简易数控直流可变稳压电源的设计
- 格式:doc
- 大小:329.50 KB
- 文档页数:8
1 引言随着对系统更高效率和更低功耗的需求,电信与通信设备的技术更新推动电源行业中直流/直流电源转换器向更高灵活性和智能化方向发展。
整流系统由以前的分立元件和集成电路控制发展为微机控制,从而使直流电源智能化,具有遥测、遥信、遥控的三遥功能,基本实现了直流电源的无人值守设计的直流稳压电源主要由单片机系统、键盘、数码管显示器、指示灯及报警电路、检测电路、D/A 转换电路、直流稳压电路等几部分,直流稳压电源是最常用的仪器设备。
2 简易数控直流稳压电源设计2.1 设计任务和要求设计并制作有一定输出电压调节范围和功能的数控直流稳压电源。
基本要求如下:1.输出直流电压调节范围3~15V,纹波小于10mV2.输出电流为止500m A.3.稳压系数小于0.2。
4.直流电源内阻小于0.5Ω。
5.输出直流电压能步进调节,步进值为1V。
6.由“+”、“-”两键分别控制输出电压步进增的减。
2.2 设计方案根据设计任务要求,数控直流稳压电源的工作原理框图如图1所示。
主要包括三大部分:数字控制部分、D/A变换器及可调稳压电源。
数字控制部分用+、-按键控制一可逆二进制计数器,二进制计数器的输出输入到D/A变换器,经D/A变换器转换成相应的电压,此电压经过放大到合适的电压值后,去控制稳压电源的输出,使稳压电源的输出电压以1V的步进值增或减。
图1简易数控直流稳压电源框图2.3 电路设计2.3.1 整流、滤波电路设计首先确定整流电路结构为桥式电路;滤波选用电容滤波。
电路如图2所示。
图2 整流滤波电路电路的输出电压U I 应满足下式:U ≥U omax +(U I -U O )min+△U I式中,U omax 为稳压电源输出最大值;(U I -U O )min 为集成稳压器输入输出最小电压差;U RIP 为滤波器输出电压的纹波电压值(一般取U O 、(U I -U O )min 之和的确良10%);△U I 为电网波动引起的输入电压的变化(一般取U O 、(U I -U O )min 、U RIP 之和的10%)。
数控直流稳压电源设计1.数控直流稳压电源的概述现代电子装置在供电要求方面有着越来越高的要求,而数控直流稳压电源则是目前广泛应用的一种供电装置。
数控直流稳压电源不仅具有直流稳定的输出特性,而且还能实现数字化控制,具有更加高效、精确的供电能力和性能。
数控直流稳压电源适用于各种电子装置的开发和生产领域,如通信技术、医疗器械、军事通讯和工业自动化等。
2.数控直流稳压电源的设计原理数控直流稳压电源主要由下列几个模块组成。
2.1输入端输入端是稳压电源的第一步,它接收外部电源的直流或交流信号,并且对输入电压进行过滤和波形整形,以确保后续的电路可以正常工作。
2.2稳压模块稳压模块负责稳定输出电压的值。
在闭环控制下,稳压模块保证输出电压稳定在标准值附近,即使在输入电压波动或负载变化的条件下,它也能确保输出电压的稳定性和可靠性。
2.3数控模块数控模块为整个电源提供了数字化控制的功能。
它包括一个集成电路、显示屏、输入设备和计算机接口等组成部分。
通过输入输出端口与计算机相连,可实时监测和控制电源的电压、电流、功率等参数。
2.4保护模块保护模块负责保护电源免受外界环境的影响。
它包括四种保护措施:过压保护、过温保护、过载保护和短路保护,并采用相应的防护电路来实现保护功能。
3.数控直流稳压电源的设计流程数控直流稳压电源的设计流程包括以下几个步骤:3.1确定电源的基本参数这包括电源输出电压、电流、功率、负载范围等参数。
设计人员需要根据电路应用需要,确定电源所需的输出电压和电流等参数。
3.2选取和确认元件在确定电源的基本参数后,设计人员应选择与之相适应的元件,包括电容器、电感器、稳压管、集成电路等,这是设计数控直流稳压电源的关键步骤之一。
设计人员需要综合考虑元件的品质、供货和维护等方面的因素,以便在成本和性能之间取得平衡。
3.3进行电路设计在确定元件后,设计人员需要根据设计参数和基本电路原理,设计稳压电源的具体电路方案,逐步完善和优化电路。
简易数控直流稳压电源设计数控直流稳压电源是一种能够提供稳定输出电压的电源装置,常用于电子设备的测试、实验和制造过程中。
下面是一个简易的数控直流稳压电源设计。
1.设计需求和规格在开始设计之前,我们需要明确电源的输出电压和电流需求。
假设设计目标为输出电压范围为0-30V,最大输出电流为5A。
2.选择电源变压器根据设计需求,我们需要选择一个合适的电源变压器。
变压器的选择应该满足以下条件:-输入电压范围为市电的电压范围;-输出电压是设计需求的两倍,即60V;-输出功率需大于最大输出功率,即300W。
