2 知识表示和推理
- 格式:ppt
- 大小:642.50 KB
- 文档页数:72
人工智能中的知识推理与推理机制人工智能(Artificial Intelligence,AI)是一门致力于使计算机能够模拟和执行人类智力活动的科学与技术。
知识推理是AI领域中的一个重要研究方向,旨在让计算机能够从已有的知识中进行推理,以获得新的知识或解决问题。
本文将从知识推理的定义、推理机制的分类、应用实例以及未来发展趋势等方面进行探讨。
一、知识推理的定义知识推理是指从已有的知识中进行推理,以推断出新的知识或解决问题的过程。
在人工智能领域,知识可以用规则、约束、知识库等形式进行表示和存储,而知识推理则是基于这些表示形式进行的。
知识推理主要包括两方面的内容:一是推理机制,即通过对已有知识的运算和推导,从中得出新的知识或解决问题;二是知识表示和存储,即如何将现实世界的知识用计算机可以理解的方式进行表示和存储。
二、推理机制的分类推理机制是指人工智能系统利用已有的知识进行推理的方法和策略。
根据不同的推理方式和目标,推理机制可以分为以下几类:1. 逻辑推理逻辑推理是一种基于形式逻辑和命题演算的推理方法,主要通过推理规则和命题之间的逻辑关系进行推导。
逻辑推理通常使用形式化的逻辑系统,如谓词逻辑、一阶逻辑等。
2. 归纳推理归纳推理是基于已有事实和观察结果,从中发现一般规律或者范例,并推断出新的结论。
它通过从特殊到一般的逻辑关系进行推导,可以帮助系统从已有的具体实例中抽象出一般的规则和知识。
3. 演绎推理演绎推理是基于已有的一般规则或定理,通过逻辑关系的推导和运算,推导出特定的结论。
演绎推理通常使用推理规则和推理机制,从一般规则到特殊情况的推导。
4. 概率推理概率推理是基于不确定性和概率的推理方法,主要通过概率理论和统计学方法进行推导。
它可以帮助系统在面对不确定性和不完全信息的情况下,进行推理和决策。
5. 模糊推理模糊推理是基于模糊逻辑和模糊集合理论的推理方法,主要用于处理模糊信息和模糊关系。
模糊推理可以帮助系统在处理不精确和不确定性的知识和数据时,进行推理和决策。
人工智能中的知识表示与推理人工智能(Artificial Intelligence,AI)已经成为当今科技领域的热门话题,它迅速改变着我们的生活方式和工作方式。
而在AI的核心技术中,知识表示与推理是至关重要的一环。
本文将探讨人工智能中的知识表示与推理,以及它们在实际应用中的意义和挑战。
一、知识表示知识表示是指将知识以适合计算机理解和处理的形式进行表达。
在人工智能中,常用的知识表示方式有以下几种。
1.符号逻辑表示符号逻辑是指用逻辑符号和规则来表示和处理知识的方法。
它将事物和关系抽象成逻辑符号,通过逻辑推理来达成目的。
例如,利用一阶谓词逻辑可以表示“所有猫都喜欢鱼”,然后通过推理得出“Tom是猫,所以Tom喜欢鱼”。
2.网络表示网络表示使用图结构来表示和处理知识。
图的节点代表事物,边代表事物之间的关系。
例如,使用有向图可以表示“Tom是Jerry的朋友”,节点Tom指向节点Jerry,表示Tom是Jerry的朋友。
3.语义网络表示语义网络是一种特殊的网络表示方法,它将知识以概念和关系的形式进行表达。
概念节点代表事物,关系边代表事物之间的关系。
例如,利用语义网络可以表示“猫是哺乳动物”,节点猫和节点哺乳动物通过关系边连接。
二、推理推理是指根据已知的事实和规则,通过逻辑推导得出新的结论或解决问题的过程。
在人工智能中,常用的推理方法有以下几种。
1.前向推理前向推理是从已知的事实出发,应用规则和逻辑推理,逐步推导得出结论的过程。
它从已知事实出发,逐级扩展,直到无法再得到新结论为止。
2.后向推理后向推理是从目标出发,逐步向前推导,找出能够满足目标的事实和规则。
它逆向推理,直到得到满足目标的结论或无法再向前推导。
3.不确定推理不确定推理是指在处理不完全或不准确的信息时,通过概率推断得到结论的方法。
它可以用于处理模糊、不确定的情况,通过概率模型计算出结论的概率。
