三角函数及二次函数知识点及典型题
- 格式:docx
- 大小:259.25 KB
- 文档页数:9
二次函数知识点总结及经典习题一、二次函数概念:1.二次函数的概念:一般地,形如y =ax2 +bx +c (a ,b,c是常数,a ≠ 0 )的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数a ≠ 0 ,而b ,c 可以为零.二次函数的定义域是全体实数.2. 二次函数y =ax2 +bx +c 的结构特征:⑴等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a ,b ,c 是常数, a 是二次项系数, b 是一次项系数, c 是常数项.二、二次函数的基本形式1.二次函数基本形式:y =ax2 的性质:a 的绝对值越大,抛物线的开口越小。
a 的符号开口方向顶点坐标对称轴性质a > 0向上(0,0)y 轴x > 0 时,y 随x 的增大而增大;x < 0 时,y 随x 的增大而减小;x = 0 时,y 有最小值0 .a < 0向下(0,0)y 轴x > 0 时,y 随x 的增大而减小;x < 0 时,y 随x 的增大而增大;x = 0 时,y 有最大值0 .2.y =ax2 +c 的性质:上加下减。
a 的符号开口方向顶点坐标对称轴性质a > 0向上(0,c)y 轴x > 0 时,y 随x 的增大而增大;x < 0 时,y 随x 的增大而减小;x = 0 时,y 有最小值c .a < 0向下(0,c)y 轴x > 0 时,y 随x 的增大而减小;x < 0 时,y 随x 的增大而增大;x = 0 时,y 有最大值c .3.y = a (x - h )2的性质:左加右减。
a 的符号开口方向顶点坐标对称轴性质a > 0向上(h ,0)X=hx > h 时, y 随 x 的增大而增大; x < h 时, y 随x 的增大而减小; x = h 时, y 有最小值0 .a < 0向下(h ,0)X=hx > h 时, y 随 x 的增大而减小; x < h 时, y 随x 的增大而增大; x = h 时, y 有最大值0 .4.y = a (x - h )2+ k 的性质:a 的符号开口方向顶点坐标对称轴性质a > 0向上(h ,k )X=h x > h 时, y 随 x 的增大而增大;x < h 时, y 随x 的增大而减小; x = h 时, y 有最小值 k .a < 0向下(h ,k )X=hx > h 时, y 随 x 的增大而减小;x < h 时, y 随x 的增大而增大; x = h 时, y 有最大值 k .三、二次函数图象的平移1.平移步骤:⑴ 将抛物线解析式转化成顶点式 y = a (x - h )2+ k ,确定其顶点坐标(h ,k );⑵ 保持抛物线 y = ax 2 的形状不变,将其顶点平移到(h ,k )处,具体平移方法如下:2.平移规律在原有函数的基础上“ h 值正右移,负左移; k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.四、二次函数 y = a (x - h )2+ k 与 y = ax 2 + bx + c 的比较从解析式上看, y = a (x - h )2+ k 与 y = ax 2 + bx + c 是两种不同的表达形式,后者通过配方可以得到前者,即 y = a +,其中h= - ,k=(b2a )24ac - b 24ab2a 4ac - b 24a 五、二次函数 y = ax 2 + bx + c 的性质当 a > 0 时,抛物线开口向上,对称轴为,顶点坐标为.b2a (‒b 2a ,4ac ‒ b 24a)当x < - 时,y 随x 的增大而减小;b2a当x > - 时,y 随x 的增大而增大;b2a 当x =- 时,y 有最小值 .b 2a 4ac ‒ b 24a 2. 当α<0时,抛物线开口向下,对称轴为x =- , 顶点坐标为.当b2a(‒b 2a ,4ac ‒ b 24a)x < -时, y 随 x 的大而增大y;当随 x > - 时,y 随 x 的增大而减小;当x =- 时 , y 有最大值.b2ab 2a b 2a 4ac ‒ b 24a六、二次函数解析式的表示方法1.一般式: y = ax 2 + bx + c ( a , b , c 为常数, a ≠ 0 );2.顶点式: y = a (x - h )2 + k ( a , h , k 为常数, a ≠ 0 );3.两根式(交点式): y = a (x - x 1 )(x - x 2 ) ( a ≠ 0 , x 1 , x 2 是抛物线与 x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式, 只有抛物线与 x 轴有交点,即b 2 - 4ac ≥ 0 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1.二次项系数 a ⑴ 当 a > 0 时,抛物线开口向上, a 的值越大,开口越小,反之 a 的值越小,开口越大;⑵ 当 a < 0 时,抛物线开口向下, a 的值越小,开口越小,反之 a 的值越大,开口越大.2.一次项系数b 在二次项系数 a 确定的前提下, b 决定了抛物线的对称轴.(同左异右b 为 0 对称轴为 y 轴)3.常数项c⑴ 当c > 0 时,抛物线与 y 轴的交点在 x 轴上方,即抛物线与 y 轴交点的纵坐标为正;⑵ 当c = 0 时,抛物线与 y 轴的交点为坐标原点,即抛物线与 y 轴交点的纵坐标为0 ;⑶ 当c < 0 时,抛物线与 y 轴的交点在 x 轴下方,即抛物线与 y 轴交点的纵坐标为负. 总结起来, c 决定了抛物线与 y 轴交点的位置.八、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与 x 轴交点情况):一元二次方程 ax 2 + bx + c = 0 是二次函数 y = ax 2 + bx + c 当函数值 y = 0 时的特殊情况. 图象与 x 轴的交点个数:① 当 ∆ = b 2 - 4ac > 0 时,图象与 x 轴交于两点 A (x 1 ,0),B (x 2 ,0 ) (x 1 ≠ x 2 ) ,其中的 x 1 ,x 2是一元二次方程 ax 2 + bx + c = 0(a ≠ 0)的两根.②当∆= 0 时,图象与x 轴只有一个交点;③当∆< 0 时,图象与x 轴没有交点.1' 当a > 0 时,图象落在x 轴的上方,无论x 为任何实数,都有y > 0 ;2 ' 当a < 0 时,图象落在x 轴的下方,无论x 为任何实数,都有y < 0 .2.抛物线y =ax2 +bx +c 的图象与y 轴一定相交,交点坐标为(0 ,c) ;中考题型例析1.二次函数解析式的确定例 1求满足下列条件的二次函数的解析式(1)图象经过 A(-1,3)、B(1,3)、C(2,6);(2)图象经过 A(-1,0)、B(3,0),函数有最小值-8;(3)图象顶点坐标是(-1,9),与 x 轴两交点间的距离是 6.分析:此题主要考查用待定系数法来确定二次函数解析式.可根据已知条件中的不同条件分别设出函数解析式,列出方程或方程组来求解.(1)解:设解析式为 y=ax 2+bx+c,把 A(-1,3)、B(1,3)、C(2,6)各点代入上式得解得 {3=a ‒b +c 3=a +b +c 6=4a +2b +c {a =1b =0c =2∴解析式为 y=x 2+2.(2)解法1:由 A(-1,0)、B(3,0)得抛物线对称轴为 x=1,所以顶点为(1,-8). 设解析式为 y=a(x-h)2+k,即 y=a(x-1)2-8.