生物化学 第10章 酶的作用机制
- 格式:ppt
- 大小:6.00 MB
- 文档页数:82
酶的作用机理
酶是一类生物大分子催化剂,能够在生物体内加速化学反应速度,并在反应结束后不被消耗或改变。
酶在生物体内扮演着至关重要的角色,而其作用机理是通过一系列复杂的过程来实现的。
酶的结构
酶通常由蛋白质组成,蛋白质是由氨基酸组成的多肽链。
酶的活性部位是其结构中特定的区域,这里的氨基酸序列决定了酶的特定催化活性。
酶在反应过程中与底物结合形成酶-底物复合物,通过与底物分子的作用来催化反应。
酶的作用过程
酶的作用过程可以分为几个关键步骤:
1.底物结合:酶通过与底物特定的结合方式形成酶-底
物复合物。
2.过渡态形成:酶通过调整底物分子的构象,降低反
应所需的活化能,促进反应速率。
3.反应催化:酶引导底物分子以特定方式相互作用,
使得反应发生特定的化学变化。
4.产物释放:反应结束后,酶释放产生的产物,准备
接受新的底物继续催化反应。
酶与底物的相互作用
酶与底物之间的相互作用是通过亲和性来实现的。
亲和力越高,酶对底物的结合效率就越高,反之亦然。
酶结合底物后会发生构象变化,从而稳定底物分子在合适的位置和构象以促进反应的进行。
酶的催化机理
酶催化反应的机理可以分为两种:锁-键模型和诱导拟合模型。
在锁-键模型中,酶和底物之间的结合就像锁和钥匙的关系,具有高度特异性。
而在诱导拟合模型中,酶在与底物结合后发生构象变化,从而调整底物的构象以促进反应。
总的来说,酶通过其特殊的结构和活性部位,在生物体内实现了高效的催化作用,从而调节并加速生物体内的代谢和生化反应,对维持生命活动起着至关重要的作用。
酶的作用和作用机理是什么
酶是一种特殊的蛋白质,它在生物体内起着至关重要的作用。
酶是生物体内催
化化学反应的催化剂,能够加速反应速率而不改变反应所引发的方向。
酶的作用机理涉及到酶与底物的结合、反应过渡态的形成以及产物释放等多个步骤。
在生物体内,酶扮演着“生命的工厂”角色。
酶能够在生体温下加速化学反应,
从而维持生物体内繁复的代谢过程顺利进行。
酶选择性地作用于特定的底物,使得生物体内的代谢通路高效而有序。
酶的作用机理主要包括底物结合、催化反应和产物释放三个主要步骤。
首先,
酶通过其特定的活性位点与底物结合形成酶-底物复合物。
这种结合能够使底物的
化学键变得更容易断裂,从而促进反应的进行。
接着,酶通过提供合适的环境和催化功能,促使底物发生化学反应,形成反应过渡态。
最后,酶释放产物,使得反应达到平衡状态。
酶的催化活性受到多种因素的影响,包括底物浓度、温度、pH值等。
酶活性
一般随着底物浓度的增加而增加,但在一定浓度范围内会达到最大值。
温度和pH
值也会影响酶的构象和活性,过高或过低的温度及异常的pH值都会影响酶的活性。
总之,酶作为生物体内化学反应的催化剂,发挥着重要的作用。
通过理解酶的
作用机理,可以更好地认识生物体内代谢的调控和调节机制,对于人类健康和医学研究具有重要意义。
第十章酶的作用机制和酶的调节提要酶的活性部位对于不需要辅酶的酶来说,就是指酶分子中在三维结构上比较靠近的几个氨基酸残基负责与底物的结合与催化作用的部位,对于需要辅酶的酶来说,辅酶分子或辅酶分子上的某一部分结构,往往也是酶活性部位的组成部分。
酶活性部位有6个共同特点。
