地下结构设计与优化
- 格式:doc
- 大小:31.00 KB
- 文档页数:10
地下结构设计原理与方法一、地下结构设计概述地下结构设计是土木工程中的一个重要分支,涵盖了从地层地质条件勘察、结构模型建立、材料选择与构造、荷载分析、结构分析到设计优化的全过程。
地下结构设计的主要目标是确保地下结构的稳定性、安全性和耐久性,同时满足建筑功能和防护要求。
二、地层与地质条件地层与地质条件是地下结构设计的重要基础。
设计师需充分了解和评估地质勘察资料,包括地层分布、岩石类型、地质构造、地下水位等信息,以便确定合适的设计方案。
三、荷载与抗力荷载与抗力是地下结构设计的基本要素。
设计师需要确定各种可能的荷载,包括垂直荷载(如土压、岩石压力等)、水平荷载(如地震力、水流力等)以及侧向荷载(如地层滑动、断层错动等)。
同时,设计师需通过结构分析和计算,确定结构所需的抗力。
四、地下结构设计方法地下结构设计方法主要包括定性和定量两种。
定性设计主要基于工程经验和判断,定量设计则依赖于数值模拟和分析。
在设计中,还需考虑结构的可靠性、经济性和施工性。
五、地下结构模型与分析地下结构模型是进行结构设计的基础。
设计师需根据实际地质条件和工程要求,建立合适的模型,如连续介质模型、离散模型等。
同时,需运用数值分析方法,如有限元法、有限差分法等,对模型进行深入的分析和优化。
六、地下结构材料与构造地下结构材料与构造直接关系到设计的性能和成本。
设计师需了解各种材料的性质和适用条件,包括混凝土、钢材、木材等,同时需对结构的基本构造和细节进行合理设计,以满足结构性能和施工要求。
七、地下结构防水与防护地下结构的防水与防护是保证其正常运转和延长使用寿命的关键。
设计师需考虑防水材料的选择和铺设,防护措施的设定和实施等问题。
防水材料应具有优良的防水性能、耐久性和环保性。
同时,防护措施应考虑到结构的使用环境和防护等级,以实现有效的防腐、防潮、防污染等目标。
八、地下结构设计案例分析本部分将通过具体的地下结构设计案例,详细阐述上述原理和方法的应用和实践。
地下结构设计课程设计小结一、课程目标知识目标:1. 理解并掌握地下结构设计的基本原理,包括力学原理、材料性质及结构稳定性要求。
2. 学习并能够运用地下结构设计的相关理论知识,分析实际工程案例,识别影响地下结构设计的因素。
3. 掌握地下结构设计中涉及的关键参数及其计算方法,能够进行简单的结构计算。
技能目标:1. 培养学生运用CAD等软件绘制地下结构设计图纸的能力,提高空间想象力和工程设计技能。
2. 能够运用专业软件对地下结构进行模拟分析,提升解决实际问题的能力。
3. 通过小组合作,锻炼学生团队协作和项目管理的能力,学会在项目中合理分配任务和资源。
情感态度价值观目标:1. 培养学生对于工程设计的兴趣,激发探索精神和创新意识。
2. 增强学生的社会责任感,认识到工程设计与环境保护、公共安全的关系,形成良好的职业操守。
3. 通过对复杂地下结构设计案例的学习,培养学生面对困难的勇气和解决问题的自信。
本课程旨在结合高中年级学生的认知水平,通过理论与实际案例相结合的教学方式,使学生在掌握地下结构设计基本知识的同时,能够将理论知识应用于实际问题的解决,培养其成为具有创新精神和实践能力的工程技术人员。
课程设计注重学生主动探索与合作交流,鼓励学生提出问题、分析问题,并在解决问题的过程中形成科学的态度和价值观。
二、教学内容本章节教学内容主要包括以下几部分:1. 地下结构设计基本原理:讲解地下结构的力学原理、材料性质、稳定性分析及设计要求。
参考教材第二章内容。
2. 地下结构设计方法:介绍地下结构设计中涉及的关键参数计算方法,如土压力计算、支撑体系设计等。
参考教材第三章内容。
3. 地下结构设计案例分析:分析实际工程案例,使学生了解不同地质条件、工程需求下的设计方法和技巧。
参考教材第四章内容。
4. 地下结构设计图纸绘制:教授学生使用CAD等软件绘制地下结构设计图纸,掌握图纸表达方法。
参考教材第五章内容。
5. 地下结构模拟分析:指导学生运用专业软件进行地下结构模拟分析,提高解决实际问题的能力。