3.整流电路设计使用桥式整流电路将交流输入电压转换为直流电压。
桥式整流电路由4个二极管组成,将交流输入电压的负半周和正半周均转换为正向电流。
4.滤波电路设计滤波电路用于减小输出电压中的纹波,并提供稳定的直流输出电压。
常见的滤波电路是使用电容滤波器。
根据设计需求,选择适当的电容来达到所需的输出纹波和稳定性。
5.稳压电路设计稳压电路用于控制输出电压在设定范围内稳定。
可以使用集成稳压器芯片,例如LM317,它可以根据外部电阻器和电容器的值来控制输出电压。
6.控制电路设计为了实现数控功能,可以使用微控制器或模拟电路来控制输出电压和电流。
通过合理设置电容、电阻和电位器等元器件,可以设计出合适的控制电路。
7.保护电路设计为了确保电源和负载的安全,应设计适当的保护电路。
常见的保护电路包括过流保护、过压保护和过温保护。
可以使用电流检测器、过压保护器和温度传感器等元器件来实现这些保护功能。
8.PCB设计和制造根据上述电路设计,进行PCB布局和布线。
设计合适的PCB尺寸和布局,以容纳所有元器件,并确保电路的稳定性和可靠性。
完成设计后,可以选择将PCB文件发送给制造商进行制造。
9.组装和测试将制造好的PCB组装在电源箱中,接好输入电源线和输出连接线。
在保证安全的情况下,通电测试电源的稳定性、输出的准确性和保护电路的可靠性。
10.调试和优化根据实际测试结果,不断调试和优化电源的性能。
电子竞赛论文简易数控直流稳压电源电子设计大赛论文简易数控直流稳压电源设计摘要数控直流稳压电源是电子技术常用的设备之一,广泛的应用于教学、科研等领域。
本课题以单片机为控制核心,进行算法控制和集成运放线性负反馈,并通过7219驱动四位显示器进行精确显示,设计并实现了一台高精度、低噪声的数控直流电流源。
该稳压电源由供电电源、数控系统、模拟输出三个部分组成。
供电电源采用MC7815和MC7915稳压器,通过桥式整流电路,为整机提供了稳定的直流供电;控制系统以单片机C8051F020为核心,其内部的12位DAC转换器产生控制输出,实现了输出电流的实时数控和精确检测。
模拟部分利用集成运放继电器等模块实现不同波形的输出;系统还设置了串口通讯、遥控功能。
经测试,输出电压范围达0—9.9V,输出纹波及噪声小于10mV,均达到题目指标。
论文阐明了软硬件设计依据,给出了系统功能和性能测试结果,并附录了详细的设计资料。
关键词:恒压源集成运放7219驱动器单片机实时数控目录第 1 章方案论证与原理设计 (1)1.1模拟输出方案 (1)1.2供电电源方案 (1)1.3控制系统方案 (2)1.4整机方案框图 (2)第 2 章电路设计与参数论证 (3)2.1供电电源(15V) (3)2.25V供电电源 (5)2.3数控电路 (5)2.4模拟输出电路及A/D校准 (7)2.5驱动数码管显示电路 (10)第 3 章系统功能与软件设计 (11)3.1系统功能分析 (11)3.2软件设计结构 (12)第 4 章功能及性能测试 (16)4.1测试条件 (16)4.2整机调试 (16)4.3系统性能测试 (16)4.4性能参数测试 (17)第 5 章设计总结及技术展望 (21)参考资料 (23)附录 (23)附录一测试仪器清单 (23)附录二原理电路图 (23)附录三元器件清单 (24)附录四单片机程序 (25)数控直流稳压电源是输出为稳定直流电压、并可用数控方式调节和稳定输出电压的电源设备,在对工作电压稳定度、纹波电压大小等有较高要求的领域具有广泛的应用,如:电镀、精密加工、激光器等。
「数控直流稳压电源的设计与实现」数控直流稳压电源是一种应用广泛的电子设备,用于为各种电子设备提供稳定的直流电源。
本文将讨论数控直流稳压电源的设计与实现过程。
首先,设计一个数控直流稳压电源需要了解其基本原理。
该电源根据输入电源的不稳定性,通过电路设计和控制算法,将电源输出稳定在设定的电压值上。
主要包括输入稳压电路、反馈控制电路、功率放大电路等。
接下来,我们需要选择合适的元件来实现电源电路。
在选取稳压管、二极管等传统元件的同时,可以考虑使用集成稳压芯片和开关电源元件,以提高电源的效率和稳定性。
此外,还需要选取合适的功率放大器和控制器,以保证电源的输出电流和电压稳定性。
在电路设计完成后,需要进行仿真测试。
通过使用SPICE软件等工具,对电源电路进行仿真,以验证电路的工作原理和稳定性。
这包括输入电压范围、输出电流范围等参数的测试。
在完成电路设计和仿真测试后,需要进行电路的实际制作和调试。
这包括设计电路板、焊接元件、连接线路等步骤。
在制作完成后,需要对电路进行调试,检查是否存在电流短路、线路接错等问题,并进行修复。
最后,进行电源的性能测试。
