不等式第11课时
- 格式:docx
- 大小:108.25 KB
- 文档页数:2
课 题: 第11课时 不等式的证明方法之四:放缩法与贝努利不等式 目的要求: 重点难点: 教学过程: 一、引入:所谓放缩法,即是把要证的不等式一边适当地放大(或缩小),使之得出明显的不等量关系后,再应用不等量大、小的传递性,从而使不等式得到证明的方法。
这种方法是证明不等式中的常用方法,尤其在今后学习高等数学时用处更为广泛。
下面我们通过一些简单例证体会这种方法的基本思想。
二、典型例题:例1、若n 是自然数,求证.213121112222<++++nΛ 证明:.,,4,3,2,111)1(112n k k k k k kΛΘ=--=-< ∴n n n⋅-++⋅+⋅+<++++)1(13212111113121112222ΛΛ =)111()3121()2111(11n n --++-+-+Λ=.212<-n注意:实际上,我们在证明213121112222<++++nΛ的过程中,已经得到一个更强的结论n n1213121112222-<++++Λ,这恰恰在一定程度上体现了放缩法的基本思想。
例2、求证:.332113211211111<⨯⨯⨯⨯++⨯⨯+⨯++n ΛΛ证明:由,212221132111-=⋅⋅⋅⋅<⨯⨯⨯⨯k k ΛΛ(k 是大于2的自然数)得n⨯⨯⨯⨯++⨯⨯+⨯++ΛΛ32113211211111 .3213211211121212121111132<-=--+=++++++<--n nn Λ例3、若a , b , c , d ∈R +,求证:21<+++++++++++<ca d db dc c a c b bd b a a证:记m =ca d db dc c a c b bd b a a +++++++++++三、小结:四、练习:1、设n 为大于1的自然数,求证.2121312111>+++++++n n n n Λ2、设n 为自然数,求证.!1)122()52)(32)(12(n n n n n n ≥-----Λ五、作业:A 组1、对于任何实数x ,求证:(1)4312≥+-x x ;(2).41112≤--x x2、设b a ≠,求证:(1))(2322b a b b a +>+;(2)).(46224224b a ab b b a a +>++ 3、证明不等式3344ab b a b a +≥+.4、若c b a ,,都是正数,求证:.)())((2222333c b a c b a c b a ++≥++++ 5、若,0>>>c b a 求证 .222b a c a c b cbac b a cb a +++>6、如果b a ,同号,且均不为0. 求证:2≥+abb a ,并指出等号成立的条件. 7、设c b a ,,是互不相等的正数,求证:.3>-++-++-+ccb a b b ac a a c b8、已知三个正数c b a ,,的和是1,求证这三个正数的倒数的和必不小于9. 9、若20πθ<<,则2cos sin 1<+<θθ.10、设+∈R y x ,,且,1=+y x 求证:.9)11)(11(≥++yx 11、已知0≠x ,求证:(1)11122>++x x ;(2)22322>++x x .12、设b a ,是互不相等的正数,求证:.81122>⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+b a b a a b b a a b13、已知b a ,都是正数,求证:(1);9)1)(1(22ab b a b a >++++(2).9))((222222b a b a ab b a b a >++++ 14、已知,1,1222222=++=++z y x c b a 求证:.1≤++cz by ax 15、已知,1,12222=+=+y x b a 求证:.1≤+by ax16、已知d c b a ,,,都是正数,且有2222,d c y b a x +=+=求证:))((bc ad bd ac xy ++>17、已知n a a a a Λ,,,321都是正数,且1321=⋅⋅⋅⋅n a a a a Λ,求证:nn a a a a 2)1()1)(1)(1(321≥++++Λ18、设ABC ∆的三条边为,,,c b a 求证)(2222ca bc ab c b a ca bc ab ++<++≤++.19、已知y x b a ,,,都是正数,设.,,1ay bx v by ax u b a +=+==+ 求证:.xy uv ≥20、设n 是自然数,利用放缩法证明不等式.231312111<+++++++nn n n Λ 21、若n 是大于1的自然数,试证.11131211121222n nn -<+++<+-ΛB 组22、已知z y x c b a ,,,,,都是正数,且,c z b y a x <<求证:.c zc b a z y x a x <++++< 23、设0>>b a ,试用反证法证明bx a b x a -+sin sin 不能介于b a b a +-与b a ba -+之间。
