好氧生物流化床设计方案
- 格式:doc
- 大小:322.00 KB
- 文档页数:6
臭氧催化氧化生物流化床施工技术方案-概述说明以及解释1.引言1.1 概述臭氧催化氧化生物流化床是一种先进的废气处理技术,具有高效、低能耗、环保等优点。
本文将对臭氧催化氧化生物流化床施工技术方案进行详细介绍,通过分析工艺原理、施工步骤和设备选型等方面,为工程设计和施工提供参考。
该技术适用于各种污染气体处理,可广泛应用于化工、电力、冶金等产业领域,具有良好的推广和应用前景。
1.2 文章结构文章结构部分主要包括以下内容:1. 引言:介绍文章的研究背景和意义,以及本文要阐述的主题。
2. 正文:分为工艺原理、施工步骤和设备选型三部分,详细介绍了臭氧催化氧化生物流化床的工艺原理、施工过程及需要选择的设备。
3. 结论:总结了本文的主要内容和结论,探讨了臭氧催化氧化生物流化床施工技术的应用前景和未来发展方向。
1.3 目的文章的目的是为了探讨臭氧催化氧化生物流化床施工技术方案,并对该技术在废气处理中的应用进行深入分析。
通过对工艺原理、施工步骤和设备选型等方面的详细介绍,旨在为相关领域的工程技术人员提供参考,以提高废气处理效率,减少环境污染,保护生态环境,促进可持续发展。
同时,本文旨在推动臭氧催化氧化生物流化床技术在工程实践中的推广和应用,为我国环境保护事业的发展做出贡献。
2.正文2.1 工艺原理臭氧催化氧化生物流化床技术是一种利用臭氧作为氧化剂,通过生物流化床内的生物膜对有机废气进行降解处理的先进技术。
其工艺原理主要包括以下几个方面:1. 臭氧氧化作用: 臭氧是一种强氧化剂,能够有效地氧化降解有机废气中的污染物。
在生物流化床中加入适量的臭氧,可以提高废气中有机物的氧化速率,促进有机废气的降解。
2. 生物膜降解: 生物流化床内的生物膜是臭氧氧化降解的关键环节。
生物膜可以利用废气中的有机物作为碳源进行生长繁殖,同时释放出酶等生物催化剂来加速有机物的降解。
通过生物膜的活性作用,可以将有机废气中的有害物质转化为无害的物质,净化废气。
MBBR™生物流化床工艺说明MBBR™生物膜工艺运用生物膜法的基本原理,充份利用了活性污泥法的优点,又克服了传统活性污泥法及固定式生物膜法的缺点。
技术关键在于研究和开发了比重接近于水,轻微搅拌下易于随水自由运动的生物填料。
生物填料具有有效表面积大,适合微生物吸附生长的特点。
填料的结构以具有受保护的可供微生物生长的内表面积为特征。
当曝气充氧时,空气泡的上升浮力推动填料和周围的水体流动起来,当气流穿过水流和填料的空隙时又被填料阻滞,并被分割成小气泡。
在这样的过程中,填料被充分地搅拌并与水流混合,而空气流又被充分地分割成细小的气泡,增加了生物膜与氧气的接触和传氧效率。
在厌氧条件下,水流和填料在潜水搅拌器的作用下充分流动起来,达到生物膜和被处理的污染物充分接触而生物分解的目的。
流动床TM生物膜反应器工艺由此而得名。
其原理示意图如图1所示。
因此,流动床TM生物膜工艺突破了传统生物膜法(固定床生物膜工艺的堵塞和配水不均,以及生物流化床工艺的流化局限)的限制,为生物膜法更广泛地应用于污水的生物处理奠定了较好的基础。
专利技术的Kaldnes悬浮填料工艺打开了污水生物处理工艺的新领域。
该工艺是基于一种生物膜技术,其实质是微生物以膜状生长悬浮填料上。
该悬浮填料由聚乙烯材料制成,在水中自由飘动。
在悬浮填料上没有附着生物膜的情况下,其比重接近于1g/cm3。
在好氧反应器中由于曝气器的曝气以及缺氧单元中的机械搅拌而不断运动。
悬浮填料反应器内最大填料填充率可以达到67%,其有效生物膜面积可以达到350m2/m3反应器容积。
该工艺可以通过硝化和反硝化作用完成生化好氧降解有机污染物(如BOD,COD)或完成生物脱氮,后者适用于预反硝化或后反硝化或者两者结合。
在后反硝化过程中在反应器中的总水力停留时间只要2.5-3小时就可以使脱氮率达到70%。
Kaldnes工艺与传统活性污泥法相比优点很多,例如具有高容积利用率,反应器形状灵活,无污泥回流的优点。
