讲义6
- 格式:doc
- 大小:1.04 MB
- 文档页数:9
6.3 平面向量基本定理及坐标表示一、平面向量基本定理1.平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.2.基底:若e1,e2不共线,我们把{e1,e2}叫做表示这一平面内所有向量的一个基底.二、用基底表示向量用基底表示向量的一般方法(1)根据平面向量基本定理可知,同一平面内的任何一个基底都可以表示该平面内的任意向量.用基底表示向量,实质上是利用三角形法则或平行四边形法则,进行向量的线性运算.(2)基底的选取要灵活,必要时可以建立方程或方程组,通过方程或方程组求出要表示的向量.三、平面向量基本定理的应用(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.四、平面向量的坐标表示1.把一个向量分解为两个互相垂直的向量,叫做把向量作正交分解.2.在平面直角坐标系中,设与x轴、y轴方向相同的两个单位向量分别为i,j,取{i,j}作为基底.对于平面内的任意一个向量a,由平面向量基本定理可知,有且只有一对实数x,y,使得a=x i+y j,则有序数对(x,y)叫做向量a的坐标.3.坐标表示:a=(x,y).4.特殊向量的坐标:i=(1,0),j=(0,1),0=(0,0).五、平面向量加、减法的坐标表示设向量a=(x1,y1),b=(x2,y2),则有下表,符号表示加法a+b=(x1+x2,y1+y2)减法a-b=(x1-x2,y1-y2)重要结论已知A(x1,y1),B(x2,y2),则AB→=(x2-x1,y2-y1)六、平面向量坐标运算的应用坐标形式下向量相等的条件及其应用(1)条件:相等向量的对应坐标相等.(2)应用:利用坐标形式下向量相等的条件,可以建立相等关系,由此可以求出某些参数的值或点的坐标.七、数乘运算的坐标表示已知a=(x,y),则λa=(λx,λy),即实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.八、向量共线的判定设a=(x1,y1),b=(x2,y2),其中b≠0.向量a ,b 共线的充要条件是x 1y 2-x 2y 1=0.向量共线的判定应充分利用向量共线定理或向量共线的坐标表示进行判断,特别是利用向量共线的坐标表示进行判断时,要注意坐标之间的搭配. 九、 利用向量共线的坐标表示求参数 利用向量平行的条件处理求值问题的思路 (1)利用向量共线定理a =λb (b ≠0)列方程组求解. (2)利用向量共线的坐标表示直接求解.提醒:当两向量中存在零向量时,无法利用坐标表示求值. 十、有向线段定比分点坐标公式及应用对任意的λ(λ≠-1),P 点的坐标为⎝ ⎛⎭⎪⎫x 1+λx 21+λ,y 1+λy 21+λ. 注意点:(1)λ的值可正、可负.(2)分有向线段的比与线段长度比不同. 十一、平面向量数量积的坐标表示 设非零向量a =(x 1,y 1),b =(x 2,y 2), 则a·b =x 1x 2+y 1y 2.进行数量积运算时,要正确使用公式a·b =x 1x 2+y 1y 2,并能灵活运用以下几个关系 (1)|a |2=a ·a .(2)(a +b )·(a -b )=|a |2-|b |2. (3)(a +b )2=|a |2+2a ·b +|b |2. 十二、平面向量的模1.若a=(x,y),则|a|2=x2+y2或|a|=x2+y2.2.若A(x1,y1),B(x2,y2),则|AB|=x2-x12+y2-y12.求向量a=(x,y)的模的常见思路及方法(1)求模问题一般转化为求模的平方,即a2=|a|2=x2+y2,求模时,勿忘记开方.(2)a·a=a2=|a|2或|a|=a2=x2+y2,此性质可用来求向量的模,可以实现实数运算与向量运算的相互转化.十三、平面向量的夹角、垂直问题设a,b都是非零向量,a=(x1,y1),b=(x2,y2),a与b的夹角为θ.1.cos θ=a·b|a||b|=x1x2+y1y2x21+y21x22+y22.2.a⊥b⇔x1x2+y1y2=0.考点一 平面向量的基本定理【例1】(2021·陕西)下列各组向量中,可以作为基底的是( ) A .()()120,0,1,2e e == B .()()121,2,5,7e e =-=C .()()123,5,6,10e e ==D .()12132,3,,24e e ⎛⎫=-=- ⎪⎝⎭【答案】B【解析】对A :因为零向量和任意向量平行,故A 中向量不可作基底; 对B :因为710-≠,故B 中两个向量不共线;对C :因为31056⨯=⨯,故C 中两个向量共线,故C 中向量不可作基底;对D :因为312342⎛⎫⨯-=-⨯ ⎪⎝⎭,故D 中两个向量共线,故D 中向量不可作基底.故选:B.【练1】(2020·广东云浮市·高一期末)下列各组向量中,可以作为基底的是( ). A .()10,0e =,()21,2e =- B .()11,2e =-,()25,7e =C .()13,5e =,()26,10e =D .()12,3e =-,213,24e ⎛⎫=- ⎪⎝⎭【答案】B【解析】因为()11,2e =-与()25,7e =不共线,其余选项中1e 、2e 均共线,所以B 选项中的两向量可以作为基底.故选:B考点二 加减数乘的坐标运算【例2】(2020·咸阳百灵学校高一月考)已知点M (-3,3),N (-5,-1),那么MN 等于( ) A .(-2,-4) B .(-4,-2) C .(2,4) D .(4,2)【答案】A【解析】M (-3,3),N (-5,-1),()=2,4MN ∴--.故选:A【练2】(2020·苍南县树人中学高一期中)已知()1,1A ,()1,1B --,则向量AB 为( ) A .()0,0 B .()1,1 C .()2,2-- D .()2,2【答案】C【解析】由题意可得()()()1,11,12,2AB =---=--.故选:C. 考点三 共线定理的坐标表示【例3】(2020·全国高一)若()0,2A ,()1,0B -,(),2-C m 三点共线,则实数m 的值是( ) A .6 B .2- C .6- D .2【答案】B【解析】因为三点()0,2A ,()1,0B -,(),2C m -共线,所以(1,2),(1,2)AB BC m =--=+- ,若()0,2A ,()1,0B -,(),2C m -三点共线,则AB 和BC 共线 可得:(1)(2)(2)(1)m --=-+,解得2m =-;故选:B【练3】(2020·新绛县第二中学高一月考)已知()13A ,,()41B -,,则与向量AB共线的单位向量为( )A .4355⎛⎫ ⎪⎝⎭,或4355⎛⎫- ⎪⎝⎭,B .3455⎛⎫- ⎪⎝⎭,或3455⎛⎫- ⎪⎝⎭, C .4355⎛⎫-- ⎪⎝⎭,或4355⎛⎫⎪⎝⎭, D .3455⎛⎫-- ⎪⎝⎭,或3455⎛⎫⎪⎝⎭, 【答案】B【解析】因为()13A ,,()41B -,,所以向量()3,4AB =-, 所以与向量AB 共线的单位向量为3455⎛⎫- ⎪⎝⎭,或3455⎛⎫- ⎪⎝⎭,.