把 x=-1,y=0 代入上式得 0=a(-2)2-8,∴a=2. 即解析式为 y=2(x-1)2-8,即 y=2x 2-4x-6.解法2:设解析式为 y=a(x+1)(x-3),确定顶点为(1,-8)同上, 把 x=1,y=-8 代入上式得-8=a(1+1)(1-3).解得 a=2,∴解析式为 y=2x 2-4x-6.解法 3:∵图象过 A(-1,0),B(3,0)两点,可设解析式为:y=a(x+1)(x-3)=ax 2-2ax-3a.∵函数有最小值-8.∴ =-8.4a (‒3a )‒(2a)24a又∵a≠0,∴a=2.⎬∴解析式为 y=2(x+1)(x-3)=2x 2-4x-6.(3)解:由顶点坐标(-1,9)可知抛物线对称轴方程是 x=-1, 又∵图象与 x 轴两交点的距离为 6,即 AB=6.由抛物线的对称性可得 A 、B 两点坐标分别为 A(-4,0),B(2,0), 设出两根式 y=a(x-x 1)·(x-x 2),将 A(-4,0),B(2,0)代入上式求得函数解析式为 y=-x 2-2x+8.点评:一般地,已知三个条件是抛物线上任意三点(或任意 3 对 x,y 的值)可设表达式为y=ax 2+bx+c,组成三元一次方程组来求解; 如果三个已知条件中有顶点坐标或对称轴或最值,可选用 y=a(x-h)2+k 来求解;若三个条件中已知抛物线与 x 轴两交点坐标,则一般设解析式为 y=a(x-x 1)(x-x 2).2.二次函数的图象例 2y=ax 2+bx+c(a≠0)的图象如图所示,则点 M(a,bc)在().A.第一象限B.第二象限C.第三象限D.第四象限分析:由图可知:抛物线开口向上⇒ a>0.抛物线与y 轴负半轴相交 ⇒ c < 0b ⇒ bc>0.对称轴x = - 2a 在y 轴右侧 ⇒ b < 0∴点 M(a,bc)在第一象限. 答案:A.点评:本题主要考查由抛物线图象会确定 a 、b 、c 的符号.例 3 已知一次函数 y=ax+c 二次函数 y=ax 2+bx+c(a≠0),它们在同一坐标o系中的大致图象是().分析:一次函数 y=ax+c,当 a>0 时,图象过一、三象限;当 a<0 时,图象过二、 四象限;c>0 时, 直线交 y 轴于正半轴; 当 c<0 时, 直线交 y 轴于负半轴; 对于二次函数y= ax 2+bx+c(a≠0)来讲:⎧开口上下决定a 的正负⎪左同右异(即对称轴在y 轴左侧,b 的符号⎪⎨与a 的符号相同;)来判别b 的符号⎪抛物线与y 轴的正半轴或负半轴相交确定⎪⎩c 的正负解:可用排除法,设当 a>0 时,二次函数 y=ax 2+bx+c 的开口向上,而一次函数 y= ax+c 应过一、三象限,故排除 C;当 a<0 时,用同样方法可排除 A;c 决定直线与 y 轴交点;也在抛物线中决定抛物线与y 轴交点,本题中c 相同则两函数图象在y 轴上有相同的交点,故排除B.答案:D.3.二次函数的性质例 4对于反比例函数 y=-与二次函数 y=-x 2+3, 请说出他们的两个相同点:2x ①, ②; 再说出它们的两个不同点:① ,②.分析:本小题是个开放性题目,可以从以下几点性质来考虑①增减性②图象的形状③ 最值④自变量取值范围⑤交点等.解:相同点:①图象都是曲线,②都经过(-1,2)或都经过(2,-1);不同点:①图象形状不同,②自变量取值范围不同,③一个有最大值,一个没有最大值. 点评:本题主要考查二次函数和反比例函数的性质,有关函2数开放性题目是近几年命题的热点.4.二次函数的应用例 5 已知抛物线 y=x 2+(2k+1)x-k 2+k,(1)求证:此抛物线与 x 轴总有两个不同的交点.(2)设 x 1、x 2 是此抛物线与 x 轴两个交点的横坐标,且满足 x 12+x 2=-2k 2+2k+1.①求抛物线的解析式.②设点 P (m 1,n 1)、Q(m 2,n 2)是抛物线上两个不同的点, 且关于此抛物线的对称轴对称. 求 m+m 的值.分析:(1)欲证抛物线与 x 轴有两个不同交点,可将问题转化为证一元二次方程有两个不相等实数根,故令 y=0,证△>0 即可.(2)①根据二次函数的图象与x 轴交点的横坐标即是一元二次方程的根.由根与系数的关系,求出 k 的值,可确定抛物线解析式;②由 P 、Q 关于此抛物线的对称轴对称得 n 1=n 2, 由 n 1=m 12+m 1,n 2=m 22+m 2得 m 12+m 1=m 22+m 2,即(m 1-m 2)(m 1+m 2+1)=0 可求得 m 1+m 2= - 1.解:(1)证明:△=(2k+1)2-4(-k 2+k)=4k 2+4k+1+4k 2-4k=8k 2+1.∵8k 2+1>0,即△>0,∴抛物线与 x 轴总有两个不同的交点.(2) ①由题意得 x 1+x 2=-(2k+1), x 1· x 2=-k 2+k.∵x 1 2+x 2 2=-2k 2+2k+1,∴(x 1+x 2)2-2x 1x 2=- 2k 2+2k+1, 即(2k+1)2-2(-k 2+k)=-2k 2+k+1, 4k 2+4k+1+2k 2-2k= - 2k 2+2k+1.∴8k 2=0, ∴k=0,∴抛物线的解析式是 y=x 2+x.22②∵点 P 、Q 关于此抛物线的对称轴对称,∴n 1=n 2.又 n 1=m 12+m 1,n 2=m 2+m 2.∴m 12+m 1=m 2+m 2,即(m 1-m 2)(m 1+m 2+1)=0.∵P 、Q 是抛物上不同的点,∴m 1≠m 2,即 m 1-m 2≠0.∴m 1+m 2+1=0 即 m 1+m 2=-1.点评:本题考查二次函数的图象(即抛物线)与 x 轴交点的坐标与一元二次方程根与系数的关系.二次函数经常与一元二次方程相联系并联合命题是中考的热点.二次函数对应练习试题一、选择题1.二次函数 y = x 2- 4x - 7 的顶点坐标是()A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3)2.把抛物线 y = -2x 2 向上平移 1 个单位,得到的抛物线是()A. y = -2(x +1)2B. y = -2(x -1)2C. y = -2x 2+1D. y = -2x 2-13.函数 y = kx 2- k 和 y = k(k ≠ 0) 在同一直角坐标系中图象可能是图中的()x4.已知二次函数 y = ax 2+ bx + c (a ≠ 0) 的图象如图所示,则下列结论: ①a,b同号;② 当 x = 1和 x = 3时,函数值相等;③ 4a + b = 0 ④当 y = -2时, x 的值只能取0.其中正确的个数是( )A.1 个B.2 个C. 3 个D.4 个5.已知二次函数 y = ax 2+ bx + c (a ≠ 0) 的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于 x 的一元二次方程ax 2+ bx + c = 0 的两个根分别是 x 1 = 1.3和x 2 =()A.-1.3 B.-2.3 C.-0.3 D.-3.36. 已知二次函数 y = ax 2 + bx + c 的图象如图所示,则点(ac , bc ) 在( )A .第一象限B .第二象限C .第三象限D .第四象限7.方程 2x - x 2= 的正根的个数为()2xA.0 个B.1 个C.2 个.3个08.已知抛物线过点 A(2,0),B(-1,0),与 y 轴交于点 C,且 OC=2.则这条抛物线的解析式为A. y = x 2 - x - 2B. y = -x 2+ x + 2C. y = x 2- x - 2 或 y = -x 2+ x + 2 D. y = -x 2- x - 2 或 y = x 2+ x + 2二、填空题9.二次函数 y = x 2+ bx + 3 的对称轴是 x = 2 ,则b = 。