11.好氧生物流化床
好氧生物流化床反应器是将普通活性污泥法和生物膜法的优点有机地结合,是七十年代开始应用于污水处理的一种高效的生物处理工艺,并引入流化技术处理有机废水的反应装置,因而具有容积负荷高、生物降解速度快、占地面积小、基建投资和运行费用低等优点。
生物流化床处理技术是借助流体(液体、气体)使表面生长着微生物的固体颗粒(生物颗粒)呈流态化,同时进行去除和降解有机污染物的生物膜法处理技术。
微生物生长在载体表面,载体则在反应器中流动,是悬浮生长型和附着生长型的复合。
它可以保持高浓度的微生物量,传质效率高,体积负荷可以比传统活性污泥法高6-10倍。
在已开发的厌氧反应器中,第三代的EGSB和IC反应器是一种研究最为深入、技术最为先进的厌氧反应器。
它是在第二代UASB反应器的基础上发展起来的高效反应器,尤其适用于中等浓度(COD在10000mg/l以下)的有机废水的处理,并成功地应用于各种废水的处理。
相对于其它类型的反应器,EGSB/IC 反应器具有一些突出的优点:
是一种三相生物流化床结构示意图,可应用于石化、制药、食品和印染等废水的处理,并且该三相生物流化床对各种有机废水都具有很好的处理效果,其COD去除率都在70%以上,流化床容积负荷也在5.0 Kg [COD]/m3·d以上;此外,实验及实际运行中发现,与其他生物处理工艺相比,三相生物流化床工艺的剩余污泥产生量很少,尤其是对于COD浓度较低的废水,如印染废水,剩余污泥量更少;流化床的流化区内,活性污泥浓度达到10-20 g/L,加上生物载体表面的微生物,流化床具有很高的微生物浓度。
好氧生物流化床技术研究
生物流化床技术是70年代初发展起来的污水处理的新兴技术,根据反应器内是否需氧,可将其分为厌氧生物流化床和好氧生物流化床。
好氧生物流化床是将传统活性污泥法与生物膜法有机结合并引入化工流态化技术的一种新型生化污水处理装置。
由于它具有处理效率高、容积负荷大、抗冲击能力强、设备紧凑、占地少等优点,因而引起了环境工程界的极大兴趣和广泛研究,被认为是最具发展前途的生物处理工艺之一。
目前研究和应用最普遍的是好氧生物流化床,因此本文将主要介绍和讨论好氧生物流化床。
1. 好氧生物流化床特点
1.1 比表面积大
由于采用了小粒径固体作为载体并且载体呈流化状态,提供了巨大的表面积,因此流化床的比表面积比一般生物膜法大得多,几种生物膜法比表面积见表1[1]。
比表面积大是生物流化床具有高负荷、高去除率的根本原因。
表1 几种生物膜法比表面积
处理工艺比表面积(m2/m3)
普通生物滤池40-120
生物转盘120-180
接触氧化130-1600
好氧生物流化床3000-5000
1.2 容积负荷率与污泥负荷率高
由于生物流化床的容积负荷率α值是普通活性污泥法的13倍以上,阶段曝气池的10倍以上,生物滤池的38倍以上[2],因此在相同进水浓度下,采用生物流化床处理污水,可以使反应装置的容积大量减小,从而显著地降低占地面积及工程投资。
表2 不同处理工艺的α,β值比较[2]
工艺名称α(kgBOD/m•d)β(kgBOD/kgVSS•d) 普通活性污泥法0.264-0.720 0.216-0.456
阶段曝气法0.360-1.272 0.192-0.360
生物滤池0.090-0.360 --
好氧生物流化床 3.635-9.192 0.204-4.320
1.3 耐冲击负荷能力强
由于生物流化床采用填料载体微生物膜与活性污泥双重作用,其生物量非常大,载体与混合污泥的流化状态提高了有机物和氧气的传质效果并保持流化床内良好的混台流态,使废水一旦进入,就能很快得到混合、稀释,从而对负荷突然变化的影响起到缓冲作用,这是普通活性污泥法和生物膜法所不及之处。
2. 好氧生物流化床的研究与应用进展
2.1 外循环好氧生物流化床
外循好氧生物环流化床(如图1)的底部由气体分布器和液体分布器组成,气、液、固三相混合物向上流动。