故选:B 考点四 向量与三角函数的综合运用【例4】(2021·湖南)已知向量(cos 2sin ,2)a θθ=-,(sin ,1)b θ=,若a //b ,则tan 2θ的值为( )A .14B .34C .815D .415【答案】C【解析】因为a //b ,故可得22cos sin sin θθθ-=,故可得14tan θ=,又22284211tan 15116tan tan θθθ===--.故选:C【练4】(2020·平凉市庄浪县第一中学高一期中)若(3,cos ),(3,sin ),a b αα==且a //b ,则锐角α=__________ . 【答案】3π【解析】∵a //b ,∴3sin 3cos 0αα-=,又α为锐角,cos 0α≠,∴tan 3α=,3πα=.故答案为:3π.考点五 奔驰定理解三角形面积【例5】(2020·河南安阳市·林州一中高一月考)已知O 为ABC ∆内一点,且有23OA OC BC +=,则OBC ∆和ABC ∆的面积之比为( ) A .16B .13C .12D .23【答案】C【解析】设D 是AC 的中点,则2OA OC OD +=, 又因为23OA OC BC +=,所以223OD BC =,3BC OD =,//OD BC , 所以12OBC DBC ABC ABC S S DC S S AC ∆∆∆∆===故选:C 【练5】(2020·江西)在ABC 中,D 为BC 的中点,P 为AD 上的一点且满足3BA BC BP +=,则ABP △与ABC 面积之比为( )A .14B .13C .23 D .16【答案】B【解析】设AC 的中点为点E ,则有2BA BC BE +=,又3BA BC BP +=,所以23BP BE =,则点P 在线段BE 上,因为D 为BC 的中点,所以得点P 为ABC 的重心,故ABP △与ABC 面积之比为13.故选:B考点六 数量积的坐标运算【例6】(2020·银川市·宁夏大学附属中学高一期末)向量()()2112a b =-=-,,,,则()2a b a +⋅=( ) A .1 B .1- C .6- D .6【答案】D【解析】因为()()2112a b =-=-,,,所以()()23,0(2,1)3206a b a +⋅=⋅-=⨯+=故选:D【练6】(2021·深圳市龙岗区)已知向量()1,3a =-,()5,4b =-,则⋅=a b ( ) A .15 B .16 C .17 D .18【答案】C【解析】因为向量()1,3a =-,()5,4b =-,所以()()153417a b ⋅=-⨯-+⨯=,故选:C考点七 巧建坐标解数量积【例7】(2020·山东济南市·)在ABC 中,2BAC π∠=,2AB AC ==,P 为ABC所在平面上任意一点,则()PA PB PC ⋅+的最小值为( )A .1B .12-C .-1D .-2【答案】C【解析】如图,以,AB AC 为,x y 建立平面直角坐标系,则(0,0),(2,0),(0,2)A B C ,设(,)P x y ,(,)PA x y =--,(2,)PB x y =--,(,2)PC x y =--,(22,22)PB PC x y +=--,∴()22(22)(22)2222PA PB PC x x y y x x y y⋅+=----=-+-22112()2()122x y =-+--,∴当11,22x y ==时,()PA PB PC ⋅+取得最小值1-.故选:C .【练7】(2020·安徽省亳州市第十八中学高一期中)如图,在矩形ABCD 中,4AB =,3AD =,点P 为CD 的中点,点Q 在BC 上,且2BQ =.(1)求AP AQ ⋅;(2)若AC AP AQ λμ=+(λ,μ∈R ),求λμ的值. 【答案】(1)14;(2)23λμ=. 【解析】如图,分别以边AB ,AD 所在的直线为x 轴,y 轴, 点A 为坐标原点,建立平面直角坐标系,则()0,0A ,()2,3P ,()4,0B ,()4,3C ,()4,2Q .(1)∵()2,3AP =,()4,2AQ =,∴243214AP AQ ⋅=⨯+⨯=. (2)∵()4,3AC =,()2,3AP =,()4,2AQ =,由AC AP AQ λμ=+,得()()4,324,32λμλμ=++,∴244,323,λμλμ+=⎧⎨+=⎩解得1,23,4λμ⎧=⎪⎪⎨⎪=⎪⎩∴23λμ=. 考点八 数量积与三角函数综合运用【例8】向量(sin ,2),(1,cos )a b θθ=-=,且a b ⊥,则2sin 2cos θθ+的值为( ) A .1 B .2 C .12D .3【答案】A【解析】由题意可得 sin 2cos 0a b θθ⋅=-=,即 tan 2θ=.∴222222sin cos cos 2tan 1sin 2cos 1cos sin 1tan θθθθθθθθθ+++===++,故选A . 【练8】(2020·河南安阳市·林州一中高一月考)已知向量(4sin ,1cos ),(1,2)a b αα=-=-,若2a b ⋅=-,则22sin cos 2sin cos αααα=-( )A .1B .1-C .27-D .12-【答案】A【解析】由2a b ⋅=-,得4sin 2(1cos )2αα--=-,整理得1tan 2α=-,所以2221sin cos tan 2112sin cos 2tan 112αααααα-===---,故选:A . 考点九 数量积与几何的综合运用【例9】(2020·陕西渭南市·高一期末)已知向量()3,4OA =-,()6,3OB =-,()5,3OC m m =---.(1)若点A ,B ,C 能够成三角形,求实数m 应满足的条件; (2)若ABC 为直角三角形,且A ∠为直角,求实数m 的值. 【答案】(1)12m ≠;(2)74m =. 【解析】(1)已知向量()3,4OA =-,()6,3OB =-,()5,3OC m m =---, 若点A ,B ,C 能构成三角形,则这三点不共线,即AB 与BC 不共线.()3,1AB =,()2,1AC m m =--,故知()312m m -≠-,∴实数12m ≠时,满足条件.(2)若ABC 为直角三角形,且A ∠为直角,则AB AC ⊥,∴()()3210m m -+-=,解得74m =. 【练9】(2020·辽宁)已知向量.(1)若ΔABC 为直角三角形,且∠B 为直角,求实数λ的值.(2)若点A、B、C能构成三角形,求实数λ应满足的条件.【答案】(1)λ=2;(2)λ≠−2.【解析】∵即:−7(6−λ)+7(3λ−2)=0,∴λ=2(2)∵若点A、B、C能构成三角形,则A、B、C不共线∴−7(3λ−2)≠7(6−λ)∴实数λ应满足的条件是λ≠−2课后练习1. (2021·内江模拟)已知空间三点 O(0,0,0) , A(−1,1,0) , B(0,1,1) ,在直线 OA 上有一点 H 满足 BH ⊥OA ,则点 H 的坐标为. A.(12,−12,0) B.(−12,12,0) C.(−2,2,0) D.