2015-2016年广东省深圳高中高二上学期数学期中试卷带答案(理科)
- 格式:doc
- 大小:445.01 KB
- 文档页数:22
深圳市高级中学2015-2016学年第一学期期中测试 高二数学 命题人:审题人:第Ⅰ卷(本卷共分)共小题每小题5分,共分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合(A∩B)的共有()A.个B.4个C.7个D.8个.已知x=ln π,y=log52,,则( ) A.x<y<z B.z<x<yC.z<y<x D.y<z<x若某空间几何体的三视图如图所示,则该几何体的体积是( ) A. B. C.1 D.2 如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,-),角速度为1,那么点P到x轴的距离d关于时间t的函数图像大致为( ) .若变量x,y满足约束条件则z=2x+3y的最小值为( ) A. B. C. D.设a>0,b>0.若是3a与3b的等比中项,则的最小值为()A.8B.4C.1D.二.填空题:本大题共小题,每小题5分。
,则方向上的投影为_________. 8.设等差数列{an}的前n项和为Sn.若S9=72,则a2+a4+a9=. 三解答题:解答应写出文字说明,证明过程或演算步骤。
已知函数f(x)=sin2x-2sin2x. (1)求函数f(x)的最大值; (2)求函数f(x)的零点的集合. 解:解:(1)因为f(x)=sin2x-(1-cos2x) =2sin(2x+)-1, 所以,当2x+=2kπ+, 即x=kπ+ (k∈Z)时,函数f(x)取得最大值1. (2)解法一:由(1)及f(x)=0得sin(2x+)=, 所以2x+=2kπ+,或2x+=2kπ+,即x=kπ,或x=kπ+. 故函数f(x)的零点的集合为{x|x=kπ,或x=kπ+,k∈Z}. 解法二:由f(x)=0得2sinxcosx=2sin2x, 于是sinx=0,或cosx=sinx, 即sinx=0或tanx=. 由sinx=0可知x=kπ;由tanx=可知x=kπ+. 故函数f(x)的零点的集合为{x|x=kπ,或x=kπ+,k∈Z}.,且有唯一解,,。
广东省深圳市2015-2016学年高二数学上学期期中试题 理一、选择题:本大题共12小题,每小题5分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合22{|4},{|230}M x x N x x x =<=--<,则集合MN =( )A .{2|-<x x }B .{3|>x x }C .{32|<<x x }D .{21|<<-x x }2.若等差数列{}n a 的前5项和525S =,且23a =,则7a =( )A. 15B.14C. 13D. 12 3.若a b >且c R ∈,则下列不等式中一定成立的是( )A .22a b > B .ac bc > C .22ac bc > D .a c b c ->- 4.在ABC ∆中,45,60,1B C c =︒=︒=,则最短边的长等于( )A ..12 D5. 已知-7,1a ,2a ,-1四个实数成等差数列,-9,1b ,2b ,3b ,-1五个实数成等比数列, 则 221()b a a -=( )A. 6B. -6C.±6D.986.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( )A.185B.43 C.23D. 877.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( )A. 63B. 108C. 75D. 83 8.在⊿ABC 中,BCb c cos cos =,则此三角形为 ( ) A .直角三角形; B. 等腰直角三角形 C. 等腰三角形 D. 等腰或直角三角形9.设S n 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) A .1 B .-1 C .2 D .2110.设关于x 的不等式:220x ax -->解集为M ,若2M M ∈,则实数a 的取值范围是( )A .(,(1,)3-∞+∞ B .(,)3-∞ C .,1)3 D .(311.一船向正北方向航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半个小时后,看见一灯塔在船的南偏西60°方向,另一灯塔在船的南偏西75°方向,则这只船的速度是 ( ) A .15海里/时 B .5海里/时 C .10海里/时D .20海里/时12.将全体正奇数排成一个三角形数阵:1 3 5 7 9 11 13 15 17 19 ……按照以上排列的规律,第100 行从左向右的第20个数为( ) A .9941 B .9901 C .9911 D .9939二、填空题:本大题共4小题,每小题5分,满分20分.13. 在ABC ∆中,045,B c b ===A =_____________ 14.若不等式260ax bx ++>的解集是()1,3-,则b a +的值为15.当R x ∈时,不等式012>+-kx kx 恒成立,则k 的取值范围是_____________ 16.等差数列{a n }中,S n 是它的前n 项之和,且S 6<S 7,S 7>S 8,则① 此数列的公差d <0 ② S 9一定小于S 6③ a 7是各项中最大的一项 ④ S 7一定是S n 中的最大值 其中正确的是 (填入你认为正确的所有序号)三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17. (本题满分10分)等差数列{}n a 的前n 项和记为n S ,已知11012,30.a a ==(1)求通项n a ;(2)若n S =242, 求n 的值.18.(本题满分10分)△ABC 中,角,,A B C 所对的边分别为,,a b c ,已知2a =,3c =,1cos 4B =.(1)求b 的值;(2)求sinC 的值.19.(本题满分12分)在锐角三角形中,边a 、b 是方程x 2-2 3 x+2=0的两根,角A 、B 满足2sin(A+B)- 3 =0,求角C 的度数,边c 的长度及△ABC 的面积.20.(本题满分12分)解关于x 的不等式(3)()0ax x a +-<21.(本题满分12分)已知等差数列{a n }满足a 3=7,a 5+a 7=26.{a n }的前n 项和为S n . (1) 求a n 及S n ; (2) 令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n .22.(本题满分14分) 对于函数 )x (f ,若存在 R x ∈0,使 00x )x (f = 成立,则称0x 为)x (f 的“滞点”。
2015年秋季学期期中质量调研考试高二数学(理科)试题一、选择题:本大题共8个小题;每小题5分,共40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的. 1.已知集合{2,0,1,4}A =,集合{04,R}=<≤∈B x x x ,集合C A B = .则集合C 可表示为A .{2,0,1,4}B . {1,2,3,4}C .{1,2,4}D . {04,R}x x x <≤∈2.复数z 满足(1i)1z -=(其中i 为虚数单位),则z =A .11i22- B .11i 22+ C .11i 22-+ D .11i 22-- 3.下列函数中,为奇函数的是A .122xx y =+ B .{},0,1y x x =∈C .sin y x x =⋅D .1,00,01,0x y x x <⎧⎪==⎨⎪->⎩4.下面几种推理中是演绎推理....的为A .由金、银、铜、铁可导电,猜想:金属都可导电;B .猜想数列111,,,122334⋅⋅⋅⨯⨯⨯的通项公式为1(1)n a n n =+()n N +∈; C .半径为r 圆的面积2S r π=,则单位圆的面积S π=;D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-=5.已知()()32213af x x a x=+-+,若()18f '-=,则()1f -= A .4 B .5 C .2- D .3- 6.“1ω=”是“ 函数()cos f x x ω=在区间[]0,π上单调递减”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 7.如图1,在矩形OABC 内:记抛物线21y x =+ 与直线1y x =+围成的区域为M (图中阴影部分). 则区域M 面积与矩形OABC 面积之比为 A .118 B .112C .16 D .1311+8. 已知可导函数()f x ()x ÎR 满足()()f x f x ¢>,则当0a >时,()f a 和e (0)a f 大小关系为A. ()<e (0)a f a fB. ()>e (0)a f a fC. ()=e (0)a f a fD. ()e (0)a f a f ≤ 二、填空题:本大题共6小题,每小题5分,满分30分. 9.函数f x =()的定义域为 .10.某几何体的三视图如图3所示,其正视图是边长为2 的正方形,侧视图和俯视图都是等腰直角三角形,则此几 何体的体积是 .11.已知双曲线2222:1x y C a b -=与椭圆22194x y+=有相同的焦点,且双曲线C 的渐近线方程为2y x =±,则双曲线C 的方程为 .12. 设实数,x y 满足,102,1,x y y x x ≤⎧⎪≤-⎨⎪≥⎩向量2,x y m =-()a ,1,1=-()b .若// a b ,则实数m 的最大值为 .13.在数列{}n a 中,已知24a =, 315a =,且数列{}n a n +是等比数列,则n a = . 