通过连接相关的负载设备,测试电源的输出电压和电流是否稳定,并满足设计要求。
同时,通过使用示波器、数字万用表等测试仪器,验证电源的电压波形、纹波情况等参数。
总结起来,数控直流稳压电源的设计与实现包括了选取合适的元件、电路设计和仿真测试、制作和调试电路以及性能测试等步骤。
通过合理的设计和精确的调试,可以实现一个高品质的数控直流稳压电源。
简易数控直流稳压电源设计设计一台简易数控直流稳压电源可以分为以下几个步骤:1.确定电源的输出要求:确定电源的输出电压范围和电流范围。
根据实际需求,选择合适的电压和电流范围。
2.设计电源的整流电路:确定电源的输入电流和输入电压范围。
常用的整流电路包括桥式整流电路和中心点整流电路。
桥式整流电路更常见,效率较高。
3.设计电源的滤波电路:在电源的整流电路后加入滤波电容进行滤波,去除输出直流电压上的波动。
选取合适的滤波电容,使输出直流电压稳定。
4.设计电源的稳压调节电路:选择合适的稳压器件,根据需求设计稳压调节电路。
常见的稳压器件有三端稳压器和开关稳压器。
三端稳压器稳定性好,但效率较低;开关稳压器效率高,但稳定性较差。
5.设计电源的控制电路:根据需要设计数控电源的控制电路。
可以采用微处理器或者专用控制器来实现电源的数控功能,例如实现电源的开关机、电压和电流的调节、过压和过流保护等功能。
6.优化设计:根据实际需求对电源进行优化设计。
例如,可以增加短路保护、温度保护等功能。
7.制作测试:根据设计完成电源的制作和组装,进行测试。
测试包括输入输出电压电流的测试,以及控制电路的测试。
8.优化调整:根据测试结果对电源进行优化调整。
可以通过修改电路参数、更换稳压器件等方法进行优化调整。
9.最终调整:完成测试和优化调整后,进行最终调整,确保电源的稳定性和可靠性。
10.产品发布:在完成最终调整后,将电源进行产品化,进行包装和外观设计等工作,最终将产品发布市场。
需要注意的是,在设计数控直流稳压电源时,需要考虑以下几个方面:-输出电压范围和电流范围要与实际需求相匹配。
-整流电路和滤波电路的设计要使输出直流电压稳定,并且波纹尽可能小。
-稳压调节电路的选择要根据需求和性能进行考虑。
-控制电路的设计要实现所需的数控功能。
-电源的安全性和可靠性是设计时需要考虑的重要因素。
-电源的尺寸和散热量要注意合理安排,确保电源可以正常工作并且不过热。
X学院信息工程系毕业实习与设计设计题目简易数控直流稳压电源指导老师_________易X智老师_________ 学生姓名_________X____________学生学号____________________________ 专业年级层次电子信息工程技术实习点 X电子科技有限公司X学院信息工程系制目录简易数控直流稳压电源(摘要) (3)第一章研究背景及意义 (4)第二章芯片的原理及应用 (6)第三章多位LED显示的串口实现原理 (10)第四章电路原理和硬件实现 (11)第五章程序设计 (14)第六章电路测试 (16)结束语 (17)参考文献 (18)附录 (19)材料清单 (24)简易数控直流稳压电源设计【摘要】随着对系统更高效率和更低功耗的需求,电信与数据通讯设备的技术更新推动电源行业中直流/直流电源转换器向更高灵活性和智能化方向发展。
整流系统由以前的分立元件和集成电路控制发展为微机控制, 从而使直流电源智能化, 具有遥测、遥信、遥控的三遥功能, 基本实现了直流电源的无人值守“设计的直流稳压电源主要由单片机系统、键盘、数码管显示器、指示灯及报警电路、检测电路、D/ A 转换电路、直流稳压电路等几部分组成, 直流稳压电源是最常用的仪器设备, 在科研及实验中都是必不可少的。
【关键字】电源,稳压,数控,程序,电路图.第一章研究背景及意义电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。
电力电子技术是电能的最佳应用技术之一。
当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。
随着计算机和通讯技术发展而来的现代信息技术革命,给电力电子技术提供了广阔的发展前景,同时也给电源提出了更高的要求。
随着数控电源在电子装置中的普遍使用,普通电源在工作时产生的误差,会影响整个系统的精确度。
电源在使用时会造成很多不良后果,世界各国纷纷对电源产品提出了不同要求并制定了一系列的产品精度标准。
1. 设计任务和要求1.1设计要求1.1.1 任务设计出有一定输出电压范围和功能的数控电源。
其原理示意图如下:1.1.2 要求基本要求:(1)输出电压:范围0~+9.9V,步进0.1V,纹波不大于10mV;(2)输出电流:500mA;(3)输出电压值由数码管显示;(4)由“+”、“-”两键分别控制输出电压步进增减;(5)为实现上述几部件工作,自制一稳压直流电源,输出±15V,+5V。
