《概率论》复习提纲
- 格式:pdf
- 大小:112.22 KB
- 文档页数:2
概率论复习课提纲一、古典概率用古典概型求概率的题在练习册中较多,初步统计有:习题一中的2、3、4、9、13;习题二中的1、2、4;习题四中的1;检测题1-二、三等。
一)、计数原理1、加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
2、乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
二)、排列组合1、无重复的排列与组合 1)、无重复的排列 Ⅰ、基础知识从n 个不同元素中,任取m(≤n)个不同元素,按照一定顺序排成一列(或从n 个不同元素中,有序地任取m 个不同元素),叫做从n 个不同元素中取出m 个不同元素的一个排列。
从n 个不同元素中,任取m(≤n)个不同元素的排列的个数,叫做从n 个不同元素中取出m 个不同元素的排列数,用符号m n P 或mn A 表示。
由乘法原理得:)!(!1m -n )2()1(n n m n n n P mn -=+-⋅-⋅=)( (约定0!=1)(取第一个元素放在第一个位置有n 种方法;取定第一位后,由于元素不允许重复,选择第二位时则只有n-1种方法,…,选择第m 位则只有n-(m-1)=n-m+1种方法)。
特别地,当m=n 时,就得到n 个不同元素的全排列数公式 !123)2()1(n n n n P n n =⋅⋅-⋅-⋅=2)、无重复的组合从n 个不同元素中,任取m(≤n)个不同元素并成一组(或从n 个不同元素中,无序地任取m 个不同元素),叫做从n 个不同元素中任出m 个不同元素的组合。
从n 个不同元素中,任取m(≤n)个不同元素的所有组合的个数,叫做从n 个不同元素中取出m个不同元素组合数,用符号mn C 表示,其计算公式为:)!(!!m!1m -n )2()1(n !n m m n n n m P C m n mn-=+-⋅-⋅==)( (约定0!=1) (事实上,对每一个从n 个不同元素m 个不同元素的组合,将其元素进行全排列可产生m!个不同的排列。
概率论复习要点(个人归纳)第一章:全概率公式P19例五独立事件:P22页例3第二章:几个重要的分布,二项分布,泊松分布,均与分布,正态分布(第四章的重点)。
P34例62.4分布函数,具体可以参考P43 例2和P44例三2.5二维随机变量,要求掌握二维随机变量(X,Y)的分布律的画法以及边缘分布律的画法另外2.5中P48定义二以及P48例三都是需要掌握的内容,应该会考到2.6边缘分布P51的例一例二以及上面的公式都可以看看,2.9随机变量及其分布,需要掌握Y=g(x)的求法,几个例题都可以看看,例三和例四比较经典第三章:3.1数学期望:P76页的公式,离散型和连续型随机变量的数学期望的求法以及P78页的定理,当然,P80的几个法则也要注意,p81例10不错。
几个例题都可以看看3.2与.33中方差和协方差的算法P87的例1很经典,P89的定理二可以看一看。
3.4和3.5略,并没有什么关于这两个小节的看法(PS:这两个小节上课我也没认真听)补充:几种特殊分布的数学期望和方差需要记一下,虽然并不一定会考,但是,万一呢?第四章:正态分布4.1正态分布的标准式要牢记,以及4.1.5的小公式要记住P100的引理P101的例1虽然很简单,但是很常用,很值得参考P103的3o法可以看看,虽然并没有什么卵用4.2 P105定理一记一下,以及P105的定理2和定理2的系也需要记一下4.3可以看一下中心极限定理,P109例1很值得一看第五章:5.3前面的部分都是很简单的描述统计,就不介绍了,但是可以看一看5.3记一下公式就好,知道k阶原点矩和k阶中心矩的概念,以及S^2,,和均值的计算就好。
5.4的P133-P135douyao看一看然后就是几个分布X^2分布,T分布。