14. 已知111()1()23f n n n+=+++鬃??N ,且27)32(,3)16(,25)8(,2)4(,23)2(>>>>=f f f f f ,推测当2n ≥时,有__________________________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 15.(本小题满分12分)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像经过点π(,1)12. (1)求ϕ的值;(2)在ABC ∆中,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,若222a b c ab +-=,且π()212A f +=.求sin B .16.(本小题满分12分)已知数列}{n a 的前n 项和n S 满足:2222n n n na a S a -+=,且0,.n a n +>∈N(1)求123,,;a a a(2)猜想}{n a 的通项公式,并用数学归纳法证明17.(本小题满分14分)如图3所示,平面ABCD ⊥平面BCEF ,且四边形ABCD 为 矩形,四边形BCEF 为直角梯形,//BF CE ,BC CE ⊥, 4DC CE ==,2BC BF ==.(1)求证://AF 平面CDE ;(2)求平面ADE 与平面BCEF 所成锐二面角的余弦值; (3)求直线EF 与平面ADE 所成角的余弦值.18.(本小题满分14分)已知数列{}n a 的前n 项和为n S ,且满足24(1)(1)(2)(N )n n n S n a n *++=+∈. (1)求1a ,2a 的值; (2)求n a ; (3)设1n n n b a +=,数列{}n b 的前n 项和为n T ,求证:34n T <.19.(本小题满分14分)设双曲线C :12222=-by a x (a >0,b >0)的一个焦点坐标为(3,0),离心率e =A 、B 是双曲线上的两点,AB 的中点M (1,2).(1)求双曲线C 的方程; (2)求直线AB 方程;(3)如果线段AB 的垂直平分线与双曲线交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆?为什么?20.(本小题满分14分)设函数3211()(0)32a f x x x ax a a -=+-->. (1)若函数)(x f 在区间(-2,0)内恰有两个零点,求a 的取值范围; (2)当a =1时,求函数)(x f 在区间[t ,t +3]上的最大值.ADBCFE图3参考答案9. {2}x x ≥; 10. 83; 11.2214y x -=; 12.6;13.123n n -⋅-; 14.2(2)2n n f +>;三、解答题15.解:(1)由题意可得π()112f =,即πsin()16ϕ+=. ……………………………2分0πϕ<< ,ππ7π666ϕ∴<+<, ππ62ϕ∴+=, π3ϕ∴=. ……………5分(2)222a b c ab +-= ,2221cos 22a b c C ab +-∴==, (7)分sin C ∴==. …………………………………………8分 由(1)知π()sin(2)3f x x =+,π(+)sin()cos 2122A f A A π∴=+==()0,A π∈ , sin A ∴==, ……………………………10分 又sin sin(π())sin()B A C A C =-+=+ ,1sin sin cos cos sin 2B A C A C ∴=+==12分 16. (1)1111112a a S a ==+-,所以,11a =-?,又∵0n a >,所以11a =.221221=12a S a a a +=+-, 所以2a =, 3312331=12a S a a a a ++=+- 所以3a =(2)猜想n a =证明: 1o 当1n =时,由(1)知11a =成立.2o 假设()n k k +=?N 时,k a =成立1+11111=(1)(1)22k k k k k k ka a a S S a a +++-=+--+- 1112k k a a ++=+-所以21120k k a +++-=1k a +=所以当1n k =+时猜想也成立.综上可知,猜想对一切n +ÎN 都成立.17.解:(法一)(1)取CE 中点为G ,连接DG 、FG ,//BF CG 且BF CG =,∴ 四边形BFGC 为平行四边形,则//BC FG 且BC FG =. ∴ …………2分四边形ABCD 为矩形, //BC AD ∴且BC AD =,//FG AD ∴且FG AD =,∴四边形AFGD 为平行四边形,则//AF DG . DG ⊂ 平面CDE ,AF ⊄平面CDE ,//AF ∴平面CDE . ……………………………………………………4分(2)过点E 作CB 的平行线交BF 的延长线于P ,连接FP ,EP ,AP ,////EP BC AD ,∴A ,P ,E ,D 四点共面.四边形BCEF 为直角梯形,四边形ABCD 为矩形,∴EP CD ⊥,EP CE ⊥,又 CD CE C = ,EP ∴⊥平面CDE ,∴EP DE ⊥,又 平面ADE 平面BCEF EP =,∴DEC ∠为平面ADE 与平面BCEF 所成锐二面角的平面角.……………………7分4DC CE ==,∴cos CE DEC DE ∠==. 即平面ADE 与平面BCEF . ……………………9分 (3)过点F 作FH AP ⊥于H ,连接EH ,根据(2)知A ,P ,E ,D 四点共面,////EP BC AD ,∴BC BF ⊥,BC AB ⊥,AD BC FEP又 AB BF B = , BC ∴⊥平面ABP , ∴BC FH ⊥,则FH EP ⊥.又 FH AP ⊥, FH ∴⊥平面ADE .∴直线EF 与平面ADE 所成角为HEF ∠. ……………………………11分4DC CE ==,2BC BF ==,∴0sin 45FH FP ==EF ==HE =,∴cos HE HEF EF ∠===. 即直线EF 与平面ADE. ……………………………14分 (法二)(1) 四边形BCEF 为直角梯形,四边形∴BC CE ⊥,BC CD ⊥, 又 平面ABCD ⊥平面BCEF ,且 平面ABCD 平面BCEF BC =,DC ∴⊥平面BCEF .以C 为原点,CB 所在直线为x 轴,CE 所在直线为y CD 所在直线为z 轴建立如图所示空间直角坐标系.根据题意我们可得以下点的坐标:(2,0,4)A ,(2,0,0)B ,(0,0,0)C ,(0,0,4)D ,(0,4,0)E ,(2,2,0)F , 则(0,2,4)AF =- ,(2,0,0)CB =. ………………2分BC CD ⊥ ,BC CE ⊥, CB ∴为平面CDE 的一个法向量.又0220(4)00AF CB ⋅=⨯+⨯+-⨯=,//AF ∴平面CDE . …………………………………………………………4分(2)设平面ADE 的一个法向量为1111(,,)n x y z = ,则110,0.AD n DE n ⎧⋅=⎪⎨⋅=⎪⎩(2,0,0)AD =- ,(0,4,4)DE =-,∴11120440x y z -=⎧⎨-=⎩, 取11z =,得1(0,1,1)n = . ……………………………6分 DC ⊥ 平面BCEF ,∴平面BCEF 一个法向量为(0,0,4)CD =,设平面ADE 与平面BCEF 所成锐二面角的大小为α,则cos α= 因此,平面ADE 与平面BCEF. …………………9分 (3)根据(2)知平面ADE 一个法向量为1(0,1,1)n =,(2,2,0)EF =- ,1111cos ,2EF n EF n EF n ⋅∴<>===-⋅,………12分 设直线EF 与平面ADE 所成角为θ,则cos sin ,EF n θ=<因此,直线EF 与平面ADE. ………………………14分 【说明】本题主要考察空间点、线、面位置关系,二面角及三角函数及空间坐标系等基础知识,考查空间想象能力、运算能力和推理论证能力,考查用向量方法解决数学问题的能力.18. 解:(1)当=1n 时,有2114(11)(+1=1+2a a ⨯+)(),解得1=8a .当=2n 时,有21224(21)(1)(22)a a a ⨯+++=+,解得2=27a .……………2分(2)(法一)当2n ≥时,有2(2)4(1)1n n n a S n ++=+, ……………①211(1)4(1)n n n a S n--++=. …………………② ①—②得:221(2)(1)41n n n n a n a a n n-++=-+,即:331(1)=n n a n a n -+.…………5分 ∴1223333===1(1)(1)3n n n a a a a n n n --==+-….∴ 3=(1)n a n + (2)n ≥.………………………………………8分 另解:33333121333121(1)42(1)(1)3n n n n n a a a n n a a n a a a nn ---+=⋅⋅⋅⋅=⋅⋅⋅⋅=+- . 又 当=1n 时,有1=8a , ∴3=(1)n a n +. …………………………8分(法二)根据1=8a ,2=27a ,猜想:3=(1)na n +. ………………………………3分用数学归纳法证明如下:(Ⅰ)当1n =时,有318(11)a ==+,猜想成立. (Ⅱ)假设当n k =时,猜想也成立,即:3=(1)k a k +.那么当1n k =+时,有2114(11)(1)(12)k k k S k a +++++=++,即:211(12)4(1)11k k k a S k +++++=++,………………………①又 2(2)4(1)1kk k a S k ++=+, …………………………②①-②得:22223111(3)(2)(3)(2)(1)4=2121k k k k k a k a k a k k a k k k k ++++++++=--++++, 解,得33+1(2)(11)k a k k =+=++. ∴当1n k =+时,猜想也成立. 