发挥部分:(1)输出电压可预置在0~9.9V之间的任意一个值;(2)用自动扫描代替人工按键,实现输出电压变化(步进0.1V不变);(3)扩展输出电压种类(比如三角波、方波等)。
2 系统方案选择和论证2.1 系统基本方案通过对题目的任务、要求进行分析,我们将整个设计划分成三个部分:自制稳压电源部分,数控部分和输出显示部分。
其系统框图如图2.1所示:市电220V 50Hz图2.11.自制稳压电源部分自制稳压电源输入220v、50hz交流电,通过变压、整流、滤波和稳压电路,输出系统所需的三种直流电压:+15v、-15v、5v。
2.数控部分为完成题目要求制作可调节数控电源,需要有简单的人机接口界面,即需要按键输入和显示输出。
由于数控部分功能较多,较为复杂,对系统性能影响很大,采用了可编程控制器件来作为系统的核心,便可完成题目要求。
由于控制器部分为数字电路,而具体的输出部分为模拟电路,需要D/A 转换电路联系起来,实现电压的输出和调节。
数控部分由自制稳压电源部分供电。
3.输出部分将D/A器件发送过来的电压控制字转换成稳定电压输出,电路主要为D/A转换,稳压输出等组成。
单片机控制电压值通过LED数码管显示出来。
2.2 各模块方案的选择和论证2.2.1 控制器模块作用:各按键信号的辨认,控制电压的输出、显示电压值、各种类波形输出等。
方案1:采用FPGA或CPLD作为系统的控制器。
优点:可以实现复杂逻辑功能,规模大,速度快,密度高,体积小,稳定性高,容易实现仿真、调试和功能扩展。
电⼦电路综合设计实验报告(数控直流稳压电源设计)北京邮电⼤学电⼦电路综合设计实验实验报告实验名称:简易数控直流稳压电源的设计学院:电⼦⼯程学院班级:XXX班学号:XXXXXXXX姓名:XXX班内序号:XX2012年3⽉25⽇课题名称:简易数控直流稳压电源的设计摘要:本设计实验要求我们设计出简易数控直流稳压电源,通过⼿动调节实现输出不同电压的功能,通过电压与电流的放⼤实现较强的带负载能⼒,通过滤波电容消除纹波对直流的影响,并运⽤protel 软件进⾏仿真。
该设计实验旨在培养我们的实验兴趣与学习兴趣,提⾼实验技能与探究技能,引导我将所学所想运⽤到实际中去。
关键字:稳压电源,设计,仿真⼀、设计任务要求1.基本要求(1)设计实现⼀个简易数控直流稳压电源,设计指标及给定条件为:1) 输出电压调节范围:5V ~ 9V,步进0.5V 递增,纹波⼩于50mV;2) 输出电流⼤于100mA;3) 由预制输⼊控制输出电压递增;4) 电源为12V。
(2)设计+5V电源电路(不要求实际搭建),⽤PROTEL软件绘制完整的电路原理图(SCH)。
2.提⾼要求(1) 数字控制部分采⽤+/-按键来调整控制⼀可逆⼆进制计数器来预设电压值;(2) ⽤PROTEL软件绘制电路的印刷电路板图(PCB)。
3.探究要求输出电压调节范围更宽,步进更⼩:范围:0 ~ 10 V, 步进:0.1V。
本次探究实验主要着重完成了基本要求部分的设计与探究。
⼆、设计思路、总体结构框图本实验要求设计⼀个可以充当数控直流稳压电源的电路,电路由数字控制部分、D/A 转换部分、可调稳压部分组成。
数字控制部分采⽤+/-按键来调整控制⼀可逆⼆进制计数器来预设电压值(此部分为提⾼部分),⼆进制计数器输出输⼊到D/A 转换器中,经过D/A 转换后实现输出电压的可调。
其框图如图1所⽰。
图1 系统总体结构框图三、分块电路和总体电路的设计1.第⼀部分——数字电路控制部分此部分是电路的数字控制部分,也是电路输⼊端,其电路原理图如图2所⽰。
一、设计说明设计一个具有一定输出电压调节范围和功能的数控直流稳压电源。
数控直流稳压电源的工作原理框图如图1所示。
主要包括数字控制部分、模拟/数字转换部分(D/A 变换器)及可调稳压电源。
数字控制部分用+、-按键控制可逆二进制计数器,二进制计数器的输出到D/A 变换器,经D/A 转换相应的电压,经放大后去控制稳压电源的输出,来实现输出电压值步进增减。
图1 简易数控直流稳压电源框图二、技术指标1.输出直流电压调节范围5 15V ,纹波小于10mV 。
2.输出电流为500mA 。
3.稳压系数小于0.2.4.直流电源内阻小于0.5欧姆。
5.输出直流电压能步进调节。
步进值为1V 。
6.由+、-两键分别控制输出电压步进增和减。
三、设计要求1.在选择器件时,应考虑成本。
2.根据技术指标通过分析计算确定电路形式和元器件参数。
3.主要器件:(1)可逆计数器;(2)运算放大器;(3)稳压器;(4) 单稳态触发器。
四、实验要求1.根据技术指标制定实验方案;验证所设计的电路。
