不同合成方法对羟基磷灰石晶须形貌和性能的影响
- 格式:pdf
- 大小:333.96 KB
- 文档页数:5
羟基磷灰石研究进展摘要:由于羟基磷灰石( HA) 不但与人体骨骼晶体成分和结构基本一致,而且其生物相容性、界面生物活性均优于医用钛、硅橡胶及植骨用碳材料等植入医用材料,另外有极好骨传导性和与骨结合的能力, 无毒副作用, 无致癌作用,所以被广泛用作硬组织修复材料和骨填充材料的生理支架以及疾病、意外事故中的骨修复材料。
同时,羟基磷灰石具有良好的生物活性,具有特殊的晶体化学特点,是较好的生物材料,被广泛应用于骨组织的修复与替代技术.目前,羟基磷灰石涂层的制备方法有等离子喷涂法、激光熔覆法、电结晶液相沉积法、溶胶-凝胶法等。
对于制备要求较高、具有表面活性的吸附材料羟基磷灰石而言,溶胶- 凝胶法是较为合适的方法,本文羟基磷灰石涂层进行了研究。
主要从羟基磷灰石的合成制备,复合材料涂层种类及HA涂层影响因素,应用等方面对羟基磷灰石进行介绍,并对其进行研究展望。
关键词:羟基磷灰石制备复合材料涂层研究进展前言羟基磷灰石是一种磷酸钙生物陶瓷, 与人体自然骨和牙齿等硬组织中的无机质在化学成分和晶体结构上具有相似性,是一类重要的骨修复材料,分子式为Ca10 ( PO4) 6 ( OH ) 2 , 简写为HA 或HAP,Ca/ P 物质的量比理论值为1. 67, 属磷酸钙陶瓷中的一种生物活性材料。
从分子结构( 如图1) 可以看出, 它易与周围液体发生离子交换。
HA 属六方晶系, 空间群为P63/m。
其结构为六角柱体, 与c轴垂直的面是一个六边形, a、b 轴的夹角为120 °, 晶胞常数a= b= 9. 324 A , c= 6. 881A 。
单位晶胞含有10 个[ Ca]2+、6个[ PO4]3-和2个[ OH]-, 这样的结构和组成使得H A 具有较好的稳定性。
磷灰石是自然界广泛分布的磷酸钙盐矿物,根据其结构通道中存在的阴离子的种类,可分为氟-、氯-、羟磷灰石等不同亚种矿物。
其中,羟基磷灰石(hydroxyapatite,缩写为HA或HAp)的研究和应用最广泛。
羟基磷灰石的制备及其性能研究
羟基磷灰石(HAP)具有特有的吸附结构和独特的多吸附位点,有望在处理有毒有害废水和受污染土壤等方面获得应用。
本论文采用水热合成法合成了5种羟基磷灰石并比较了各类羟基磷灰石吸附氟离子的效果,得到如下主要结果:1.采用水热合成法制备了一系列羟基磷灰石样品,研究了合成相关的影响因素,结果表明水热合成法的最佳温度为120℃,最佳pH为9,获得氟、钾、镁、镁钾共掺羟基磷灰石多个样品,不同的掺杂物对羟基磷灰石的晶型结构造成了不同程度的畸变;2.优化了吸附工艺条件,上述样品对氟离子吸附过程中25℃时吸附达到最大,吸附平衡的时间2小时,羟基磷灰石最佳加量为10g/L,F-离子的初始浓度为
5Omg/L,酸碱度为近中性;3.对比分析了5个不同类型羟基磷灰石样品的氟离子吸附性能,镁钾共掺的羟基磷灰石样品具有较好的氟离子吸附性能,8小时氟离
子吸附量高达480mg/g。
从动力学和热力学方面探究了其吸附机理,羟基磷灰石对氟离子的吸附符合拟二级反应动力学过程和Freundlich吸附等温方程,该吸附是一个吸热过程,氟吸附在羟基磷灰石表面使得羟基磷灰石发生了结构的变化,整个体系的混乱度增加。
羟基磷灰石陶瓷合成及其力学性能研究羟基磷灰石陶瓷具有独特的生物活性和生物相容性,是一种重要的生物医用材料,在人工骨和牙科修复领域得到广泛应用。
羟基磷灰石陶瓷的制备方法主要有:热压法、交联法、离子交换法、水热法和溶胶凝胶法等。
而本文主要介绍溶胶凝胶法的制备方法和其力学性能研究。
一、溶胶凝胶法的制备方法溶胶凝胶法主要有两种方法,分别是高温固相烧结和低温液相烧结。