因此,由数学归纳法证得3=(1)n a n +成立.………………………………………8分(3) 211111=(1(11n n n b a n n n n n +=<=-+++)), .................................10分 ∴1231=n n n T b b b b b -+++++ (22222)11111=234(1)n n ++++++ (2)11111<22323(1)(1)n n n n +++++⨯⨯-+… 111111111=()()()()4233411n n n n +-+-++-+--+… 1113=4214n +-<+.………………………………………14分19.解:(1)依题意得⎪⎩⎪⎨⎧===33a ce c ,解得a =1. (1分) 所以222312b c a =-=-=, (2分)故双曲线C 的方程为2212y x -=. (3分) (2)设1122(,),(,)A x y B x y ,则有221122221212y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩. 两式相减得:121212121()()()()2x x x x y y y y -+=-+ , (4分) 由题意得12x x ≠,221=+x x ,421=+y y , (5分) 所以1)(221212121=++=--y y x x x x y y ,即1=AB k . (6分)故直线AB 的方程为1y x =+. (7分) (3)假设A 、B 、C 、D 四点共圆,且圆心为P. 因为AB 为圆P 的弦,所以圆心P 在AB 垂直平分线CD 上;又CD 为圆P 的弦且垂直平分AB ,故圆心P 为CD 中点M . (8分) 下面只需证CD 的中点M 满足|MA |=|MB |=|MC |=|MD |即可.由22112y x y x =+⎧⎪⎨-=⎪⎩得:A (-1,0),B (3,4). (9分)由(1)得直线CD 方程:3y x =-+, (10分)由22312y x y x =-+⎧⎪⎨-=⎪⎩得:C (-3+52,6-52),D (-3-52,6+52), (11分)所以CD 的中点M (-3,6). (12分) 因为102364||=+=MA ,102436||=+=MB ,1022020||=+=MC ,1022020||=+=MD , (13分)所以||||||||MD MC MB MA ===,即 A 、B 、C 、D 四点在以点M (-3,6)为圆心,102为半径的圆上. (14分) 20.解:(1)∵3211()(0)32a f x x x ax a a -=+--> ∴()2()1(1)()f x x a x a x x a '=+--=+-, (1分) 令()0f x '=,解得121,0x x a =-=> (2分) 当x 变化时,)(x f ',)(x f 的变化情况如下表:故函数)(x f 的单调递增区间为(-∞,-1),(a ,+∞);单调递减区间为(-1,a );(4分) 因此)(x f 在区间(-2,-1)内单调递增,在区间(-1,0)内单调递减,要使函数)(x f 在区间(2,0)-内恰有两个零点,当且仅当⎪⎩⎪⎨⎧<>-<-0)0(0)1(0)2(f f f , (5分)解得103a <<, 所以a 的取值范围是(0,31). (6分) (2)当a =1时,131)(3--=x x x f . 由(1)可知,函数)(x f 的单调递增区间为(-∞,-1),(1,+∞);单调递减区间为(-1,1);31)1()(-=-=f x f 极大值. (7分)①当t +3<-1,即t <-4时,因为)(x f 在区间[t ,t +3]上单调递增,所以)(x f 在区间[t ,t +3]上的最大值为583311)3()3(31)3()(233max +++=-+-+=+=t t t t t t f x f ; (9分) ②当231≤+≤-t ,即14-≤≤-t 时,因为)(x f 在区间(]1,-∞-上单调递增,在区间[-1,1]上单调递减,在区间[1,2]上单调递增,且31)1()2(-=-=f f ,所以)(x f 在区间(]2,∞-上的最大值为31)1()2(-=-=f f . (10分)由231≤+≤-t ,即14-≤≤-t 时,且-1 [t ,t +3],所以)(x f 在[,3]t t +上的最大值为31)1()(max -=-=f x f ; (11分) ③当t +3>2,即t >-1时, 由②得)(x f 在区间(]2,∞-上的最大值为31)1()2(-=-=f f . 因为)(x f 在区间(1,+∞)上单调递增,所以)2()3(f t f >+,故)(x f 在[],3t t +上的最大值为58331)3()(23max +++=+=t t t t f x f . (13分) 综上所述,当a =1时,)(x f 在[t ,t +3]上的最大值⎪⎪⎩⎪⎪⎨⎧-≤≤--->-<+++=)14(31)14(58331)(23max t t t t t t x f 或. (14分)。
2015-2016学年上学期期中考高二理科数学试题(考试时间:120分钟 总分:150分) 2015、11参考公式:b=2121xn xyx n yx ni ini ii--∑∑==,a=y -b x , b 是回归直线的斜率,a 是截距样本数据1x ,2x ,...,n x 的方差2222121[()()()]n s x x x x x x n=-+-++-其中x 为样本平均数一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1、下列给出的赋值语句正确的是( )A .6=AB .M =-MC .B =A =2D .x +5y =02、已知命题p :R x ∈∀,1cos ≤x ,则( )(A) 1cos ,:≥∈∃⌝x R x p (B) 1cos ,:≥∈∀⌝x R x p (C) 1cos ,:00>∈∃⌝x R x p (D) 1cos ,:>∈∀⌝x R x p 3、设x R ∈,则“12x >”是“2210x x +->”的( ) (A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充分必要条件 (D) 既不充分也不必要条件4、从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( )(A) 至少有一个黑球与都是黑球 (B) 至少有一个红球与都是黑球(C) 至少有一个黑球与至少有1个红球 (D) 恰有1个黒球与恰有2个黑球5、甲,乙两名运动员练习罚球,每人练习10组,每组罚球40个,命中个数的茎叶图如图,则甲,乙两命中个数的中位数分别为( )甲 茎 乙8 0 93 2 1 1 34 8 765420 2 0 0 1 1 373A. 23,19B.24,18 C .22,20D.23,206、若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x yB .161022=+y xC .18422=+x yD . 161022=+x y7、在长为10㎝的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25cm 2与64 cm 2之间的概率为 ( ) (A)103 (B)52(C)54 (D)51 8、某程序框图如右图所示,现输入如下四个函数, 则可以输出的函数是( ) (A) ()2f x x = (B) ()1f x x=(C) ()xf x e = (D) ()sin f x x =(第8题图)9、21,F F 是椭圆17922=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则Δ12AF F 的面积为( )A .7 B .47 C .27 D .257 )(A) 5i >? (B) 7i ≥? (C) 9i ≥? ( D) 9i >?11、某产品的广告费用x 与销售额y 的统计数据如下表广告费用x (万元) 4 2 3 5 销售额y (万元)49263954根据上表可得回归方程ˆˆˆy bx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为( )(A) 63.6万元 (B) 65.5万元 (C) 67.7万元 (D) 72.0万元开始1=i 0=S iS S 2+=2+=i i ?否S输出结果是12、下列说法错误的是( )(A) “若0x y += , 则,x y 互为相反数”的逆命题是真命题。
阳东广雅中学2015~2016学年第一学期高二年级期中考试试卷数学(理科)本试卷分选择题和非选择题两部分,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的校名、姓名、考号填写在答题卡的密封线内。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在另发的答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将答题卷和答题卡一并收回。