2.进行实验数据处理和分析。
五、推荐参考资料1.姚福安. 电子电路设计与实践[M]济南:山东科学技术出版社,2001年2.阎石. 数字电子技术基础. [M]北京:高等教育出版社,2006年3.刘贵栋主编.电子电路的Multisim 仿真实践[M].哈尔滨:哈尔滨工业大学出版电压增减步进按键可逆计数器稳压调节 电路单脉冲 产生D/A 变换器UiUo社,2008年4.童诗白、华成英主编.模拟电子技术基础,[M]北京:高等教育出版社,2007年.六、按照要求撰写课程设计报告指导教师年月日负责教师年月日学生签字年月日成绩评定表评语、建议或需要说明的问题:成绩指导教师签字:日期:一、概述近几年来,随着电子技术的日新月异,世界各国的电子技术飞速发展,中国也毫不例外的成为了一个电子大国和电子强国,国民对电子产品的需求种类也越来越多。
其中电源是最重要的组成部分,没有电源也就没有了电路这个概念。
数控直流稳压电源的设计数控直流稳压电源是一种用于供应直流电子设备的电源装置,其主要功能是将市电转换为稳定的直流电,并通过控制电路对输出电压进行调节和稳定。
在设计数控直流稳压电源时,需要考虑电源的输入特性、输出特性、保护功能和控制电路等方面。
首先,我们需要确定数控直流稳压电源的输入电压范围。
大多数电子设备的工作电压为12V、24V或48V等,因此输入电压范围通常选择110V 至230V的交流电源。
在选择输入电压范围时,需要考虑所处地区的电网电压波动范围,以及用户对电源的要求。
其次,数控直流稳压电源的输出电压范围也需要确认。
根据电子设备的需求,输出电压通常为可调范围内的恒定值,例如0-30V或0-60V等。
同时也要考虑输出电流的范围,以满足电子设备对电流的需求,常见输出电流范围为0-2A或0-5A等。
在设计数控直流稳压电源的输出电路时,可以采用开环控制电路或闭环控制电路。
开环控制电路的简单,但稳定性较差,难以保证输出电压的精度和稳定性。
闭环控制电路通过反馈控制,可以实现对输出电压的精确控制和稳定性。
为了保护电源装置和电子设备的安全,数控直流稳压电源通常需要具备过压保护、过流保护和短路保护等功能。
过压保护可以防止输出电压超过设定范围,过流保护可以防止输出电流超过设定范围,短路保护可以防止输出端短路时对电源装置和电子设备造成损害。
在控制电路方面,可以使用微处理器或单片机进行数控调节。
通过采集输入输出电压信号,经过对比和计算,控制电路可以实现对输出电压的调节并保持在设定范围内。
此外,还可以添加显示屏或数码管等显示装置,以实时显示输入输出电压和电流的数值。
最后,在设计数控直流稳压电源时,还需要考虑散热和尺寸等问题。
电源装置的散热设计要充分考虑电源内部的热量产生和散发,以保证电源的长时间稳定工作。
同时,电源装置的尺寸要适度,以适应不同的应用场合和安装空间。
总的来说,设计数控直流稳压电源需要综合考虑输入特性、输出特性、保护功能和控制电路等方面,以满足电子设备对电源的需求,并提供稳定的直流电源供应。
数控直流稳压电源的设计数控直流稳压电源是一种常用的电源设备,用于提供稳定的电压和电流,以供电子设备工作。
在电子行业和各种制造业中广泛使用。
本篇文档将着重介绍数控直流稳压电源的设计。
一、需求分析在设计数控直流稳压电源时,需要对实际需求进行分析,以选择合适的电源参数。
通常,需要考虑以下因素:1. 输入电压范围2. 输出电压范围3. 输出电流范围4. 稳定性要求在以上因素中,输入电压范围和输出电压范围是最关键的因素。
输入电压应该能够满足设备需要的电源,而输出电压应该与设备所需的直流电压匹配。
二、设计要点在设计数控直流稳压电源时,需要考虑以下要点:1. 电源拓扑结构2. 运算放大器的选择3. 稳定性设计4. 容量和功率需求5. 保护措施1. 电源拓扑结构数控直流稳压电源的设计通常采用基于反馈电路的电源拓扑结构。
其中,最常用的电源拓扑结构是基于线性稳压器的设计。
此外,还有基于开关稳压器的设计。
两种设计各有优劣,需要根据具体需求进行选择。
2. 运算放大器的选择在反馈电路中,运算放大器是一个非常关键的因素。
运算放大器为反馈电路提供放大器,并将反馈信号传递给反馈节点。
当电压或电流发生变化时,运算放大器可以快速检测到并调整输出,以保持恒定的电压和电流。
3. 稳定性设计为保证电源稳定性,需要进行稳定性设计。
在基于线性稳压器的设计中,输出电压稳定性可以通过选择合适的线性稳压器电路进行实现。
在基于开关稳压器的设计中,可以采用PID反馈控制实现稳定性。
4. 容量和功率需求容量和功率需求应该根据设备需要的功率和电流选择。
需要选择合适的电源变压器和其他元件,并计算合适的功率。
5. 保护措施在电源设计中需要加入保护措施,以防止故障和损坏。