在高温固相烧结方法中,首先将羟基磷灰石前驱体混合于正火粉和细铝粉中,进行球磨混合,然后压制成桦木坯,坯体经过退火后形成陶瓷体。
这种方法制备的羟基磷灰石陶瓷具有较高的机械性能和较少的孔隙度,但是制备时间较长且工艺复杂。
在低温液相烧结方法中,羟基磷灰石前驱体采用水热法和溶胶凝胶法制备,然后在较低的温度下进行烧结,羟基磷灰石晶体在氧化镁和碳酸钙等配体的作用下,制备出具有较好性能的羟基磷灰石陶瓷。
本文采用溶胶凝胶法进行羟基磷灰石陶瓷的制备,具体步骤如下:1.溶胶制备:将磷酸氢二铵(NH4H2PO4)和三乙酸钇(Y(OC2H5)3)分别加入去离子水中,边搅拌边加入氨水(NH3·H2O),搅拌至物料完全溶解,形成透明液体。
2.凝胶制备:将前驱体溶液经浓缩浓缩、干燥,得到白色粉末样品,再放入500℃-800℃的炉子内,在氧气气氛下进行2-3h的热处理,样品即完成。
二、羟基磷灰石陶瓷力学性能的研究1.悬臂梁法悬臂梁法是一种常用的力学测试方法,可以测试材料的弯曲强度和断裂韧性指标。
将制备好的羟基磷灰石陶瓷样本固定在支架上,并加上相应的荷重,记录下力-位移曲线,然后根据荷重和支距计算出弯曲强度以及断裂韧性指标。
2.压缩测试压缩测试是一种常用的力学测试方法,可以测试材料的压缩强度和压缩模量等指标。
将制备好的羟基磷灰石陶瓷样本放入压缩机中,并施加相应的载荷,记录下荷载和位移之间的关系,然后计算出相应的强度和模量等指标。
3.人工骨植入试验将制备好的羟基磷灰石陶瓷样本植入到动物体内,进行人工骨植入试验,观察材料在体内的生物相容性和生物活性。
羟基磷灰石的制备及应用研究羟基磷灰石是目前应用最广泛的生物材料之一。
因其良好的生物相容性和生物活性,在骨科和牙科领域得到了广泛的应用。
本文将就羟基磷灰石的制备及应用进行研究和探讨。
1.羟基磷灰石的制备羟基磷灰石的制备主要有湿法合成和干法合成两种方法。
其中湿法合成又包括共沉淀法、溶胶-凝胶法、水热法等几种方法。
而干法合成主要有高能球磨法等方法。
1.1 湿法合成共沉淀法:羟基磷灰石的共沉淀法制备过程中利用钙、磷两个离子在一定条件下共沉淀作用,形成了羟基磷灰石。
共沉淀法具有制备工艺简单,反应速度快等优点。
但是其产品具有较大的晶体粒径和不稳定等缺陷。
溶胶-凝胶法:在溶胶-凝胶法制备羟基磷灰石过程中,通过到达成熟态的化学缓慢水解发生反应,羟基磷灰石在凝胶中形成。
该方法得到的羟基磷灰石晶体粒度分布小,晶体形态好,内部结构均匀致密等优点。
但是该方法的制备过程复杂,且需要较长时间,成本较高。
水热法:在水热法制备羟基磷灰石过程中,通过水热反应来形成羟基磷灰石。
该方法具有制备工艺简单等优点。
但是制备效率较低且羟基磷灰石的结晶度较低,易形成杂多晶和非晶态。
1.2 干法合成高能球磨法:在高能球磨法制备羟基磷灰石过程中,通过高能钨钢球的强制研磨来形成羟基磷灰石。
该方法具有制备简单,易于大规模生产等优点。
但是制备过程中需要严格控制球的大小,否则会影响羟基磷灰石的晶体粒度和分布。
2.羟基磷灰石的应用2.1 骨科领域羟基磷灰石可作为一种生物陶瓷,应用于骨科领域。
其良好的生物相容性和生物活性使得其能够与人体骨组织相容性良好。
在人工骨替代和组织修复中,羟基磷灰石能够促进骨细胞的生长和分化,提高骨修复的质量。
2.2 牙科领域在牙科领域,磷酸羟基磷灰石可以用于制备牙科修补材料,其生物相容性好,与人体牙齿组织具有相似的化学成分和物理性质。
磷酸羟基磷灰石的应用还可以提高口腔修复质量。
3.羟基磷灰石的未来展望随着骨科和牙科行业的飞快发展,羟基磷灰石的应用范围也在不断扩大。
羟基磷灰石的制备及应用研究羟基磷灰石是一种生物医用材料,具有良好的生物相容性和生物活性。
在牙科、骨科、普外科等领域被广泛应用,特别是在人造骨修复方面发挥着重要作用。
1. 羟基磷灰石的制备方法羟基磷灰石的制备方法有多种,其中包括化学合成、水热法、共沉淀法等。