第一部分 选择题一、选择题(本题共12小题,每题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1.在等差数列{}n a 中,若2a =4,4a =2,则6a =()A 、-1B 、0C 、1D 、6 2.在△ABC 中,已知a=6,A=60°,C=45°,则c= ( ) A .B .C .D .3.不等式13()()022x x +-≥的解集是( ) A.13{|}22x x -≤≤ B. 13{|}22x x x ≤-≥或 C.13{|}22x x -<< D. 13{|}22x x x <->或4.已知等比数列}{na 的公比为正数,且25932a a a =⋅,12=a ,则=1a ( ) A .21 B .22C .2D .25、在ABC ∆中,若cos cos a B b A =,则ABC ∆的形状一定是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形6、若数列{}na的前n 项和12+=n s n 则91a a +等于( )A. 18B. 19 C . 20 D. 217、已知点(3, 1)和(4, 6)-在直线320x y a -+=的两侧,则a 的取值范围是( ). A 7a <-或24a > B 7a =或24a = C 724a -<< D 247a -<< 8、设x ,y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则z=3x+y 的最大值为( )A. 5B. 3 C . 7 D. 8 9、已知{}na 为等差数列,{}nb 为正项等比数列,公比1≠q ,若111111,b a b a ==,则()A . 66b a =B .66b a >C .66b a < D.以上都有可能 10、在数列{}n a 中,已知1221-=+++n n a a a ,则22221n a a a +++ 等于 ( )A .()212-nB .()3122-n C .14-n D .314-n11.若A B C ∆的内角A 、B 、C 所对的边a 、b 、c 满足()422=-+c b a ,且︒=60C ,则ab 的值为 ( )A .34B .348-C .1D .3212.已知1)21()(-+=x f x F 是R 上的奇函数,)1()1()1()0(f nn f n f f a n +-+++= *)(N n ∈,则数列{}n a 的通项公式为 ( )A .1-=n a nB .n a n =C .1+=n a nD .2n a n =二、填空题(每题5分,共20分) 13.不等式21<+xx 的解集为 ;14、已知正数y x ,满足12=+y x ,则yx 11+的最小值为 ;15、已知△ABC 的三边长成公比为2的等比数列,则其最大角的余弦值为_________;16、已知数列*))((2,1,}{2111N n a a a na a a n n n ∈+++==+ 中,则数列}{n a 的通项公式为 .三、解答题(本大题共6小题,满分70分.解题应写出文字说明,证明过程或演算步骤.) 17.(本小题10分)已知等差数列的前n 项和为n S , 340,4a S ==-.(1)求数列{}na的通项公式;(2)当n 为何值时, nS 取得最小值.18.(本小题12分)已知ABC ∆1,且sin sin A B C +=. (1) 求边AB 的长; (2) 若ABC ∆的面积为1sin 6C,求角C 的值.19.(本小题12分) 已知2()2f x x bx c =++,不等式()0f x <的解集是()0,5. (Ⅰ)求()f x 的解析式;(Ⅱ) 若对于任意[1,1]x ∈-,不等式()2f x t +≤恒成立,求t 的取值范围.20.(本小题12分)已知等差数列{a n }满足:2465,22a a a =+=,{}n a 的前n 项和为n S .(1)求n a 及n S ;(2)若()211f x x =-,()n n b f a =(n ∈N *),求数列{b n }的前n 项和nT .21.(本小题12分)某房地产开发商投资81万元建一座写字楼,第一年装修费为1万元,以后每年增加2万元,把写字楼出租,每年收入租金30万元.(Ⅰ)若扣除投资和各种装修费,则从第几年开始获取纯利润?(Ⅱ)若干年后开发商为了投资其他项目,有两种处理方案:①年平均利润最大时以46万元出售该楼; ②纯利润总和最大时,以10万元出售该楼,问哪种方案盈利更多?22.(本小题12分)已知正项数列}{na 的前n 项和为2)1(41,+=n n n a S S 且有, 数列123121,,,,----n n b b b b b b b 是首项为1,公比为21的等比数列.(1)求证数列}{na 是等差数列;(2)若}{),2(nn n n c b a c 求数列-⋅=的前n 项和n T ;(3)在(2)条件下,是否存在常数λ,使得数列⎪⎪⎭⎫⎝⎛++2n n a T λ为等比数列?若存在,试求出λ;若不存在,说明理由.阳东广雅中学2015~2016学年第一学期高二年级期中考试试卷数学(理科)答案及说明一、选择题(每小题5分,共60分)1、B2、D3、A4、B5、D6、B7、C8、C9、B 10、D 11、A 12、C .二、填空题(每题5分,共20分) 13、{}10><x x x 或14.3+15、42- 16、n a n =三、解答题(本大题共6小题,满分70分.解题应写出文字说明,证明过程或演算步骤.) 17.(满分10分)解: (1) 340,4a S ==-,1120,434 4.2a d a d +=⎧⎪∴⎨⨯+=-⎪⎩ ………………………2分解得14,2a d =-=. ………………………4分 ()41226n a n n ∴=-+-⨯=-. (6)(2)()()11412n n n dS na n n n -=+=-+-…………………………………8分 25n n=-252524n ⎛⎫=--⎪⎝⎭…………………9分∈n N*, ∴当2=n 或3=n 时, nS 取得最小值6-. ……………………10分18.(满分12分)3),,0(ππ=∴∈C C 又19.(本小题12分)解:(Ⅰ)2()2f x x bx c =++,不等式()0f x <的解集是()0,5,所以的解集是()0,5,所以是方程的两个根, 由韦达定理知,2()210f x x x =-. ------------5分(Ⅱ)()2f x t +≤ 恒成立等价于错误!未找到引用源。
2015-2016学年第一学期高二期中考试数学试题及答案考试时间:120分钟 总分:160分一、填空题:本大题共14小题,每小题5分,共70分 1.直线),(03为常数a R a a y x ∈=+-的倾斜角是 .2.过点(0,1),且与直线2x +y -3=0平行的直线方程是____________ .3.已知直线1:20l ax y a -+=,2:(21)0l a x ay a -++=互相垂直,则实数a 的值是 4.已知空间点),,(和点432)2,1,(B x A ,且62=AB ,则点A 到的平面yoz 的距离是 .5.圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的标准方程为__________ .6.已知a 、b 是不同的直线,α、β、γ是不同的平面,给出下列命题: ①若α∥β,a ⊂α,则a ∥β ②若a 、b 与α所成角相等,则a ∥b ③若α⊥β、β⊥γ,则α∥γ ④若a ⊥α, a ⊥β,则α∥β 其中正确的命题的序号是________________ .7. 直线:1l y kx =+与圆0422222=--+-+a a ax y x 恒有交点,则实数a 的取值范围是 .8.如图,在三棱锥ABC P -中,⊥PA 底面ABC ,90=∠ABC ,1===BC AB PA ,则PC 与底面ABC 所成角的正切值...为 .9.已知,x y 满足204x y ≤≤-,则23y x --的取值范围是 .10.空间四个点P 、A 、B 、C 在同一球面上,PA 、PB 、PC 两两垂直,且PA=PB=PC=a ,那么这个球的表面积是 .11.设圆222(3)(5)(0)x y r r -++=>上有且仅有两个点到直线4320x y --=的距离等于1,则圆半径r 的取值范围____________ .12.圆2221:4440C x y ax a +++-=和圆2222:210C x y b y b +-+-=相内切,若,a b R ∈,且0ab ≠,则2211a b +的最小值为 _________ .13.如图,一个圆锥形容器的高为a ,内装有一定量的水. 如果将容器倒置,这时所形成的圆锥的高恰为2a(如图2-②), PAB C(第8题)2-①2-②a则图2-①中的水面高度为 .14.直线03=++y tx 与圆422=+y x 相交于A 、B 两点,若AB OB OA >+,则实数t的范围二、解答题:(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤) 15.已知直线经过点(1,2)A ,求分别满足下列条件的直线方程: (1)倾斜角的正弦为513; (2)与两坐标轴的正半轴围成的三角形面积为4.16.已知圆22:()(2)4(0)C x a y a -+-=>及直线:30l x y -+=. 当直线l 被圆C 截得的弦长为22时, 求(1)a 的值; (2)求过点(3,5)并与圆C 相切的切线方程.17.如图,在四面体ABCD 中,CD CB =,BD AD ⊥,点E ,F 分别是AB ,BD 的中点.(1) EF ∥平面ACD(2)求证:平面EFC ⊥平面BCD ;(3)若平面ABD ⊥平面BCD ,且1===BC BD AD ,求三棱锥ADC B -的体积. 18.(本题为选做题,文科生做第1道,理科生做第2道) 1.已知半径为5的圆的圆心在x 轴上,圆心的横坐标是整数,且与直线43290x y +-= 相切.(1)求圆的标准方程;(2)设直线50ax y -+=(0)a >与圆相交于,A B 两点,求实数a 的取值范围;(3) 在(2)的条件下,是否存在实数a ,使得弦AB 的垂直平分线l 过点(2, 4)p -, 2.已知⊙O :221x y +=和定点(2,1)A ,由⊙O 外一点(,)P a b 向⊙O 引切线PQ ,切点为Q ,且满足PA PQ =.(1) 求实数a b 、间满足的等量关系; (2) 求线段PQ 长的最小值;(3) 若以P 为圆心所作的⊙P 与⊙O 有公共点,试求半径取最小值时的⊙P 方程.19.如图,直三棱柱111ABC A B C -中,D 、E 分别是棱BC 、AB 的中点,点F 在棱1CC 上,已知AB AC =,13AA =,2BC CF ==.(1)求证:1//C E 平面ADF ; (2)设点M 在棱1BB 上,当BM 为何值时,平面CAM ⊥平面ADF ?20.如图,已知圆O 的直径AB=4,定直线L 到圆心的距离为4,且直线L ⊥直线AB 。