不等式及不等式组的应用整数解问题☞“最多”、“最少”问题【例1】在一次爆破中,用1米的导火索来引爆炸药,导火索的燃烧速度为0.5cm/s,引爆员点着导火索后,至少以每秒_____米的速度才能跑到600m或600m以外的安全区域?【例2】一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题得-1分,在这次竞赛中,小明获得优秀(90分或90分以上)则小明至少答对了道题.【例3】现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( )A.4辆B.5辆C.6辆D.7辆【例4】初中九年级一班几名同学,毕业前合影留念,每人交0.70元,一张彩色底片0.68元,扩印一张照片0.50元,每人分一张,将收来的钱尽量用掉的前提下,这张照片上的同学最少有( )A.2个B.3个C.4个D.5个【例5】工程队原计划6天内完成300土方工程,第一天完成60土方,现决定比原计划提前两天超额完成,问后几天每天平均至少要完成多少土方?【例6】小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?【例7】若干名学生合影留念,需交照像费20元(有两张照片),如果另外加洗一张照片,又需收费1.5元,要使每人平均出钱不超过4元钱,并都分到一张照片,至少应有几名同学参加照像?【例8】某工人9月份计划生产零件180个,前10天每天平均生产6个,后经改进生产技术,提前2天并且超额完成任务,这个工人改进技术后平均每天至少生产零件多少个?【例9】八戒去水果店买水果,八戒有45元,买了5斤香蕉,若香蕉每斤3元,西瓜每个8元,请问八戒至多能买几个西瓜?【例10】在保护地球爱护家园活动中,校团委把一批树苗分给初三⑴班同学去栽种.如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵).⑴设初三⑴班有x名同学,则这批树苗有多少棵?(用含x的代数式表示).⑵初三⑴班至少有多少名同学?最多有多少名【例11】某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?【例12】商业大厦购进某种商品l000件,售价定为进价的125%.现计划节日期间按原售价让利l0%,至多售出l00件商品;而在销售淡季按原定价的60%大甩卖.为使全部商品售完后赢利,在节日和淡季之外要按原定价销售出至少多少件商品?☞求范围以及具体数目问题【例13】一堆有红、白两种颜色的球各若干个,已知白球的个数比红球少,但白球个数的2倍比红球多.若把每一个白球都记作“2”,每一个红球都记作“3”,则总数为60,那么,白球与红球各有多少个?【例14】“六一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意买了一些,送给这个小学的小朋友做为节日礼物.如果每班分10套,那么欲5套;如果前面的每个班级分13套,那么最后一个班级虽然分有福娃,但不足4套.问:该小学有多少个班级?奥运福娃共有多少套?【例15】某企业人事招聘工作中,共安排了五个测试项目,规定每通过一项测试得1分,未通过不得分,此次前来应聘的26人平均得分不低于4.8分,其中最低分3分,而且至少有3人得4分,则得5分的共有多少人?【例16】暑假期间小张一家为体验生活品质,自驾汽车外出旅游,计划每天行驶相同的路程.如果汽车每天行驶的路程比原计划多19公里,那么8天内它的行程就超过2200公里;如果汽车每天的行程比原计划少12公里,那么它行驶同样的路程需要9天多的时间.求这辆汽车原来每天计划的行程范围(单位:公里).【例17】有人问一位老师他所教的班有多少学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还剩不足六位同学在操场踢足球”。
第一部分考点研究第二单元方程(组)与不等式(组)第11课时一次函数的实际应用浙江近9年中考真题精选(2009-2017)类型一阶梯费用问题(绍兴2考)1.(2017绍兴18题8分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式.若小敏家某月交水费81元,则这个月用水量为多少立方米?第1题图2.(2013绍兴18题8分)某市出租车的计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数解析式;(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.第2题图类型二水流量、人流量问题(绍兴2016.19)3.(2016绍兴19题8分)根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完,游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.第3题图4.(2013衢州23题10分)“五·一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.(1)求a的值;(2)求检票到第20分钟时,候车室排队等候检票的旅客人数;(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?第4题图类型三行程问题(杭州2015.23,绍兴2考)5.(2015绍兴18题8分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中,小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?第5题图6.(2016丽水21题8分)2016年3月27日“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线跑回终点万地广场西门.