5.4的P138页的定理1和定理2需要着重看一看第六章:6.1.1矩估计法的使用,具体可以参考P147的例2,P147的例3也不错,不过不是很常用,P147的例4页很不错,很值得参考6.1.2最大似然估计法:要求掌握L(P)的使用以及会用ln(L(p))求导并求得P的最大似然估计量和估计值,P149-P150de例5,6,7都可以参考,例五较为经典,6.2稍微看看掌握就好6.3-6.4-6.5参数的区间估计:我们只要求掌握单个总体的均值u的置信水平为1-a置信区间以及单个总体的方差s^2的的置信区间P159例1可作为参考,P158和P162的公式必须牢记,因为我并不知道考试到底给不给这些公式6.6的单侧置信上下限可以看看,与单侧置信区间的差别很小,P166的那张表一定要看,单个正太总体所对应的几个求u和s的置信区间和单侧置信上下限都要牢记第七章:假设检验:7.2 P177-P178的两个表一定要记住,可以看看P178的例题加深印象,不过这种东西还是做题更能加深理解7.3 P183下方一直到P185页都很值得一看,当然,重点还是185的那张表然后,貌似就并没有什么其它的考点了。
第一章 随机事件和概率基本概念:随机试验、样本点、样本空间、随机事件、事件发生、事件关系、事件运算、事件互不相容、概率、概率空间、古典概型、条件概率、全概率公式、贝叶斯公式、事件独立、试验独立。
典型例题:1. 一批产品由90件正品和10件次品组成,从中任取一件,问取得正品的概率多大.2. 甲、乙两人各自向同一目标射击,已知甲命中目标的概率为 0.7,乙命中目标的概率为0.8 求:(1)甲、乙两人同时命中目标的概率;(2)恰有一人命中目标的概率;(3)目标被命中的概率.3. 甲、乙、丙三人同时对飞机进行射击, 三人击中的概率分别为0.4、0.5、0.7. 飞机被一人击中而击落的概率为0.2,被两人击中而击落的概率为0.6, 若三人都击中, 飞机必定被击落, 求飞机被击落的概率.4. 有一批产品是由甲、乙、丙三厂同时生产的.其中甲厂产品占50%,乙厂产品占30%, 丙厂产品占20%,甲厂产品中正品率为95%,乙厂产品正品率为90%, 丙厂产品正品率为85%, 如果从这批产品中随机抽取一件, 试计算该产品是正品的概率多大.第二章 随机变量及其分布函数基本概念:随机变量、分布函数、二项分布、正态分布、条件分布、2χ-分布、t -分布、F -分布。
典型例题:1、有1000件产品,其中900件是正品,其余是次品. 现从中每次任取1件,有放回地取5件,试求这5件所含次品数ξ的分布列.2、 设随机变量ξ的分布密度为p (x )= ,⎩⎨⎧<≥-0x 002x ae x ,求:(1)常数a ; (2)P (ξ>3).3、已知随机变量ξ的分布列为⎪⎪⎭⎫ ⎝⎛-25.013.02.005.037.073101 ,(1)求η=2-ξ的分布列; (2)求η=3+ξ2分布列.4、设ξ服从N (5,32),求P (ξ<10),P (102≤<ξ).5、 某工厂生产的一批零件,合格率为95%,今从中抽取100件,试求下列事件的概率:(1)被检验的100件中恰好有4件不合格品; (2)不合格的件数不少于4件; (3)不合格的件数在4到6之间. 6、 已知随机变量ξ的分布密度为)(x p ξ= , 其他, ⎪⎩⎪⎨⎧<<0412ln 21x x ,且η=2-ξ,试求η的分布密度. 7、设随机变量X 服从(-2,2)上的均匀分布,求随机变量2X Y =的概率密度函数为)(y f Y .8. 设G 是由直线y=x ,y=3,x=1所围成的三角形区域,二维随机变量),Y X (在G 上服从二维均匀分布求:(1)),Y X (的联合概率密度;(2)}1{≤-X Y P ;(3)X 的边缘概率密度。