⼆次函数知识点及典型例题⼆次函数⼀、⼆次函数的⼏何变换⼆、⼆次函数的图象和性质(Ⅰ) y=a(x-h)2+k (a≠0)的图象和性质(Ⅱ) y=ax2+bx+c (a≠0)的图象和性质(Ⅲ) a 、b 、c 的符号对抛物线形状位置的影响三、待定系数法求⼆次函数的解析式1、⼀般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择⼀般式。
2、顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式。
3、交点式:已知图像与x 轴的交点横坐标1x 、2x ,通常选⽤交点式:()()21x x x x a y --=。
4、顶点在原点,可设解析式为y=ax 2。
5、对称轴是y 轴(或者顶点在y 轴上),可设解析式为y= ax 2+c 。
6、顶点在x 轴上,可设解析式为()2h x a y -=。
7、抛物线过原点,可设解析式为y=ax2+bx 。
四、抛物线的对称性1、抛物线与x 轴有两个交点(x 1,0)(x 2,0),则对称轴为x=2x x 21+。
2、抛物线上有不同的两个交点(m ,a )(n,a ),则对称轴为x=2nm +。
3、抛物线c bx ax y ++=2(a ≠0)与y 轴交点关于对称轴的对称点为(ab-, c)。
五、⼆次函数与⼀元⼆次⽅程的关系对于抛物线c bx ax y ++=2(a ≠0),令y=0,即为⼀元⼆次⽅程02=++c bx ax ,⼀元⼆次⽅程的解就是⼆次函数与x 轴交点的横坐标。
要分三种情况:1、判别式△=b 2-4ac >0?抛物线与x 轴有两个不同的交点(ab 24acb -2+,0)(a b 24ac b --2,0)。
有韦达定理可知x 1+x 2=a b - ,x 1·x 2=ac 。
2、判别式△=b 2-4ac=0?抛物线与x 轴有⼀个交点(ab 2-,0)。
3、判别式△=b 2-4ac=0?抛物线与x 轴⽆交点。
三角函数知识点及典型例题三角函数知识点及典型例题§1.1.1、任意角1、正角、负角、零角、象限角的概念.2、与角α终边相同的角的集合:{}|360,S k k Z ββα==+?∈.§1.1.2、弧度制1、把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 rl =α.3、弧长公式: R4、扇形面积公式: S=21 lr=21αr 2.§1.2.1、任意角的三角函数1、设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么:xyx y ===αααtan ,cos ,sin . 2、设点()00,y x A 为角α终边上任意一点,那么:(设2020y x r +=)_______sin r y =α,________cos rx=α,_____tan x y =α.3、αsin ,αcos ,αtan 在四个象限的符号一正二正弦三切四余和三角函数线的画法. 4、诱导公式一:()()()_tan _2tan _cos _2cos _sin _2sin απααπααπα=+=+=+kk k (Z k ∈)5、特殊角0°,30°,45°,60°,90°,180°,270°的三角函数值. §1.2.2、同角三角函数的基本关系式1、平方关系:22sin cos 1αα+=.2、商数关系:sin tan cos ααα=. §1.3、三角函数的诱导公式1、诱导公式二:()()()._tan _tan _,cos _cos _,sin _sin ααπααπααπ=+-=+-=+2、诱导公式三:()()()._tan _tan _____,cos _cos _,sin _sin αααααα-=-=--=-3、诱导公式四:()()()._tan _tan _,cos _cos _,sin _sin ααπααπααπ-=--=-=-4、诱导公式五:._sin _2cos _,cos _2sin ααπααπ=??-=-5、诱导公式六:._sin _2cos _,cos _2sin ααπααπ-=??+=+ §1.4.1、正弦、余弦函数的图象1、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性. 3、会用五点法作图.§1.4.2、正弦、余弦函数的性质1、周期函数定义:对于函数()x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()()x f T x f =+,那么函数()x f 就叫做周期函数,非零常数T 叫做这个函数的周期.§1.4.3、正切函数的图象与性质 1、记住正切函数的图象:2、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性. §1.5、函数()?ω+=x A y sin 的图象1、能够讲出函数x y sin =的图象和函数()b x A y ++=?ωsin 的图象之间的平移伸缩变换关系.2、对于函数:()()0,0sin >>++=ω?ωA b x A y 有:振幅A ,周期ωπ2=T ,初相?,相位?ω+x ,频率πω21==f .第三章、三角恒等变换两角和与差的正弦、余弦、正切公式cos()cos cos sin sin αβαβαβ-=+cos()cos cos sin sin αβαβαβ+=-sin()αβ+=sin cos cos sin αβαβ+sin()sin cos cos sin αβαβαβ-=-tan()αβ-tan tan 1tan tan αβαβ-=+ . tan()αβ+tan tan 1tan tan αβαβ+=-二倍角的正弦、余弦、正切公式1、_cos sin 2_2sin ααα=,变形:cos α=ααsin 22sin .2、22cos2cossin ααα=-22cos 1α=-212sin α=-变形1:21cos 2cos 2αα+=,变形2:21cos 2sin 2αα-=. 3、22tan tan 21tan ααα=- 1、注意正切化弦、平方降次. 解三角形 1、正弦定理R CcB b A a 2sin sin sin === 2、余弦定理a A bc c b cos 222-+=变形 cosA=bca cb 2222-+b B ac c a cos 2222-+=变形 cosB=acb c a 2222-+c C ab b a cos 2222-+=变形cosC=abc b a 2222-+3、三角形面积公式: S =21absinC=21bcsinA=21acsinB 课本题(必修4)1.(P 11 习题13)若扇形的周长为定值l ,则该扇形的圆心角为多大时,扇形的面积最大?22.(P 23 练习4)已知sin (4π-x )=-51,且0<x<="">623.( P 24 习题9(2))设tan α=-21,计算αααα22cos 2cos sin sin 1--。
三角函数知识点及题型归纳三角函数是数学中的一个重要分支,在几何、物理、工程等领域都有广泛的应用。
下面我们来详细归纳一下三角函数的知识点和常见题型。
一、三角函数的基本概念1、角的概念角可以分为正角、负角和零角。
按旋转方向,逆时针旋转形成的角为正角,顺时针旋转形成的角为负角,没有旋转的角为零角。
2、弧度制把长度等于半径长的弧所对的圆心角叫做 1 弧度的角。
用弧度作为单位来度量角的制度叫做弧度制。
弧度与角度的换算公式为:180°=π 弧度。
