机械可靠性设计第三章2012讲解
- 格式:ppt
- 大小:2.00 MB
- 文档页数:67
基于鞍点估计的机械零部件可靠性灵敏度分析摘要对机械结构来说,可靠性指标一般随材料特性、几何参数、工作环境等不确定性因素变化而减弱,所以结构的可靠度、灵敏度就显得尤为重要,对机械零部件可靠性灵敏度的分析也是亟不可待。
本文利用鞍点估计技术可以无限逼近非正态变量空间中线性极限状态函数概率分布的特点,能有效解决统计资料或实验数据较少而难以确定设计变量的分布规律的问题。
将可靠性设计理论、灵敏度分析技术与鞍点逼近理论相结合,以前面可靠性数学模型为基础,系统地推导了基于鞍点估计的可靠性灵敏度公式,讨论了基于鞍点估计法的机械零部件可靠性灵敏度计算问题,为进一步分析机械零部件的可靠性稳健设计奠定了理论基础。
关键词:不确定性鞍点灵敏度可靠性第一章绪论1.1机械可靠性设计理论研究进展很早以来人们就广泛采用“可靠性”这一概念来定性评价产品的质量问题,这只是靠人们的经验评定产品可靠还是不可靠,并没有一个量的标准来衡量;从基于概率论的随机可靠性到基于模糊理论的模糊可靠性再到非概率可靠性以及最近提出的结构系统概率-模糊-非概率混合可靠性,表明定量衡量产品质量问题的理论方法从产生到现在已有了长足的发展;对于复杂结构的复杂参数由单纯的概率非概率可靠性分析方法发展到可靠性灵敏度分析的各种分析方法,使得这一理论日续丰富和完善,并深入渗透到各个学科和领域。
可靠性当今已成为产品效能的决定因素之一,作为一个与国民经济和国防科技密切相关的科学,未来的科技发展中也必将得到广泛的研究和应用。
20世纪初期把概率论及数理统计学应用于结构安全度分析,已标志着结构可靠性理论研究的初步开始。
20世纪40年代以来,机械可靠性设计理论有了长足的发展,目前为止己经相当成熟,尤其是许多国家幵始研究在结构设计规范中的应用,使机械可靠性设计理论的应用进入一个新的时期。
1.2机械可靠性设计理论研究现状在实际工程中,不确定因素的存在在所难免,可靠性分析与这些不确定性紧密相关。
教师教案(2012—2013学年第2学期)课程名称:机电产品可靠性设计授课学时:32授课班级:2010级任课教师:朱顺鹏教师职称:讲师教师所在学院:机械电子工程学院电子科技大学教务处第一章可靠性设计概论4学时一、教学内容及要求教学内容共4学时可靠性基本概念2学时(1)可靠性的内涵(2)可靠性工程发展现状(3)可靠性特征量可靠性数学基础2学时(1)数理统计基本概念(2)可靠性常用概率分布(3)随机变量均值与方差的近似计算教学要求(1)了解可靠性学科发展历程(2)掌握可靠性学科研究的内容(3)了解我国可靠性研究的发展现状(4)了解可靠性设计工作的重要意义及面临的主要挑战(5)掌握可靠性的定义(6)掌握可靠度、不可靠度、失效率的定义(7)掌握常用的概率分布(正态分布、指数分布、威布尔分布、对数正态分布)在可靠性设计工作中的应用(8)掌握随机变量均值与方差的近似计算方法二、教学重点、难点教学重点可靠性的定义可靠性特征量定义及相互关系常用概率分布的统计特征量教学难点失效率的定义威布尔分布的相关概念及应用三、教学设计列举航空航天产品(如卫星天线、卫星指向机构、太阳翼展开机构)、民用产品(如汽车)、制造装备(如数控机床)的实例,突出开展可靠性工作的重要意义。
随机变量及数理统计的知识系学生在先修课程中所学内容的复习,可以简要介绍,并要求学生查阅以前的书籍。
正态分布是学生熟知的内容,在教学过程中着重讲解其实际应用;指数分布、对数正态分布和威布尔分布是学生先修课程中没有学习过的,应详细讲解。
威布尔分布是难点内容,应重点介绍其发展历史,统计特征,以及威布尔分布在机械可靠性中的特殊作用,列举工程实例。
随机变量函数的均值与方差计算是后续机械产品可靠性设计需要用到的基本方法,讲解三种常用的方法原理即可,公式可以查表。
四、作业通过课程网站发布。
五、参考资料1. 盛骤, 谢式千, 潘承毅. 概率论与数理统计(第四版), 高等教育出版社,20102. 刘惟信. 机械可靠性设计. 北京:清华大学出版社, 2000六、教学后记第二章系统可靠性设计8学时一、教学内容及要求教学内容共8学时系统可靠性框图2学时串联系统;并联系统;混联系统;表决系统;旁联系统可靠性分配2学时可靠性分配的目的和原则可靠性分配方法(等分配法、再分配法、比例分配法、AGREE法)可靠性预计1学时可靠性预计的目的可靠性预计的方法(应力分析法、元器件计数法、相似产品法、上下限法)故障模式、影响及危害性分析FMECA 1学时FMECA的定义及分类FMECA的一般过程风险优先数和危害性矩阵故障树分析FTA 2学时故障树的各种符号故障树建树步骤常用故障树分析方法介绍教学要求(1)了解系统可靠性设计的任务;(2)掌握系统可靠性建模方法;(3)了解可靠性分配与预计的目的;(4)掌握可靠性分配与预计的常用方法。