深基坑支护结构设计的优化方法8篇第1篇示例:深基坑支护是指在进行基坑开挖施工过程中为了防止地基塌方、保护周边建筑物和道路安全而采取的支护措施。
深基坑开挖和支护工程是城市建设中常见的施工项目,而深基坑支护结构设计的优化方法成为了工程领域中的研究热点。
深基坑支护结构设计的优化方法包括多个方面,例如支护结构的选择、设计参数的优化、施工工艺的优化等。
在选择支护结构时,需要考虑地下水位、土质情况、周边建筑物、施工工艺等因素,以便选择最合适的支护结构类型。
设计参数的优化包括墙体厚度、支撑间距、钢筋配筋等参数的优化,以提高支撑结构的安全性和经济性。
而施工工艺的优化可以通过优化施工顺序、采用先进的施工技术等手段来提高深基坑支护工程的施工效率和质量。
在深基坑支护结构设计的优化方法中,最重要的是要充分考虑地质条件和周边环境,以便选择最适合的支护结构类型。
还需要充分利用先进的计算机软件和施工技术,以实现对设计参数和施工工艺的优化。
通过系统的研究和实践,不断改进深基坑支护结构的设计和施工方法,可以有效提高支护结构的安全性和经济性,为城市建设提供更可靠的保障。
在深基坑支护结构设计的优化方法中,需要充分考虑地质条件和周边环境。
地质条件主要包括土质情况、地下水位和地表荷载等因素。
土质情况对支护结构的稳定性和变形有着直接影响,需要通过地质勘察和试验数据来评价土的承载力和变形特性。
地下水位对基坑开挖和支护工程的施工和稳定性都有很大影响,需要根据地下水位情况选择适当的支护结构类型和设计参数。
地表荷载主要包括来自道路、建筑物、地铁等周边结构的荷载,需要通过结构分析和计算来评价其对支护结构的影响。
在选择支护结构类型时,需要充分考虑地质条件和周边环境因素。
深基坑支护结构种类繁多,包括钢支撑、混凝土墙、挡墙、桩墙等各种类型,需要根据具体的地质条件和施工要求来选择最适合的支护结构类型。
钢支撑结构适用于较宽的基坑和较小的变形要求,能够快速安装和拆除,适合于快速施工的项目;混凝土墙结构适用于较深的基坑和较大的变形要求,能够提供较大的稳定性和承载力,适合于长期固定的项目;桩墙结构适应于较软的土层和需要较高的承载能力和变形控制的项目,能够提供较好的抗浪涌能力,适合于复杂环境下的项目。
深基坑支护结构设计的优化方法8篇第1篇示例:深基坑支护结构设计的优化方法随着城市建设的不断发展,深基坑工程在城市建设中扮演着重要的角色。
深基坑工程是指地下结构物深度超过一定范围,需要对周边土体进行支护和加固的工程。
在深基坑工程中,基坑支护结构设计的优化是提高工程施工效率和确保工程安全的关键。
本文将从不同的角度探讨深基坑支护结构设计的优化方法。
在深基坑工程中,基坑支护结构设计的基本原则是保证工程施工的安全性和稳定性。
基坑支护结构设计的基本原则包括以下几点:1. 根据地质条件确定支护结构类型:在进行基坑支护结构设计时,首先要根据地质勘察结果确定地下结构的地质条件,包括土层性质、地下水位等信息,以选择合适的支护结构类型。
2. 合理确定基坑支护结构的深度:基坑支护结构的深度应根据周边土体的承载能力和基坑深度等因素综合考虑,避免过度挖掘导致地基沉降或支护结构失稳。
3. 选择合适的支护材料和施工工艺:基坑支护结构设计应根据具体情况选择合适的支护材料和施工工艺,确保支护结构的稳定性和耐久性。
2. 地下水位控制:地下水位是影响基坑支护结构稳定的重要因素,过高的地下水位容易导致基坑支护结构失稳。
在基坑支护结构设计中需要采取有效的地下水位控制措施,如井点降水、深井抽水等。
3. 优化支护结构类型:在进行基坑支护结构设计时,应根据地质条件和基坑深度选择合适的支护结构类型,如横向支撑结构、嵌岩支护结构等,避免因支护结构类型选择不当导致工程事故。
4. 采用新型支护材料:随着科技的发展,新型支护材料的不断推出,如钢筋混凝土、高分子材料等,这些新型支护材料具有更好的抗压强度和耐用性,可以提高基坑支护结构的稳定性和安全性。
5. 结构优化设计:在进行基坑支护结构设计时,可以采用计算机模拟分析等方法,对支护结构进行优化设计,提高支护结构的承载能力和稳定性,减少施工成本和工程周期。
三、总结深基坑支护结构设计的优化是保障工程安全和提高施工效率的关键。