常见的保护措施包括过载保护、过压保护和过流保护,等等。
三、实施步骤通过实施步骤可以设计出稳定且可靠的数控直流稳压电源:1. 确定功率、电压和电流需求2. 选择最合适的电源拓扑结构3. 选择合适的运算放大器4. 进行稳定性设计5. 计算容量和功率需求6. 加入保护措施7. 编写电源控制程序8. 调试并测试电源四、结论在本篇文档中,我们介绍了数控直流稳压电源的设计要点和实施步骤。
数控稳压直流电源设计报告1、数控直流稳压电源设计指标及设计1.1设计技术指标本设计是线性数控直流电源,设计要求如下:1、电压变化范围+5%~-5%条件;2、输出电压可调范围为0~10V;1.2本课题研究方法和目标数控电源的主要研究思路:1、硬件部分(1)单片机采用STC89C52最小系统方案,采用数码管和按键做人机界面,采用DA 芯片作为主要的单片机系统。
(2)电压调整靠调整输入到DA的数字量来改变输出电压大小,再通过电压功率放大器将其放大,得到输出电压。
2、软件部分(1)键盘输入程序用键盘扫描程序,将按键设置的电压交给D/A芯片产生输出电压。
(2)单片机通过A/D芯片读取当前输出电压值,通过显示程序,显示在数码管上。
2硬件电路详细设计2.1单片机系统外围电路设计在本次设计中,使用AT89C52单片机,其外围电路有复位电路、晶振电路、按键电路、数码管显示和D/A芯片接口电路。
以下是电路的详细设计。
2.1.1 复位电路设计单片机在启动的时候都需要复位,使单片机系统处于初始状态,然后开始工作。
89系列的单片机的RET引脚是复位信号的输入端,当系统处于正常工作状态,振荡器稳定,RET引脚上出现2个机器周期以上的高电平时,单片机就进入数位状态,但是如果引脚RET出现持续的高电平,单片机就处于循环复位状态[9]。
复位通常有两种基本形式:上电复位和手动复位。
本次设计采用上电复位。
电路图如图2-1所示。
图2-1复位电路2.1.2 时钟振荡电路设计单片机的CPU实质上是一个复杂的同步时序电路,它的工作都是必须在时钟控制下进行的。
CPU工作发出的控制信号在时间上的相互关系就是CPU的时序问题[9]。
CPU的时序需要外部硬件电路来实现,既振荡器和时钟电路。
51单片机内部都有一个高增益反向放大器,用于构成振荡器,但是构成时钟,外部还需要加一些附加电路。
本次设计采用单片机外部加晶振构成振荡电路,如图4-2所示。
图2-2单片机振荡电路该振荡电路时采用的单片机内部时钟方式,是直接在引脚XTAL1和XTAL2两端接晶振,就构成了稳定的自激振荡器,振荡器产生的脉冲信号直接送入内部时钟电路。
简易数控直流稳压源报告书摘要本报告介绍了一种简易数控直流稳压源的设计和制作。
该稳压源采用了直流电流源稳压模式,通过对输入电压和输出电流进行监测和调节,实现了稳定的直流输出电压。
该稳压源具有简单的电路结构、调节范围广、精度高等特点,适用于实验室和教学应用。
1. 引言直流稳压源是电子设备和实验中常用的电源供应设备,用于提供稳定的直流电压输出。
传统的直流稳压源通常采用变压器、整流电路和滤波电路等组成,但其调节范围较窄,且精度不高。
因此,设计一种简易数控直流稳压源具有重要的实际意义。
2. 设计原理2.1 输入电路简易数控直流稳压源的输入电路主要包括变压器、整流电路和滤波电路。
变压器将交流输入电压降低为适合整流电路工作的电压,整流电路将输入交流电转换为直流电,滤波电路则通过电容滤波减小输出电压的纹波。
2.2 控制电路数控直流稳压源的控制电路由运算放大器、比较器、脉宽调制器和电流反馈电路等组成。
运算放大器用于对输入电压和输出电流进行测量,并通过反馈将其与设定值进行比较,从而实现对输出电压的稳定调节。
脉宽调制器则根据比较器的输出信号,控制开关管的导通时间,从而调节输出电压的大小。
简易数控直流稳压源的输出电路主要由稳压二极管和负载组成。
稳压二极管能够通过保持一定的反向电压来实现对输出电压的稳定控制。
通过合适的选取稳压二极管和负载,可以获得所需的输出电压和电流。
3. 设计步骤3.1 确定需求根据实际需求确定输出电压和电流的范围,并计算所需要的电源功率。
3.2 选取元器件根据需求确定适合的变压器、稳压二极管和负载等元器件,并进行元器件的参数计算。
按照设计原理将所选元器件按照电路图连接起来,并进行必要的焊接和连接。
3.4 测试和调试连接电源和负载后,对稳压源进行测试和调试。
通过监测输出电压和电流,并对控制电路进行参数调整,最终达到稳定的输出效果。
4. 结果与分析经过上述步骤的设计和制作后,可以获得简易数控直流稳压源。
直流数控可调稳压电源的设计
1 引言直流稳压电源是常用的电子设备,用以保证在电网电压波动或负
载改变时,输出稳定的电压。