高二上学期期中考(理科)数学试题命题: 审题:一、选择题(每小题5分,共60分)1.命题“2,11x x ∀∈+≥R ”的否定是( ) A .2,11x x ∀∈+<R B .200,11x R x ∃∈+≤ C .200,11x R x ∃∈+< D .200,11x R x ∃∈+≥2.为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为 A.①③ B.①④ C.②③ D.②④ 3.R x,则“|x 2|1-<”是“220x x +->”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 4.如果命题“)(q p ∧⌝”是真命题,则( ) A.命题p 、q 均为假命题B.命题p 、q 均为真命题C.命题p 、q 中至少有一个是真命题D.命题p 、q 中至多有一个是真命题5.椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上一点,已知21PF PF ⊥,则△21PF F 的面积为( )A .9B .12C .10D .86. 一个均匀的正方体的玩具的各个面上分别标以数字1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A 表示向上的一面出现奇数点,事件B 表示向上的一面出现的点数不超过3,事件C 表示向上的一面出现的点数不小于4,则( )A .A 与B 是互斥而非对立事件 B .A 与B 是对立事件C .B 与C 是互斥而非对立事件D .B 与C 是对立事件7.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( )A.310 B.15 C.110 D.112 8. 已知双曲线)0,0(12222>>=-b a b y a x 的渐近线方程为y =±33x, 若顶点到渐近线的距离为1, 则双曲线的方程为( )A.143422=-y xB. 144322=-y xC. 14422=-y x D.134422=-y x9.某程序框图如右图所示,若输出的57S =,则判断框内为( ) A .5?k > B . 6?k > C .4?k > D .7?k > 10.在区间]2,0[上随机地取一个数x ,则事件“1)21(log 121≤+≤-x ”发生的概率为 A.32 B. 43 C.31 D.41 11. 若直线mx +ny =4和圆O: x 2+y 2=4没有交点, 则过点(m, n)的直线与椭圆14922=+y x 的交点个数为 ( ) A. 至多一个B. 2个C. 1个D. 0个12.已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:C y 8x =的焦点重合,A 、B 是C 的准线与E 的两个交点,则AB = ( ) A.12 B.6 C.9 D.3二、填空题(每小题5分,共20分)13.如图所示,在边长为1的正方形中,随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为 ;第9题图14. 已知命题p:存在0],2,1[2≥-∈a x x 使得,命题q:指数函数xa y )(log 2=是R 上的增函数,若命题“p 且q”是真命题,则实数a 的取值范围是_______.15. 已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且2BF FD =,则C 的离心率为 ;16.已知00(,)M x y 是双曲线C :2212x y -=上的一点,1F 、2F 是C 上的两个焦点,若12F MF ∠为钝角,则0y 的取值范围是 ;三、解答题(共6题,共70分)17.(本题满分10分)已知集合A =⎩⎨⎧⎭⎬⎫y|y =x 2-32x +1,x ∈⎣⎢⎡⎦⎥⎤34,2,B ={x|x +m 2≥1}.命题p :x∈A,命题q :x∈B,并且命题p 是命题q 的充分条件,求实数m 的取值范围.18.(本题满分12分)某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了n 人,回答问题计结果如下图表所示:(1)分别求出a ,b ,x ,y 的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组各抽取多少人?(3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.19.(本题满分12分)(1)已知关于x 的二次函数f(x)=ax 2-4bx +1.设集合P ={1,2,3}和Q ={-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数y =f(x)在区间和上分别取一个数,记为a,b,求方程+=1表示焦点在x 轴上且离心率小于的椭圆的概率.20. (本题满分12分)已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A(x 1,y 1),B(x 2,y 2)(x 1<x 2)两点,且|AB|=9. (1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC OA OB λ=+, 求λ的值.21.(本题满分12分)如图,已知(),0F c 是椭圆()2222:10x y C a b a b+=>>的右焦点,圆()222:F x c y a -+=与x 轴交于,D E 两点,其中E 是椭圆C 的左焦点. (1)求椭圆C 的离心率;(2)设圆F 与y 轴的正半轴的交点为B ,点A 是点D 关于y 轴的对称点,试判断直线AB 与圆F 的位置关系;(3)设直线BF 与圆F 交于另一点G ,若BGD ∆的面积为C 的标准方程.22.(本题满分12分)己知⊙O:x 2+y 2=6,P 为⊙O 上动点,过P 作PM⊥x 轴于M ,N 为PM 上一点,且2PM NM =.(1)求点N 的轨迹C 的方程;(2)若A(2,1),B(3,0),过B 的直线与曲线C 相交于D 、E 两点,则k AD +k AE 是否为定值?若是,求出该值;若不是,说明理由.Gy xBOAEFD高二上学期期中考试理科数学试题参考答案一、选择题(每小题5分,共60分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBADADAA.CBBD二、填空题(每小题5分,共20分) 13.____950_ 14.____ (2,4]___ 15._ ____ 16. 33(⋃17.满分10分解:化简集合A ,由y =x 2-32x +1,配方,得y =⎝ ⎛⎭⎪⎫x -342+716.∵x ∈⎣⎢⎡⎦⎥⎤34,2,∴y min =716,y max =2. ∴y ∈⎣⎢⎡⎦⎥⎤716,2.∴A =⎩⎨⎧⎭⎬⎫y |716≤y ≤2.………………………4分化简集合B ,由x +m 2≥1,得x ≥1-m 2,B ={x |x ≥1-m 2}………………6分∵命题p 是命题q 的充分条件,∴A ⊆B .∴1-m 2≤716,………………8分解得m ≥34,或m ≤-34.∴实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-34∪⎣⎢⎡⎭⎪⎫34,+∞.………………………10分18.满分12分19 .满分12分(1)∵函数f (x )=ax 2-4bx +1的图象的对称轴为直线x =2b a,要使f (x )=ax 2-4bx+1在区间,b∈,画出满足不等式组的平面区域,如图阴影部分所示,………………………10分阴影部分的面积为,故所求的概率P==.………………………12分20. (本题满分12分)已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A(x 1,y 1),B(x 2,y 2)(x 1<x 2)两点,且|AB|=9. (1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC OA OB λ=+, 求λ的值. 20.:(1)直线AB 的方程是y =22(x -p2),与y 2=2px …………1分联立,从而有4x 2-5px +p 2=0,……………3分所以:x 1+x 2=5p4,由抛物线定义得:|AB |=x 1+x 2+p =9,………5分所以p =4,从而抛物线方程是y 2=8x . ……………6分(2)由p =4,4x 2-5px +p 2=0可简化为x 2-5x +4=0,……………7分从而x 1=1,x 2=4,y 1=-22,y 2=42,从而A (1,-22),B (4,42);……8分 设OC =(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22).……………9分 又y 23=8x 3,即2=8(4λ+1),即(2λ-1)2=4λ+1,……………11分 解得λ=0,或λ=2. ………………………………12分21. (1)∵圆F 过椭圆C 的左焦点,把(—c,0)代入圆F 的方程, 得224c a =,所以椭圆C 的离心率12c e a ==.