浅谈大底盘地下室结构优化设计及合理性分析在现代化的建筑工程之中,地下室的建设已经非常普遍,一方面,其增加了建筑的功能性,另一方面,其也给建筑设计带来了更大的压力。
文章主要研究大底盘地下室结构优化设计及合理性。
标签:建筑工程;大底盘地下室;结构设计引言:大底盘地下室,是现阶段城市建筑设计之中常见的地下建设类型之一。
這一建筑形式,能够优化建筑的实际应用面积,提高了土地资源的可利用率。
但是,其结构设计合理的成本控制,关系着整座建筑的实用性以及功能性。
对此,相关设计人员必须要落实科学的地下室结构设计,对无效成本进行控制,推进建筑的可持续发展。
1、地下室结构柱网优化一般来说,根据柱网的规格进行划分,可以将柱网分为大、中、小三种。
与大柱网相比,小柱网以及中柱网的综合成本相对较小,随着荷载越小,地下水位越低,土质越好,成本差越小,直至持平。
下面,就对这三种柱网的应用效果进行对比分析[1]。
如图1所示,首先,中型以及小型柱网的面积相对比较狭窄,若将地下室作为停车场的时候,车辆的进出相对比较困难。
其次,在相同的规划面积之中,小型柱网的桩子数量最多,大型柱网的桩子数量最少。
再次,大型柱网在层高方面要比中小型柱网高。
总体来说,小型柱网应用成本低,但质量相对较差,难以适应大型的低下建筑。
而大型柱网质量相对较高,能够适应大型的地下室建设应用,但其成本相对较高。
对此,在进行地下室规划设计的过程中,应该根据项目的实际建设情况,落实建筑的实际设计规划,合理进行柱网的选择。
对以下情况不宜采用小柱网:第一,项目定位高或较高;第二,工期紧张、资金成本对工期较敏感;第三,荷载小、水位低、柱网导致的成本差别不大。
一般在五级人防区或低成本项目可考虑采用小柱网。
2、结构找坡与建筑找坡相比,结构找坡具有突出的成本优势。
首先,结构找坡不需要对地面进行后期的施工找坡,可以节省找坡的混凝土成本以及施工成本投入。
其次,在进行坡度较大的施工设计要求时,运用结构找坡的方式能够更好的满足设计的需求,节省大量的物料成本以及施工成本。
关于建筑地下室结构的优化设计的探讨摘要:城市发展速度的加快,城市用地已经非常紧张,地下室空间的利用就十分重要。
但地下室工程涉及建筑、结构、设备、人防等专业,在互相配合是设计地下室是的重要组成部分。
本文结合当前建筑地下室结构的优化设计进行了分析与讨论。
关键词:建筑、地下室结构、优化设计一、建筑地下室结构设计中的重点顾名思义地下室处于室外地下,侧墙有极大的刚度且地下室与上部结构为整体,在这种情况地下室可作为上部结构的嵌固端。
在建筑首层以下建造地下室,可以提高建筑用地效率。
一些建筑基础埋深很大,充分利用这一深度来建造地下室,其经济效果和使用效果俱佳。
地下室的类型按功能分,有普通地下室和防空地下室。
按结构材料分,有砖墙结构和混凝土结构地下室。
按构造形式分,有全地下室和半地下室,地下室顶板的底面标高高于室外地面标高的称半地下室,即室内外高差的平均高度大于该房间平均净高1/3 ,且小于等于1/2 者。
这类地下室一部分在地面以上,可利用侧墙外的采光井解决采光和通风问题。
地下室顶板的底面标高低于室外地面标高的,称为全地下室。
地下室一般由顶板、底板、侧墙、楼梯、门窗、采光井等组成,其中地下室的顶板采用现浇或预制混凝土楼板,板的厚度按首层使用荷载计算,防空地下室则应按相应的防护等级的荷载计算。
在地下水位高于地下室地面时,地下室的底板不仅承受作用在它上面的竖向荷载,还承受地下水的浮力,因此必须具有足够的强度、刚度、抗渗透能力和抗浮力的能力。
地下室的外墙不仅承受上部的垂直荷载,还要承受土、地下水及土壤冻结产生的侧压力,因此地下室墙的厚度应按计算确定。
地下室的门窗与地上部分相同。
当地下室的窗台低于室外地面时,为了保证采光和通风,应设采光井。
二、荷载在建筑地下室结构设计的优化建筑的地下室结构荷载主要包括:核爆动荷载以及建筑物的重量荷载、土压力和水压力以及地下室自身的重力荷载等几个部分。
我国的有关技术规范中有关于防控型地下室内部可以考虑到的荷载组合,在对建筑的地下室结构设计就可以根据不同工程的特点同时结合技术规范要求来确定荷载的不同组合。