低纹波、高精度的稳压电源在仪器仪表、工业控
制及测量领域都有重要的实际应用价值。
这里设计的稳压电源输出电压范围为0~18 V,额定工作电流为500 mA,并具有“+”、“-”步进电压调节功能,最小
步进电压为0.05 V.纹波不大于10 mV,并用LCD 液晶显示器显示其输出电压值。
2 系统设计系统硬件设计主要由AT89C51、稳压输出模块、按键处理模块、显示模块和供电模块5 部分组成。
如图1 所示。
2.1 供电模块供电部分输入220 V、50 Hz 交流电,输出系统所需的3 种电压:+5 v,+15 V 和-15 V。
其中+5 V 供AT89C51、D/A 和A/D 转换器使用;+15 V 作为运放的正电源,同时也是稳压输出电路的主电源,最大电流约650 mA;而-15 V 作为运放的负电源,同时也为基准电压源LM339 供电,该电流较小,不超过50 mA。
供电模块的电路如图2 所示。
2.2 稳压输出模块图3 为稳压输出模块原理图,该模块将控制部分的电压数据转换稳压输出。
它由D/A 转换器(DAC0832)、集成运放OP07、LF356、晶体管VT1、VT2、VT7、VT8 基准电压源LM336-5 组成。
tips:感谢大家的阅读,本文由我司收集整编。
仅供参阅!。
课程名称:电子课程设计
课题名称:简易数控直流可变稳压电源的设计班级:
小组成员:
使用仪器:直流电源,万用表
学校:
课程设计时间:
数控直流可变稳压电源的设计
1.内容摘要:数控直流可变稳压电源由输入电路,稳压输出电路和显示电路组成。
输入电路输入的电
压直接由实验室直流电源提供,提供的直流电压经退耦、滤波后直接输入到三端可调式稳
压器的输入端,通过改变三端可调式稳压器的电阻而得到不同的电压输出,在这里选用8
通道数字模拟开关改变三端可调式稳压器可调端的电阻。
通过按键计数状态来控制8通道
数字模拟开关的开关状态,计数的状态与三端可调式稳压器的输出电压一致,同时将计数
状态在数码管上同步显示输出的电压。
2.设计指标(要求):(1)用集成芯片制作一个2~9V的直流电源。
(2)最大功率要求10W以上。
(3)电压的调整步进为1V并有相应的指示。
(4)具有过压、过流保护。
3.方案选择与系统框图:
方案一:
该数控直流可变稳压电源主要由滤波电路,稳压电路和计数显示电路组成。
方案采用LM317组成数字可调直流稳压电压源,采用7805构成固定输出电压源。
LM317是可调式三端稳压器,能够连续输出可调的稳定的直流电压。
它只允许可调正电压,且该稳压器内部含有过流,过热保护电路;LM317通过一个电阻(R)和一个可变电位器(Rp)组成电压输出调节电路,它的输入电压Vi= 15V,输出电压为V o=1.25(1+Rp/R),在该方案中,通过8通道数字控制模拟开关4051芯片改变Rp的值,从而改变输出的电压值。
7805是固定式三端稳压器,当其输入输出的压差达到要求时,其固定输出+5V,一般要求7805的输入输出的压差在大于2V的情况下,才能保证正常输出。
8通道数字控制模拟开关4051的开关的选通,通过其使能端与其选通状态代码控制,而其选通状态代码则通过74LS193加/减计数器的计数输出状态控制。
该方案要求在稳定输出步进为1V的直流电压输出(2—9V)的同时,将输出电压在数码管上显示。
在这里,选用驱动共阴极数码显示器的BCD码四位—七段译码器—4511,将4511的译码输入端直接与74LS161计数器的计数状态输出端,将4511的译码输出端通过适当阻值的电阻,再与共阴极数码管相连接,这样就可以初步实现输出电压与显示同步。
系统框图:
方案二:
针对方案一中,使用电容与按键并联的防抖方式效率低下的问题。
使用74LS00与非门组建按键防
抖电路。
4.各单元电路设计,参数计算和元器件选择:
选择方案一:
直流电压源输出的直流电压都有一定程度的纹波,可通过电容滤波来减小或消除纹波对后续电路的影响。
简单电容滤波电路:
图中的发光二极管作为指示灯,选用100uF 的电解电容C1起平滑输出的作用,选用0.1uF (104)瓷片电容起消除高频干扰作用,即用C1和C2抑制高频干扰。
24
4007
J 3
计数显示电路:显示电路是由计数器,译码器及数码管组成的。
计数器用74LS161,译码器用器的BCD 码四位—七段译码器—4511。
通过按键产生一个下降沿使74LS193计数,同时用74LS193的计数状态输出端来选通4051的各开关,从而达到输出固定电压输出的目的。
51
8000000000
IC6
22K
4511译码器的特点:
具有BCD 转换、消隐和锁存控制、七段译码及驱动功能的CMOS 电路能提供较大的拉电流。
可直接驱动LED 显示器。
其功能介绍如下:
