第五章_有压管道的恒定流
- 格式:ppt
- 大小:665.00 KB
- 文档页数:28
《水力学》学习指南第一章绪 论(一)液体的主要物理性质1.惯性与重力特性:掌握水的密度ρ和容重γ;2.粘滞性:液体的粘滞性是液体在流动中产生能量损失的根本原因。
描述液体内部的粘滞力规律的是牛顿内摩擦定律 :注意牛顿内摩擦定律适用范围:1)牛顿流体, 2)层流运动3.可压缩性:在研究水击时需要考虑。
4.表面张力特性:进行模型试验时需要考虑。
下面我们介绍水力学的两个基本假设: (二)连续介质和理想液体假设1.连续介质:液体是由液体质点组成的连续体,可以用连续函数描述液体运动的物理量。
2.理想液体:忽略粘滞性的液体。
(三)作用在液体上的两类作用力第二章 水静力学水静力学包括静水压强和静水总压力两部分内容。
通过静水压强和静水总压力的计算,我们可以求作用在建筑物上的静水荷载。
(一)静水压强:主要掌握静水压强特性,等压面,水头的概念,以及静水压强的计算和不同表示方法。
1.静水压强的两个特性:(1)静水压强的方向垂直且指向受压面(2)静水压强的大小仅与该点坐标有关,与受压面方向无关,2.等压面与连通器原理:在只受重力作用,连通的同种液体内, 等压面是水平面。
(它是静水压强计算和测量的依据)3.重力作用下静水压强基本公式(水静力学基本公式)p=p 0+γh 或 其中 : z —位置水头,p/γ—压强水头(z+p/γ)—测压管水头请注意,“水头”表示单位重量液体含有的能量。
4.压强的三种表示方法:绝对压强p ′,相对压强p , 真空度p v , ↑ 它们之间的关系为:p= p ′-p a p v =│p │(当p <0时p v 存在)↑相对压强:p=γh,可以是正值,也可以是负值。
要求掌握绝对压强、相对压强和真空度三者的概念和它们之间的转换关系。
1pa(工程大气压)=98000N/m 2=98KN/m2下面我们讨论静水总压力的计算。
计算静水总压力包括求力的大小、方向和作用点,受压面可以分为平面和曲面两类。
第五章 有压管道中的恒定流5.2已知:预制混凝土引水管 查表(P118)n=0.01~0.013 D=1m,l=40m, ξ =0.4 D 上 =70m,D 下 =60.5m ,D 管底=62.0m 求Q 解:自由出流流量公式Q=μc A Hog2 n 取0.013作用水头H o =70-62.5=7.5m (管道形心点与上有水面的距离) A=π4D 2= π4㎡ μc =ξλ∑++dl 11 假设在阻力平方区 λ=cg28C=n R61=013.01×)41(61=61.05(m 21/s) 故 λ=cg28=0.021 μc = ξλ∑++dl 11=0.668Q=0.668× π4×5.7.2g =6.36(m 3/s) V=AQ =436.6π=8.10m/s>1.2m/s 原假设成立 5.4已知Z s =4.5m,l=20m,d=150mm,l 1=12m,d 1=150mm,λ=0.03 ξ自网=2.0,ξ水泵阀=9.0 ,ξ90=0.3,若h v ≤6m,求:(1)Q 泵(2)Z(1)解:水泵安装高度为: Z s ≤h v -(α+γdl 11+ξ∑)gv 22故v 2max=(h v -Z s )2g/(α+dl11 +ξ∑)=(6-4.5)×19.6/(1+0.03×15.012+9.0+0.3) =2.15 故v max =1.52(m/s) Q max =v max .A=1.52×421d π=0.0269(m 3/s)(2)对于自流管:Q=μc A gz 2 作用水头Z=Q 2/μ2c A 22g其中A=42d π=0.018μc =ξλ∑+dl1=1215.02003.01+++=0.378故Z=6.19018.0378.00269.0222⨯⨯=0.83(m)5.6已知:d=0.4m,H=4m,Z=1.8m,l 1=8m,l 2=4m,l 3=12m 求(1)Q (2)p min 的断面位置及hvmax解:(1)淹没出流:Q=μc A gz 2 μc =ξλ∑+dl1(n 的取值及ξ的取值都要明确)取n 为0.013,c=n1R61=013.01×)44.0(61=52.41(m 21/s)λ=cg28=0.029故μc =.13.025.24.01248029.01+⨯++++⨯=0.414A=42d