(2,−2,0) 【答案】 B【考点】平面向量数量积的运算【解析】由O (0,0,0),A (﹣1,1,0),B (0,1,1), ∴ OA ⃗⃗⃗⃗⃗ = (﹣1,1,0),且点H 在直线OA 上,可设H (﹣λ,λ,0), 则 BH ⃗⃗⃗⃗⃗⃗ = (﹣λ,λ﹣1,﹣1), 又BH ⊥OA , ∴ BH⃗⃗⃗⃗⃗⃗ • OA ⃗⃗⃗⃗⃗ = 0, 即(﹣λ,λ﹣1,﹣1)•(﹣1,1,0)=0, 即λ+λ﹣1=0, 解得λ =12 ,∴点H ( −12 , 12 ,0). 故答案为:B .【分析】根据已知中空间三点O(0,0,0),A(−1,1,0),B(0,1,1),根据点H 在直线OA上,我们可以设出H点的坐标(含参数λ) ,进而由BH⊥OA,根据向量垂直数量积为0,构造关于λ的方程,解方程即可得到答案.2.(2021高二上·辽宁月考)若a=(2,2,0),b⃗=(1,3,z),<a ,b⃗>=π3,则z等于()A. √22B. −√22C. ±√22D. ±√42【答案】C【考点】数量积表示两个向量的夹角【解析】由空间向量夹角的余弦公式得cos<a ,b⃗>=a⃗ ⋅b⃗|a⃗ |⋅|b⃗|=2×1+2×3+0×z2√2×√12+32+z2=2√2√10+z2=12,解得z=±√22。
第六章人口地理学第一节人口与发展一、世界人口增长过程一般认为,人类由大约400万年前(第三纪晚期)南方古猿的一支发展进化而来。
人类进化经历了古猿-猿人-直立人-智人-现代人五个阶段。
大多数学者认为,非洲的东非高原很可能是人类最初完成从猿到人的历史性转变的地方,此后不断向亚、欧两大陆扩散。
5万年前,人类进化进入晚期智人阶段,人类文化进入旧石器晚期;大约1万年前,人类进入新石器时代,产生最初的农业,人类开始从游牧、采集转向定居生活,世界人口增长逐渐加快;而18世纪后期开始的工业革命,极大地推进了世界人口增长的进程。
(一)农业革命前的人口农业革命前是现代人类形成的漫长时期。
原始人群过着极端分散、闭塞的流动生活,依靠采集、渔猎获得食物,这类生产活动的性质决定了当时人口的增长受到种群增长规律的强大制约。
其人口特征是:(1)极低的人口密度。
据研究,公元前1.5万年,世界总人口约300万,按狩猎采集的实际面积计,人口密度为0.08人/km2;公元前3000年,世界人口约4000万,人口密度为0.5人/km2。
(2) 高出生率和高死亡率。
该阶段人口增长缓慢,人口数量受食物所能承受的界限的限制。
(3)人口的分布集中。
由于采集狩猎群体对居住场所有着较高的要求,一般选择朝阳、干燥、开阔、地势较高、接近水源、能有效抵御外来危险的场所作为固定或半固定营地,因而原始人类的分布又相对集中。
(4)开始了人口迁移。
公元前8000年,狩猎和采集者已开始迁移,逐渐覆盖了大部分大洲的一些地区,只剩南极洲还未被人类占据。
(二)农业革命与人口增长一万多年前世界上出现了农业,农牧业成为人类主要生产方式。
农业社会与采集狩猎社会的一个最大差别是它能支持更高的人口密度。
世界人口发展进入了一个新阶段。
农业社会人口呈现的特征:婴儿存活率低,阶段性的饥荒和低营养,对流行病的抵抗力差,高出生率和高死亡率,死亡率呈现大幅度波动状态,出生率也相应变化,平均寿命低。
6.2平面向量的运算知识点一 向量加法的三角形法则已知非零向量a ,b ,在平面内取任意一点A ,作AB→=a ,BC →=b ,则向量AC →叫做a 与b 的和,记作a +b ,即a +b =AB →+BC →=AC →.这种求向量和的方法,称为向量加法的三角形法则.注意点:运用向量加法的三角形法则作图时要“首尾相接,再首尾连”. 反思感悟 向量加法的三角形法则的特征为首尾顺次相接,即 AA 1→+A 1A 2——→+……+A n -1A n ——→=AA n →. 知识点二 向量加法的平行四边形法则1.以同一点O 为起点的两个已知向量a ,b ,以OA ,OB 为邻边作▱OACB ,则以O 为起点的向量OC →(OC 是▱OACB 的对角线)就是向量a 与b 的和.把这种作两个向量和的方法叫做向量加法的平行四边形法则.2.从平行四边形的性质可知三角形法则和平行四边形法则是一致的. 3.对于零向量与任意向量a ,规定a +0=0+a =a .注意点:运用向量加法的平行四边形法则作图时,要强调两个向量起点相同.反思感悟向量加法的平行四边形法则和三角形法则的区别和联系区别联系三角形法则(1)首尾相接(2)适用于任何两个非零向量求和当两个向量不共线时,三角形法则作出的图形是平行四边形法则作出图形的一半平行四边形法则(1)共起点(2)仅适用于不共线的两个向量求和知识点三共线向量的加法与向量加法的运算律1.一般地,我们有|a+b|≤|a|+|b|,当且仅当a,b方向相同时等号成立.2.(加法交换律)a+b=b+a;(加法结合律)a+(b+c)=(a+b)+c.反思感悟向量加法运算律的意义和应用原则(1)意义:向量加法的运算律为向量加法提供了变形的依据,实现了恰当利用向量加法法则运算的目的.实际上,由于向量的加法满足交换律和结合律,故多个向量的加法运算可以按照任意的次序、任意的组合来进行.(2)应用原则:通过向量加法的交换律,使各向量“首尾相连”,通过向量加法的结合律调整向量相加的顺序.知识点四向量加法的实际应用反思感悟应用向量解决实际问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题.(2)运算:应用向量加法的平行四边形法则和三角形法则,将有关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题. 知识点五 向量的减法运算1.相反向量:与向量a 长度相等,方向相反的向量,叫做a 的相反向量,记作-a .2.向量的减法:向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ),因此减去一个向量,相当于加上这个向量的相反向量,求两个向量差的运算叫做向量的减法. 注意点:(1)零向量的相反向量仍是零向量.(2)对于相反向量有:a +(-a )=(-a )+a =0.(3)若a ,b 互为相反向量,则a =-b ,b =-a ,a +b =0. 知识点六 向量减法的几何意义已知向量a ,b ,在平面内任取一点O ,作OA→=a ,OB →=b ,则BA →=a -b .即a -b 可以表示为从向量b 的终点指向向量a 的终点的向量,这就是向量减法的几何意义.反思感悟 求作两个向量的差向量的两种思路(1)可以转化为向量的加法来进行,如a -b ,可以先作-b ,然后作a +(-b )即可.(2)可以直接用向量减法的几何意义,即把两向量的起点重合,则差向量为连接两个向量的终点,指向被减向量的终点的向量. 知识点七 向量加减的混合运算 反思感悟 (1)向量减法运算的常用方法(2)向量加减法化简的两种形式 ①首尾相连且为和. ②起点相同且为差.知识点八 向量加减法的综合应用反思感悟 (1)解决此类问题要搞清楚图形中的相等向量、相反向量、共线向量以及构成三角形的三个向量之间的关系,确定已知向量与被表示向量的转化渠道. (2)主要应用向量加法、减法的几何意义以及向量加法的结合律、交换律来分析解决问题,在封闭图形中可利用向量加法的多边形法则,提升逻辑推理素养. 