设备,广泛应用于液化石油气(LPG)和液化天然气(LNG)等液化烃气体的储存和运输过程中。
球罐的主要功能是将气体在高压下液化,以便在非常规气源的开发和利用中提供安全、高效的能源供应。
全压力液化烃球罐的设计和结构使其能够承受高压和低温环境下的巨大压力和力量。
在球罐内部,烃气体被压缩冷却成液态,从而大大减小了体积,方便储存和运输。
同时,球罐内部还设有安全阀和泄压装置,以确保系统在异常情况下能够安全释放过压气体。
全压力液化烃球罐的定义包括了其具有的特定尺寸、容量、工作压力和温度等参数。
根据国际标准,球罐必须符合特定的设计和安全规范,以确保其能够在各种工况下稳定运行。
本文将对全压力液化烃球罐的定义、工作原理、设计要点和安全要求等进行详细介绍。
通过对球罐的全面了解,可为相关工程技术人员提供有效指导,确保球罐的运行安全性和可靠性。
同时,本文还将探讨全压力液化烃球罐在能源储存和运输领域的研究意义,为相关领域的研究和应用提供参考依据。
文章结构部分的内容可以如下所示:1.2 文章结构本文将按照以下结构进行探讨和分析全压力液化烃球罐的定义及其相关要点:1. 引言部分:介绍全压力液化烃球罐的背景和重要性,以及本文的目的和意义。
2. 正文部分:2.1 全压力液化烃球罐的定义:详细解释全压力液化烃球罐的概念、结构和工作原理,探讨其在工程领域的应用和意义。
2.2 要点1:对全压力液化烃球罐的设计要求、操作规程和安全措施进行详细阐述,包括压力控制、液位监测、防泄漏措施等方面。
2.3 要点2:深入探讨全压力液化烃球罐的材料选择、结构设计和施工要点,分析其在不同工况下的受力特点和应变变化,提出优化设计的建议和方法。
3. 结论部分:3.1 总结:对全压力液化烃球罐的定义和要点进行总结,并重申其在工程实践中的重要性和应用前景。
吉林化工学院油气储运课程设计题目 1000m3液化石油气球罐设计教学院化工与材料工程学院专业班级油气储运0801学生姓名学生学号 08160122指导教师邵宝力2011年 12月 19 日课程设计任务书1、设计题目:1000 m3液化石油气球罐设计2、设计条件:物料:按照自己题目确定地震设防烈度: 8度安装地区:吉林球罐建造场地:Ⅱ类,近震液化石油气密度:580kg/m33、设计任务:储罐设计包括工艺设计和机械设计两部分:(1)工艺设计:是根据化工生产任务提供的工艺条件:包括压力、温度、产量、物料性能等,通过工艺计算和生产经验确定设备的结构型式、设备总体尺寸及管口尺寸和方位。
(2)机械强度设计:是在工艺设计的基础上,进行强度、刚度和稳定性设计和校核计算, 对设备的内、外附件进行选型和结构设计计算,最后绘制设备的装配图和零部件图。
4、设计要求:由于设计参数是每个人各不相同,所以,基本上能够保证学生独立完成任务能力的锻炼,并可在碰到确实需要讨论的个别难题时仍然可以相互讨论,从而培养学生合作解决问题的能力。
课程设计是在课程学习阶段结束后,学生们独立进行的工程设计工作,是总结性的、重要的教学实践环节,其目的是培养学生综合运用所学知识,理论联系实践,分析解决工程实践问题的能力。
本设计学生必须完成一张A2装配图(包括至少四个详图)和编制技术性设计说明书一份。
5、参考书:(1)董大勤,袁凤隐,《压力容器设计手册》化学工业出版社;(2)丁伯民、黄正林,《化工容器》,化学工业出版社出版;(3)徐英、杨一凡、朱萍,《球罐和大型储罐》,化学工业出版社;(4)段常贵,《燃气输配》,中国建筑工业出版社;(5)帅健、丁桂杰,《管道及储罐强度设计》,石油工业出版社。
(6)TSG R0004-2009《固定式压力容器安全技术监察规程》。
油气储运系2011年11月摘要经济发展迅速的今天,球形容器的制造水平也正在高速发展,由于球形容器多数作为有压储存容器,所以称球形容器(简称“球罐”)。
30M3液化石油气储罐设计
30M3液化石油气(LPG)储罐是一种用于存储液化石油气的设备,通
常用于加油站、工业用途或家庭使用。
设计一个符合安全标准和效率要求
的30M3液化石油气储罐是非常重要的。
本文将介绍30M3液化石油气储罐
的设计过程,并探讨一些关键设计考虑因素。
储罐的主要设计考虑因素包括结构强度、安全性、防腐性、密封性和
使用寿命。
在设计30M3液化石油气储罐时,首先需要确定所需的存储容
量和工作压力,以及罐体的材料和厚度。