地下室结构设计的常见问题及解决措施摘要:在信息化时代背景下,随着物质生活水平的提高,人们对地下室的空间、人流、功能等方面提出了更高的要求。
设计人员需要保证结构设计的效用,才能够提升整体建筑的设计质量。
因此,需要明确建筑工程地下室结构设计的重点及难点,对其进行突破,使得工程设计关键点得以达成。
关键词:地下室;结构设计;常见问题;解决措施1建筑工程地下室常见类型与功能地下室属于建筑工程较为常见的结构类型之一,其按照应用功能的差异与埋深的差异,可以分为3种应用形式,即半地下室、全地下室、人防地下室。
在地下室结构设计过程中,需要按照相关规划标准,设定符合需求的层数。
地下室区域净高要避免小于2.2m,层高避免小于3.6m,确保其能够在建筑工程中发挥重要作用。
地下室的实际功能在建筑工程中可以设置为停车场或大功率设备房间等,包括风机、配电、消防泵等。
除此,地下室还具有隐蔽特性,因此,我国一部分城市在规划过程中,对建筑工程提出了强制划分一定比例地下室面积的要求,确保未来城市功能与居民安保需求得到充分满足。
2地下室结构设计常见问题及解决措施2.1地下室抗浮和防水问题地下室抗浮设计的开展,旨在有效应对地下水位的变化。
在以往地下室结构设计工作开展过程中,设计人员考量地下室的极限使用状态时,没有综合考量地下室出现洪水倒灌险情的情况,一旦出现洪水倒灌,将对地下室的质量与安全造成巨大影响。
在地下室抗浮设计工作开展过程中,地下室的地下水位未进行精准计算、地下室斜坡未进行抗浮验算,使得地下室整体结构存在安全隐患,无法保证地下室整体的结构运行安全性与可靠性。
进行地下室结构抗浮与防水工作时,应科学测量相关数据,设定合适的抗浮设防水位。
在实际工作开展过程中,应由专业工作单位进行勘测,以保证获得数据信息的准确性与真实性,依照当地的历史最高地下水位进行设计。
在具体设计工作开展时,可合理采取基础配重方式。
通过基础配重工作的合理开展,可一定程度缓解地下室抗浮问题,但在实际施工建设过程中,由于抗浮问题的影响较大,导致地下室的整体工程建设效率下降。
地下室结构顶板优化设计规定(2012年版)1. 结构电算参数取值:(1)混凝土容重(kN/m³):框架结构,取25。
(2)地下室层数:取实际地下室层数。
(3)嵌固端所在层号:1(4)地下室楼板强制采用刚性楼板假定:是(5)刚性楼板假定:不勾选。
(6)墙梁跨中节点是否作为刚性楼板从节点:是(7)结构材料信息:钢筋混凝土结构。
(8)结构体系:应选“框架结构”。
(9)恒活荷载计算信息:一般情况下选择“施工模拟加载1”。
(10)风荷载计算信息:不计算风荷载。
(11)地震作用计算信息:计算水平地震作用。
(12)是否计算人防荷载:根据工程情况选择。
(有人防时应勾选)(13)修正后的基本风压:不计算风荷载时,该项不显示(建议在PMCAD中填入50年一遇的基本风压,尽管不起作用,以免打印结果中的默认值与工程所在地的基本风压不符,有的时候,施工图审查也会提)。
(14)设防地震分组,设防烈度,场地类别,混凝土框架、剪力墙抗震等级:依据工程情况填写。
(15)偶然偏心:不考虑。
(16)考虑双向地震:不考虑。
(17)计算振型个数:取 3 。
(18)周期折减系数:框架结构,取0.80。
(19)特征周期:一般为默认值;当地质勘察报告中提供的特征周期与规范中不一致时,按地质勘察报告中的特征周期输入(不能采用程序中的默认值)。
(20)按中震(或大震)设计:不考虑。
(21)斜交抗侧力构件方向附加地震数及相应角度:有斜交抗侧力构件的结构,当与主轴的相交角度大于15°时,应分别计算各抗侧力构件方向的水平地震作用,程序允许最多5组多方向地震,附加地震数可在0-5之间取值,并填入相应的角度值,该角度是与X轴正方向的夹角,逆时针方向为正。
无斜交抗侧力构件的结构,该项附加地震数填为0。
当为圆、弧形平面或多边形时,可直接填入5组角度,分别为15、30、45、60、75度。
最不利地震方向:SATWE可以自动计算出最不利地震作用方向角,并在WZQ.OUT中输出,当方向角为±16~74度时,应在“斜交抗侧力构件方向”中输入相应角度并重新计算。