知识点九 向量的数乘运算一般地,我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,其长度与方向规定如下: (1)|λa |=|λ||a |.(2)λa (a ≠0)的方向⎩⎨⎧当λ>0时,与a 的方向相同;当λ<0时,与a 的方向相反.特别地,当λ=0时,λa =0.当λ=-1时,(-1)a=-a.注意点:(1)数乘向量仍是向量.(2)实数λ与向量不能相加.反思感悟λ的正负决定向量λa(a≠0)的方向,λ的大小决定λa的模.知识点十向量的线性运算1.数乘运算的运算律设λ,μ为实数,那么(1)λ(μa)=(λμ)a.(2)(λ+μ)a=λa+μa.(3)λ(a+b)=λa+λb.特别地,(-λ)a=-(λa)=λ(-a),λ(a-b)=λa-λb.2.向量的线性运算向量的加、减、数乘运算统称为向量的线性运算,对于任意向量a,b,以及任意实数λ,μ1,μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b.反思感悟向量线性运算的基本方法(1)类比法:向量的数乘运算类似于代数多项式的运算,例如,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是这里的“同类项”“公因式”是指向量,实数看作是向量的系数.(2)方程法:向量也可以通过列方程来解,把所求向量当作未知数,利用解方程的方法求解,同时在运算过程中多注意观察,恰当的运用运算律,简化运算.知识点十一用已知向量表示其他向量反思感悟 用已知向量表示其他向量的两种方法 (1)直接法(2)方程法当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程. 知识点十二 向量共线定理 向量共线定理向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . 注意点:(1)向量共线定理中规定a ≠0. (2)λ的值是唯一存在的.反思感悟 (1)证明或判断三点共线的方法一般来说,要判定A ,B ,C 三点是否共线,只需看是否存在实数λ,使得AB →=λAC →(或BC→=λAB →等)即可. (2)利用向量共线求参数的方法已知向量共线求λ,常根据向量共线的条件转化为相应向量系数相等求解. 知识点十三 向量数量积的运算律 1.对于向量a ,b ,c 和实数λ,有 (1)a ·b =b ·a (交换律).(2)(λa)·b=λ(a·b)=a·(λb)(数乘结合律).(3)(a+b)·c=a·c+b·c(分配律).2.多项式乘法向量数量积(a+b)2=a2+2ab+b2(a+b)2=a2+2a·b+b2(a-b)2=a2-2ab+b2(a-b)2=a2-2a·b+b2(a+b)(a-b)=a2-b2(a+b)·(a-b)=a2-b2(a+b+c)2=a2+b2+c2+2ab+2bc+2ca (a+b+c)2=a2+b2+c2+2a·b+2b·c+2c·a注意点:(1)a·b=b·c推不出a=c.(2)(a·b)c≠a(b·c),它们表示不同的向量.反思感悟向量的数量积a·b与实数a,b的乘积a·b有联系,同时也有许多不同之处.例如,由a·b=0并不能得出a=0或b=0.特别是向量的数量积不满足结合律.知识点十四利用数量积求向量的模和向量的夹角反思感悟(1)求解向量模的问题就是要灵活应用a2=|a|2,即|a|=a2,勿忘记开方.(2)求向量的夹角,主要是利用公式cos θ=a·b|a||b|求出夹角的余弦值,从而求得夹角.可以直接求出a·b的值及|a|,|b|的值,然后代入求解,也可以寻找|a|,|b|,a·b 三者之间的关系,然后代入求解.知识点十五 与垂直有关的问题反思感悟 解决有关垂直问题时利用a ⊥b ⇔a ·b =0(a ,b 为非零向量). 知识点十六 两向量的夹角1.夹角:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角,夹角θ的取值范围是0≤θ≤π.当θ=0时,a 与b 同向;当θ=π时,a 与b 反向.2.垂直:如果a 与b 的夹角是π2,则称a 与b 垂直,记作a ⊥b . 注意点:两个向量只有起点重合时所对应的角才是向量的夹角.反思感悟 (1)求两个向量夹角的关键是利用平移的方法使两个向量起点重合,作两个向量的夹角,按照“一作二证三算”的步骤求出.(2)特别地,a 与b 的夹角为θ,λ1a 与λ2b (λ1,λ2是非零常数)的夹角为θ0,当λ1λ2<0时,θ0=180°-θ;当λ1λ2>0时,θ0=θ. 知识点十七 两向量的数量积1.已知两个非零向量a ,b ,它们的夹角为θ,我们把数量|a |·|b |cos θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ. 规定:零向量与任一向量的数量积为0. 2.向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则(1)a ·e =e ·a =|a |cos θ. (2)a ⊥b ⇔a ·b =0.(3)当a ∥b 时,a ·b =⎩⎨⎧|a ||b |,a 与b 同向,-|a ||b |,a 与b 反向.特别地,a ·a =|a |2或|a |=a ·a . (4)|a ·b |≤|a |·|b |. (5)cos θ=a ·b|a ||b |. 注意点:(1)数量积运算中间是“·”,不能写成“×”,也不能省略不写.(2)向量的数量积是一个实数,不是向量,它的值可正、可负、可为0. (3)a ·b =0不能推出a 和b 中至少有一个零向量. (4)|a |=a ·a 是求向量的长度的工具. (5)沟通了向量运算与数量之间的关系. 反思感悟 定义法求平面向量的数量积若已知两向量的模及其夹角,则直接利用公式a ·b =|a |·|b |cos θ.运用此法计算数量积的关键是确定两个向量的夹角,条件是两向量的起点必须重合,否则,要通过平移使两向量符合以上条件. 知识点十八 投影向量1.如图,设a ,b 是两个非零向量,AB→=a ,CD →=b ,我们考虑如下的变换:过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1——→,我们称上述变换为向量a 向向量b 投影,A 1B 1——→叫做向量a 在向量b 上的投影向量.2.如图,在平面内任取一点O ,作OM→=a ,ON →=b ,过点M 作直线ON 的垂线,垂足为M 1,则OM 1→就是向量a 在向量b 上的投影向量.设与b 方向相同的单位向量为e ,a 与b 的夹角为θ,则OM 1→与e ,a ,θ之间的关系为OM 1→=|a |cos θe .注意点:(1)向量a 在向量b 上的投影向量是与向量b 平行的向量.(2)如果向量a 与向量b 平行或垂直,向量a 在向量b 上的投影向量具有特殊性. 反思感悟 任意的非零向量a 在另一非零向量b 上的投影向量等于|a |cos θe (θ为向量a ,b 的夹角,e 为与b 同向的单位向量).考法一 向量的加法运算【例1】(2021·重庆市大学城)向量()()AB MB BO BC OM ++++﹒化简后等于( )A.AMB.0C.0D.AC【练1】(2020·全国高一课时练习)化简. (1)AB CD BC DA +++.