3、任意角的三角函数设角α的终边上任意一点 P 的坐标为(x, y),它与原点的距离为 r(r =√(x²+ y²) > 0),则角α的正弦、余弦、正切分别为:sinα = y/r,cosα = x/r,tanα = y/x(x ≠ 0)。
4、三角函数线有正弦线、余弦线、正切线,它们分别是角α的终边与单位圆交点的纵坐标、横坐标、纵坐标与横坐标的比值。
二、同角三角函数的基本关系1、平方关系:sin²α +cos²α = 12、商数关系:tanα =sinα/cosα三、诱导公式诱导公式可以将任意角的三角函数转化为锐角的三角函数。
例如:sin(π +α) =sinα,cos(π α) =cosα 等。
四、三角函数的图象和性质1、正弦函数 y = sin x图象:是一条波浪形曲线,周期为2π,对称轴为 x =kπ +π/2(k∈Z),对称中心为(kπ, 0)(k∈Z)。
性质:在π/2 +2kπ, π/2 +2kπ(k∈Z)上单调递增,在π/2 +2kπ, 3π/2 +2kπ(k∈Z)上单调递减。
2、余弦函数 y = cos x图象:也是一条波浪形曲线,周期为2π,对称轴为 x =kπ(k∈Z),对称中心为(π/2 +kπ, 0)(k∈Z)。
性质:在π +2kπ, 2kπ(k∈Z)上单调递增,在2kπ, π +2kπ(k∈Z)上单调递减。
二次函数专题一:二次函数的图象与性质考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2ba,244ac b a -).例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,.(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.考点2.抛物线与a 、b 、c 的关系抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2ba的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限考点3.二次函数的平移当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2图1专题练习一1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号)专题复习二:二次函数表达式的确定 考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0);3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式.图2ABCD图1菜园墙例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标. 专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )A.y=2a (x-1)B.y=2a (1-x )C.y=a (1-x 2)D.y=a (1-x )22.如图2,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO=12,CO=BO ,AB=3,则这条抛物线的函数解析式是 .3.对称轴平行于y 轴的抛物线与y 轴交于点(0,-2),且x=1时,y=3;x=-1时y=1, 求此抛物线的关系式.4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点. 专题三:二次函数与一元二次方程的关系考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )x6.17 6.18 6.19 6.202y ax bx c =++0.03- 0.01- 0.02 0.04A.6 6.17x <<B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<图2考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3B.2C.1D.0专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根.(2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.图1。
二次函数与三角函数的综合题目首先,我们来讨论二次函数和三角函数的基本概念和性质。
二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为实数且a≠0。
它的图像一般为抛物线,开口方向取决于a的正负。
而三角函数有正弦函数sin(x)、余弦函数cos(x)和正切函数tan(x)等等。
这些函数的图像是周期性的波动曲线。
其中,正弦函数的图像沿y 轴偏移sin(a)个单位,余弦函数的图像沿x轴偏移cos(b)个单位,正切函数的图像存在垂直渐近线。
接下来,我们以一个综合题目来展示二次函数和三角函数的运用。
题目:已知函数f(x) = a(x - h)^2 + k与g(x) = A*sin(Bx + C)的图像如下,请求解以下问题:1. 函数f(x)的顶点坐标是多少?2. 函数g(x)的振幅是多少?3. 函数f(x)和g(x)的图像是否有交点?若有,请给出交点坐标。
4. 若函数f(x)和g(x)的图像相切,求切点的横坐标。
解答:1. 函数f(x)的顶点坐标可以通过将函数转化为顶点形式来求得。
对于二次函数f(x) = a(x - h)^2 + k,顶点坐标即为(h, k)。
根据图像可得,顶点坐标为(-2, 1)。
2. 函数g(x)的振幅可以通过观察图像来求得。
振幅即为函数图像在纵向波动中的最大值的一半。
根据图像可以看出,振幅为3。
3. 函数f(x)和g(x)的图像是否有交点可以通过联立方程求解。
将f(x)和g(x)等式相等,即可得到交点。
联立方程为:a(x - h)^2 + k = A*sin(Bx + C)根据题目给定的图像,我们不妨选择x = 0作为方程求解的初始点。
代入 x = 0,化简得:ah^2 + k = A*sin(C)我们知道正弦函数的取值范围为[-1, 1],而ah^2 + k为二次函数的常数项。
所以,当 A ≥ |ah^2 + k|时,两个图像相交。
根据给定的图像,可以看出A = 0.5,而|ah^2 + k| = 1,所以A < |ah^2 + k|,即函数f(x)和g(x)的图像没有交点。
三角函数知识点及题型归纳一、三角函数的基本概念三角函数是数学中重要的函数类型,它们在几何、物理等领域有着广泛的应用。
首先,角的概念是基础。
我们把平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形叫做角。
角可以用弧度制或角度制来度量。
弧度制是用弧长与半径之比来度量角的大小,公式为:弧长\(l =r\theta\),其中\(r\)为半径,\(\theta\)为圆心角的弧度数。
接下来是三角函数的定义。
在平面直角坐标系中,设点\(P(x,y)\)是角\(\alpha\)终边上非原点的任意一点,\(r =\sqrt{x^2 +y^2}\),则有正弦函数\(\sin\alpha =\frac{y}{r}\),余弦函数\(\cos\alpha =\frac{x}{r}\),正切函数\(\tan\alpha =\frac{y}{x}(x \neq 0)\)。
二、三角函数的基本性质1、周期性正弦函数和余弦函数的周期都是\(2\pi\),正切函数的周期是\(\pi\)。