人防地下室结构选型及设计优化摘要:人防地下室的建设不仅仅是充分利用地下空间的举措,还是安国安民的工程,在人防地下室结构的选型上不但要考虑结构的稳定性,还要考虑采用的结构的经济性,本文结合案例探讨人防地下结构的选型及优化设计。
关键词:人防地下室;结构选型;设计引言:随城市的发展,建筑如“洪水猛兽”般占据着地球的土地,根据国家的规定,在某些建筑中需要建设人防地下室,不仅方便平时的使用,还是战时的堡垒,人们越来越关注地下室结构的设计。
根据建筑结构的不同,选用不同的建筑结构,人防地下室的结构常见的有十字梁、井字梁、单向板水平结构,以下结合实例对其经济性进行探讨。
一、人防地下室结构设计的特点防空地下室结构设计的主要内容包含两方面:一是主体结构设计,包括顶板、外侧墙、底板等其它构件的结构设计,二是孔口防护设计,包括出入口的防护和消波系统(防护设备),其中出入口的防护包含防护密闭门的选用、门框墙、临空墙的计算、出入口通道(包括风井)的计算等几个方面,其特点是:1.结构构件可考虑进入塑性工作状态2.材料设计强度可以提高。
实验表明,在快速加载的情况下,这时材料力学性能发生比较明显的变化,主要表现为强度提高,但变形性能包括塑性性能等基本不变,这对结构工作起到有利作用,例如钢材强度可提高1.15~1.5倍,对砼强度可提高1.5倍,这是在设计中考虑材料强度综合调整系数来完成的。
3.重视构造要求,人防设计的许多构造要求是与一般的建筑设计不同的,要求更为严格,故仅仅只考虑受力计算,不考虑构造措施是不合理的。
二、人防地下室人防荷载的确定1.项目概述6栋22~28层剪力墙结构的高层住宅建筑和一个两层框架结构的地下室。
建筑面积12万余平米。
上部建筑高度80m,地震烈度为6度,框架抗震等级为3级,剪力墙抗震等级为3级。
地下室面积45000m2,其中含人防面积6489m2,分4个人防防护单元,层高4m,桩基采用泥浆护壁的钻孔灌注桩。
地下室空间利用优化设计施工方案地下室是一种重要的建筑空间,其合理利用可以为我们提供多元化的功能需求,例如储藏室、停车场、办公空间等。
本文将针对地下室空间的设计和施工提出一些优化方案,以帮助您充分利用地下室空间。
1. 功能需求规划在开始设计前,首先需要明确地下室空间的具体功能需求。
比如,地下室是否需要作为停车场、储藏室或者办公空间使用。
不同的功能需求会直接影响到后续的设计和施工方案。
2. 空间规划和布局在地下室空间的规划和布局中,我们需要考虑如下几个方面:a. 充分利用空间:地下室空间通常是有限的,因此需要充分利用每一寸空间。
可以采用墙体插入式储物柜、层板柜等设计,有效提高储物空间的利用率。
b. 合理分隔功能区域:根据功能需求,将地下室空间划分为不同的区域,例如车辆停放区、办公区、储藏区等。
在规划时需要确保各个区域之间的流线清晰,便于使用和管理。
c. 合理设置入口和出口:地下室的出入口设计需要方便快捷,同时也要考虑安全因素,确保人员和车辆的流通畅通。
3. 空间通风和照明设计地下室空间通常缺乏自然光线和空气对流,因此在设计时需要特别关注通风和照明问题:a. 通风系统设计:合理的通风系统可以有效改善地下室空气质量,避免潮湿和异味积聚。
可以采用自然通风或者机械通风系统,根据地下室面积和使用情况选择合适的通风方式。
b. 照明系统设计:地下室照明需要充足而且均匀,可以选择采用LED灯具或者其他高效节能的照明设备。
同时,还可以考虑设置采光井或者天窗,增加自然光线的进入。
4. 结构设计和材料选择地下室空间的结构设计和材料选择是确保安全施工和持久使用的关键因素:a. 结构设计:地下室需要考虑地下水位、土壤承载力等因素,在设计时要充分考虑地下室结构的稳定性和耐久性。
可以采用加固墙体、增加梁柱等措施,保证结构的安全性。
b. 材料选择:地下室存在较高的湿度,因此在材料的选择上要注意防潮和防水性能。
例如,采用防水涂料、防水隔离层等材料,确保地下室的施工质量。
地下结构设计原理与方法地下结构设计是城市建设中至关重要的一部分,它包括地下管线、地下停车场、地下水污水处理设施等。
在城市发展和规划中,地下空间的合理利用对于提高城市的舒适度、满足居民需求、优化城市布局起到了至关重要的作用。