(2)()()AB MB BO BC OM ++++.考法二 向量的减法运算【例2】.(2020·全国高一课时练习)化简下列各式:①()AB CB CA --;②AB AC BD CD -+-;③OA OD AD -+;④NQ QP MN MP ++-.其中结果为0的个数是( )A .1B .2C .3D .4【练2】(2020·安徽滁州市))化简:AB CB CD ED AE -+--=( )A .0B .ABC .BAD .CA考法三 向量的数乘的运算【例3】(2020·全国高一课时练习)计算:(1)(3)4a -⨯;(2)3()2()a b a b a +---;(3)(23)(32)a b c a b c +---+.【练3】(2020·全国高一课时练习)化简:(1)5(32)4(23)a b b a -+-; (2)111(2)(32)()342a b a b a b -----;(3)()()x y a x y a +--.考法四 向量的共线定理【例4】(2020·全国高一课时练习)判断向量,a b 是否共线(其中1e ,2e 是两个非零不共线的向量):(1)113,9a e b e ==-; (2)121211,3223a e e b e e =-=-;(3)1212,33a e e b e e =-=+.【练4】(2021·全国)设12,e e 是两个不共线的向量,若向量()12a e e R λλ=+∈与()212b e e =--共线,则( ) A .λ=0B .λ=-1C .λ=-2D .λ=-12考法五 向量的数量积 【例5】(2020·全国高一)在ABC 中,5AB =,2BC =,60B ∠=︒,则AB BC ⋅的值为( )A .53B .5C .53-D .5-【练5】(2020·天水市第一中学高一期末)已知等边ABC 的边长为2,若3BC BE =,AD DC =,则BD AE ⋅等于( ) A .103 B .103- C .2 D .2-考法六 向量的夹角【例6】(2021·胶州市)已知2a b ==,()()22a b a b +⋅-=-,则a 与b 的夹角为_________.【练6】(2020·镇原中学高一期末)已知a b c ,,为单位向量,且满足370a b c λ++=,a 与b 的夹角为3π,则实数λ=_______________.考法七 向量的投影【例7】(2020·合肥市第六中学高一月考)已知向量,a b 的夹角为60︒,且2a b ==,则向量a b -在向量a 方向上的投影为( ).A .1B .2C .3D .4【练7】(2021·江西上饶市)若向量a 与b 满足()a b a +⊥,且1a =,2b =,则向量a 在b 方向上的投影为()A .3B .12-C .-1D .33考法八 向量的模长 【例8】(2020·河北邢台市·)已知1a =,3b =,且向量a 与b 的夹角为60︒,则2a b -=( )A .7B .3C .11D .19【练8】(2020·全国高一)已知平面向量a ,b 满足2a =,3b =,若a ,b 的夹角为120°,则3a b -=( )A .37B .33C .27D .3考法九 平面向量运算的综合运用【例9】(2020·湖北高一期末)已知两个非零向量a ,b 的夹角为23π,且=2a b -,则·a b 的取值范围是( )A .2,03⎛⎫- ⎪⎝⎭B .[)2,0-C .2,03⎡⎫-⎪⎢⎣⎭D .[)1,0-【练9】(2020·北京丰台区·高一期末)a ,b 是两个单位向量,则下列四个结论中正确的是( )A .a b =B .1a b ⋅=C .22a b ≠D .22||||a b =精讲答案【例1】【答案】D【解析】()()AB MB BO BC OM AB BO OM MB BC AO OM MB BC ++++=++++=+++ AM MB BC AB BC AC =++=+=, 故选D.【练1】【答案】(1)0;(2)AC .【解析】(1)0AB CD BC DA AB BC CD DA +++=+++=;【例2】【答案】D【解析】①()0AB CB CA AB BC CA AC CA --=++=+=;②()()0AB AC BD CD AB BD AC CD AD AD -+-=+-+=-=;③0OA OD AD DA AD -+=+=;④0NQ QP MN MP NP PN ++-=+=;以上各式化简后结果均为0,故选:D【练2】【答案】A【解析】AB CB CD ED AE -+--AB BC CD DE AE =+++-0AE AE =-=.故选:A . 【例3】【答案】(1)12a -;(2)5b ;(3)52a b c -+-.【解析】(1)原式(34)12a a =-⨯=-;(2)原式33225a b a b a b =+-+-=;(3)原式233252a b c a b c a b c =+--+-=-+-.【练3】【答案】(1)32a b -;(2)111123a b -+;(3)2ya . 【解析】(1)原式151081232a b b a a b =-+-=-;(2)原式123111111334222123a b a b a b a b =--+-+=-+; (3)原式2xa ya xa ya ya =+-+=.【例4】 【答案】(1)共线,(2)共线,(3)不共线.【解析】(1)∵113,9a e b e ==-,∴3b a =-,∴,a b 共线. (2)∵1211,23a e e =-12121132623b e e e e ⎛⎫=-=- ⎪⎝⎭,∴6b a =,∴,a b 共线. (3)假设()b a λλ=∈R ,则()121233e e e e λ+=-,∴12(3)(3)0e e λλ-++=.∵12,e e 不共线,∴30,30.λλ-=⎧⎨+=⎩此方程组无解.∴不存在实数λ,使得b a λ=,∴,a b 不共线.【练4】【答案】D【解析】由已知得存在实数k 使a kb =,即()12212e e k e e λ+=--,于是1=2k 且λ=-k ,解得λ=-12. 【例5】【答案】D【解析】5AB =,2BC =,60B ∠=︒,152cos 180601052AB BC .故选:D.【练5】【答案】D 【解析】等边△ABC 的边长为2,3BC BE =,AD DC =, ∴()12BD BA BC =+,1313A AB BE AB B E BC A C B =+=+=-, ∴()221111223233BD AE BA BC BC BA BC BA BC BA ⎛⎫⎛⎫+-=--⋅ ⎪ ⎪⎝=⎭⎝⎭, 112144222332⎛⎫=⨯⨯--⨯⨯⨯ ⎪⎝⎭,2=-.故选:D . 【例6】【答案】60︒ 【解析】根据已知条件(2)()2a b a b +⋅-=-,去括号得:222422cos 242a a b b θ+⋅-=+⨯⨯-⨯=-, 所以[]1cos 0π2θθ=∈,,,60θ︒∴=故答案为:60︒【练6】【答案】8λ=-或5λ=【解析】由370a b c λ++=,可得7(3)c a b λ=-+,则22224996b b c a a λλ=++⋅.