SMA-形状记忆合金
- 格式:ppt
- 大小:2.92 MB
- 文档页数:17
形状记忆合金的机理及其应用形状记忆合金(Shape Memory Alloy,SMA)是指在外力驱动下可以产生形状记忆效应的金属合金,其最重要的特性是在一定范围内可以自恢复原始形状,同时具备优异的力学性能、良好的耐腐蚀性能及高温稳定性等优点。
SMA最早是在1962年由William Buehler 提出的,自此以后,SMA就被广泛研究并应用于不同领域。
SMA的特性是由其所具备的晶体结构和相变特性所决定的,SMA常见的结构类型有Cu-Zn-Al、Ni-Ti、Cu-Al-Ni、Fe-Mn-Si等。
其中,最为常用的是Ni-Ti SMA,这种合金具有良好的形状记忆效应和超弹性特性,是目前最为常用的SMA之一。
当SMA处于高温相(austenite相)时,晶体结构稳定,SMA可以被加工成任意形状。
当外界作用力使SMA在相变温度下降到低温相(martensite相),晶体结构失稳,原本具有的形状记忆效应就会被激发出来。
这种相变是可逆的,可以产生与消失形状记忆效应,从而使SMA表现出自修复、自调整和自适应等功能,被广泛应用于机械、微机电、汽车、医疗等领域。
SMA在机械系统中有广泛应用,例如:在阀门、制动系统、传感器和运动控制系统中使用的SMA弹簧、阀杆、马达和块体,以及金属粉末成型制造的SMA零件,可以安装在汽车和航空航天系统上,在温度和振动变化等条件下,能保障系统的性能稳定和安全可靠。
SMA在医疗系统中的应用也非常广泛,例如利用SMA刀具控制机械手的运动,可以在手术中进行精确的切割和缝合。
同时,利用SMA在不同温度下的形状变化,可以制造热敏支架、热敏钩子和热敏衬垫等医疗器械,可以在体内完成自动放置和释放、自由展开和收缩等操作,很好地解决了手术中的一些难题。
SMA还广泛应用于微纳机电系统(MEMS)中,例如利用SMA薄片可控制悬臂梁的挠度和弯曲,从而实现无线通信、火灾预警、生物传感和关节外科等微型器件。
此外,利用SMA 的变形能力和自恢复特性,也可以制造可变形的电缆、活塞和电子插头等调节设备,实现快速、准确、稳定和可靠的微调控制。
形状记忆合金(shape memory alloys,SMA)是一种由两种以上金属元素构成、能够在温度和应力作用下发生相变的新型功能材料,通过热弹性与马氏体相变及其逆变而具有独特的形状记忆效应、相变伪弹性等特性,广泛应用于航空航天、生物医疗、机械电子、汽车工业、建筑工程等领域。
形状记忆合金按合金种类主要分为镍钛基形状记忆合金(Ni-Ti SMA)、铜基形状记忆合金(Cu SMA)、铁基形状记忆合金(Fe SMA)3类。
其中,镍钛基形状记忆合金包括Ni-Ti-Cu、Ni-Ti-Co、Ni-Ti-Fe、Ni-Ti-Nb等具有较高实用价值的记忆合金;铜基形状记忆合金主要有Cu-Zn、Cu-Zn-Al、Cu-Zn-Sn、Cu-Zn-Si、Cu-Zn-Ga、Cu-Sn等种类;铁基形状记忆合金主要有Fe-Pt、Fe-Mn-Si、Fe-Ni-Co-Ti、Fe-Mn-Al-Ni、Fe-C-Mn-Si-Cr-Ni等种类。
1/形状记忆合金的研究现状形状记忆合金因其独特的形状记忆效应一直是各主要国家的研究热点。
近年来,美国、欧洲、日本等国家和地区针对形状记忆合金制备工艺、成分配比、与先进制造技术结合的研究已取得显著的进展,尤其以4D打印技术为代表的先进制造技术使用形状记忆合金作为原材料,扩展了其在软体机器人、医疗器械、航空航天等领域的应用范围。
(一)中美欧等国开发出多种形状记忆合金制备新工艺,扩大了材料应用范围形状记忆合金/聚合物的制备方法主要有熔炼法、粉末冶金法、喷射沉积工艺、4D打印技术等,再根据应用需求配置后续的锻造、热挤压、轧制、拉拔、冷加工等成型工艺。
其中,熔炼法是传统金属冶金工艺,在真空下将金属原材料通过电子束、电弧、等离子体、高频感应等方式加热后进行熔炼,易产生杂质污染、成分不均匀、能耗高等问题,且需要经过切割加工形成合金产品。