本文将介绍地下结构设计的原理和方法,以期为地下结构设计提供一定的指导和理论支持。
一、地下结构设计原理地下结构设计的原理是基于地下空间规划和地下工程技术的基础上进行的。
它主要涉及到以下几个方面的原理:1. 重力作用原理:地下结构设计需要考虑到地下的承载能力和重力作用。
在设计过程中,需要根据地下材料的承载能力和地下结构的荷载作用,合理选择地基类型和地基加固方式。
2. 安全原则:地下结构设计需要保证地下结构在承受外部荷载和地下环境变化时的安全性。
在设计中,需要进行地下结构的可靠性分析和安全评估,以及考虑到地下结构的抗震性能。
3. 经济性原则:地下结构设计需要综合考虑地下空间规划和经济性要求。
在设计中,需要合理选择施工材料和技术,以及考虑到地下结构的维护和管理成本。
二、地下结构设计方法地下结构设计的方法是根据地下结构的具体要求和设计目标来确定的。
下面给出几种常用的地下结构设计方法:1. 传统设计方法:传统的地下结构设计方法是根据经验公式和实践经验进行的。
这种设计方法简单易行,适用于一些常见的地下结构类型。
但是它缺乏理论支持和科学性,不能满足高要求的设计需求。
2. 数值模拟方法:数值模拟方法是近年来发展起来的一种地下结构设计方法。
它通过模拟地下结构的力学行为和地下环境变化,可以对地下结构进行全面准确的分析和设计。
3. 参数化设计方法:参数化设计方法是一种以参数化建模为基础的地下结构设计方法。
它通过建立地下结构的参数化模型,可以快速、灵活地对地下结构进行设计和优化。
4. 优化设计方法:优化设计方法是一种基于最优化理论和方法的地下结构设计方法。
它通过建立地下结构的数学模型,结合不同的约束条件和优化算法,可以得到满足设计需求的最优地下结构。
地下结构的设计与优化摘要:进入二十世纪以来,伴随着我国经济的高速发展以及城市建设的不断进行,土地价值不断攀升。
为了提高建设用地的利用效率,地下结构在城市建设中得到了广泛应用,高层建筑设置地下室,可以增强建筑本身的水平作用承载能力,提高结构的抗倾覆性能,增强结构的安全性。
在软土地区设置地下室,还可以增强基础的整体性,对结构的沉降控制非常有利。
本人主要分析了如何对地下结构进行设计与优化。
关健词:地下结构;地下室;设计与地上结构相比,地下结构受力相对较为复杂,除结构自重外,通常还会受到土压力、水压力、地震荷载、人防荷载以及顶板活荷载的作用,每一种荷载工况下的荷载组合内力也往往较大。
另外,地下结构的防水要求一般较高(例如一般高层建筑的地下室防水等级均为一级),裂缝控制相对较为严格,所以往往地下结构的单位面积建造成本较地上建筑有较大幅度的增加,据统计,单层地下室每平米的含钢量往往在150~220kg范围,当顶板覆土较重,或顶板范围活荷载较大时,单位平方含钢量还会增加。
因此,地下结构的建造成本占项目建造总成本的比例往往较高,地下水位较高的软土地区的建设项目尤为如此。
为了节约建造成本,有些项目人为的削减结构的设计可靠度,甚至少算、漏算荷载,采用不合理的结构设计方案,采用过于苛刻的限额设计方案。
导致不少地下结构在使用过程中,结构裂缝、漏水等安全事故现象频发,给人民生命财产和国民经济带来巨大损失。
所以,如何对地下结构进行经济、合理的设计显得非常重要。
迄今为止,本人直接完成了多个项目的地下结构设计工作,并对这些项目建成后的建设成本、结构质量、使用效果等进行了跟踪调查,通过实践不断吸取经验教训,从而提高地下工程的设计质量。
下面以本人参与设计的“上海市松江区鑫山汇众苑--四期住宅-商业综合体(象屿都城)”地下室设计为例,对地下结构的设计要点进行简要分析。
该项目位于上海市上海市松江区九亭镇(靠近沪松公路、定浦河路路口),项目建筑总面积约25万平米,其中项目四期所包括的住宅-商业综合体建筑总面积约10万平米,设两层地下室,地下室占地约1.6万平米,其中地下一层为地下商场,层高为4.8m;地下二层属人防地下车库,层高为4.5m。
人防结构设计由上海市沪防建筑设计院完成。
基础底板板面标高为-9.3m,底板厚度为800mm。
地面以上由八幢高层住宅单体和一幢多层商业联合体共同组成。