2、奇偶性正弦函数是奇函数,即\(\sin(\alpha) =\sin\alpha\);余弦函数是偶函数,即\(\cos(\alpha) =\cos\alpha\)。
3、单调性正弦函数在\(\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi(k \in Z)\)上单调递增,在\(\frac{\pi}{2} + 2k\pi, \frac{3\pi}{2} + 2k\pi(k \in Z)\)上单调递减;余弦函数在\(2k\pi, \pi +2k\pi(k \in Z)\)上单调递减,在\(\pi + 2k\pi, 2\pi + 2k\pi(k \in Z)\)上单调递增;正切函数在\((\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi)(k \in Z)\)上单调递增。
二次函数与三角函数的周期性计算练习题在数学学习中,二次函数和三角函数是两个重要的概念。
它们在实际问题中的应用非常广泛。
本文将提供一些二次函数和三角函数周期性计算的练习题,帮助读者加深对这两个概念的理解。
题目一:二次函数的周期性计算练习题1. 求函数 f(x) = 2x^2 的周期。
解析:由于二次函数没有固定的周期,我们可以使用图像来观察函数的周期性特点。
将函数 f(x) = 2x^2 的图像绘制出来,我们可以看到函数在原点处有一个最低点,并且向上开口。
根据图像可以清晰地看出,无论x取什么值,函数值都是非负数。
因此,函数 f(x) = 2x^2 的周期为正无穷。
2. 求函数 g(x) = sin(3x) 的周期。
解析:函数 g(x) = sin(3x) 中的3是角频率,它决定了函数的周期。
公式T = 2π/ω 可以用来计算周期,其中 T 是周期,ω 是角频率。
代入公式,我们可以计算得到 g(x) = sin(3x) 的周期为2π/3。
3. 求函数 h(x) = cos(x/4) 的周期。
解析:函数 h(x) = cos(x/4) 中的 1/4 是角频率,它决定了函数的周期。
同样地,我们可以使用公式T = 2π/ω 来计算周期。
代入公式,我们可以计算得到 h(x) = cos(x/4) 的周期为8π。
题目二:三角函数的周期性计算练习题1. 求函数 f(x) = sin(2x) 的周期。
解析:函数 f(x) = sin(2x) 中的2是角频率,它决定了函数的周期。
根据公式T = 2π/ω,我们可以计算得到 f(x) = sin(2x) 的周期为π。
2. 求函数 g(x) = 3cos(4x) 的周期。
解析:函数g(x) = 3cos(4x) 中的4是角频率,它决定了函数的周期。
代入公式T = 2π/ω,我们可以计算得到 g(x) = 3cos(4x) 的周期为π/2。
3. 求函数h(x) = sin(π/6 + x/3) 的周期。
二次函数考点1 二次函数的概念一般地,形如① (a,b,c是常数,a≠0)的函数叫做二次函数.其中x是自变量,a、b、c分别为函数表达式的二次项系数、一次项系数和常数项.【易错提示】二次函数的增减性一定要分在对称轴的左侧或右侧两种情况讨论.【易错提示】(1)用顶点式代入顶点坐标时横坐标容易弄错符号;(2)所求的二次函数解析式最后要化成一般式. 考点5 二次函数与一元二次方程以及不等式之间的关系考点6 二次函数的应用1.二次函数y=(x-h)2+k的图象平移时,主要看顶点坐标的变化,一般按照“横坐标加减左右移”、“纵坐标加减上下移”的方法进行.2.二次函数的图象由对称轴分开,在对称轴的同侧具有相同的性质,在顶点处有最大值或最小值,如果自变量的取值中不包含顶点,那么在取最大值或最小值时,要依据其增减性而定.3.求二次函数图象与x轴的交点的方法是令y=0解关于x的方程;求函数图象与y轴的交点的方法是令x=0得y的值,最后把所得的数值写成坐标的形式.命题点1 二次函数的图象和性质例1 (2013·昭通)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是( )A.a>0B.3是方程ax2+bx+c=0的一个根C.a+b+c=0D.当x<1时,y随x的增大而减小方法归纳:解决此类问题应注意观察所给抛物线的特征,逐个排除不符合的选项.1.(2014·上海)如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是( )A.y=x2-1B.y=x2+1C.y=(x-1)2D.y=(x+1)22.(2012·巴中)对于二次函数y=2(x+1)(x-3),下列说法正确的是( )A.图象的开口向下B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小D.图象的对称轴是直线x=-13.(2014·云南)抛物线y=x2-2x+3的顶点坐标为 .4.(2014·珠海)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为 .5.(2014·滨州)已知二次函数y=x2-4x+3.(1)用配方法求其函数的顶点C的坐标,并描述该函数的函数值随自变量的增减而增减的情况;(2)求函数图象与x轴的交点A,B的坐标(A在B的左侧),及△ABC的面积.命题点2 二次函数的图象与系数的关系例2 抛物线y=ax2+bx+c(a≠0)的图象如图所示,则下列说法正确的是( )A.b 2-4ac <0 B.abc <0 C.-2ba<-1 D.a-b+c <0方法归纳:解决此类问题应当了解a,b,c,Δ=b2-4ac,a+b+c,a-b+c 的符号判定的方法,同时还要观察对称轴x=2b a-.1.(2014·黔东南)如图,已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列4个结论:①abc <0;②b <a+c ;③4a+2b+c >0;④b 2-4ac >0. 其中正确结论的有( )A.①②③B.①②④C.①③④D.②③④2.(2014·陕西)二次函数y=ax 2+bx+c (a ≠0)的图象如图,则下列结论中正确的是( ) A.c >-1 B.b >0 C.2a+b ≠0 D.9a+c >3b3.(2014·巴中)已知二次函数y=ax 2+bx+c 的图象如图,则下列叙述正确的是( )A.abc <0B.-3a+c <0C.b 2-4ac ≥0D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax 2+c 命题点3 确定二次函数的解析式例3 (2013·泰州)如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A,C 分别在x 轴、y 轴的正半轴上,二次函数y=23-x 2+bx+c 的图象经过B,C 两点.(1)求该二次函数的解析式;(2)结合函数的图象探索:当y>0时x 的取值范围. 【思路点拨】(1)通过正方形的边长得出点B,C的坐标,然后代入函数解析式列方程求解;(2)求出函数图象与x轴的交点坐标,结合图象求解.【解答】方法归纳:求二次函数的解析式,通常采用待定系数法,根据题目给出的条件选择不同的函数表达式,这样便于计算.1.(2013·安徽)已知二次函数图象的顶点坐标为(1,-1),且经过原点(0,0),求该函数的解析式.2.(2014·宁波)如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.1.(2013·益阳)抛物线y=2(x-3)2+1的顶点坐标是( )A.(3,1)B.(3,-1)C.(-3,1)D.(-3,-1)2.