概率论与数理统计复习提纲概率论与数理统计总复习第⼀讲随机事件及其概率⼀随机事件,事件间的关系及运算 1.样本空间和随机事件 2.事件关系,运算和运算律⑴事件的关系和运算⑶运算律:交换律,结合律,分配律;对偶律: B A B A ?=?,B A B A ?=?;⼆概率的定义和性质 1.公理化定义(P7)2.概率的性质(P8.五个) ⑴)(1)(A P A P -=;⑵)()()()(AB P B P A P B A P -+=?;3.古典概型和⼏何概型4.条件概率 )()()|(A P AB P A B P =三常⽤的计算概率的公式1.乘法公式 )()()()()(B A P B P A B P A P AB P ==2.全概率公式和贝叶斯公式(P17-20.) 四事件的独⽴性1.定义:A 和B 相互独⽴ )()(B P A B P =或)()()(B P A P AB P ?=,2.贝努利试验在n 重贝努利试验中,事件=k A {A 恰好发⽣k 次})0(n k ≤≤的概率为:k n nk n k p p C A P --=)1()(第⼆讲随机变量及其概率分布⼀随机变量及其分布函数1.随机变量及其分布函数 )()(x X P x F ≤=)(+∞<<-∞x2.分布函数的性质(P35.四个)⑴0)(lim =-∞→x F x ;1)(lim =+∞→x F x ;(常⽤来确定分布函数中的未知参数)⑵)()()(a F b F b X a P -=≤<(常⽤来求概率) ⼆离散型随机变量及其分布律1.分布律2.常⽤的离散型分布三连续型随机变量 1.密度函数 ?∞-=xdt t f x F )()(2.密度函数的性质(P39.七个) ⑴1)(=?+∞∞-dx x f ;(常⽤来确定密度函数中的参数)⑵?=≤adx x f b X a P )()(;(计算概率的重要公式)⑶对R x ∈?,有0)(==c X P (换⾔之,概率为0的事件不⼀定是不可能事件). 3.常⽤连续型分布重点:正态分布:)0,(21)(22)(>=--σσµσπσµ都是常数,x ex f标准正态分布)1,0(N :2221)(x ex -=π四随机变量函数的分布1.离散情形设X 的分布律为则)(X g Y =的分布律为2.连续情形设X 的密度函数为)(x f X ,若求)(X g Y =的密度函数,先求Y 的分布函数,再通过对其求导,得到Y 的密度函数。
i《概率论与数理统计》复习提要(1) 0 P(A) 1 ( 2)P( ) 1(1) 定义:若 P(B) 0,则 P(A| B)P(AB)P(B)(2)乘法公式:P(AB) P(B)P(A| B)若B 1, B 2, B n 为完备事件组,P(B i )0,则有n(3)全概率公式: P(A) P(B i )P(A| B i )i 1(4)Bayes 公式: P(B k | A)P(Bk)P(A|B k)P(B i )P(A|BJi 17.事件的独立性:A, B 独立 P( AB) P(A)P(B)(注意独立性的应用)第二章随机变量与概率分布1 •离散随机变量:取有限或可列个值,P(X x i ) p i 满足(1) p i 0 , (2) p i =11.事件的关系 AB A B AB A B AAB2.运算规则(1)A B BA ABBA(2) (AB) CA (BC)(AB)C A(BC)(3) (AB)C (AC) (BC) (AB) C (A C)(B(4) AB ABABAB第一章随机事件与概率3•概率P(A)满足的三条公理及性质: C)(4) P() 0 (5) P(A) 1 P(A)(6) P(A B) P(A) P(AB) ,若 A B , 则P(BA) P(B) P(A) ,P(A) P(B)(7) P(A B) P(A) P(B) P(AB)(8) P(ABC) P(A) P(B) P(C)P(AB)P(AC) P(BC)P(ABC)n(3)对互不相容的事件 A l , A 2, , A n ,有P( A k )k 1k 1(n 可以取)4. 古典概型:基本事件有限且等可能5. 几何概率6. 条件概率P(A k )(3)对任意D R, P(X D) p:X i D2.