1、顶板荷载计算顶板分为两个区域,一部分位于住宅单体与商业联合体建筑范围内,该范围地下室顶板位于上部建筑室内,该区域简称a区域。
另一部分地下室上部无任何上部建筑,顶部覆土厚度为45~90cm,该区域简称b区域。
a区域:根据地下室顶板上部室内空间的建筑使用功能的不同,统一根据荷载规范取大值4.0kpa。
b区域:主要考虑顶板地面的消防车荷载,根据《建筑结构荷载规范》gb50009-2001(2006年版)4.1.1条第8栏规定,进行楼板配筋设计时,楼面的车辆活荷载的取值要根据楼盖区格的大小、车辆满载总重的不同而取值,对于不符合直接查表条件时,应将车轮的局部荷载按结构效应等效的原则,换算为等效均布荷载。
为了最大限度的增加建筑室内净高,本工程地下室顶板采用井字梁楼盖。
主要柱网区格为8.1×8.1m,井字梁区格为2.7×2.7m。
板厚180mm,不符合《建筑结构荷载规范》直接查表的条件,根据《建筑结构荷载规范》4.4.1条及附录b,本工程消防车荷载取值计算如下:1.1、覆土为45cm时的消防车活荷载结构受力分析时,顶板覆土荷载作为地下室顶板恒荷载输入,消防车荷载作为顶板活荷载输入。
对于满载重量为300kn的大型车辆,最大轮压为60kn,作用面积为0.6×0.2m,轮压扩散角取45度;其轮压荷载作用简图如下:计算楼板等效均布荷载时,偏于安全的按每区格承受中后轮共计4个轮压的作用,根据荷载规范附录b提供的计算方法,均布荷载计算如下:bx=0.2+2s+h=0.2+2×0.45+0.18=1.28mby=(1.4+0.6)+2s+h=2+2×0.45+0.18=3.08mq1=2×p/(bx*by)=2×60/(1.28×3.08)=30.4kpa结合上面的计算结果并查阅有关文献后确定:板跨区格尺寸为2.7×2.7m,覆土45cm时消防车活荷载取值为q1=30kpa。
此时地下车库顶板恒荷载为:p1=25×0.18+18×0.45+0.5=13.1 kpa基本组合下顶板荷载设计值为:r11=1.2×13.1+1.4×30=58kpar12=1.35×13.1+0.98×30=47.1kpa1.2、覆土为90cm时的消防车活荷载按照1.1条所采用的计算方法,可求得:板跨区格为2.7×2.7m,覆土90cm时的消防车活荷载为q2=25kpa此时地下车库顶板恒荷载为:p2=25×0.18+18×0.9+0.5=21.2 kpa基本组合下顶板荷载设计值为:r21=1.2×21.2+1.4×25=60.5kpar22=1.35×21.2+0.98×25=53.1kpa综上可得,对于板区格为2.7×2.7m,覆土厚度为45~90cm的区域,鉴于1.1、1.2荷载工况下的荷载基本组合最大值(分别为r11=58kpa,r21=60.5kpa)相差不大,为便于建模荷载输入,此时可以偏于安全的统一按1.2荷载工况取值,即恒载取p=p2=21.2 kpa,活载取q=q2=25kpa。
1.3、跨度不小于2m的单向板对于部分跨度不小于2m的单向板,符合规范直接查表的条件,根据《建筑结构荷载规范》50009-2001(2006年版)第4.1.1条,消防车荷载可取35 kpa。
1.4、楼面梁、墙、柱及基础配筋计算时的顶板活荷载根据荷载规范4.1.2条规定,计算楼面梁时的活荷载可折减,折减系数如下:对单向板楼盖的主梁取0.6;对双向板楼盖的梁取0.8;计算墙、柱和基础时的活荷载折减系数为:对单向板楼盖取0.5;对双向板楼盖取0.8;因此,在进行地下结构板、梁、柱及基础建模分析时,应采用不同的设计活荷载,鉴于目前国内通用的pkpm设计软件尚不具备对此类荷载的自动折减功能,所以结构内力分析时我们应采用两个模型分别输入不同的活荷载,作为顶板,或者梁、柱、基础配筋设计的依据。
1.5、顶板荷载取值注意事项地下室顶板的覆土荷载一般习惯于按恒载输入,但进行地下室抗浮计算时,覆土荷载的考虑要根据施工现场的降水条件,降水措施拆除时间,顶板覆土步骤逐一分析,选择最不利时间点的荷载工况进行抗浮计算。
一般情况下,当地下室采取降水措施时,我们应选择降水措施刚刚拆除时(此时地下室所受浮力最大),顶板可能覆土厚度最少时的工况为荷载条件进行荷载计算。