(2014·宿迁)若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的解析式为( )A.y=(x+2)2+3B.y=(x-2)2+3C.y=(x+2)2-3D.y=(x-2)2-33.(2013·泰安)设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+m上的三点,则y1,y2,y3的大小关系为( )A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y2>y1>y34.(2014·东营)若函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,那么m的值为( )A.0B.0或2C.2或-2D.0,2或-25.(2014·毕节)抛物线y=2x2,y=-2x2,y=12x2共有的性质是( )A.开口向下B.对称轴是y轴C.都有最低点D.y随x的增大而减小6.(2014·黄石)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数值y>0时,x的取值范围是( )A.x<-1B.x>3C.-1<x<3D.x<-1或x>37.(2014·新疆)对于二次函数y=(x-1)2+2的图象,下列说法正确的是( )A.开口向下B.对称轴是x=-1C.顶点坐标是(1,2)D.与x轴有两个交点8.(2014·淄博)如图,二次函数y=x2+bx+c的图象过点B(0,-2).它与反比例函数y=8x的图象交于点A(m,4),则这个二次函数的解析式为( )A.y=x2-x-2B.y=x2-x+2C.y=x2+x-2D.y=x2+x+29.(2013·广安)已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>0,②2a+b=0,③b2-4ac<0,④4a+2b+c>0.其中正确的是( )A.①③B.只有②C.②④D.③④10.(2014·长沙)抛物线y=3(x-2)2+5的顶点坐标是 .11.(2013·北京)请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式 .12.已知函数y=-3(x-2)2+4,当x= 时,函数取得最大值为 .13.(2013·河南)点A(2,y1),B(3,y2)是二次函数y=x2-2x+1的图象上两点,则y1与y2的大小关系为y1<y2(填“>”“<”或“=”).14.(2014·安徽)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为 .15.(2013·温州)如图,抛物线y=a(x-1)2+4与x轴交于点A,B,与y轴交于点C.过点C作CD∥x轴交抛物线的对称轴于点D,连接BD.已知点A的坐标为(-1,0).(1)求抛物线的解析式;(2)求梯形COBD的面积.16.(2014·龙东)如图,二次函数y=ax2+bx+3的图象与x轴交于A(-3,0)和B(1,0)两点,交y轴于点C,点C,D是二次函数图象上的一对对称点,一次函数的图象过点B,D.(1)请直接写出D点的坐标;(2)求二次函数的解析式;(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.1.(2014·荆州)将抛物线y=x2-6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是( )A.y=(x-4)2-6B.y=(x-4)2-2C.y=(x-2)2-2D.y=(x-1)2-32.(2014·黔东南)已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2 014的值为( )A.2 012B.2 013C.2 014D.2 0153.(2014·长沙)函数y=ax与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是( )4.(2014·泰安)已知函数y=-(x-m)(x-n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=mxn的图象可能是( )5.(2014·凉山)下列图形中阴影部分的面积相等的是( )A.②③B.③④C.①②D.①④6.(2014·枣庄)已知二次函数y=ax2+bx+c的x,y的部分对应值如下表:则该二次函数图象的对称轴为( )A.y轴B.直线x=52C.直线x=2D.直线x=327.(2014·烟台)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:其中正确的结论有( )①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x的值的增大而增大.A.1个B.2个C.3个D.4个8.(2014·齐齐哈尔)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C,D两点.点P是x轴上的一个动点.(1)求此抛物线的解析式;(2)当PA+PB的值最小时,求点P的坐标.9.(2014·徐州)某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-75.其图象如图.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?参考答案考点解读①y=ax2+bx+c ②上③下④减小⑤增大⑥增大⑦减小⑧上⑨下⑩小⑪y ⑫左⑬右⑭原点⑮正⑯负○17唯一○18两个不同○19没有○20a+b+c○21a-b+c ○22>○23<○24y=ax2+bx+c ○25y=a(x-h)2+k ○26y=a(x-x1)(x-x2) ○27x○28横○29>○30<各个击破例1 B解析:根据抛物线的开口向下,可判断a<0,故A错误;由抛物线与x轴的交点(-1,0)和对称轴x=1可知抛物线与x轴的另一个交点是(3,0),故B正确;由当x=1时,y=a+b+c≠0,故C错误;从图象即可看出,当x<1时,y 随x的增大而增大,故D错误.故选B.题组训练1.C2.C3.(1,2)4.直线x=25.(1)y=x2-4x+3=x2-4x+4-1=(x-2)2-1,∴其函数的顶点C的坐标为(2,-1),∴当x≤2时,y随x的增大而减小;当x>2时,y随x的增大而增大.(2)令y=0,则x2-4x+3=0,解得x1=1,x2=3,∴A(1,0),B(3,0),AB=|1-3|=2.过点C作CD⊥x轴于D,则△ABC的面积=12AB·CD=12×2×1=1.例2 C 解析:由图象与x 轴有2个交点可判断A错误;根据图象的开口方向、对称轴、与y 轴的交点可判断a <0,2ba-<-1,c >0,即abc >0,故B 错误,C 正确;由当x=-1时,y=a-b+c >0可判断D 错误.故答案选C. 题组训练1.B2.D3.B例3 (1)由题意可得:B (2,2),C (0,2),将B,C 坐标代入y=23-x 2+bx+c ,得c=2,b=43, ∴二次函数的解析式是y=23-x 2+43x+2.(2)解23-x 2+43x+2=0,得x 1=3,x 2=-1.由图象可知:y>0时x 的取值范围是-1<x <3.题组训练1.设二次函数的解析式为y=a (x-1)2-1(a ≠0), ∵函数图象经过原点(0,0),∴a (0-1)2-1=0,解得a=1,∴该函数解析式为y=(x-1)2-1.2.(1)∵二次函数y=ax 2+bx+c 的图象过B (0,-1),∴二次函数解析式为y=ax 2+bx -1.