由a b c ,,为单位向量,得2221a b c ===,则24996cos 3πλλ=++,即23400λλ+-=, 解得8λ=-或5λ=.【例7】【答案】A【解析】由题意,()226co 0s a b a a a b a a b ︒-⋅=-⋅=-⋅142222=-⨯⨯=, 所以向量a b -在向量a方向上的投影为()212a b a a -⋅==.故选:A. 【练7】【答案】B 【解析】利用向量垂直的充要条件有:()20a b a a a b +⋅=+⋅=,∴1a b ⋅=-,则向量a 在b 方向上的投影为12a b b ⋅=-,故选B. 【例8】【答案】A 【解析】因为1a =,3b =,a 与b 的夹角为60︒, 所以2224424697a a b b a b =-⋅+=-+=-,则27a b -=.故选:A.【练8】【答案】A 【解析】由题意得,223963618937a b a a b b -=-⋅+=++=,故选:A .【例9】【答案】C 【解析】因为2a b -=,所以 2224a a b b -⋅+=, 所以2222cos 43b b a a π-⋅+=,即224a a b b +⋅+=, 由基本不等式的性质可知,222a b a b +⋅,403a b ∴<⋅,所以212·cos ,0323a b a b a b π⎡⎫=⋅⋅=-⋅∈-⎪⎢⎣⎭.故选:C . 【练9】【答案】D【解析】A .,a b 可能方向不同,故错误; B .cos ,cos ,a b a b a b a b ⋅=⋅⋅<>=<>,两向量夹角未知,故错误; C .22221,1a a a a b b b b =⋅===⋅==,所以22a b =,故错误; D .由C 知221a b ==,故正确,故选:D.。
第6讲伟大的抗日战争一、侵华日军的罪行1.背景(1)日本①1927年召开的东方会议上确定了“征服满蒙”的武装侵略方针。
②1929~1933年世界性经济危机,使日本陷入极端困难的境地,企图发动对外战争以摆脱经济危机。
(2)中国:中国国民政府全力“围剿”红军,给日本以可乘之机。
2.概况(1)“九一八事变”:1931年9月18日日本制造九一八事变,中国东北沦陷。
(2)“卢沟桥事变”:1937年7月7日,日本发动卢沟桥事变,开始全面侵华。
(3)“八一三事变”:1937年8月13日,日军进攻上海。
(4)1938年10月,广州、武汉失守,中国失去了华北、华中和华南大片领土。
3.罪行(1)屠杀中国军民:如南京大屠杀等。
(2)公然违反国际公法,实施细菌战和毒气战。
(3)实行“以华制华”政策,扶植傀儡政权,并在沦陷区进行经济掠夺和推行奴化教育。
二、抗日民族统一战线建立1.九一八事变后,中国共产党立即发表宣言,号召“驱逐日本帝国主义出中国”。
2.1935年,中国共产党发表“八一宣言”,号召停止内战,一致抗日。
3.1935年12月,中共中央在瓦窑堡会议上确定了建立抗日民族统一战线的方针。
4.1936年西安事变的和平解决揭开了国共两党由内战到和平、由分裂到合作抗日的序幕,标志着抗日民族统一战线的初步建立。
5.八一三事变后,国民政府发表《自卫抗战声明书》;根据国共两党协议,中共将其所属部队改编为八路军和新四军。
6.1937年9月,国民党公布了中共中央提交的国共合作宣言,抗日民族统一战线正式建立。
它成为全民族抗战的旗帜。
三、国共合作抗日四、抗日战争的伟大胜利1.中共七大(1)时间:1945年春。
(2)内容:制定了当时党的任务,确立毛泽东思想为党的指导思想。
(3)意义:中共七大为争取抗日战争胜利和新民主主义革命在全国的胜利奠定了政治和思想基础。
2.促使日本投降的因素(1)1945年8月,美国先后在广岛、长崎投下两颗原子弹。
(2)苏联对日宣战,出兵中国东北,击溃日本精锐部队关东军。
激趣导入:同学们,忆及老师,三味书屋中“极方正、质朴、博学”的寿镜吾先生令童年鲁迅信服、敬畏,而在日本仙台医专留学时与藤野先生的交往,则如日后鲁迅在回忆中所说的:“在我所认为我师的之中,他是最使我感激,给我鼓励的一个。
”那么藤野先生是怎样的一个人?是什么让鲁迅这样深情感念呢?今天,我们将一起去感受这段难忘的经历,认识这位给鲁迅以鞭策的先生。
学习要点:一、重点1. 理解选取典型事例突出人物品质的写法。
2. 品评重点句段,领会思想感情。
二、难点联系背景解读本文的主旨,思考和感悟人生意义。
整体感知:一、写作背景这篇散文记叙了作者1902年至1906年在日本留学的生活片断。
写作时间则是在离别藤野的二十余年后的1926年10月12日。
鲁迅到日本,最初,“梦很美满,预备毕业回来,救治像我父亲似的被误的病人的疾苦,战争时候便去当军医,一面又促进了国人对于维新的信仰”,仙台医专学医时,观看反映日俄战争的影片中神情麻木的中国人给鲁迅以很大刺激,促进了他弃医从文的思想转变,决心用文艺作为武器进行战斗,唤醒国民灵魂。
写作此文时,正当“三•一八”惨案发生后,鲁迅积极支持爱国青年学生的正义行动,与反动军阀以及反动文人进行斗争,用战斗的文章抨击“正人君子”的迫害,抒发强烈的爱国主义情感。
二、结构梳理文章是按事情发展的先后顺序来组织典型材料的,按照时间和地点的转移可以分成三部分: (一)见藤野之前(1-3)(在东京)(1)往仙台、初到仙台(4-5)相识(6-10)(二)相识、相处、离别 (2)(在仙台)(4-35) 相处(11-23)匿名信事件 (3)离别(24-35) 看电影惜别(三)对藤野的怀念(36-38) 藤野先生 明线: 与先生的交往 暗线: 作者爱国情感 形 散 而 神 不 散课文精析:一、分析典型事件,概括人物形象。
1. 初识藤野先生作者初到仙台时,目睹耳闻的藤野先生是一个什么样的人?(浏览6—10段,找出有关描写人物外貌、语言等方面的语句。
第6章机械运动考点·梳理考点1 运动的描述1、机械运动:一个物体相对于另一个物体位置的变化,叫做机械运动。
2、运动和静止的相对性:参照物:在研究一个物体是运动还是静止时,必须选择一个假定不动的物体作为标准,这个被选作标准的物体叫做参照物。
运动和静止的相对性:一个物体是运动还是静止取决于所选的参照物。
考点2 运动的快慢1、物理意义:速度是表示物体运动快慢的物理量。
2、定义:速度等于运动物体在单位时间内所通过的路程的多少。
3、公式:v =st ,公式中的s 表示路程,t 表示时间,v 表示速度。
4、单位:国际单位:m/s,常用单位:km/h,1 m/s =3.6 km/h 。
5、在匀速直线运动中,物体的速度是一个恒定不变的量,与通过的路程和所用时间无关。
6、平均速度:平均速度用来描述做变速直线运动的物体的平均运动快慢,它的大小等于运动物体通过的路程与通过该段路程所用时间之比,即v =st ,式中s 表示总路程,t 表示总时间。
平均速度的大小与物体通过的路程及所用的时间有关。
平均速度只是大体上反映物体在一段路程中或一段时间内的平均快慢情况。
考点3 长度和时间的测量1、长度的单位:长度的国际单位是米(m),常用单位还有千米(km)、分米(dm)、厘米(cm)、毫米(mm)、微米(μm)、纳米(nm)等,它们之间的换算关系是:1 km =103m 1 dm =10-1m 1 cm =10-2m 1 mm =10-3m 1 μm=10-6m 1 nm =10-9m2、正确使用刻度尺(1)使用刻度尺前,应观察:零刻度线是否磨损;刻度尺的量程;刻度尺的分度值。