在给定气速下,液体速度超过一定值,颗粒被夹带到流化床顶部的分布器。
在此,气体自动溢出,液固混合物经分离器分离后,液体流回到储水槽,固体颗粒进人到颗粒储料罐。
反应器的流化受水流和气体流速的控制。
焦伟堂[3]等人运用外循环好氧生物流化床处理污水,结果显示,在水利停留时间为3h时,反应器的CODcr和NH3-N的去除率分别达91%和96.6%。
图1 外循环好氧生物流化床
2.2 气升式内循环生物好氧流化床
气升式内循环好氧生物流化床如图2所示,由反应区、和沉淀区组成。
反应区由内筒和外筒两个同心圆柱体组成,微孔曝气装置设在内筒的底部。
反应区内填充陶粒等载体,为微生物生长和繁殖提供了很大的表面积,从而提高了单位容积内的生物量。
当压缩空气由曝气装置释放进入内筒升流筒时,由于气体的推动作用和压缩空气在水中的裹夹与混合作用,使水与载体的混合液密度减小而向上流动,到达分离区顶部后以大气泡逸出,而含有小气泡的水与载体混合液则流人外筒降流筒。
由于载体处于循环流化状态,从而大大加快了微生物和废水之间的相对运动,强化了传质作用,同时又可有效地控制生物膜的厚度,使其保持较高的生物活性,污水被处理后经沉降区分离沉降后通过出水堰排出。
图2 气升式内循环生物好氧流化床
2.3 光催化好氧生物流化床
光催化好氧生物流化床反时在反应器中间增加石英冷阱装置,内置紫外光源[4];反应器载体为粗孔硅胶负载TiO
,负载型TiO2不仅具有良好而稳定的催化
2
活性,而且与粗孔硅胶的结合强度较高,可满足流化状态下的湍动要求,为光催化提供良好条件,该反应器在实现了光、空气、固体催化剂和溶液的有效接触、提高传质效率的同时,解决了催化剂的回收、回用的问题,具有能耗低、操作简便、反应温和、可减少二次污染等优点。
这种反应器对水中浓度较低、难以转化的污染物有很好的净化能力,适用于废水的后期深度处理。
图3 光催化好氧生物流化床
2.4 其它形式的好氧生物流化床
在内循环生物流化床基础上,把内导流筒改成三段或多段,实现多重循环,极大地改善了反应器的流体力学与传质性能,使氧的利用率大为提高,能满足高负荷废水处理的需要且节能降耗。
任源[5]等人用这种反应器,选用新工艺处理洗涤废水,使出水达到国家一级排放标准。
浙江工业大学的王亚宜等[6]针对好氧生物流化床载体流失和污泥回流等问题,提出了批序式好氧生物流化床,其结合了好氧生物流化床和批序式活性污泥法(SBR)的特点,使好氧生物流化床的工艺过程呈批序式进行,研究表明:批序式好氧生物流化床具有很好的去除有机物、氨氮和悬浮固体的能力。
2.5 改进型气升式好氧生物流化床
针对传统气升式好氧生物流化床出水固液分离效果不理想的现象,笔者对其进行了改进,在反应器中心筒顶部增加一个三相分离器,升流区的载体混合物在气流的推动下上升到中心筒顶部,在三相分离器及其外档板、导流板的共同作用下,在降流区又形成螺旋流状态,利于脱气及泥水分离。
对改进型好氧生物流化床进行了半年生活污水处理试验,试验表明改进型气
升式好氧生物流化床在保证原有处理效率的同时流化床的出水SS得到了较好的改善,从而进一步丰富了好氧生物流化床类型。
图4 改进型气提式好氧生物流化床
3. 好氧生物流化床前景与展望
好氧生物流化床废水处理技术的研究与应用发展十分迅速,但还缺乏必要的基础研究,在工程放大设计上的基本参数也很不够,使得好氧生物流化床的自身性能和应用范围均存在较多局限,同时流化床体内的流动特征尚无合适的模型描述,在进行放大设计时有一定的难度。
笔者认为将来应在如下方面加深研究:
1、运用动力学模型来研究好氧生物流化床的流态和传质特性,以便探索反应器的放大设计参数。
2、加强对载体的应用研究,选择更易流化、附着性更好、脱膜容易、应用范围广、低价耐用的生物载体,并对载体的粒径、级配、形状、强度以及载体上生物膜的厚度方面进行相关研究。
3、由于好氧生物流化床对一些难降解有机污水的处理效率还不是太高,需要结合其它的生物处理技术来补充净化,开发新型适用的复合生物流化床和好氧、厌氧组合处理流程就尤显必要。