通常,30M3液化石油气储罐会
采用碳钢或不锈钢材料,具有足够的强度和耐腐蚀性能。
为了确保储罐的安全性,设计中必须考虑到气体的蒸汽和液体压力,
并且必须安装压力释放阀和监测系统。
同时,也需要考虑到储罐的地基和
支撑结构,以及其稳定性和抗风能力。
在防腐方面,30M3液化石油气储罐通常会进行防锈处理和外部涂层
保护,以延长使用寿命并降低维护成本。
此外,还需要确保储罐的密封性,以防止气体泄漏和安全事故。
在设计30M3液化石油气储罐时,还需要考虑到其操作和维护便利性。
可以考虑添加检修孔和检测设备,以便定期检查储罐的状态和性能。
同时,设计应考虑到储罐的负载和地势条件,以确保其稳定性和安全性。
总的来说,设计30M3液化石油气储罐是一个复杂的过程,需要综合
考虑多种因素。
只有在符合安全标准和效率要求的前提下,才能设计出一
种优质的30M3液化石油气储罐。
希望这篇文章可以帮助你更好地了解
30M3液化石油气储罐的设计原理和关键考虑因素。
Q/SY 中国石油天然气股份有限公司企业标准Q/SY TZ 0236—2010液化石油气球形储罐及附属设施设计规定Design Specification ofLiquefied Petroleum Gas Spherical Tanks and Auxiliary Facilities2010-07-01发布2010-08-01实施目次前言 (III)引言 (IV)1 范围 (1)2 规范性引用文件 (1)3 术语和定义 (1)4 球罐的设计 (2)4.1 基本规定 (2)4.2 球壳及其受压元件的材料 (2)4.3 球罐的结构 (2)4.4 球罐的开口 (3)4.5 球罐的制造与组焊 (3)5 安全附件 (4)5.1 总体要求 (4)5.2 安全阀 (4)5.3 压力检测仪表 (4)5.4 液位检测仪表 (4)5.5 温度计 (4)5.6 梯子平台 (5)6 阀门及工艺管线 (5)6.1 设计原则 (5)6.2 进口工艺管线 (5)6.3 出口工艺管线 (5)6.4 切水工艺管线 (5)6.5 注水工艺管线 (5)6.6 气相平衡工艺管线 (5)6.7 放空工艺管线 (6)6.8 取样口 (6)6.9 其它 (6)7 控制系统 (6)8 厂区布置及消防系统 (6)8.1 设计依据 (6)8.2 厂区布置 (6)8.3 球罐区布置 (7)8.4 防护墙 (7)8.5 消防系统 (8)8.6 检测系统和静电释放 (8)9 装卸栈台的要求 (8)附录A(资料性附录)液化石油气球罐及附件流程图 (9)前言本标准依据GB/T 1.1-2009规定的起草规则编制。
本标准由塔里木油田公司标准化技术委员会提出。
本标准由质量安全环保处归口。
本标准起草单位:中国石油塔里木油田公司、兰州石油机械研究所。
本标准主要起草人:李循迹、陈东风、邹应勇、雷霆、任天树、寇国、宣培传、赵现如、刘福录、朱保国、王万磊。
引言为规范中国石油天然气股份有限公司塔里木油田分公司液化石油气球罐及附属设施的设计,提高液化石油气球罐及附属设施的使用安全性,避免或减少事故的发生,特制定本标准。
球罐结构设计应考虑哪些问题?
球罐做为贮存气体、液化气体的压力容器,广泛用于石油、化工、冶金工业和生活中。
球罐结构设计应考虑下列问题:
(1)球罐基础宜设计成环形基础,并能有效地掌握基础不匀称沉降。
(2)在综合考虑了钢厂生产板幅力量、制造厂压力机力量、组装运输中机具的起吊力量等因素后,按《球形贮罐基本参数》尽量采纳大瓣片设计,对大中型球罐宜采纳足球、桔瓣混合式的分瓣设计形式。
(3)球壳应采纳T字焊缝,球片不允许采纳拼接板块,且支柱不应压在对接焊缝上。
(4)常温球罐宜设计整体支柱。
低温球罐应设计成两段式结构支柱,上段支柱长度占总长1/3,且为耐低温钢材,下段支柱为一般结构钢,上下支柱联结处应有保证良好的对中措施。
同时,支柱应考虑防火隔热措施,每根支柱上应考虑设置良好的静电接地及因火灾使支柱内气体膨胀后能良好排气泄压的措施。
支柱间应配置足够承受各种附加载荷的可调式拉杆。
(5)球罐上下极板上应设置人孔,人孔宜位于主轴线上。
球罐容积不大于1000立方米时,公称直径为500mm 的标准人孔,大于1000立方米者公称直径为600mm的人孔。
(6)球罐的接管均应采纳厚壁管结构,当球罐壁厚不小于30mm时,人孔及其他开孔应采纳开孔补强一体化结构。