设该运动员离开起点的路程s(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,根据图象提供的信息,解答下列问题:(1)求图中a的值;(2)组委会在距离起点2.1千米处设立一个拍摄点C,该运动员从第一次过C点到第二次过C点所用的时间为68分钟.①求AB所在直线的函数解析式;②该运动员跑完赛程用时多少分钟?第6题图7.(2014绍兴18题8分)已知甲、乙两地相距90 km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车.图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?第7题图8.(2015衢州23题10分)高铁的开通,给衢州市民出行带来了极大的方便,五·一期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘坐高铁从衢州出发,先到杭州火车东站,然后转乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(千米)与乘车时间t(小时)的关系如图所示.请结合图象解决下面问题:(1)高铁的平均速度是每小时多少千米?(2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?第8题图9.(2015杭州23题12分)方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t 的函数关系如图①所示.方成思考后发现了图①的部分正确信息:乙先出发1 h;甲出发0.5小时与乙相遇;…….请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y <30时,求t 的取值范围;(3)分别求出甲,乙行驶的路程s 甲,s 乙与时间t 的函数表达式,并在图②所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一条公路匀速前往M 地.若丙经过43h 与乙相遇,问丙出发后多少时间与甲相遇?第9题图类型四 分配类最优方案问题(温州2次)10.(2016湖州22题10分)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位数不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个.求该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位).因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t .①若该养老中心建成后可提供养老床位200个,求t 的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?11.(2015温州22题10分)某农业观光园计划将一块面积为900 m 2的园圃分成A 、B 、C 三个区域,分别种甲、乙、丙三种花卉,且每平方米栽种甲3株或乙6株或丙12株,已知B 区域面积是A 的2倍,设A 区域面积为x(m 2).(1)求该园圃栽种的花卉总株数y关于x的函数表达式;(2)若三种花卉共栽种6600株,则A,B,C三个区域的面积分别是多少?(3)已知三种花卉的单价(都是整数)之和为45元,且差价均不超过10元,在(2)的前提下,全部栽种共需84000元,请写出甲、乙、丙三种花卉中,种植面积最大的花卉总价.类型五方案选取12.(2017衢州21题8分)“五·一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.第12题图根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1、y2关于x的函数表达式.(2)请你帮助小明计算并选择哪个出游方案合算.答案1.解:(1)由图象得,当用水量为18立方米时,应交水费为45元;(3分)(2)由81元>45元,得用水量超过18立方米,设函数表达式为y=kx+b(x>18),∵直线y=kx+b过点(18,45),(28,75),∴⎩⎪⎨⎪⎧18k +b =4528k +b =75,解得⎩⎪⎨⎪⎧k =3b =-9,(5分) ∴y =3x -9(x >18),(6分)当y =81时,3x -9=81,解得x =30.答:这个月用水量为30立方米.(8分)2.解:(1)由图象得:出租车的起步价是8元;(2分)设当x >3时,y 与x 的函数关系式为y =kx +b ,由函数图象,得⎩⎪⎨⎪⎧8=3k +b 12=5k +b , 解得⎩⎪⎨⎪⎧k =2b =2, 故y 与x 的函数解析式为y =2x +2(x >3);(4分)(2)当y =32时,32=2x +2,解得x =15,答:这位乘客乘车的里程是15 km.(8分)3.解:(1)由题图可知暂停排水时间为30分钟(半小时).(1分)排水孔的排水速度为900÷3=300 m 3/h ;(3分)(2)由题图可知排水1.5 h 后暂停排水,此时游泳池的水量为900-300×1.5=450 m 3, 设当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =kt +b ,把(2,450),(3.5,0)代入得⎩⎪⎨⎪⎧450=2k +b ,0=3.5k +b ,(6分) 解得⎩⎪⎨⎪⎧b =1050k =-300,∴当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =-300t +1050.