三、知识表示与推理的应用知识表示与推理在人工智能的各个领域都有广泛的应用,下面以几个典型的应用为例进行介绍。
人工智能的研究内容人工智能的研究内容人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及范围极广。
人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。
1)知识表示是人工智能的基本问题之一,推理和搜索都与表示方法密切相关。
常用的知识表示方法有:逻辑表示法、产生式表示法、语义网络表示法和框架表示法等。
2)常识,自然为人们所关注,已提出多种方法,如非单调推理、定性推理就是从不同角度来表达常识和处理常识的。
3)问题求解中的自动推理是知识的使用过程,由于有多种知识表示方法,相应地有多种推理方法。
推理过程一般可分为演绎推理和非演绎推理。
谓词逻辑是演绎推理的基础。
结构化表示下的继承性能推理是非演绎性的。
由于知识处理的需要,近几年来提出了多种非演泽的推理方法,如连接机制推理、类比推理、基于示例的推理、反绎推理和受限推理等。
4)搜索是人工智能的一种问题求解方法,搜索策略决定着问题求解的一个推理步骤中知识被使用的优先关系。
可分为无信息导引的盲目搜索和利用经验知识导引的启发式搜索。
启发式知识常由启发式函数来表示,启发式知识利用得越充分,求解问题的搜索空间就越小。
典型的启发式搜索方法有A*、AO*算法等。
近几年搜索方法研究开始注意那些具有百万节点的超大规模的搜索问题。
5)机器学习是人工智能的另一重要课题。
机器学习是指在一定的知识表示意义下获取新知识的过程,按照学习机制的不同,主要有归纳学习、分析学习、连接机制学习和遗传学习等。
6)知识处理系统主要由知识库和推理机组成。
知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。
推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。
如果在知识库中存储的是某一领域(如医疗诊断)的专家知识,则这样的知识系统称为专家系统。
“知识表示与知识推理”知识体的教学设计知识表示与知识推理是智能信息处理的基础。
从人工智能的角度看,知识是构成智能的基础,人类的智能行为依赖于利用已有的知识进行分析、猜测、判断和预测等。
当人们希望计算机具有智能行为时,首先需要在计算机上表达人类的知识,然后再告诉计算机如何像人一样地利用这些知识。
自从人工智能领域诞生以来,知识表示与知识推理就一直是其中最为重要的子领域。
经过五十多年的发展,知识表示与知识推理领域的许多研究内容、研究方法和研究成果已经深深渗入到计算机科学,进而对计算机学科的发展产生了深远的影响。
例如,在C++、Java等面向对象程序设计语言中,“继承”这一最为核心的技术就来源于知识表示与知识推理。
再如,在软件自动化领域,许多程序规格语言和程序验证技术都借鉴了知识表示与知识推理领域的Prolog语言等研究成果。
从工程开发的角度看,专家系统、智能搜索引擎、智能控制系统、智能诊断系统、自动规划系统等具有所谓智能特征的系统都或多或少地依赖于知识表示与知识推理技术。
因此,对于计算机专业的学生来说,学习知识表示与知识推理方面的课程,对于今后在相关领域从事系统开发和科学研究都大有裨益。
在ACM与IEEE-CS联合攻关组制订的计算教程CC2001(Computing Curricula 2001)中,知识表示与知识推理得到了高度重视。
CC2001给出的计算机科学知识体由14个知识领域组成:在其中的IS(Intelligent Systems)知识领域中,关于知识表示与知识推理的内容占据了10个知识单元中的2个,即知识单元“(Is3)知识表示与推理”以及知识单元“(IS5)高级知识表示与推理”。
在ACM和IEEE-CS 进一步修订后的计算机科学教程CS2008(Computer Science Curriculum 2008)中,知识表示与知识推理同样得到了高度重视。