研究酶活性部位的方法有:酶分子侧链基团的化学修饰法,动力学参数测定法,X射线晶体结构分析法和定点诱变法,这些方法可互相配合以判断某个酶的活性部位。
酶是催化效率很高的生物催化剂,这是由酶分子的特殊结构所决定的。
经研究与酶催化效率的有关因素有7个,即底物和酶的邻近效应与定向效应,底物的形变与诱导契合,酸碱催化,共价催化,金属离子催化,多元催化和协同效应,活性部位微环境的影响。
但这些因素不是同时在一个酶中其作用,也不是一种因素在所有的酶中起作用,对于某一种酶来说,可能分别主要受一种或几种因素的影响。
研究酶催化的反应机制,始终是酶学研究的一个重点,通过大量的研究工作,已经对一些酶的作用机制有深入了解,该章对溶解酶、胰核糖核酸酶A、羧肽酶A、丝氨酸蛋白酶、天冬氨酸蛋白酶等的催化作用机制进行了详尽的讨论。
酶活性是受各种因素调节控制的,除了在第8章中已介绍的几种因素外,主要还有①别构调节,例如ATCase。
②酶原的激活,如消化系统蛋白酶原的激活及凝血系统酶原的激活。
③可逆共价修饰调控,如蛋白质的磷酸化,一系列蛋白激酶的作用。
通过以上作用,使酶能在准确的时间和正确的地点表现出它们的活性。
别构酶一般都是寡聚酶,有催化部位和调节部位,别构酶往往催化多酶体系的第一步反应,受反应序列的终产物抑制,终产物与别构酶的调节部位相结合,由此调节多酶体系的反应速率。
别构酶有协同效应,[S]对υ的动力学曲线呈S形曲线(正协同)或表现双曲线(负协同),两者均不符合米氏方程。
ATCase作为别构酶的典型代表,已经测定了其三维结构,详细研究了别构机制和催化作用机制。
为了解释别构酶协同效应的机制,有两种分子模型受到人们重视,即协同模型和序变模型。
一、酶1、活化能:在一定温度下1mol底物全部进入活化态所需要的自由能,单位为kJ/mol.2、酶作为生物催化剂的特点:(1)酶易失活(酶所催化反应都是在比较温和的常温、常压和接近中性酸碱条件下进行)。
(2)酶具有很高的催化效率。
用酶的转换数(TN,等于催化常数k cat)来表示酶的催化效率,是指在一定条件下每秒钟每个酶分子转换底物分子数,或每秒钟每微摩尔酶分子转换底物的微摩尔数。
转换数变化范围为1到104。
(3)酶具有高度专一性所谓高度专一性是指酶对催化反应和反应物有严格的选择性。
酶往往只能催化一种或一类反应,作用于一种或一类物质。
(4)酶活性受到调节和控制a、调节酶的浓度一种是诱导或抑制酶的合成;一种是调节酶的降解。
b、通过激素调节酶活性激素通过与细胞膜或细胞受体相结合一起一系列生物学效应,以此来调节酶活性。
c、反馈抑制调节酶活性许多小分子物质的合成是由一连串的反应组成的,催化物质生产的第一步的酶,往往被它的终产物抑制——反馈抑制。
d、抑制剂和激活剂对酶活性的调节e、其他调节方式通过别构调控、酶原激活、酶的可逆共价修饰和同工酶来调节酶活性。
3、酶的化学本质:除有催化活性的RNA之外几乎都是蛋白质。
注:酶的催化活性依赖于它们天然蛋白质构象的完整性,假若一种酶被变性或解离成亚基就失活。
因此,蛋白质酶的空间结构对它们的催化活性是必需的。
4、酶的化学组成a、按化学组成分为单纯蛋白质和、缀合蛋白质两类。
单纯蛋白质酶类,除了蛋白质外,不含其他物质,如脲酶、蛋白酶、脂肪酶和核糖核酸酶等。