π=4π×4.02=0.1256(㎡)故Q=0.414×0.1256×42⨯g =0.460(m 3/s)(2)最小压强发生在第二转折处(距出口最远且管道最高) n=0.012 对上游1-1,2-2,列能量方程,0-0为上游水面0+γp a+0=(Z -2d )+γP 2+g v 222∂+(λd l +ζ∑)g v 222V 2=AQ=1256.0473.0=3.766(m/s) h v =γP Pa2-=Z -2d +(ζλ∑++dl1)+gv 222=(1.8-0.2)+(1+0.024×dl l 21++ζ网+ζ弯)×6.19766.32=4.871(m) 5.9解:如P145例5 法1:取C h =130 采用哈森-威廉森S=d871.491013.1⨯×Ch852.11=d871.472.137421S 1=1.38×1010-(d 1=1200mm) S 2=3.35×1010-(d 2=1000mm) S 3=9.93×1010-(d 3=800mm)假设J 节点压力水头为h=25(m)(5m<h<30m) 设A,B,C 的水位分别为D A =30m,D B =15m,D C =0 利用h f =QSl 852.1 h f1=30-25=5m=S 1Q 852.11l 1=1.38×1010-×750Q 852.11Q1=3.92(m 3/s)5.12并联:f 1=h f 2=h f 3即k l Q 21121=k l Q 22222=k l Q 23323l 1=l 2=l3所以Q 2=Q k 12/k 1Q3=Q k 13/k 1k=R AC 故k 1=421d π×λg8×)4(121dk 2=422d π×λg8×)4(221dk 3=423d π×λg8×)4(321dλ相同故kk 12=)(1225d d =32k k 13=)(1325d d =243所以Q 2=32Q 1=0.17(m 3/s)Q3=243Q 1=0.47(m 3/s) 另法:利用达西公式h f =gd lv 22λV=42d π且h f1=h f2=h f3 得到d Q 5121=d Q 5222=dQ 5323 即1521Q =2522Q =3523Q 所以Q 2=32Q 1=0.17(m 3/s)Q3=243Q 1=0.47(m 3/s)。
HydraulicsSteady flow in pipe一、简单管道自由出流1122HO O2c Q vA A gH μ==以管道出口中心为基准面,对1-1断面和2-2断面建立能量方程122221022w v v H h ggαα-+=+0212H gv H =+α令:代入上式得22222202222f j ivvl v vH h h g g d g g ααλζ=++=++∑∑2022i l vH d gαλζ⎛⎫=++ ⎪⎝⎭∑0212iv gH lαλζ=++∑11μλζ=++∑c ild令:二、简单管道淹没出流2c Q vA A gzμ==以0—0为基准面,对1-1断面和2-2断面建立能量方程122222101222w v v H H h ggαα-+=++222210120,0,22vv z H H ggαα≈≈=-上下游过水断面远大于管道,故:w f j h h h z ∴=+=∑22i l v z d gλζ⎛⎫=+ ⎪⎝⎭∑12i v gzlλζ=+∑1μλζ=+∑c i ld令:淹没出流2211ZOOH 1H 2淹没出流时,作用水头z 全部消耗于水头损失cμ∑++自ζλd l1∑+淹ξλdl比较流量水头自由出流H 淹没出流ZgH A Q c 2μ=gzA Q c 2μ=1ζζ+∑∑自淹=注:自由出流和淹没出流的比较OH V0≈011总水头线与测压管水头线的绘制22Vgp总水头线测压管水头线V 0≠0202V g22V g2211V 0≠0V 2≈022V g当下游流速水头等于0时,管道出口测压管水头线即为下游水池水面。
1221212()()()γγ-+-+=p p V V V z z g20v =∴1212()()γγ+=+p p z z2211V 0≠0V 2≠022V g当下游流速水头不等于0时,管道出口测压管水头线将低于下1221212()()()γγ-+-+=p p V V V z z g21v v <∴1212()()γγ+<+p p z z例有一渠道用直径d为0.40m的混凝土虹吸管来跨过山丘(见图),渠道上游水面高程▽1为100.0m,下游水面高程▽2为99.0m,虹吸管长度L1为12m,L2为8m,L3为15m,中间有600的折角弯头两个,进口安装率水网,无底阀。