BI :4脚是消隐输入控制端,当BI=0 时,不管其它输入端状态如何,七段数码管均处于熄灭(消隐)状态,不显示数字。
LT :3脚是测试输入端,当BI=1,LT=0 时,译码输出全为1,不管输入 DCBA 状态如何,七段均发亮,显示“8”。
它主要用来检测数码管是否损坏。
LE :锁定控制端,当LE=0时,允许译码输出。
LE=1时译码器是锁定保持状态,译码器输出被保持在LE=0时的数值。
A 、
B 、
C 、
D 、为8421BCD 码输入端。
A 、
B 、
C 、
D 、
E 、
F 、
G :为译码输出端,输出为高电平1有效。
5.完整电路图及其工作原理:
数控直流可变稳压电源的工作原理:
直流电压源输出的电压经耦合,滤波后作用到固定式三端稳压器7805和可调式三端稳压器LM317,7805稳定输出的+5V直接为74LS161,74 LS00,译码器4511提供电源电压。
根据公式:Vo=1.25(1+Rp/R),改变连接LM317的1脚上的电阻阻值,就可在其输出端得到不同的电压值。
LM317的1脚上电阻阻值的改变是通过8通道数字控制模拟开关芯片4051实现的。
因为当INH为低电平时,4051的输入端 C B A 的不同状态输入,可选通对应的开关,即可改变LM317的1脚上电阻阻值,从而控制LM317的输出电压值。
4051的输入端 C B A的状态,则通过74LS193(四位二进制加/减计数器)的计数输出状态来控制,即将74LS193的四个计数输出端的低三位分别与4051的输入端 C B A相连接。
同时将74LS161的四个计数输出端与驱动共阴极数码显示器的BCD码四位—七段译码器—4511的四位输入端相连接,通过4511译码后驱动共阴极数码管显示相应的电压值,实现电压输出与显示值同步。
6.组装调试:
组装调试过程中,使用的主要仪器,仪表及工具包括:直流电压源,万用表,烙铁等。
组装时,应注意的方面:检查电路板上的铜线是否存在断线和短路问题,若存在应及时解决,可用焊锡对断线进行修补,如果断线很严重可用搭连导线解决。
在焊接的时候烙铁的温度不要太高,这样于焊接不利。
调试部分:
(1)调试时,要注意各芯片的安装是否正确。
连通电源,输入+12V直流电压,用万用表测量各芯片的电源电压VCC的电压值。
该实验调试中,测得7805的输入输出端电压分别为+8.1V和+4.9V,LM317的输入输出端电压分别为+12V和3.3V。
4051的电源电压VCC为+11.9V,74LS161,74LS00,4511的电源电压均近似为+4.9V。
(2)接下来逐一排查各芯片工作是否正常。
接通电源,数码管显示数字为2,用万用表表笔测量74LS161的计数输出的高低电平的状态(一般电压值小于0.17V左右为低电平,电压值大于2.7V为高电平)
(3)将4051芯片拔出,开通电源,用导线分别代替各开关,调节变阻器,观察LM317的电压输出值的变化。
若输出电压值随变阻器阻值的变化而变化,且用万用表测得4051插槽的各引脚的高低电平状态与原理图上对应的预期的理论值接近,则说明连接4051各管脚的铜线无断线,短线现象。
(4)在调试显示电路中,如果遇到按一次按键,数码管跳变多次的情况,说明消抖电路没有正常工作,则需要改进消抖电路。
7.元器件清单:
8.PCB图或布线图:
9.电路特点及方案优缺点:
该电路的设计结构简单,能实现数字控制模拟电压输出,且将模拟输出电压值在数码管上显示,具有较好的同步性。
该方案结构系统图较简单,易于实现,便于组装调试,但该方案实现的模拟电压输出范围有限,元器件需求量多.
10.设计结果:
该设计的电路经调试后基本能达到设计指标要求,能做到稳定直流电压输出与显示同步进行,显示2V—9V。
由于考虑到4051内阻的存在,变阻器的灵敏度不高,使得测得模拟电压存在一定得误差。
11.总结与体会:
通过本次电子课程设计,让我们清楚的了解到数控可变直流稳压电源的工作原理,以及组成其电路的各单元电路的工作原理即元件参数计算和元器件的选择。
并且从设计电路过程中了解了一些芯片的应用范围及使用方法。
由于初学PCB制作,布局不是很好。
通过本次课程设计,学习了制作PCB板的流程,也熟悉了protel99se软件的使用。
复习了模拟电子技术基础,数字电子技术基础的知识。
12.参考文献资料:
[1]华成英,童诗白.模拟电子技术基础(第四版)[M].北京:高等教育出版社,2006.1
[2]杨志忠,卫桦林,郭顺华.数字电子技术基础[M]. 北京:高等教育出版社,2004.7
[3]电子资源网:/p-37965849.html
[4]胡烨,姚鹏翼,陈明.Protel 99 SE原理图与PCB设计教程[M].北京:机械工业出版社,2005.3。