缀合蛋白质酶类,除了蛋白质外,还要结合一些对热稳定的非蛋白质小分子物质或金属离子。
前者称为脱辅酶,后者称为辅因子。
即全酶=脱辅酶+辅因子。
b、根据辅因子与脱辅酶结合的松紧程度可分为辅酶和辅基。
辅酶:指与脱辅酶结合比较松弛的小分子有机物,通过透析方法可以除去,如辅酶Ⅰ和辅酶Ⅱ等。
辅基:指以共价键和脱辅酶结合,不能通过透析除去,需要经过一定的化学处理才能与蛋白质分开,如细胞色素氧化酶中的铁卟啉等。
一、酶与底物的结合酶与底物结合的作用力主要是氢键、盐键和范德华力。
盐键是带电荷基团之间的静电吸引力,疏水基团之间的作用也称为疏水键。
酶与底物的结合是有专一性的,人们曾经用锁和钥匙来比喻酶和底物的关系。
这种“锁钥学说”是不全面的。
比如,酶既能与底物结合,也能与产物结合,催化其逆反应。
于是又提出了“诱导契合学说”,认为当酶与底物接近时,酶蛋白受底物分子的诱导,其构象发生改变,变得有利于与底物的结合和催化。
二、酶加快反应速度的因素酶加快反应速度主要靠降低反应的活化能,即底物分子达到活化态所需的能量。
例如脲酶可使尿素水解反应的活化能由136kj/mol降到46kj/mol,使反应速度提高1014倍。
酶的催化机理主要有以下几点:1.邻近定向对一个双分子反应,酶可以使两个底物结合在活性中心彼此靠近,并具有一定的取向。
这比在溶液中随机碰撞更容易反应。
对不同的反应,由分子间反应变成分子内反应后,反应速度可加快100倍到1011倍。
2.底物形变酶与底物结合时,不仅酶的构象改变,底物的构象也会发生变化。
这种变化使底物更接近于过渡态,因此可以降低活化能。
3.酸碱催化和共价催化酶活性中心的一些残基的侧链基团可以起酸碱催化或共价催化的作用。
酸碱催化可分为一般酸碱催化和特殊酸碱催化两种,特殊酸碱催化是指H+和OH-的催化作用;一般酸碱催化还包括其他弱酸弱碱的催化作用。
酶促反应一般发生在近中性条件,H+和OH-的浓度很低,所以酶促反应主要是一般酸碱催化。
酶分子中的一些可解离集团如咪唑基、羧基、氨基、巯基常起一般酸碱催化作用,其中咪唑最活泼有效。
有些酶有酸碱共催化机制及质子转移通路。
四甲基葡萄糖在苯中的变旋反应如果单独用吡啶(碱)或酚(酸)来催化,速度很慢;如果二者混合催化,则速度加快,即酸碱共催化。
如果把酸和碱集中在一个分子中,即合成α-羟基吡啶,它的催化速度又加快7000倍。
这是因为两个催化集团集中在一个分子中有利于质子的传递。
2.11 酶的作用机制 P384 10章①①①酶的活性部位(1)酶活性部位:酶的特殊催化能力只局限在大分子的一定区域,活性部位又称活性中心。
酶分子中与酶活力直接相关的区域称为活性中心,分为:①结合部位:负责与底物结合,决定酶的专一性。
①催化部位:负责催化底物键的断裂或形成,决定酶的催化能力。
对需要辅酶的酶,辅酶分子或辅酶分子某一部分结构往往是酶活性部位组成部分。
(2)酶活性部位特点:1. 活性部位只占酶分子中相当小的部分,通常1~2%。
P384 表10-1列举一些酶活性部位的氨基酸残基。
如溶菌酶一共129个氨基酸残基,活性部位为Asp52和Glu35;胰凝乳蛋白酶241个残基,活性部位为His57,Asp102,Ser 。
1952.活性部位为三维实体。
活性部位氨基酸残基在一级结构上可能相距甚远,甚至不在一条肽链上,但在空间结构上相互靠近。