………………………2分 (2)在方程()222x c y a -+=中,令22220x y a c b ==-=得,可知点B 为椭圆的上顶点.由(1)知12c a =,得222,3a c b a c c ==-=,所以()03B c ,. 在圆F 的方程中,令0y =,可得点D 的坐标为()3,0c ,则点()3,0A c -. (4)分于是可得直线AB 的斜率33AB c k ==,而直线FB 的斜率33FB ck ==.………………………7分 1AB FD k k ⋅=-,∴直线AB 与圆F 相切.………………………8分(3)DF 是BDG ∆的中线,22BDG BFD S S DF OB c ∆∆∴==⋅==,22c ∴=,从而得28a =,26b =,∴椭圆C 的标准方程为22186x y +=.………………………12分22. 解:(1)设()y x N ,,()00,y x P ,则()0,0x M ,()00,PM y =,()0,NM x x y =--由2PM NM =,得()⎪⎩⎪⎨⎧-=--=yy x x 22000,⎪⎩⎪⎨⎧==∴y y xx 200 ……………………3分由于点P 在圆6:22=+y x O 上,则有()6222=+y x ,即13622=+y x . ∴点N 的轨迹C 的方程为13622=+y x ………………………4分(2) 设()11,y x D ,()22,y x E ,过点B 的直线DE 的方程为()3-=x k y ,由()⎪⎩⎪⎨⎧=+-=136322y x x k y 消去y 得: ()061812122222=-+-+k x k x k ,其中0>∆ 12618,121222212221+-=+=+∴k k x x k k x x ;………………………6分()()213213212122112211-+-+-+-=--+--=+∴x k kx x k kx x y x y k k AE AD ()()()4212415221212121++-++++-=x x x x k x x k x kx()4121221261812412121512618222222222++⋅-+-+++⋅+-+-⋅=k kk k k k k k k k k 2224422-=-+-=k k AE AD k k +∴是定值2-.………………………12分。
中学部2015-2016学年第一学期高二年级期中测试数 学 学 科 试 题 参 考 答 案(第一部分 满分100分) 一、填空题 (本大题共8小题,每小题5分,共40分)1. 10x y --=2.2y x =3.28y x = 4.相离5.2e +6.47. 55(2,)(,3)228.{0}二、解答题 (本大题共4小题,共计60分) 9. (本小题满分14分)解(1)53BC k =-,BC 边所在直线在y 轴上的截距为2, BC 边所在直线方程为52,53603y x x y =-++-=(2)25AC k =,AC 边上的高的斜率为52k =-,AC 边上的高的直线的方程为53(3)2y x +=--,即5290x y +-=10. (本小题满分14分)解(1)右焦点2(3,0)F ,对应右准线253x =.右焦点到对应准线的距离为163. (2)椭圆的离心率为35e =,根据第二定义, 231616535PF ed ==⋅=, 根据第一定义12163421055PF a PF =-=-=,点P 到左焦点1F 的距离为345. 11. (本小题满分16分)解(1)17 (2)能切点坐标(2(2,)33k k k Z ππππ+-∈或 12. (本小题满分16分)解:(1)设圆C 方程为,022=++++F Ey Dx y x则0443206480F D E F D F ⎧=⎪+++=⎨⎪+++=⎩ 解得D= —8,E=F=0.所以圆C :2280.x y x +-= (2)圆C :22(4)16.x y -+=圆心C(4,0),半径4当斜率不存在时,:0l x =符合题意;当斜率存在时,设直线:0,l y kx kx y =+-+=即因为直线l 与圆C 相切,所以圆心到直线距离为4,4,k ==解得所以直线:120.l y x x =++-=即故所求直线0,120.l x x =-=为或(第二部分满分60分)三、填空题 (本大题共6小题,每小题5分,共30分)13.20x y -= 14. 22(1)(3)25x y -+-= 15.4259()122f x x x =-+ 16. 25/2. 17.011x -≤≤ 18..6 四、解答题 (本大题共2小题,共计30分) 19. (本题满分14分)解:(1)由抛物线2:C y x =得x y 2=',02|0x y x x ='∴= 切线l 的方程为)(2000x x x y y -=- 其中200x y = 令,0=x 得20x y -=;令,0=y 得20x x =;所以)0,2(0x A ,),0(20x B - 22400174x AB x =+=得到2004,2x x ==±,点P 的坐标为(2,4)±(2)设圆心E 的坐标为),0(b ,由题知1-=⋅l PE k k ,即12000-=⋅-x x by ,所以210-=-b y ;由||||PA PE =得20202020)2()(y x b y x +=-+整理得0134020=--y y解得10=y 或410-=y (舍去) 所以23=b ,圆E 的圆心E 的坐标为)23,0(,半径=r =||PE 25)(2020=-+b y x 圆E 的方程为45)23(22=-+y x20. (本题满分16分)解(1)①由已知得c a =,22411a b +=,222a b c =+,联立解得228,2a b ==. 椭圆M 的方程为22182x y +=. ②直线AB 的斜率为定值12由已知直线1:1(2)PA y k x -=-代入椭圆M 的方程消去y 并整理得22111(2)[(14)(288)]0x k x k k -+++-=所以2112188214A k k x k --=+,从而2112144114A k k y k --+=+同理2222288214B k k x k --=+,2222244114B k k y k --+=+因为120k k +=所以121222124()(41)(14)(14)A B k k k k y y k k ---==++121222128()(41)(14)(14)A B k k k k x x k k ---=++12A B ABA B y y k x x -==-为定值 (2) 解法一:12TBC S BC t =⋅=△直线TB 方程为:11y x t =+,联立221411x y y x t ⎧+=⎪⎪⎨⎪=+⎪⎩,得E x 22284,44t t E t t ⎛⎫-- ⎪++⎝⎭到:TC 30x ty t --=的距离d ==直线TC 方程为:31y x t =-,联立221431x y y x t ⎧+=⎪⎪⎨⎪=-⎪⎩,得22436F t x t =+,所以=所以S 所以k 令21212t m +=>,则2213k m m m ==+-≤,当且仅当24m =,即t =±=”, 所以k 的最大值为43.解法二:直线TB 方程为11y x t =+,联立221411x y y x t ⎧+=⎪⎪⎨⎪=+⎪⎩,得E x直线TC 方程为:31y x t =-,联立221431x y y x t ⎧+=⎪⎪⎨⎪=-⎪⎩,得F x =1sin 21sin 2TBC TEFTB TC BTCS TB TC k S TE TF TE TF ETF ⋅⋅∠⋅===⋅⋅⋅∠△△T CT B T E T F x x x x TB TC TE TF x x x x --=⋅=⋅-- 22824436t tt t t t t t =⋅=+-++令21212t m +=>,则22192413k m m ==+-≤,当且仅当24m =,即t =±=”,所以k 的最大值为43.18解。
高二期中数学卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共5页。
满分150分,考试时间120分钟。
考试结束后,将本试卷以及答题卡和答题纸一并交回。
答卷前,考生务必将自己的姓名、准考证号、考试科目填涂在试卷、答题卡和答题纸规定的地方。
第Ⅰ卷注意事项:第Ⅰ卷为选择题,共 12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一个最符合题目要求。
每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选择其他答案标号。
不能直接写在本试卷上。
1、集合}032|{2<--=x x x M ,}|{a x x N >=,若N M ⊆,则实数a 的范围是( )A .),3[+∞B .),3(+∞C .]1,(--∞D .)1,(--∞ 2、将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )3、已知a 、b 均为单位向量,它们的夹角为3π,那么3a b + 等于( )D.44、已知直线l ,m 与平面αβγ,,满足//l l m βγαα=⊂ ,,,m γ⊥,则有( ) A .αγ⊥且//m β B .αγ⊥且l m ⊥ C .//m β且l m ⊥ D .//αβ且αγ⊥5、设函数2,0(),01x x bx c f x x ≥⎧++=⎨<⎩,若(4)(0)f f =,(2)2f =,则函数()()g x f x x=-的零点的个数是( )A .0B .1C .2D .36、已知0)](log [log log 237=x ,那么21-x 等于( )A.31 B.63 C.33 D.427、已知3cos(),sin 245x x π-=则=( )(D )(C )(B )(A )A .1825 B .725 C .725- D .1625- 8、利用如图所示程序框图在直角坐标平面上打印一系列点,则打印的点落 在坐标轴上的个数是( )A.0B.1C.2D.3 9、各项为正的等比数列{}n a 中,4a 与14a的等比中项为7112a a +的最小值为( )A .16B .8C.D .410、在错误!未找到引用源。