其中,共沉淀法是目前最为常用的制备方法之一。
共沉淀法是通过将含有Ca2+和PO4^3-的化合物,如CaCl2和Na2HPO4混合在一起,并在水中搅拌,使其形成沉淀。
沉淀经过干燥和高温煅烧,即可得到羟基磷灰石。
通过调节反应条件,如pH值、反应温度和时间等参数,可以得到不同形态和性质的羟基磷灰石。
2. 羟基磷灰石的应用研究羟基磷灰石的应用研究主要集中在生物医用材料领域。
它具有良好的生物相容性和生物活性,可以与组织细胞良好地结合,促进骨组织的生长和再生。
在牙科领域中,羟基磷灰石被广泛应用于牙髓炎和牙根被破坏的治疗中。
在骨科领域中,羟基磷灰石则被用于骨修复和骨再生。
在普外科领域中,羟基磷灰石则被用于人造关节的制作,以及其他重大手术中的骨缺损修复。
不仅如此,羟基磷灰石还可以通过表面修饰、掺杂和复合等方法,来改善其性能和功能,例如提高降解速率、增强力学性能、抗菌、降解药物等。
这些方法均可以扩展羟基磷灰石的应用范围和提高其性能,推动其在生物医用材料领域的进一步发展。
3. 羟基磷灰石的发展前景近年来,随着医疗技术的发展和人们健康意识的提高,生物医用材料的需求量越来越大。
而作为一种重要的生物医用材料,羟基磷灰石将在未来得到进一步的应用和发展。
未来,羟基磷灰石的发展将更加注重材料的智能化、定制化和可持续发展。
通过纳米材料、生物材料等新技术的应用,将实现羟基磷灰石在组织工程、医学影像等领域的广泛应用。
同时,在病理诊断与治疗中更广泛地运用,例如在肿瘤的预防、诊断和治疗中的应用,将会取得更为广泛和重要的应用和发展。
总之,羟基磷灰石是一种生物医用材料,具有广泛的应用前景和发展空间。
羟磷灰石的制备及其应用研究羟磷灰石是一种重要的生物无机材料,具有良好的生物相容性、生物活性和生物降解性,是维持骨组织生长和修复的重要成分。
本文将从制备和应用两方面重点阐述羟磷灰石的研究进展。
一、羟磷灰石的制备羟磷灰石是由磷酸盐和氢氧化物共析合成,常见的制备方法是水热法、共析合成法、溶胶-凝胶法和生物模仿法等。
1、水热法水热法制备羟磷灰石的过程是通过水热反应使氢氧化物与磷酸盐溶液反应生成羟磷灰石。
其优点为制备过程简单、反应短时间、成本低廉,但存在反应条件严格、生成晶体大小难以控制等缺陷。
2、共析合成法共析合成法是将磷酸盐和氢氧化物混合,然后在一定的条件下进行共析反应,最终生成羟磷灰石。
该方法简单快捷,且生成的羟磷灰石结晶质量高,但存在缺点是反应物质易发生酸碱反应导致结晶不纯。
3、溶胶-凝胶法溶胶-凝胶法是将溶液中的羟基磷灰石物质分散到溶液中形成凝胶,再经过干燥和热处理等步骤形成羟基磷灰石固体。
该方法成本低廉、结晶质量高,但生成的固体存在微晶杂质的问题。
4、生物模仿法生物模仿法是将天然骨组织中的磷酸盐、氢氧化物、蛋白质等物质与人造体液混合,在一定条件下形成羟基磷灰石。
该方法能生成与天然骨组织类似的材料,但操作难度大、成本高。
二、羟磷灰石的应用羟磷灰石作为生物医用材料,在医学领域有着广泛的应用,包括骨组织修复、牙科领域的修复和种植、生物工程领域的细胞培养和基因工程载体等。
1、骨组织修复羟磷灰石可作为骨髓、骨折修复、植骨和填充骨缺损等方面的生物替代材料,具有良好的生物降解性和生物相容性,可促进骨细胞的增殖和骨修复。
2、牙科领域的修复和种植羟磷灰石可用于根管修复和牙齿移植等领域,具有良好的生物相容性和匹配性,可防止牙齿移植后的异常反应和排异现象。
3、生物工程领域的细胞培养和基因工程载体羟磷灰石可作为细胞培养和基因工程载体等领域的材料,具有良好的生物相容性和细胞黏附性,可促进细胞的生长和增殖,并将基因载体稳定地转移到宿主细胞中。
羟基磷灰石材料的合成及应用羟基磷灰石材料是生物医学领域中非常常见的一种生物陶瓷材料,广泛应用于植入性医学器材和骨子结构修复、组织工程等方面。