因此空间结构破坏酶即失活。
活性中心以外部分可为酶活性中心提供三维结构。
3.酶与底物的结构互补是指在酶和底物结合过程中,相互构象发生一定变化后才互补。
如P385 图10-1。
4.活性部位位于酶分子表面的一个裂缝内。
裂缝中为一个疏水微环境,也含有某些极性氨基酸残基有利于催化,底物在此裂缝内有效浓度很高。
5.酶与底物结合形成ES复合物主要靠次级键:氢键、盐键、范德华力和疏水相互作用。
6. 酶活性部位具有柔性和可运动性。
①①①研究酶活性部位的方法①1①酶侧链基团化学修饰法:1.特异性共价修饰:如二异丙基磷酰氟(DFP)专一地与酶活性部位Ser-OH的羟基共价结合,使酶失活。
如胰凝乳蛋白酶共28个Ser,但DFP只与活性中心的Ser反应,见P386。
反应后,用HCl将酶部分水解,得含二异丙基磷酸酯(DIP)基团的肽的片断,序列分析定出DIP-Ser为Ser195。
2.亲和标记:用与底物结构相似的修饰剂,对酶活性部位进行专一性共价修饰。
如TPCK(结构式见P387),结构与胰凝乳蛋白酶的底物对甲苯磺酰-L-苯丙氨酸乙酯(TPE)类似,TPCK只与胰凝乳蛋白酶中His57结合,说明His57为该酶活性部位的一个氨基酸残基。
生物化学中酶的作用及其机制酶是一种生物大分子催化剂,是生物体内普遍存在的重要蛋白质。
生物化学中酶的作用及其机制是一个常见的研究方向。
本文将从酶的定义、作用及其机制三个方面进行探讨。
一、酶的定义酶是一种特殊的生物大分子催化剂,可以加速生物体内化学反应的速率,但不参与反应本身的化学变化。
酶是一种蛋白质,在生物体内广泛存在于细胞质、膜、线粒体、溶酶体、叶绿体等细胞器中,对生物体内代谢、增长、分裂、运动等生命过程起着极为重要的作用。
二、酶的作用酶能够通过催化化学反应中活化能的降低,使反应速率显著提高。
在化学反应中,反应物先与酶的活性中心结合,形成一个反应物—酶的复合体,复合体经历一系列中间态,最终形成产物—酶的复合体,产物则与酶解离,继续进行下一个反应。
酶能够降低到达反应中间态的能量,从而加速反应速率。
酶的作用具有以下特点:1、酶的作用具有高效性。
在细胞内,反应物通过酶的作用加速反应速度,其速度约可提高100倍至10万倍。
2、酶的作用具有高度的选择性。
酶能够针对特定的反应物特异性地催化化学反应,即只能催化特定的底物,而不能催化其他底物的反应。
3、酶的活性受影响较大。
酶的活性受到环境、温度、pH值等多种因素的影响,因此在生物体内酶能够响应细胞内环境及需求的变化。
三、酶的机制酶的催化机制涉及多种类型,例如,酸碱催化、共价互变催化、金属离子催化、共价势能调控、亲近作用等。
以下是一些常见的酶催化机制的简单介绍。
1、酸碱催化在这种机制中,酶的催化作用是由于催化剂中存在可离子化的基团,如羧基(-COOH)、羟基(—OH)等,这些基团可以给底物提供质子或者从底物中脱去质子,从而加速反应或者变化反应过渡状态能量。
2、共价互变催化在这种机制中,催化剂与底物发生给电子捐赠或接受的反应,从而形成中间体,中间体经历水分解、氧化还原等反应,最终产生新的底物和催化剂。
3、金属离子催化在这种机制中,催化剂与底物中的可交换离子通过协同作用,促进反应继续进行,例如,酶中的铝离子、锌离子、铁离子、钾离子等都可以在催化转化过程中发挥作用。