而粉末冶金法则是利用金属或合金粉末进行热等静压和烧结,制备出最终形状的合金产品。
铁基形状记忆合金铁基形状记忆合金(SMA)是一种高度可复合的合金材料,具有独特的热可塑性。
铁基形状记忆合金具有众多优点,包括它可在复合状态下保持原本形状,具有可重复塑形能力,可以很容易地改变其形状以及具备可控的热力学参数等特点。
SMA最初被发现于1900年,发现者是英国物理学家贝克斯特。
随后,该技术最终被称为铁基形状记忆合金(SMA)。
第一,原理及特点。
铁基形状记忆合金通过一种反应来达到形状变化的效果,即热可塑性反应,可以由弹性状态变为复合状态。
其中,温度是最重要的参数,弹簧剪切变形或热可塑性反应也是重要参数之一。
除此之外,还可以使用机械剪切变形或其他外力作用的变形来改变应变能量的分布。
第二,应用领域。
铁基形状记忆合金在很多领域都得到广泛应用,例如:1、汽车。
SMA用于汽车防撞件的设计,能够以更低的能量消耗就可以抵抗撞击,而不会破坏车辆本身的结构,降低伤害或损害。
2、航空航天。
铁基形状记忆合金用于航空航天制造,如可编程挡泥板护舷,弹性支撑电缆,智能夹紧机构等等。
3、机械设备。
SMA用于智能设备和机械设备,可以让设备在对外界负荷作用时得以调整自身的某个方向,达到良好的机械性能。
4、医疗器械。
铁基形状记忆合金可用于制造人体内的器官的结构,如各种类型的支架,以减轻脊椎压力,缓解背痛等功能。
第三,前景及发展趋势。
随着铁基形状记忆合金相关研究技术的不断深入,对其应用领域和发展趋势也乐观充满期待。
未来,铁基形状记忆合金可应用于量子信息和遥感仪器,以及包括通信、安全性和便携设备在内的更多样化的领域。
这些领域将贡献新的应用,增加铁基形状记忆合金的有效使用。
铁基形状记忆合金的应用研究不断加深,应用领域也会有所扩展,从而促进人类社会的发展。
形状记忆合金的力学性能与本构模型研究一、内容综述形状记忆合金(Shape Memory Alloys, SMA)是一类具有形状记忆效应(Shape Memory Effect, SMA)和超弹性(Superelasticity)特性的先进功能材料。
自20世纪70年代以来,形状记忆合金在生物医学、航空航天、电子器件等领域得到了广泛关注和应用。
本文从形状记忆合金的力学性能与本构模型两个方面进行综述,重点介绍近年来在这些领域的研究进展与挑战,并展望未来的发展趋势。
在力学性能方面,主要讨论了形状记忆合金的高温马氏体相变特性、超弹性行为、应力诱导相变等现象。
高温马氏体相变使得SMA在温度变化时发生可逆的形状记忆效应,而超弹性则赋予了材料在受到力的作用下发生显著形变的能力,同时在外力消失后又能够恢复到原始形状。
这些独特的力学性能使得SMA在各应用领域展现出了巨大的潜力。
在本构模型方面,重点介绍了各向同性、非各向同性以及各向异性等类型的本构模型。
各向同性本构模型可以描述形状记忆合金在单一取向下的力学行为,而非各向同性本构模型则需要考虑材料的各向异性效应,以更准确地描述其在不同方向上的力学响应。
一些学者还提出了包含塑性和蠕变效应在内的多尺度本构模型,以更全面地反映形状记忆合金在实际工程应用中的复杂力学行为。
值得注意的是,虽然目前对形状记忆合金的研究已取得了显著进展,但仍存在诸多挑战和问题需要进一步研究和解决。
如何提高材料的塑性以提高超弹性的使用范围,如何降低材料在长时间加载过程中的疲劳损伤等。
未来的研究应继续关注形状记忆合金在力学性能与本构模型方面的研究进展,并着眼于解决现有的问题和挑战,以实现其在各领域的广泛应用和更高性能表现。
1. 形状记忆合金的发展和应用形状记忆合金(SMA)是一种具有独特力学性能的材料,能够在受到外部刺激(如温度、电流、磁场等)时发生形状的改变和恢复。
这种材料在许多领域都有着广泛的应用前景,如航空航天、生物医学、机器人科学以及精密仪器等。
形狀記憶合金形狀記憶合金,Shape Memory Alloy(SMA),是一種加熱後能恢復其原有形狀的特殊合金。