∵二次函数y=ax 2+bx -1的图象过A (2,0)和C (4,5)两点,∴42101641 5.a b a b +-=⎧⎨+-=⎩,解得1,21.2a b ⎧=⎪⎪⎨⎪=⎪⎩-∴y=12x 2-12x -1. (2)当y=0时,12x 2-12x -1=0,解得x=2或x=-1,∴D (-1,0).(3)如图,当-1<x <4时,一次函数的值大于二次函数的值.整合集训 基础过关1.A2.B3.A4.D5.B6.D7.C8.A9.C10.(2,5) 11.y =x 2+1 12.2 4 13.< 14.y=a(1+x)215.(1)把A (-1,0)代入y=a(x -1)2+4,得0=4a+4,∴a=-1.∴y=-(x -1)2+4.(2)当x=0时,y=3,∴OC=3.∵抛物线y=-(x -1)2+4的对称轴是直线x=1,∴CD=1.∵A (-1,0),∴B (3,0),∴OB=3.∴S 梯形COBD =13)32+⨯(=6. 16.(1)D (-2,3).(2)把点A,B 代入y=ax 2+bx+3中,得9330,30.a b a b -+=⎧⎨++=⎩解得1,2.a b =-⎧⎨=-⎩ ∴二次函数的解析式为y=-x 2-2x+3.(3)x <-2或x >1.能力提升1.B2.D3.D4.C5.A6.D7.B 提示:∵抛物线的对称轴为直线x=2b a-=2,∴b=-4a ,即4a+b=0,故①正确; ∵当x=-3时,y <0,∴9a-3b+c <0,即9a+c <3b ,故②错误;∵抛物线与x 轴的一个交点为(-1,0),∴a-b+c=0,而b=-4a ,∴a+4a+c=0,即c=-5a ,∴8a+7b+2c=8a-28a-10a=-30a ,∵抛物线开口向下,∴a <0,∴8a+7b+2c >0,故③正确;观察图象,④明显错误,即正确的结论是①③2个.8.(1)∵抛物线顶点坐标为(1,4),∴设y=a(x-1)2+4,由于抛物线过点B(0,3),∴3=a(0-1)2+4,解得a=-1.∴解析式为y=-(x-1)2+4,即y=-x 2+2x+3.(2)作点B 关于x 轴的对称点E (0,-3),连接AE 交x 轴于点P.设AE 解析式y=kx+b ,则4,3.k b b +=⎧⎨=-⎩解得7,3.k b =⎧⎨=-⎩∴y AE =7x-3.当y=0时,x=37,∴点P坐标为(37,0).9.(1)y=ax2+bx-75图象过点(5,0),(7,16),∴255750, 4977516.a ba b+-=⎧⎨+-=⎩解得1,20.ab=-⎧⎨=⎩y=-x2+20x-75的顶点坐标是(10,25).当x=10时,y最大=25.答:销售单价为10元时,该种商品每天的销售利润最大,最大利润为25元.(2)∵函数y=-x2+20x-75图象的对称轴为直线x=10,可知点(7,16)关于对称轴的对称点是(13,16),又∵函数y=-x2+20x-75图象开口向下,∴当7≤x≤13时,y≥16.答:销售单价不少于7元且不超过13元时,该种商品每天的销售利润不低于16元.。
二次函数和基本性质专题知识点+常考题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (2)1.二次函数的概念 (2)2.二次函数y=的图像和性质 (2)3.二次函数y=a()()的性质 (4)4,用配方法求() (6)5.二次函数图像性质总结 (7)6.二次函数解析式的求法 (7)7.二次函数图像的平移 (9)三、重难点题型 (11)1.由抛物线的位置确定系数的符号 (11)2.用待定系数法求二次函数的解析式 (13)3.运用抛物线的对称性解题 (17)4.用二次函数解决最值问题 (18)5.二次函数的图像 (20)6.二次函数与应用问题 (21)二、基础知识点1.二次函数的概念形如y=(a≠0)的函数叫作二次函数。
注:①a、b、c为常数,且a≠0,即二次项必须有,一次项和常数项可以没有②二次函数为函数的一种,满足函数的所有性质。
即在定义域内,自变量x有且仅有唯一应变量y与之对应例1.下列各项中,y是x的二次函数的有:①y=;②y=()(m为常数);③y=(m为常数);④y=答案:①是二次函数,二次项系数不为0;②不应定,当m=1时,二次项为0,则不是二次函数;③是二次函数,二次项系数不为0;④化简得:-x-2,因此不是二次函数例2.已知y=()是二次函数,求k的值。
答案:因为y=()是二次函数所以解得:k=22.二次函数y=的图像和性质y=(a≠0,b=0,c=0,即一次项和常数项皆为0)的性质:①图形为抛物线形状②a>0,开口向上;a<0,开口向下③过原点(顶点),为最大值或最小值(由a的正负决定)④关于y轴对称,即关于x=0对称⑤越大,开口越小,即上升或下降越快注:关于y轴对称的前提条件是:函数定义域关于y轴对称例1.求等边三角形面积S与边长a的函数关系式。
答案:由等边三角形性质可知S=例2.根据抛物线y=(a≠0)的性质回答下列问题;(1)抛物线的开口向上,则a:(2)当x<0时,抛物线y值随x的增大而减小,则a:(3)除顶点外,抛物线上的点都在x轴的下方,则a:(4)当x>0且a<0时,则抛物线的y值随x的增大而:答案:(1)因为抛物线开口向上所以a>0(2)因为当x<0时,抛物线y值随x的增大而减小所以抛物线开口向上所以a>0(3)因为除顶点外,抛物线上的点都在x轴的下方所以抛物线开口向下所以a<0(4)因为a<0所以抛物线开口向下因为x>0所以y随x的增大而减小例3.如图所示的四个二次函数的图像分别对应:(1)y=;(2)y=;(3)y=;(4)y=,求a、b、c、d的大小关系:答案:由y=的图像性质可知a与b>0,且c与d<0因为越大,开口越小所以>,>综上得:a>b>c>d3.二次函数y=a()()的性质二次函数通过配方,可得y=a()的形式①图形为抛物线形状②a>0,开口向上;a<0,开口向下③顶点为(h,k),为最值(最大值或最小值)④关于x=h对称⑤越大,开口越小当h=0,k=0时,y=a()即为y=a形式关系:y=a()通过平移可得到y=a(形状不变,开口不变)通过特殊点(如顶点)平移,向左或右平移,向上或下平移。
三角函数知识点及典型题1.在△ABC 中,∠C =90°,tan A =23,则sin B =( ) AB .23C .34D .2. 如图,在Rt ABC △中,CD 是斜边AB 上的中线,已知2CD =,3AC =,则c o s B的值是( )A .23B .32 C.4 D .433.(cos60A 关于x 轴对称点1A 的坐标是________4.已知α是锐角,且sin(15)2α+= ,计算114c o s (3.14)t a n ()3απα︒----++5.已知A 为锐角,且030sin cos <A ,则 ( )A. 0°< A <60°B. 30°< A <60°C. 60°< A < 90°D. 30°< A < 90°6.已知2tan 3α=,则锐角α 的取值范围 ( )A. 0°< A <30°B. 30°< A <45°C. 45°< A <60°D. 60°< A < 90°7.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( )A .8米 B. C.米 D.米8.在Rt △ABC 中,∠C =90°,∠A =60°,△ABC 的面积,312=S 求a 、b 、c 及∠B .9.如图,将等腰直角三角形ABC 绕点A 逆时针旋转15°后得到△AB ′C ′,若AC=1,则图中阴影部分的面积为______.10. 如图,将宽为1cm 的纸条沿BC 折叠,使∠CAB =45°,则折叠后重叠部分的面积为__________11.在△ABC 中,∠B 为锐角,5sin ,26,20,13B AB AC ===,求BC 的长。