(8分)4.解:(1)由图象知,640+16a -2×14a =520,所以a =10;(2分)(2)设过(10,520)和(30,0)的直线解析式为y =kx +b ,得⎩⎪⎨⎪⎧10k +b =52030k +b =0,解得⎩⎪⎨⎪⎧k =-26b =780, 因此y =-26x +780,当x =20时,y =260,即检票到第20分钟时,候车室排队等候检票的旅客有260人;(6分)(3)设需同时开放n 个检票口,由题意知:14n ×15≥640+16×15(7分)解得:n ≥4421, ∵n 为整数,∴n 最小=5.答:至少需要同时开放5个检票口.(10分)5.解:(1)由题图可知小敏去超市途中的速度是3000÷10=300 (米/分);在超市逗留的时间:40-10=30(分).答:小敏去超市途中的速度是300米/分,在超市逗留了30分.(2)设小敏返家过程中的函数解析式为y =kx +b (k ≠0),把点(40,3000),(45,2000)代入上式,得⎩⎪⎨⎪⎧40k +b =300045k +b =2000, 解得⎩⎪⎨⎪⎧k =-200b =11000, ∴小敏返家过程中的函数解析式为y =-200x +11000,当y =0时,-200x +11000=0,解得x =55.答:小敏上午8:55分返回到家.6.解:(1)∵从起点到紫金大桥的平均速度是0.3千米/分钟,用时35分钟,∴a =0.3×35=10.5(千米).(2分)(2)①∵线段OA 经过点O (0,0),A (35,10.5),∴OA 的函数解析式是s =0.3t(0≤t≤35).∴当s =2.1时,0.3t =2.1,解得t =7.(3分)∵该运动员从第一次过C 点到第二次过C 点所用的时间为68分钟,∴该运动员从起点到第二次过C 点共用的时间是7+68=75(分钟).∴AB 经过(35,10.5),(75,2.1)两点.(4分)设AB 所在直线的函数解析式是s =kt +b ,∴⎩⎪⎨⎪⎧35k +b =10.575k +b =2.1,解得⎩⎪⎨⎪⎧k =-0.21b =17.85,(5分) ∴AB 所在直线的函数解析式是s =-0.21t +17.85.(6分)②∵该运动员跑完赛程所用的时间即为直线AB 与x 轴交点横坐标的值.∴当s =0时,-0.21t +17.85=0,解得t =85.∴该运动员跑完赛程用时85分钟.(8分)7.解:(1)由题图可知,A 比B 后出发1小时;(2分)B 的速度为60÷3=20 km/h ;(4分)(2)由题图可知点D (1,0),C (3,60),E (3,90),设直线OC 的解析式为s =kt ,则3k =60,解得k =20,∴直线OC 的解析式为s =20t ,设直线DE 的解析式为s =mt +n ,则⎩⎪⎨⎪⎧m +n =03m +n =90,解得⎩⎪⎨⎪⎧m =45n =-45, ∴直线DE 的解析式为s =45t -45,(6分)联立两函数解析式,得⎩⎪⎨⎪⎧s =20t s =45t -45, 解得⎩⎪⎨⎪⎧t =95s =36,∴在B 出发后95小时,两人相遇.(8分) 8.解:(1)根据函数图象可知,从衢州到杭州火车东站的距离为240千米,坐高铁共用时1小时,∴高铁的平均速度为240千米/小时;(2分)(2)由(1)知高铁的速度为240千米/小时,∴当颖颖出发0.5小时时,离衢州的距离为120千米,此时乐乐已出发1.5小时, 设乐乐离衢州的距离与乘车的时间之间的函数关系式为y =kt ,则有120=1.5k ,解得k =80,故y =80t ,(5分)当t =2时,y =80×2=160,从图象可知:衢州到游乐园的距离为216千米,∵216-160=56(千米),∴当颖颖到达杭州火车东站时,乐乐距离游乐园还有56千米;(7分)(3)当y =216时,t =2.7,18分钟=0.3小时,∵216÷(2.7-0.3)=90(千米/小时),∴乐乐要提前18分钟到达游乐园,私家车的速度必须达到90千米/小时.(10分)9.解:(1)由题图①可知B 、C 、D 三点的坐标,B (1.5,0)、C (73,1003)、D (4,0). 设直线BC 解析式为y =kt +b(k≠0),把B 、C 两点坐标分别代入得:⎩⎪⎨⎪⎧1.5k +b =073k +b =1003 ,解得⎩⎪⎨⎪⎧k =40b =-60,∴直线BC 的解析式为y =40t -60 (1.5≤t ≤73).(2分)设直线CD 解析式为y =k′t +b ′(k ′≠0),把C(73,1003)、D (4,0)两点坐标分别代入得⎩⎪⎨⎪⎧73k′+b′=10034k′+b′=0, 解得:⎩⎪⎨⎪⎧k′=-20b′=80,∴直线CD 的解析式为y =-20t +80(73≤t ≤4).(4分)(2)由直线CD 的解析式为y =-20t +80, 可得乙的速度为20 km/h. ∴A 点坐标为(1,20),(5分)由题图①可知,两人的距离y 满足20<y <30必是在第一次相遇之后到第二次相遇这段时间之内, 当20<y <30时, 20<40t -60<30 ① 20<-20t +80<30 ②(6分) 解①得:2<t <2.25, 解②得:2.5<t <3.∴当2<t <2.25和2.5<t <3 时,有20<y <30.