第5章 有压管道恒定流动和孔口、管嘴出流 复习思考题1. 圆管层流流动的沿程水头损失与速度的 次方成正比。
(A) 0.5 (B) 1.0 (C) 1.75 (D)2.02. 恒定均匀流动的壁面切应力0τ等于 。
(A) 8λ(B) 82v ρλ (C) λ8v (D) 22v ρ3. 水力半径是 。
(A) 湿周除以过流断面面积 (B) 过流断面面积除以湿周的平方 (C) 过流断面面积的平方根 (D) 过流断面面积除以湿周 (E) 这些回答都不是 4. 半圆形明渠,半径r 0=4m ,水力半径R 为 。
(A) 4m (B) 3m (C) 2m (D) 1m5. 恒定均匀流公式 RJ γτ=0 。
(A) 仅适用于层流 (B) 仅适用于紊流 (C) 层流、紊流均适用 (D) 层流、紊流均不适用 6. 输送流体的管道,长度和管径不变,层流流态,若两端的压差增大一倍,则流量为原来的 倍。
(A) 2 (B) 4 (C) 8 (D) 167. 输送流体的管道,长度和管径不变,层流流态,欲使流量增大一倍,两端压差应为原来的 倍。
(A)2 (B)42 (C) 2 (D) 4 (E) 168. 输送流体的管道,长度和两端的压差不变,层流流态,若管径增大一倍,则流量为原来的 倍。
(A) 2 (B) 4 (C) 8 (D) 169. 输送流体的管道,长度和两端压差不变,层流流态,欲使流量增大一倍,管径应为原来的 倍。
(A)2 (B)42 (C) 2 (D) 4 (E) 1610. 输水管道,水在层流流态下流动,管道长度和管中流量及水的粘性系数都不变,只将管径缩小为原来的一半,则两端的压差应为原来的 倍。
(A) 2 (B) 4 (C) 8 (D) 1611. 输水管道长度和沿程阻力系数一定,均匀流动,试问:管道两端压差保持不变,而直径减小1%,会引起流量减小百份之几?12. 输水管道长度和沿程阻力系数一定,均匀流动,试问:流量保持不变,而直径减小1%,会引起管道两端压差增加百份之几? 13. 圆管层流流量变化 。
水力学教学辅导第五章 有压管道恒定流【教学基本要求】1、了解有压管流的基本特点,掌握管流分为长管流动和短管流动的条件。
2、掌握简单管道的水力计算和测压管水头线、总水头线的绘制,并能确定管道内的压强分布。
3、了解复杂管道的特点和计算方法。
【内容提要和学习指导】前面几章我们讨论了液体运动的基本理论,从这一章开始将进入工程水力学部分,就是运用水力学的基本方程(恒定总流的连续性方程、能量方程和动量方程)和水头损失的计算公式,来解决实际工程中的水力学问题。
本章理论部分内容不多,主要掌握方程的简化和解题的方法,重点掌握简单管道的水力计算。
有压管流水力计算的主要任务是:确定管路中通过的流量Q ;设计管道通过的流量Q 所需的作用水头H 和管径d ;通过绘制沿管线的测压管水头线,确定压强p 沿管线的分布。
5.1 有压管道流动的基本概念(1) 简单管道和复杂管道根据管道的组成情况我们把它分为简单管道和复杂管道。
直径单一没有分支而且糙率不变的管道称为简单管道;复杂管道是指由两根以上管道组成管道系统。
复杂管道又可以分为串联管道、并联管道、分叉管道、沿程泄流管和管网。
(2) 短管和长管在有压管道水力计算中,为了简化计算,常将压力管道分为短管和长管:短管是指管路中水流的流速水头和局部水头损失都不能忽略不计的管道;长管是指流速水头与局部水头损失之和远小于沿程水头损失,在计算中可以忽略的管道为,一般认为( )<(5~10)h f %可以按长管计算。
需要注意的是:长管和长管不是完全按管道的长短来区分的。
将有压管道按长管计算,可以简化计算过程。
但在不能判断流速水头与局部水头损失之和远小于沿程水头损失之前,按短管计算不会产生较大的误差。
5.2简单管道短管的水力计算(1)短管自由出流计算公式(5—1)式中:H 0是作用总水头,当行近流速较小时,可以近似取H 0 = H 。
μ称为短管自由出流的流量系数。
j h g v ∑+2202gH A c Q μ=μ=1(5—2)(2)短管淹没出流计算公式(5—3) 式中:z 为上下游水位差,μc 为短管淹没出流的流量系数(5—4) 请特别注意:短管自由出流和淹没出流的计算关键在于正确计算流量系数。