12.如图,在△ABC 中,AB=AC=13,BC=10,点D 为BC 的中点,DE ⊥AB 于点E ,则tan ∠BDE 的值等于( )A .B .C .D .13.某地下车库出口处安装了“两段式栏杆”,如图1所示,点A 是栏杆转动的支点,点E 是栏杆两段的联结点.当车辆经过时,栏杆AEF 最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB ⊥BC ,EF ∥BC ,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为( )(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A .B .C .D .14.某人沿坡度i=1:的坡面向上走50米,则此人离地面的高度为( ) A .25米 B .50米 C .25米 D .50米15.如图,某地入口处原有三级台阶,每级台阶高为20cm,深为30cm,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡的坡度i=1:5,求AC的长度16.如图,已知小岛B在基地A的南偏东30°方向上,与基地A相距10海里,货轮C在基地A的南偏西60°方向、小岛B的北偏西75°方向上,那么货轮C与小岛B的距离是海里.17.如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高.(≈2.236,结果精确到0.1m)18.某型号飞机的机翼形状如图所示,AB∥CD,根据图中数据计算AC、BD和CD的长度(精确到0.1米,1.41 1.73)19.如图小明想测量电线杆AB的高度,发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4 m,BC=10 m,CD与地面成30°角,且此时测得1 m杆的影子长为2 m,则电线杆的高度约为___________m. 1.41,1.73)二次函数的知识点及典型题1.函数y =的自变量取值范围是____________2.下列函数中,属于二次函数的是( )A .2y ax bx c =++B .22(1)y a x =-C .22121y x a =++D .3x y x=3.(2014•贺州)已知二次函数2y ax bx c =++(a ,b ,c 是常数,且a≠0)的图象如图所示,则一次函数2b y cx a =+与反比例函数ab y x =在同一坐标系内的大致图象是( )A .B .C .D .4.如图,一次函数y 1=kx+b 与二次函数y 2=ax 2交于A (﹣1,1)和B (2,4)两点,则当y 1<y 2的取值范围是( )A .x <﹣1B .x >2C .﹣1<x <2D .x <﹣1或x >25.若抛物线y=(x ﹣m )2+(m+1)的顶点在第一象限,则m 的取值范围为( )A .m >1B .m >0C .m >﹣1D .﹣1<m <06.若点A (2,y 1),B (﹣3,y 2),C (﹣1,y 3)三点在抛物线24y x x m =-++的图象上,则y 1、y 2、y 3的大小关系是( )A .y 1>y 3>y 2B .y 2>y 1>y 3C .y 2>y 3>y 1D .y 3>y 1>y 27.抛物线y=x 2﹣8x+m 的顶点在x 轴上,则m 等于( )A .﹣16B .﹣4C .8D .168.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc >0;②b 2=4ac ;③4a+2b+c >0;④3a+c >0,其中正确的结论有( )A .1个B .2个C .3个D .4个9.已知12x 0≤≤,那么函数y=﹣2x 2+8x ﹣6的最大值是( ) A .﹣10.5 B .2 C .﹣2.5 D .﹣610.顶点为(6,0),开口向下,开口的大小与函数y=x 2的图象相同的抛物线所对应的函数是( )A .y=(x+6)2B .y=(x ﹣6)2C .y=﹣(x+6)2D .y=﹣(x ﹣6)211.已知二次函数2121m y mx x +=+-图象的开口向下,则m 的值是 .12.若函数y=(m+3)为二次函数,且x<0时,y随x的增大而增大,则m=.2的取值范围是.14.抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是.15.如果将抛物线y=x2+2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是.16.用一根长为28cm的铁丝围成一个矩形,则围成矩形面积的最大值是cm2.17.如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=x2﹣2x,其对称轴与两抛物线所围成的阴影部分的面积是.18.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y 轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为.19.已知点P(5,n),点Q(m,n)是抛物线y=2x2+4x﹣c的两个不同的点,则m=.20.如图,一次函数y=x﹣与x轴交点A恰好是二次函数与x的其中一个交点,已知二次函数图象的对称轴为x=1,并与y轴的交点为(0,1).(1)求二次函数的解析式;(2)设该二次函数与一次函数的另一个交点为C点,连接BC,求三角形ABC 的面积.21.如图①,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).22.小张开网店经营一种品牌服装,进价为每件50元,试营业期间,当销售单价为80元时,每天的能卖出100件,销售单价每上涨1元,每天就会少卖出5件。
(1)请写出这种品牌服装每天所得的销售利润y(元)与销售单价x(元)之间的函数关系。
(2)求销售单价为多少元时,该服装每天的销售利润最大?最大利润为多少?(3)为了规范网店,有关部门限制售价不能高于进价的40%,在这个条件下,当售价为多少时,能获得最大利润?并求出最大利润23.如图,抛物线与两坐标轴的交点分别为(﹣1,0),(2,0),(0,2),则当y >2时,自变量x 的取值范围是( )A.02x << B .01x <<C .112x << D .12x -<<24.如图,抛物线2y ax bx c =++25.经过A (﹣3,0)、C (0,4),点B 在抛物线上,CB ∥x 轴,且AB 平分∠CAO . (1)求抛物线的解析式;(2)线段AB 上有一动点P ,过点P 作y 轴的平行线,交抛物线于点Q ,求线段PQ 的最大值;(3)抛物线的对称轴上是否存在点M ,使△ABM 是以AB 为直角边的直角三角形?如果存在,求出点M 的坐标;如果不存在,说明理由.3.(2014•六盘水)如图,二次函数212y x bx c =++的图象交x 轴于A 、D 两点,并经过B 点,已知A 点坐标是(2,0),B 点的坐标是(8,6).(1)求二次函数的解析式.(2)求函数图象的顶点坐标及D 点的坐标.(3)该二次函数的对称轴交x 轴于C 点.连接BC ,并延长BC 交抛物线于E 点,连接BD ,DE ,求△BDE 的面积.(4)抛物线上有一个动点P ,与A ,D 两点构成△ADP ,是否存在S △ADP=S △BCD ?若存在,请求出P 点的坐标;若不存在.请说明理由.。