(7分) (3)由直线BC 的解析式:y =40t -60,则乙在出发1.5小时后,两人之间的差距以每小时1003÷(73-1.5)=40 km 的速度拉开,又v 乙=20 km/h ,∴v 甲=20+40=60 km/h.(8分) ∴s 甲=60(t -1)=60t -60(1≤t ≤73),s 乙=20t(0≤t ≤4).(9分)在直角坐标系中画出它们的图象如解图.第9题解图(4)由前述题意可知:乙出发4小时可以从M 地到达N 地, ∵v 乙=20 km/h ,∴M 到N 的总路程为20×4=80 km , 当丙出发43小时,s 乙=20×43=803km ,∴s 丙=80-803=1603km ,∴v 丙=1603÷43=40 km/h.∴丙距M 地的距离为(80-40 t ) km ,若丙与甲相遇,则80-40 t=60t-60,解方程得t=1.4小时.(12分)10.解:(1)设该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程2(1+x)2=2.88,(2分)解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(4分)(2)①由题意得,t+4t+3(100-3t)=200,(7分)解得t=25(符合题意).答:t的值是25.(8分)②由题意得,提供养老床位y=t+4t+3(100-3t),其中10≤t≤30,y=-4t+300.因为k=-4<0,所以y随着t的增大而减小.当t=10时,y的最大值为300-4×10=260(个).当t=30时,y的最小值为300-4×30=180(个).答:建成后最多提供养老床位260个,最少提供养老床位180个.(10分)11.解:(1)若A区域的面积为x m2,则B区域的面积为2x m2,C区域的面积为(900-3x) m2,y=3x+12x+12(900-3x)=-21x+10800;(3分)(2)当y=6600时,-21x+10800=6600,解得x=200,∴2x=400,900-3x=300.答:A区域的面积为200 m2,B区域的面积为400 m2,C区域的面积为300 m2;(6分) (3)设甲、乙、丙三种花卉的单价分别为a元、b元、c元,由题意可知,⎩⎪⎨⎪⎧a +b +c =45600a +2400b +3600c =84000, 整理得b =5(19-c )3,∵a 、b 、c 为正整数, ∴a 、b 、c 可能取的值如下表,又∵a 、b 、c 的差不超过10, ∴a =20,b =15,c =10,(8分) ∵B 区域的面积为400 m 2,最大,∴种植面积最大的花卉总价为400×6×15=36000(元). 答:种植面积最大的花卉总价为36000元.(10分) 12.解:(1)由题意可知y 1=k 1x +80,(1分) 且图象过点(1,95), 则有95=k 1+80, ∴k 1=15,∴y 1=15x +80(x ≥0),(2分) 由题意易得y 2=30x (x ≥0).(4分) (2)当y 1=y 2时,解得x =163;(5分)当y 1>y 2时,解得x <163;(6分)当y 1<y 2时,解得x >163.(7分)∴当租车时间为163小时,选择甲、乙公司一样合算;当租车时间小于163小时,选择乙公司合算;当租车时间大于163小时,选择甲公司合算.(8分)(也可求出x =163之后,观察函数图象得到结论.)。
人教版高中数学 教案+学案 综合汇编第三章 不等式 第十一教时教材:不等式证明六(构造法及其它方法)目的:要求学生逐步熟悉利用构造法等方法证明不等式。
过程:一、构造法:1.构造函数法例一、已知x > 0,求证: 25111≥+++x x xx 证:构造函数)0(1)(>+=x x x x f 则21≥+xx , 设2≤α<β 由αβ-αββ-α=⎪⎪⎭⎫ ⎝⎛β-α+β-α=β+β-α+α=β-α)1)((11)()1(1)()(f f 显然 ∵2≤α<β ∴α - β > 0, αβ - 1 > 0, αβ > 0 ∴上式 >∴f (x )在),2[+∞上单调递增,∴左边25)2(=≥f 例二、求证: 31091022≥++=x x y 证:设)3(92≥+=t x t 则tt y t f 1)(2+==用定义法可证:f (t )在),3[+∞上单调递增令:3≤t 1<t 2 则0)1)((11)()(21212122212121>--=+-+=-t t t t t t t t t t t f t f∴310313)3(910322=+=≥++=f x x y 2.构造方程法:例三、已知实数a , b , c ,满足a + b + c = 0和abc = 2,求证:a , b , c 中至少有一个不小于2。
证:由题设:显然a , b , c 中必有一个正数,不妨设a > 0,则 ⎝⎛=-=+a bc a c b 2 即b , c 是二次方程022=++aax x 的两个实根。
∴082≥-=∆aa 即:a ≥2例四、求证:),2(3tan sec tan sec 3122Z k k ∈π+π≠θ≤θ+θθ-θ≤证:设θ+θθ-θ=tan sec tan sec 22y 则:(y - 1)tan 2θ + (y + 1)tan θ + (y - 1) = 0 当 y = 1时,命题显然成立当 y ≠ 1时,△= (y + 1)2 - 4(y - 1)2 = (3y - 1)(y - 3)≥0∴331≤≤y 综上所述,原式成立。
第11课时基本不等式的证明(2)
1. 理解最值定理的使用条件:
一正二定三相等.