(2)正确使用刻度尺使用刻度尺测量长度时:①刻度尺必须与被测线平行,不能歪斜;②刻度尺的刻度线要紧贴被测物体;③零刻度线磨损了的刻度尺,可以从其他刻度线测起; ④读数时,视线应与尺面垂直;正确记录测量结果:测量结果包括数值和单位。
3、误差;测量值与真实值之间的差异叫误差。
2012学年9年级英语秋季培训讲义六听力部分(25分)一、听短对话,回答问题(共5小题,计5分)听下面5段对话。
每段对话后有一个小题。
从题中所给的A、B、C三个选项中选出最佳选项,并标在试题的相应位置。
听完每段对话后,你都有时间10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. When does the train leave?A. At 6:15.B. At 6:25.C. At 6:50.2. What’s the probable relationship between the two speakers?A. Teacher and student.B. Friends.C. Mother and son.3. Where are they talking now?A. At a concert.B. At a flower shop.C. At a restaurant.4. What does Bill think of the novel?A. He likes it very much.B. He can’t stand it.C. He doesn’t mind it.5. What are the two speakers talking about?A. A basketball player.B. A basketball team.C. A basketball match.二、听较长对话,回答问题(共6小题,计12分)听下面一段对话,回答第6至第8三个小题。
现在,你有15秒钟的时间阅读这三个小题。
6. Who will come to the English classes?A. A foreign lady.B. The man’s friend .C. The woman’s sister.7. Why does the foreign lady come?A. To see what life is like in China.B. To see what Peter’s life is like.C. To see what life is like in Canada.8. Where is Peter from?A. China.B. Canada.C. Australia.听下面一段对话,回答第9至第11三个小题。
现在,你有15秒钟的时间阅读这三题。
9. What may the watch look like in May?A. B. C.10. What’s the date today?A. April 30th.B. May 1st.C. May 2nd.11. Where was the watch bought?A. On the Internet.B. In London.C. At a gift shop near her school.三、听独白,回答问题(共4小题,计8分)听下面一段独白,并按要求在试卷上完成任务,你可以边听边完成任务。
然后你会看到4个问题和相关的选项。
请从每个问题A、B、C三个选项中选出最佳选项。
听独白前,你有20秒钟的时间阅读有关材料和4个小题。
听完独白后,你有20秒钟的时间来选择有关选项。
独白连读两遍。
12. How many things do we need to do this experiment?A. Three.B. Four.C. Five.13. How do we hold the glass?A. B. C.14. What will happen after we take our hand off?A. The cardboard will be cut into two pieces.B. The glass will be broken.C. The water will still be in the glass.15. What does the experiment tell us?A. Glasses are strong enough to hold the water inside.B. It is the air that holds the water in the glass.C. It ’s important to keep our hand on the cardboard.笔试部分(95分)四、单项填空从A 、B 、C 、D 中,选出可以填入空白处的最佳答案。
1.Jack bought _____useful book. ____ Book is also very interesting.A. an, TheB. a, TheC. an , AD. an , A2. ----_________do you improve your listening?----I improve it ______ listening to tapes.A. How; with B: What; with C: How; by D. What; by3. Chatting online for a long time is .I am _____.A .bored ;boringB .bored ;boredC boring ;boringD .boring ;bored4.The English party began an English song and a piece of well- known piano music .A .with ;ended upB .for ;ended upC for ;ended up withD .with ;ended up with5. ------I didn't pass the math test .I think I have spent too much time playing computer games recently .------- I agree .You _play like that any more .A .needn'tB .mustn’tC .may not D. wouldn’t6. ---Look! It __ be Mr. Zhang.