连续随机变量:具有概率密度函数f (x),满足(1) f (x) 0, f(x)dx 1 ;b(2) P(a X b) f (x)dx ; ( 3)对任意a R,P(X a) 0a4.分布函数F(x) P(X x),具有以下性质(1)F( ) 0, F( ) 1 ; (2)单调非降;(3)右连续;(4)P(a X b) F(b) F(a),特别P(X a) 1 F(a);(5)对离散随机变量,F(x) P i ;i:为x(6)对连续随机变量,F(x) x'f(t)dt为连续函数,且在f (x)连续点上,F (x) f (x)5.正态分布的概率计算以(x)记标准正态分布N (0,1)的分布函数,则有(1)(0) 0.5 ; (2)(2 x x) 1 (x) ; (3)若X ~ N(,),则F(x) ((4)以u记标准正态分布N(0,1)的上侧分位数,则P(X u ) 1 (u )6.随机变量的函数Y g(X)(1)离散时,求Y的值,将相同的概率相加;(2)X连续,g(x)在X的取值范围内严格单调,且有一阶连续导数,则f Y(y) f x(g 1(y)) |(g 1(y))' |单调,先求分布函数,再求导。
第一章 随机事件及其概率一、随机事件及其运算1. 样本空间、随机事件①样本点:随机试验的每一个可能结果,用ω表示; ②样本空间:样本点的全集,用Ω表示; 注:样本空间不唯一.③随机事件:样本点的某个集合或样本空间的某个子集,用A,B,C,…表示; ④必然事件就等于样本空间;不可能事件()∅是不包含任何样本点的空集; ⑤基本事件就是仅包含单个样本点的子集。
2. 事件的四种关系①包含关系:A B ⊂,事件A 发生必有事件B 发生;②等价关系:A B =, 事件A 发生必有事件B 发生,且事件B 发生必有事件A 发生; ③互不相容(互斥): AB =∅ ,事件A 与事件B 一定不会同时发生。
④对立关系(互逆):A ,事件A 发生事件A 必不发生,反之也成立; 互逆满足A A AA ⎧⋃=Ω⎨=∅⎩注:互不相容和对立的关系(对立事件一定是互不相容事件,但互不相容事件不一定是对立事件。
)3. 事件的三大运算①事件的并:A B ⋃,事件A 与事件B 至少有一个发生。
若AB =∅,则A B A B ⋃=+; ②事件的交:A B AB ⋂或,事件A 与事件B 都发生; ③事件的差:-A B ,事件A 发生且事件B 不发生。
4. 事件的运算规律①交换律:,A B B A AB BA ⋃=⋃=②结合律:()(),()()A B C A B C A B C A B C ⋃⋃=⋃⋃⋂⋂=⋂⋂③分配律:()()(),()()()A B C A B A C A B C A B A C ⋃⋂=⋃⋂⋃⋂⋃=⋂⋃⋂④德摩根(De Morgan )定律:,A B AB AB A B⋃==⋃ 对于n 个事件,有1111,nni i i i nni ii i A A A A ======二、随机事件的概率定义和性质1.公理化定义:设试验的样本空间为Ω,对于任一随机事件),(Ω⊂A A 都有确定的实值P(A),满足下列性质:(1) 非负性:;0)(≥A P (2) 规范性:;1)(=ΩP(3)有限可加性(概率加法公式):对于k 个互不相容事件k A A A ,,21 ,有∑∑===ki ik i iA P A P 11)()(.则称P(A)为随机事件A 的概率. 2.概率的性质①()1,()0P P Ω=∅= ②()1()P A P A =-③若A B ⊂,则()(),()()()P A P B P B A P B P A ≤-=-且 ④()()()()P A B P A P B P AB ⋃=+-()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ⋃⋃=++---+注:性质的逆命题不一定成立的. 如若),()(B P A P ≤则B A ⊂。