此外,在我国高等学校计算机科学与技术教学指导委员会制定的计算机专业规范中,上述的IS3和IS5两个知识单元被全部包括到计算机科学专业的核心课程“人工智能”中。
第二部分 知识表示方法问题求解(Problem solving)涉及许多研究领域,但知识表示是其三大基本功能之一。
本章主要讨论几中基本的知识表示方法技术,如状态空间表示法、问题归约法、谓词逻辑法、语义网络法等方法。
2-1状态(state)空间表示法2-1-1 问题Q 的状态描述State:为描述某类不同事物间差异而引入的一组变量n q q q ,...,,10之有序集合。
即T n q q q Q ],...,[10=,其中,i q 表示状态分量或状态变量。
T nk k k k q q q Q ],...,[10=表示Q 的每一元素都赋予一个值之后的某种状态。
(1) 操作符/算符:是问题从一种状态变迁到另外一种状态的过程或手段。
如走步、过程、规则、算子、逻辑运算符号等。
(2) 问题状态空间:表示问题全部可能状态及其关系的图。
其构成由三部分构成(如图所示)(3) 15数码难题(15 puzzle problem )Source et T arg 需要解决的问题如下: ① 问题的状态描述方法 ② 问题的初始状态描述 ③ 问题的目标状态描述④ 问题描述状态转换的操作算子及其对状态描述的作用 ⑤ 两种状态的比较原始问题描述:每次移动一步,只能移动跟空格相邻的数字单元。
是否能从状态1变成状态2?(S, F, G)2-1-2 问题的状态图示法(1)基本概念(2)能够表示的问题① 求解问题状态图中指定节点s(初始状态)与另一节点t (目标状态)之间的一条路径(或所有路径)。
② 求节点s与节点集合}{i t 中任一个节点之间的距离(最小距离,最大距离等)。
③ 求节点集合}{i s 中任一个节点与节点集合}{i t 中任一个节点之间的路径。
2-1-3 状态空间表示举例(从要解决的五个基本问题分析)例1 十五数码问题(表示如图2-1,可用矩阵形式表示)图 2-1 十五数码难题的部分状态图表示状态图:由若干(不一定是有限)节点的集合构成(有向图或无向图)。
知识图谱技术的知识表示与推理研究近年来,人工智能技术日新月异,其中一项技术备受关注,那便是知识图谱。
知识图谱是一种基于语义的图形化数据库,用于描述、组织和存储实体及它们之间的关系。
而知识图谱的核心就是知识表示和推理。
接下来,本文将探讨知识图谱技术的知识表示与推理研究。
一、知识表示知识图谱的知识表示是指如何将实体及其关系转化为可被机器理解和处理的形式。
这个过程中最重要的部分是实体和关系的定义和分类。
知识表示主要分为三种形式:本体论、语义网和逻辑表示。
本体论是一种用于描述实体及其关系的形式,它对象是“概念”。
本体论通常由三个部分组成:概念、属性和关系。
其中概念用于描述实体所属的类别,例如“动物”和“朋友”;属性用于描述实体的特征,例如“有四条腿”和“善良”;关系用于描述实体与实体之间相互作用的方式,例如“狗是动物的一种”和“亲戚关系”。
语义网是一种基于本体论的语义Web,它用于描述Web上的文本和图像,以及图像和文本之间的关系。
语义网的三个核心技术是RDF、OWL和SPARQL。
其中,RDF是一种用于描述数据的格式,它可以表示实体和关系之间的关联;OWL是一种用于描述知识的语言,它通过语法定义该知识的含义;SPARQL是一种查询语言,它可以被用来检索和处理语义Web上的数据。
逻辑表示是一种用于描述规则和关系的形式,它将实体和关系转化为逻辑符号,以便能够被计算机理解和处理。
逻辑表示通常包括谓词逻辑、默认逻辑和模型论。
二、知识推理知识推理是指利用知识图谱中的知识来生成新的知识或者评估已有的知识。
知识推理是知识图谱的核心部分,其目的是发现知识之间的相互关系以及知识本身的内在性质和规律。
传统的推理方法是基于规则的推理。
这种方法依赖于预定义的规则,利用推理引擎将数据与规则进行匹配,从而生成新的知识。
但随着知识的增加,规则数量会急剧增加,这种方法变得越来越不可行。
现在广泛采用的是基于语义的推理方法,它们通常是基于本体论和逻辑表示的推理。