此外,当地下室顶板上兼有景观覆土、消防车道时,为节约建造成本,我们对景观覆土、消防车道的布置情况应进行仔细分析,避免设计过程中采用了过大的顶板设计荷载。
例如:消防车道、消防登高场地往往是局部设置,结构设计时不能全范围考虑消防车荷载。
另外,消防车道及登高场地的设置部位往往覆土厚度相对较薄,而覆土厚度最大的部位往往是景观种植区域,此区域一般都不会设消防车道及登高场地。
因此,我们不能在考虑消防车活荷载的同时,又按最大覆土恒荷载进行楼板设计,而应选择两种荷载工况的较大值进行荷载取值,避免不必要的浪费。
2、楼盖配筋设计地下室顶板设计与一般楼板设计的最大差别是,地下室顶板荷载受力一般较大,且防水抗裂要求更为严格。
根据《地下工程防水技术规范》gb50108-2008第4.1.7条第1款规定:防水混凝土结构厚度不应小于250mm;根据以往地下工程设计经验,此条一般多适用于地下室外墙、底板等建筑防水措施相对较薄弱的部位,而地下室顶板由于一般都采用了较好的建筑防水措施,其厚度则可适当降低,当顶板设计荷载及地下室埋深不是很大时,最小可做到180~200mm。
地下结构一般可采用主次梁体系楼盖、无梁楼盖、井字梁楼盖及十字梁楼盖等。
由于建筑方案设计要求,本地下室顶板采用了井字梁楼盖体系,该楼盖体系的最大优点是楼板室内效果较为规则、美观,框架梁及井字梁截面高度较一般主次梁体系的楼盖可适当降低,有利于实现相对较优的室内装修效果。
需要指出的是:由于结构防水要求限制,地下结构楼板厚度往往较大,在不增加楼板配筋率的情况下,楼板本身的承载力已经很大。
此时采用对楼板区格划分较细的井字梁楼盖在经济性上往往没有什么优势,而采用无梁楼盖及普通主次梁楼盖体系的地下结构则在造价上往往相对较为节省,实际设计时采用哪种楼盖体系应根据楼面荷载大小、防水要求以及建筑美观等多方面因素综合确定。
3、侧墙设计本工程设两层地下室,地下一层层高为4.8m,地下二层层高为4.5m。
鉴于工程周边环境较为复杂,邻近建筑物较多,为尽可能的减少工程的实施可能对既有建筑产生的不利影响,设计上对结构的自防水要求较为严格,地下室防水等级均为一级。
地下室外墙裂缝控制宽度为0.2mm,经计算,地下室外墙设计厚度为350~400mm。
计算模型按顶板铰接,中间楼层支座连续,底板固接的假定进行受力计算。
地下室侧墙受水、土侧压力的共同作用,由上至下依次增大,呈三角形分布。
本工程按水土分算法计算土体侧压力,土体侧压力系数取静止土压力系数(按《上海地基基础设计规范》dgj08-11-2010第10.1.5条条文说明取值)。
另外,进行侧墙土压力作用计算时还需考虑坑边堆载的影响,一般情况下,对民用建筑,基坑边堆载可取10kpa。
鉴于本工程基础施工时将采用灌注桩-水泥搅拌桩作为基坑的围护结构,在侧墙配筋设计时,也可适当考虑围护结构对侧墙产生的卸荷作用等有利影响。
为节约工程建造成本,地下室侧墙配筋可参照连续梁的配筋方式。
对于两层地下室侧墙,其室内一侧的正弯矩钢筋可逐层通长配置;室外一侧的负弯矩往往在中间支座及基础支座部位较大,实际配筋时可先布置相对较少的通长钢筋,然后在负弯矩较大的支座部位针对性的布置一些附加钢筋。
相比一般的双层双向配筋方式而言,这样的配筋模式可以十分有效的节省地下室侧墙的用钢量,使侧墙配筋更为合理化。
地下室侧墙属于地下室较易开裂部位,特别对于一些超长地下室,极易产生收缩裂缝,形成漏水隐患。
本工程地下室平面尺寸约为165×105m,不设任何伸缩缝或沉降缝;其平面长度大大超出规范要求,容易产生温度收缩裂缝。
对此,本工程在实际设计过程中,适当增加地下室侧壁的水平分布筋配筋率(本工程侧墙的水平分布钢筋配筋率为0.30~0.40间), 合理控制配筋间距,并采用补偿收缩混凝土浇筑,选择收缩小的水泥品种,合理控制水泥用量;严格控制混凝土的水灰比、塌落度和外加剂掺量,并在适当位置设置贯通地下室的温度后浇带、沉降后浇带,后浇带采用膨胀混凝土浇筑,利用后浇带混凝土的延期浇筑,一定程度上补偿后浇带两侧混凝土凝固时产生的温度收缩变形,从而有效增加混凝土结构的自防水性能。