最早是在1951年時,在Au-Cu合金中發現具有形狀記憶的特性,之後又陸續在許多合金中發現有類似的反應,目前較引人注目的有Ti-Ni系合金及Cu系合金。
而形狀記憶合金所表現出來的特性有兩種,一種是形狀記憶效應(Shape Memory Effect,SME),一種是擬彈性效應(Pseudeoelastic Effect)。
形狀記憶合金的特色一般金屬的塑性變形乃是由於差排的移動,而差排移動之後造成的塑性變形無法用加熱方法使其恢復形狀。
在形狀記憶合金中,當材料溫度降低,一種新的結構,我們稱之為麻田散相,會自原來的結構(我們稱之為奧斯田母相)中長出。
而其過程為可逆的,當溫度升高時,會轉換成奧斯田母相。
形狀記憶效應是利用當溫度低於麻田散相轉換溫度時,若外力超過彈性極限,材料結構會重新排列,使材料產生如塑性變形的情形,當溫度升高時,麻田散相會轉換回原來的奧斯田母相,而記得原來的樣子。
當溫度高於麻田散相轉換溫度,外加應力一樣會促使奧斯田母相產生麻田散相而得到如塑?岒雱峈滷“峞A,但是若外力去除,不穩定的麻田散相將轉換回母相,此時其“塑性變形“會隨之消失,故稱此種效應為擬彈性效應。
一班來說,金屬的彈性變形量只有2%,形狀記憶合金能夠承受的彈性變形量是一般金屬的四到五倍。
而形狀記憶效應或擬彈性效應的發生,完全取決於材料的麻田散轉換溫度相對於測試溫度的變化,如(圖一)是發生此兩種效應的應力及溫度範圍相對於滑移臨界應力的關係。
(圖二)形狀記憶效應與擬彈性效應的示意圖。
如何製作形狀記憶合金使用形狀記憶合金最重要的就是它的麻田散相轉換溫度,此一轉換溫度會因經歷此寸、外加應力、熱循環次數....等因素而改變,其中以合金成份的改變對麻田散相轉換溫度的影響最劇烈,以Cu-Zn-Al記憶合金來說,增加一個重量百分比的鋅會使麻田散相轉換溫度下降51℃;增加一個重量百分比的鋁會使麻田散相轉換溫度下降134.5℃之多,因此成份的控制包括正確的百分比及均勻的品質將非常重要。
形状记忆合金原理形状记忆合金(Shape Memory Alloy,SMA)是一种特殊的金属合金,其具有可以改变形状的独特属性。
这种合金能够在经过变形后恢复到其原始形状,这种能力引发了广泛的研究和应用。
本文将介绍形状记忆合金的原理及其在不同领域的应用。
一、形状记忆合金的原理形状记忆合金的主要成分是钛镍(TiNi)合金,也可以是铜铝锌(CuAlZn)合金或镍钛铝(NiTiAl)合金等。
它们具有一个共同的特点,即双相结构。
双相结构是由固溶相(A相)和细颗粒析出相(B相)组成的。
形状记忆合金的特殊性质归功于这种双相结构。
当形状记忆合金处于较低的温度时,所处于的相是B相,此时合金处于一种弹性变形的状态。
一旦形状记忆合金被加热到相变温度以上,合金会从B相转变为A相,并且在外力的作用下发生塑性变形。
当应力消失后,合金会在冷却过程中逐渐从A相回转到B相,恢复其原始的形状。
这个过程被称为形状记忆效应。
形状记忆合金的形状记忆效应主要是通过相变来实现的。
在相变过程中,合金的晶体结构会发生变化,从而改变了其机械性能。
实现形状记忆效应需要充足的形变应力和足够高的温度。
形状记忆合金的相变温度可以通过合金成分的调控来改变,以适应不同的应用要求。
二、形状记忆合金的应用领域形状记忆合金的独特特性使其在多个领域中得到了广泛的应用。
1. 医疗器械形状记忆合金在医疗器械领域中有许多应用。
例如,钛镍合金可以用于支架和夹具,用于骨折固定和骨重建手术。
利用形状记忆合金制造的支架可以在低温下引导到目标位置,然后通过加热恢复到原始形状,起到固定和支撑作用。
2. 汽车工业形状记忆合金在汽车工业中也起到了重要作用。
它们可以用于汽车座椅、门锁和变形机构等部件。
通过调节温度,形状记忆合金可以实现自动调整座椅形状,提供更高的舒适性和驾驶体验。
3. 航空航天形状记忆合金在航空航天领域中有着广泛的应用。
它们可以用于飞机外壳和涡轮发动机等部件。
形状记忆合金具有良好的耐腐蚀性和高温性能,可以承受极端的工作条件,提高飞机的安全性和性能。