本文将介绍羟基磷灰石材料的合成方法及其应用。
1. 羟基磷灰石材料的合成羟基磷灰石材料可通过多种方法进行制备,主要有化学共沉淀法、溶胶-凝胶法、水热法和高温固相合成法等。
其中,化学共沉淀法和溶胶-凝胶法是比较常用的两种方法。
1.1 化学共沉淀法在化学共沉淀法中,将钙离子和磷酸离子以一定的比例混合,加入一定量的氢氧化钠,反应完毕后,产生的固体沉淀物即为羟基磷灰石的前体物质。
接着,将前体物质放入焙烧炉中进行煅烧,生成最终的羟基磷灰石材料。
1.2 溶胶-凝胶法在溶胶-凝胶法中,将适量的羟基磷灰石前体溶解于甲醇、乙醇等有机溶剂中,得到溶胶。
再将溶胶极缓慢地加热到一定温度,使其凝胶化。
最后,将凝胶体焙烧,得到最终的羟基磷灰石材料。
2. 羟基磷灰石材料的应用由于其良好的生物相容性和生物活性,羟基磷灰石材料广泛应用于骨组织工程、口腔种植、骨折治疗、植入性医学器材等领域。
2.1 骨组织工程骨组织工程是利用生物材料和骨细胞形成人工骨组织的技术,羟基磷灰石材料具有优异的生物相容性,可以促进骨细胞的增殖和分化,有助于骨组织的修复和再生。
2.2 口腔种植羟基磷灰石材料在口腔种植中应用广泛,可以用于修复牙齿、修复颌骨缺损、种植人工牙根等,具有良好的生物相容性和组织相容性。
2.3 骨折治疗羟基磷灰石材料具有良好的生物相容性和生物活性,可以被人体吸收和代谢,有助于骨折的修复和再生。
2.4 植入性医学器材羟基磷灰石材料可以制成人工关节、人工骨头等植入性医学器材,具有优异的生物相容性和生物活性,有助于植入器材的耐久性和效果。
总之,羟基磷灰石材料具有良好的生物相容性和生物活性,在医学领域中应用广泛,可以用于组织工程、口腔种植、骨折治疗、植入性医学器材等领域。
在未来,羟基磷灰石材料的应用前景将更加广阔。
功能性纳米羟基磷灰石的制备、表征及性能研究一、本文概述纳米羟基磷灰石(Nano-Hydroxyapatite, n-HA)作为一种具有独特生物活性的无机材料,近年来在生物医学领域引起了广泛关注。
由于其与天然骨组织的无机成分相似,n-HA在骨缺损修复、牙科植入物和药物载体等方面具有潜在的应用价值。
本文旨在探讨功能性纳米羟基磷灰石的制备方法、表征手段以及性能研究,以期为其在生物医学领域的应用提供理论支持和实验依据。
在制备方法方面,本文将介绍几种常用的合成n-HA的方法,包括化学沉淀法、水热法、溶胶-凝胶法等,并分析各种方法的优缺点,为后续的实验研究提供参考。
在表征手段方面,本文将采用射线衍射(RD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)等手段对制备的n-HA进行形貌、结构和成分的分析,以确保其质量和纯度。
在性能研究方面,本文将重点研究n-HA的生物相容性、骨传导性、药物载体性能等,并通过体外和体内实验验证其在实际应用中的效果。
本文还将探讨如何通过调控n-HA的组成、结构和形貌等因素,进一步优化其性能,以满足不同生物医学领域的需求。
本文将围绕功能性纳米羟基磷灰石的制备、表征及性能研究展开系统的探讨,旨在为n-HA在生物医学领域的应用提供全面的理论支撑和实践指导。
二、文献综述纳米羟基磷灰石(nano-Hydroxyapatite,n-HA)是一种重要的生物活性材料,因其与天然骨组织中的无机成分相似,具有良好的生物相容性和骨传导性,在生物医学领域受到广泛关注。
近年来,随着纳米技术的快速发展,功能性纳米羟基磷灰石的制备、表征及性能研究已成为研究热点。
在制备方面,研究者们通过控制反应条件、引入添加剂或采用特殊设备等方法,成功制备出具有不同形貌、尺寸和性能的功能性纳米羟基磷灰石。
例如,采用水热法、溶胶-凝胶法、微乳液法等,可以制备出具有特定形貌(如纳米棒、纳米线、纳米球等)和尺寸的纳米羟基磷灰石。