2015-2016学年广东省深圳市宝安区西乡中学高二(上)期中数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如果在△ABC中,a=3,,c=2,那么B等于()A.B.C.D.2.在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.3.△ABC中,角A,B,C所对的边分别为a,b,c若<cosA,则△ABC为( )A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形4.若实数x,y满足不等式组:,则该约束条件所围成的平面区域的面积是()A.3 B.C.2 D.5.不等式≤0的解集为()A.{x|x<1或x≥3} B.{x|1≤x≤3}C.{x|1<x≤3} D.{x|1<x<3}6.设函数则不等式f(x)>f(1)的解集是()A.(﹣3,1)∪(3,+∞)B.(﹣3,1)∪(2,+∞)C.(﹣1,1)∪(3,+∞) D.(﹣∞,﹣3)∪(1,3)7.等差数列{a n}的前n项和为S n,若a1=2,S3=12,则a6等于( )A.8 B.10 C.12 D.148.已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=( )A.7 B.5 C.﹣5 D.﹣79.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=( )A.B. C.D.10.已知数列{a n},如果a1,a2﹣a1,a3﹣a2,…,a n﹣a n﹣1,…,是首项为1,公比为的等比数列,则a n=( )A.(1﹣)B.(1﹣)C.(1﹣)D.(1﹣)11.数列{a n}是由正数组成的等比数列,且公比不为1,则a1+a8与a4+a5的大小关系为( ) A.a1+a8>a4+a5B.a1+a8<a4+a5C.a1+a8=a4+a5D.与公比的值有关12.若集合A={x|ax2﹣ax+1<0}=∅,则实数a的值的集合是( )A.{a|0<a<4} B.{a|0≤a<4} C.{a|0<a≤4} D.{a|0≤a≤4}二、填空题:本大题共4小题,每小题5分13.在△ABC中,已知•=tanA,当A=时,△ABC的面积为__________.14.若变量x、y满足约束条件,且z=2x+y的最大值和最小值分别为M和m,则M ﹣m=__________.15.等比数列{a n}中,S n表示前n顶和,a3=2S2+1,a4=2S3+1,则公比q为__________.16.若关于x的不等式mx2+2mx﹣4<2x2+4x时对任意实数l均成立,则实数m的取值范围是__________.三.解答题:解答应写出文字说明,证明过程或演算步骤。
2015-2016学年广东省深圳高中高二(上)期中数学试卷(理科)一.选择题:共6小题,每小题5分,共30分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)的真子集共有()A.3个 B.6个 C.7个 D.8个2.(5分)已知x=lnπ,y=log52,,则()A.x<y<z B.z<x<y C.z<y<x D.y<z<x3.(5分)若某空间几何体的三视图如图所示,则该几何体的体积是()A.B.C.1 D.24.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.5.(5分)若变量x,y满足约束条件,则z=2x+3y的最小值为()A.17 B.14 C.5 D.36.(5分)设a>0,b>0.若是3a与3b的等比中项,则的最小值为()A.8 B.4 C.1 D.二.填空题:本大题共两小题,每小题5分.7.(5分)=(2,3),=(﹣3,5),则在方向上的投影为.8.(5分)设等差数列{a n}的前n的和为S n,若S9=72,则a2+a4+a9=.三、解答题:解答应写出文字说明,证明过程或演算步骤.9.(10分)已知函数f(x)=sin2x﹣2sin2x.(Ⅰ)求函数f(x)的最大值;(Ⅱ)求函数f(x)的零点的集合.10.(12分)设f(x)=,且f(x)=x有唯一解,f(x1)=,x n+1=f (x n)(n∈N*).(1)求实数a;(2)求数列{x n}的通项公式;(3)若a n=﹣4009,数列b1,b2﹣b1,b3﹣b2,…,b n﹣b n﹣1是首项为1,公比为的等比数列,记c n=a n b n,求{c n}的前n项和.四.选择题:共6小题,每小题5分,共30分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.11.(5分)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i12.(5分)已知F1、F2为双曲线C:x2﹣y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.B.C.D.13.(5分)已知向量=(1,1,0),=(﹣1,0,2)且k+与2﹣互相垂直,则k的值是()A.1 B.C.D.14.(5分)下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1 B.a>b﹣1 C.a2>b2D.a3>b315.(5分)正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.B.C.D.16.(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.五.填空题:本大题共两小题,每小题5分.17.(5分)如果方程x2+ky2=2表示焦点在x轴上的椭圆,那么实数k的取值范围是.18.(5分)已知ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GC 垂直于ABCD所在的平面,且GC=2.求点B到平面EFG的距离.六、解答题:解答应写出文字说明,证明过程或演算步骤.19.(12分)已知命题P:函数y=log a(1﹣2x)在定义域上单调递增;命题Q:不等式(a﹣2)x2+2(a﹣2)x﹣4<0对任意实数x恒成立.若P∨Q是真命题,求实数a的取值范围.20.(12分)已知点P是圆O:x2+y2=9上的任意一点,过P作PD垂直x轴于D,动点Q满足=.(1)求动点Q的轨迹方程;(2)已知点E(1,1),在动点Q的轨迹上是否存在两个不重合的点M、N,使=(+)(O是坐标原点).若存在,求出直线MN的方程;若不存在,请说明理由.21.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°.(Ⅰ)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的余弦值.22.(12分)已知椭圆的两个焦点分别为F1(﹣c,0)和F2(c,0)(c>0),过点的直线与椭圆相交于A,B两点,且F1A∥F2B,|F1A|=2|F2B|.(1)求椭圆的离心率;(2)求直线AB的斜率;(3)设点C与点A关于坐标原点对称,直线F2B上有一点H(m,n)(m≠0)在△AF1C的外接圆上,求的值.2015-2016学年广东省深圳高中高二(上)期中数学试卷(理科)参考答案与试题解析一.选择题:共6小题,每小题5分,共30分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)的真子集共有()A.3个 B.6个 C.7个 D.8个【解答】解:∵集合A={4,5,7,9},B={3,4,7,8,9},∴A∪B={3,4,5,7,8,9},A∩B={4,7,9}∴C U(A∩B)={3,5,8}∴C U(A∩B)的真子集共有23﹣1=7故选:C.2.(5分)已知x=lnπ,y=log52,,则()A.x<y<z B.z<x<y C.z<y<x D.y<z<x【解答】解:∵x=lnπ>lne=1,0<log52<log5=,即y∈(0,);1=e0>=>=,即z∈(,1),∴y<z<x.故选:D.3.(5分)若某空间几何体的三视图如图所示,则该几何体的体积是()A.B.C.1 D.2【解答】解:由题意可知几何体的三视图可知几何体是放倒的三棱柱,底面是直角三角形,直角边分别为:1,,棱柱的高为,所以几何体的体积为:=1.故选:C.4.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故选:C.5.(5分)若变量x,y满足约束条件,则z=2x+3y的最小值为()A.17 B.14 C.5 D.3【解答】解:由约束条件作出可行域如图,联立,解得A(1,1),化目标函数z=2x+3y为,由图可知,当直线过A时,z有最小值为2×1+3×1=5.故选:C.6.(5分)设a>0,b>0.若是3a与3b的等比中项,则的最小值为()A.8 B.4 C.1 D.【解答】解:因为3a•3b=3,所以a+b=1,,当且仅当即时“=”成立,故选:B.二.填空题:本大题共两小题,每小题5分.7.(5分)=(2,3),=(﹣3,5),则在方向上的投影为.【解答】解:∵=(2,3),=(﹣3,5),∴,,则=.故答案为:.8.(5分)设等差数列{a n}的前n的和为S n,若S9=72,则a2+a4+a9=24.【解答】解:∵∴a5=8又∵a2+a4+a9=3(a1+4d)=3a5=24故答案是24三、解答题:解答应写出文字说明,证明过程或演算步骤.9.(10分)已知函数f(x)=sin2x﹣2sin2x.(Ⅰ)求函数f(x)的最大值;(Ⅱ)求函数f(x)的零点的集合.