2. 运用基本不等式求解函数最值问题. 【课堂互动】
自学评价
1.最值定理:
若x 、y 都是正数,
(1)如果积xy 是定值P , 那么当且仅当x=y 时, 和x+y .
(2)如果和x+y 是定值S , 那么当且仅当
x=y 时, 积xy 有最大值 2
4
1S . 2.最值定理中隐含三个条件: 一正二定 三相等 . 【精典范例】 例1.(1).已知函数y=x+16
2
x +(x>-2), 求此函数的最小值.
(2)已知x<45, 求y=4x -1+1
45
x -的最
大值;
(3)已知x>0 , y>0 , 且5x+7y=20 , 求xy 的最大值;
(4)已知x , y ∈R + 且x+2y=1 , 求
11
x y
+的最小值.
答案:(1)y 的最小值为6(x=2).
(2)y 的最大值为2(x=1).
(3)xy 的最大值为
720(x=2,y=7
10
). (4)
11
x y
+的最小值为223+ (2
2
1,12-
=-=
y x ).
例2. 错在哪里? (1)求2(x ∈R)的最小值.
解∵2 =2
?
∴ y 的最小值为2 .
.(2)已知x , y ∈R + 且x+4y=1,求
11
x y
+ 的最小值.
听课随笔
法一:由1=xy y x 424≥+得
41≥xy
所以
11x y +82
≥≥xy
. 所以原式最小值为8.
法二:由11x y +xy
2≥
(当且仅当x=y 时等号成立).于是有⎩⎨
⎧=+=1
4y x y
x 得
x=y=0.2.所以
11
x y
+的最小值为5+5=10.
思维点拔:
1.利用基本不等式求最值问题时,一定要交代等号何时成立,只有等号成立了,才能求最值,否则要用其它方法了.而在证明不等式时,不必要交代等号何时成立.
2.例2是常见典型错误,它违背了最值定理使用前提:“一正二定三相等”中的后两条。
追踪训练一
1. 求函数y=4x 2+
2
9
x 的最小值; 2. 已知x<0 , 求y=2
1x x
+的最大值;
3. 已知x , y ∈R +, 且
x 1+y
9
=1 , 求x+y 的最小值; 4. 已知x>-2 , 求y=
2
3
2
x x -++的最大
值;
5. 已知x>1 ,0<y<1 求log y x+log x y 的
取值范围; 答案:
(1)y 的最小值为12(x=2
6
±).
(2)y 的最大值为-2(x=1-). (3)x+y 的最小值为16(x=12,4=y ). (4)y 的最大值为2(x=1-).
(5)y ]2,(--∞∈.
【选修延伸】
利用函数单调性求函数最值. 例3:求函数)4(2
16
≥++
=x x x y 的最小值.
略解:令2+=x t ,则6≥t 且
216
-+
=t
t y ,椐单调性定义可证:关于t 的函数y 在),6[+∞上为增函数,所以当6=t 时,y 的最小值为
3
20
.
思维点拔:
利用基本不等式求解时,等号不能成立,故改用函数单调性求解.
追踪训练二 求函数x x
y 22
sin sin 4
+=
的最小值.
答案:y 的最小值为5. 听课随笔
【师生互动】。