---No, it __ be Mr. Zhang. He has gone to Paris.A. may, mustn’tB. must, mayC. must, can’tD. can. May not7. Is Jim used his homework at home? Yes, he is.A. to doB. to doingC. doingD. did8.For physical exercises ,I prefer mountain-climbing rather than ____a walkA. to go, takeB. to go, go to takeC. going, takingD. to going, taking9. ----- Jim has finished the composition .---- ._______A .So does MaryB .Mary does so C. So has Mary , D .Mary has so10.If he _with us ,we _be happier .A is ;will B. is ;would C. was ;will D. were ;would11. -----What’s behind the d oor?----There must be a dog _ __ behind it.A. to sitB. sitC. satD. sitting12.We’re going to have__ holiday next month..A. two monthB. two-monthC. a two month’sD. a two-month13. ----Who taught ___ French?-----Nobody. She learned all by___ .A. herself, herB. she, herselfC. her, herselfD. her, she14. They’re hardly ever tired, ______ they?A. areB. aren’tC. won’tD. will15. He walked ____ fast for us _____catch up with.A. so thatB. such, thatC. enough, toD. too, to16. We ___ to close the windows before we left the lab.A.tell B.told C.are told D.were told17. -----People find it hard to get across the river.-----I think at least two bridges over it.A. needB. are needed.C. are needingD. will need18. The red rose is the only one I really like.A. whichB. whoC. thatD. what19. What’s the name of the program________.A. which are listeningB. you are listening toC. to that you are listeningD. that you are listening20. We live in a town Na Si.A. callingB. which calledC. is calledD. called五、完形填空There was a woman in Detroit, who had two sons. She was worried about them, especially the younger one, Ben, because he was not doing well in school. Boys in his class played jokes on him because he seemed so 21 . The mother 22 that she would help her sons to do 23 in school by herself. She told them to go to the Detroit Public Library to 24 a book a week and do a book report for her.One day, in Ben’s class, the teacher held up a rock and asked 25 anyone knew it. Ben put up his hand and the teacher let him 26 . “Why did Ben raise his hand?” all of his 27 whispered(耳语) and wondered. “He 28 said anything. What could he possibly want to say?” To their surprise, Ben not only 29 the rock, but also said a lot about it. He 30 other rocks in its group and even knew 31 the teacher had found it. The teacher and the other students were 32 . Ben had learned this from doing one of his book 33 .Later Ben became the 34 student of his class. When he finished high school, he went to Yale University and 35 became one of the best doctors in the United States.21. A. clever B. difficult C. slow D. quick22. A. seemed B. decided C. wondered D. told23. A. well B. bad C. right D. good24. A. see B. find C. read D. buy25. A. that B. if C. how D. why26. A. think B. leave C. ask D. answer27. A. classmates B. students C. teachers D. friends28. A. always B. ever C. sometimes D. never29. A. found B. played C. knew D. heard30. A. said B. told C. called D. named31. A. whether B. what C. where D. why32. A. afraid B. amazed C. worried D. unhappy33. A. pictures B. exercises C. shops D. reports34. A. top B. slow C. low D. rich35. A. at first B. at the end C. at last D. now六、阅读理解第一节:阅读下面短文,从每题所给的A、B、C、D四个选项中选出最佳选项。