【解答】解:(Ⅰ)∵f(x)=sin2x﹣2sin2x=sin2x+cos2x﹣1=2sin(2x+)﹣1故函数f(x)的最大值等于2﹣1=1(Ⅱ)由f(x)=0得2sin xcos x=2sin2x,于是sin x=0,或cos x=sin x即tan x=由sin x=0可知x=kπ;由tan x=可知x=kπ+.故函数f(x)的零点的集合为{x|x=kπ或x=k,k∈Z}10.(12分)设f(x)=,且f(x)=x有唯一解,f(x1)=,x n+1=f(x n)(n∈N*).(1)求实数a;(2)求数列{x n}的通项公式;(3)若a n=﹣4009,数列b1,b2﹣b1,b3﹣b2,…,b n﹣b n﹣1是首项为1,公比为的等比数列,记c n=a n b n,求{c n}的前n项和.【解答】解:(1)=x有唯一解,⇔ax2+(2a﹣1)x=0有唯一解x=0,∴a=.=,(2)x n+1两边取倒数可得:=,∴+=,∴x n=.(3)a n=﹣4009=2n﹣1,又b n=b1+(b2﹣b1)+(b3﹣b2)+…+(b n﹣b n﹣1)==.∴c n=a n b n=,T1=1+3+5+…+(2n﹣1)==n2,T2=…+,=+…++,∴=﹣=﹣﹣=,∴T2=1﹣.∴{c n}的前n项和S n=.四.选择题:共6小题,每小题5分,共30分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.11.(5分)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i【解答】解:,∴z=1﹣3i故选:B.12.(5分)已知F1、F2为双曲线C:x2﹣y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.B.C.D.【解答】解:将双曲线方程x2﹣y2=2化为标准方程﹣=1,则a=,b=,c=2,设|PF1|=2|PF2|=2m,则根据双曲线的定义,|PF1|﹣|PF2|=2a可得m=2,∴|PF1|=4,|PF2|=2,∵|F1F2|=2c=4,∴cos∠F1PF2====.故选:C.13.(5分)已知向量=(1,1,0),=(﹣1,0,2)且k+与2﹣互相垂直,则k的值是()A.1 B.C.D.【解答】解:∵=(1,1,0),=(﹣1,0,2),∴k+=k(1,1,0)+(﹣1,0,2)=(k﹣1,k,2),2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2),又k+与2﹣互相垂直,∴3(k﹣1)+2k﹣4=0,解得:k=.故选:D.14.(5分)下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1 B.a>b﹣1 C.a2>b2D.a3>b3【解答】解:a>b+1⇒a>b;反之,例如a=2,b=1满足a>b,但a=b+1即a>b推不出a>b+1,故a>b+1是a>b成立的充分而不必要的条件.故选:A.15.(5分)正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.B.C.D.【解答】解:如图,设上下底面的中心分别为O1,O,设正方体的棱长等于1,则O1O与平面ACD1所成角就是BB1与平面ACD1所成角,即∠O1OD1,直角三角形OO1D1中,cos∠O1OD1===,故选:D.16.(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.【解答】解:设抛物线C:y2=8x的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则,∴|OB|=|BF|,点B的横坐标为1,故点B的坐标为,故选:D.五.填空题:本大题共两小题,每小题5分.17.(5分)如果方程x2+ky2=2表示焦点在x轴上的椭圆,那么实数k的取值范围是k>1.【解答】解:方程x2+ky2=2化为方程,所以0<<2,即k>1.故答案为k>1.18.(5分)已知ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GC 垂直于ABCD所在的平面,且GC=2.求点B到平面EFG的距离.【解答】解:如图,连接EG、FG、EF、BD、AC、EF、BD分别交AC于H、O.因为ABCD是正方形,E、F分别为AB和AD的中点,故EF∥BD,H为AO的中点.BD不在平面EFG上.否则,平面EFG和平面ABCD重合,从而点G在平面的ABCD 上,与题设矛盾.由直线和平面平行的判定定理知BD∥平面EFG,所以BD和平面EFG的距离就是点B到平面EFG的距离.∵BD⊥AC,∴EF⊥HC.∵GC⊥平面ABCD,∴EF⊥GC,∴EF⊥平面HCG.∴平面EFG⊥平面HCG,HG是这两个垂直平面的交线.作OK⊥HG交HG于点K,由两平面垂直的性质定理知OK⊥平面EFG,所以线段OK的长就是点B到平面EFG的距离.∵正方形ABCD的边长为4,GC=2,∴AC=4,HO=,HC=3.∴在Rt△HCG中,HG==.由于Rt△HKO和Rt△HCG有一个锐角是公共的,故Rt△HKO∽△HCG.∴OK=.即点B到平面EFG的距离为.六、解答题:解答应写出文字说明,证明过程或演算步骤.19.(12分)已知命题P:函数y=log a(1﹣2x)在定义域上单调递增;命题Q:不等式(a﹣2)x2+2(a﹣2)x﹣4<0对任意实数x恒成立.若P∨Q是真命题,求实数a的取值范围.【解答】解:∵命题P函数y=log a(1﹣2x)在定义域上单调递增;∴0<a<1(3分)又∵命题Q不等式(a﹣2)x2+2(a﹣2)x﹣4<0对任意实数x恒成立;∴a=2(2分)或,(3分)即﹣2<a≤2(1分)∵P∨Q是真命题,∴a的取值范围是0<a≤2,且a≠1(5分)20.(12分)已知点P是圆O:x2+y2=9上的任意一点,过P作PD垂直x轴于D,动点Q满足=.(1)求动点Q的轨迹方程;(2)已知点E(1,1),在动点Q的轨迹上是否存在两个不重合的点M、N,使=(+)(O是坐标原点).若存在,求出直线MN的方程;若不存在,请说明理由.【解答】解:(1)设P(x0,y0),Q(x,y),依题意,则点D的坐标为D(x0,0)(1分)∴(2分)又∴(4分)∵P在⊙O上,故x02+y02=9∴(5分)∴点Q的轨迹方程为(6分)(2)假设椭圆上存在两个不重合的两点M(x1,y1),N(x2,y2)满足,则E(1,1)是线段MN的中点,且有又M(x1,y1),N(x2,y2)在椭圆上∴两式相减,得(12分)∴∴直线MN的方程为4x+9y﹣13=0将直线MN的方程代入椭圆方程检验得:52x2﹣104x﹣155=0则△>0有实根∴椭圆上存在点M、N满足,此时直线MN的方程为4x+9y﹣13=0(14分)21.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°.(Ⅰ)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的余弦值.【解答】(Ⅰ)证明:作ME∥CD交SD于点E,则ME∥AB,ME⊥平面SAD,连接AE,则四边形ABME为直角梯形,作MF⊥AB,垂足为F,则AFME为矩形,设ME=x,则SE=x,AE==,MF=AE=,FB=2﹣x,由MF=FB•tan 60°,得,解得x=1,即ME=1,从而ME=,∴M为侧棱SC的中点.(Ⅱ)解:MB==2,又∠ABM=60°,AB=2,∴△ABM为等边三角形.又由(Ⅰ)知M为SC中点,SM=,SA=,AM=2,∴SA2=SM2+AM2,∠SMA=90°,取AM中点G,连结BG,取SA中点H,连结GH,则BG⊥AM,GH⊥AM,由此知∠BGH为二面角S﹣AM﹣B的平面角,连结BH,在△BGH中,BG=,GH=,BH==,∴cos∠BGH==﹣.∴二面角S﹣AM﹣B的余弦值为﹣.22.(12分)已知椭圆的两个焦点分别为F1(﹣c,0)和F2(c,0)(c>0),过点的直线与椭圆相交于A,B两点,且F1A∥F2B,|F1A|=2|F2B|.(1)求椭圆的离心率;(2)求直线AB的斜率;(3)设点C与点A关于坐标原点对称,直线F2B上有一点H(m,n)(m≠0)在△AF1C的外接圆上,求的值.【解答】(1)解:由F1A∥F2B且|F1A|=2|F2B|,得,从而整理,得a2=3c2,故离心率(2)解:由(I)得b2=a2﹣c2=2c2,所以椭圆的方程可写为2x2+3y2=6c2设直线AB的方程为,即y=k(x﹣3c).由已知设A(x1,y1),B(x2,y2),则它们的坐标满足方程组消去y整理,得(2+3k2)x2﹣18k2cx+27k2c2﹣6c2=0.依题意,而①②由题设知,点B为线段AE的中点,所以x1+3c=2x2③联立①③解得,将x1,x2代入②中,解得.(III)解法一:由(II)可知当时,得,由已知得.线段AF1的垂直平分线l的方程为直线l与x轴的交点是△AF1C外接圆的圆心,因此外接圆的方程为.直线F2B的方程为,于是点H (m ,n )的坐标满足方程组,由m ≠0,解得故当时,同理可得.解法二:由(II )可知当时,得,由已知得由椭圆的对称性可知B ,F 2,C 三点共线, 因为点H (m ,n )在△AF 1C 的外接圆上, 且F 1A ∥F 2B ,所以四边形AF 1CH 为等腰梯形. 由直线F 2B的方程为, 知点H 的坐标为.因为|AH |=|CF 1|,所以,解得m=c (舍),或.则,所以.当时同理可得赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DFE1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°DEa+b-aa45°A BE挖掘图形特征:a+bx-aa 45°DBa+b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。