第二章 有限差分法
- 格式:ppt
- 大小:650.50 KB
- 文档页数:42
有限差分法有限差分法finite difference method微分方程和积分微分方程数值解的方法。
基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。
然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。
有限差分法的主要内容包括:如何根据问题的特点将定解区域作网格剖分;如何把原微分方程离散化为差分方程组以及如何解此代数方程组。
此外为了保证计算过程的可行和计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分格式的相容性、收敛性和稳定性。
对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。
另外,一个差分格式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。
此外,还有一个重要的概念必须考虑,即差分格式的稳定性。
因为差分格式的计算过程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值,直到与初始值有关。
前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以控制的,就认为格式是稳定的。
只有在这种情形,差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解。
关于差分格式的构造一般有以下3种方法。
最常用的方法是数值微分法,比如用差商代替微商等。
另一方法叫积分插值法,因为在实际问题中得出的微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。
此外还可以用待定系数法构造一些精度较高的差分格式。
3第二章_有限差分方法基础有限差分方法是一种数值计算方法,用于求解偏微分方程的数值近似解。
它的基本思想是将求解域离散化,将连续的偏微分方程转化为离散的差分方程,然后通过迭代求解差分方程的解来逼近原方程的解。
有限差分方法的基础是差分近似。
差分近似是将连续函数在一组离散点上进行近似表示的方法。
差分近似的基本思想是用函数的差商来近似函数的导数。
例如,对于函数f(x),在点x上的导数可以用差商表示为f'(x)≈(f(x+h)-f(x))/h,其中h是一个小的正数。
有限差分方法的核心是离散化。
离散化是将求解域划分为有限个网格点,然后在这些网格点上进行近似计算。
通常使用均匀网格,即将求解域等分为相同大小的网格。
在每个网格点上,用差分近似来代替偏微分方程中的导数项,将偏微分方程转化为离散的差分方程。
在离散的差分方程中,未知函数在每个网格点上的值可以通过迭代求解得到。
迭代的过程是通过将差分方程中的未知函数值代入到方程中,然后求解得到新的未知函数值。
不断迭代直到满足一定的收敛准则,得到近似解。
有限差分方法有很多的变形和扩展。
其中最基础的是一维情况下的有限差分方法,它适用于求解一维偏微分方程。
在一维情况下,求解域只有一个自变量x,因此只需要在x方向上进行离散化。
除了一维情况,有限差分方法还可以扩展到更高维的情况,例如二维和三维情况。
在二维情况下,求解域有两个自变量x和y,需要在x和y 方向上都进行离散化。
在三维情况下,求解域有三个自变量x、y和z,需要在x、y和z方向上都进行离散化。
有限差分方法的优点是简单易懂,计算效率高。
它可以应用于各种偏微分方程的求解,包括椭圆方程、双曲方程和抛物方程等。
然而,有限差分方法也有一些局限性,例如对于复杂的几何形状和边界条件的处理比较困难。
总之,有限差分方法是一种常用的数值计算方法,用于求解偏微分方程的数值近似解。
它通过将求解域离散化,将连续的偏微分方程转化为离散的差分方程,然后通过迭代求解差分方程的解来逼近原方程的解。