极坐标和参数方程知识点总结大全
- 格式:doc
- 大小:499.00 KB
- 文档页数:16
数学极坐标方程与参数方程总结
数学中有两种表示平面上点的方式:极坐标和参数方程。
这两种方式都可以描述点的位置,但使用的方法不同。
1. 极坐标方程
极坐标方程是一种表示平面上点的方式,它使用极坐标系来描述点的位置。
极坐标系中,每个点用一个半径和一个角度来表示,其中半径是点到极点的距离,角度是点到极轴的角度。
极坐标方程就是用半径和角度的函数来表示点的位置。
例如,一个点的极坐标为(r,θ),那么它的极坐标方程可以表示为:
r = f(θ)
其中,f(θ)是一个关于θ的函数,描述了点在极坐标系中的位置。
极坐标方程可以用来表示各种曲线,如圆、椭圆、双曲线等。
2. 参数方程
参数方程是另一种表示平面上点的方式,它使用参数来描述点的位置。
参数方程中,每个坐标用一个参数t来表示,其中x和y是t 的函数。
参数方程可以表示各种曲线,如直线、圆、椭圆、双曲线等。
例如,一个点的坐标为(x,y),那么它的参数方程可以表示为:
x = f(t)
y = g(t)
其中,f(t)和g(t)是关于t的函数,描述了点在平面上的位置。
参数方程可以用来描述各种复杂的曲线,如螺旋线、心形线等。
总结:
极坐标方程和参数方程都是表示平面上点的方式,它们使用不同的方法来描述点的位置。
极坐标方程使用极坐标系,用半径和角度的函数来表示点的位置;参数方程使用参数,用x和y的函数来表示点的位置。
两种方式都可以用来描述各种曲线,但有时一个曲线的极坐标方程和参数方程并不相同,需要根据具体情况选择合适的表示方式。
极坐标参数方程知识点总结一、概述极坐标参数方程是描述曲线的一种方式,它使用极角和极径来表示点的位置。
在这种表示法中,极径表示点到原点的距离,而极角表示从 x 轴正半轴开始逆时针旋转到该点所需的角度。
二、基本形式极坐标参数方程通常采用下面的形式:r = f(θ)其中 r 和θ 分别是曲线上某一点的极径和极角,f(θ) 是一个关于θ 的函数。
三、常见曲线1. 圆形:r = a圆形是最简单的曲线之一,它由所有到原点距离相等的点组成。
在极坐标系中,圆形可以表示为 r = a,其中 a 是圆的半径。
2. 点阵图案:r = a + b sin(nθ)这种曲线由多个同心圆组成,并且每个圆上都有 n 个等距离的“尖刺”。
这种图案通常被称为“螺旋状”。
3. 椭圆:r = a b / sqrt(b^2 cos^2(θ) + a^2 sin^2(θ))椭圆是一个具有两个焦点的曲线。
在极坐标系中,它可以用上面的方程来表示。
4. 双曲线:r = a sec(θ)双曲线是另一种具有两个焦点的曲线。
在极坐标系中,它可以用上面的方程来表示。
5. 渐开线:r = a / cos(θ)渐开线是一种无限延伸的曲线,它与圆形非常相似。
在极坐标系中,它可以用上面的方程来表示。
四、性质1. 对称性极坐标参数方程通常具有某些对称性。
例如,如果 f(-θ) = f(θ),则曲线关于 y 轴对称;如果f(π-θ) = f(θ),则曲线关于 x 轴对称;如果f(π/2-θ) = f(π/2+θ),则曲线关于直线 y=x 对称。
2. 切线和法线与直角坐标系中类似,极坐标参数方程也可以用来计算切线和法线。
切线的斜率可以通过求导 r 和θ 来得到:dy/dx = (dy/dθ)/(dx/dθ) = (dr/dθ sin θ + r cos θ)/(-dr/dθ cos θ + r sin θ)法线的斜率是切线斜率的负倒数:dy/dx = -1/(dy/dx)3. 弧长和面积极坐标参数方程也可以用来计算曲线的弧长和面积。
第一部分:坐标系与参数方程【考纲知识梳理】1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换()()⎩⎨⎧>•='>•='0,0,:μμλλϕy y x x 的作用下,点()y x P ,对应到点()y x P '',,称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图(1)所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对()θρ,叫做点M 的极坐标,记作M ()θρ,.一般地,不作特殊说明时,我们认为θρ,0≥可取任意实数.特别地,当点M 在极点时,它的极坐标为()()R ∈θθ,0。
和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用唯一的极坐标()θρ,表示;同时,极坐标()θρ,表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图(2)所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是()y x ,,极坐标是()()0,≥ρθρ,于点M直角坐标()y x ,极坐标()θρ,互化公式⎩⎨⎧==θρθρsin cos y x ()0tan 222≠=+=x xyy x θρ 在一般情况下,由θ确定角时,可根据点M 所在的象限最小正角. 曲线图形极坐标方程圆心在极点,半径为r 的圆()πθρ20<≤=r圆心为()0,r ,半径为r 的圆⎪⎭⎫ ⎝⎛<≤-=222πθπρr圆心为⎪⎭⎫⎝⎛2,πr ,半径为r 的圆()πθθρ<≤=0sin 2r过极点,倾斜角为α的直线(1)()()R R ∈+=∈=ραπθραθ或(2) ()()00≥+=≥=ραπθραθ或过点()0,a ,与极轴垂直的直线⎪⎭⎫ ⎝⎛<<-=22cos πθπθρa过点⎪⎭⎫⎝⎛2,πa ,与极轴平行的直线()πθθρ<<=0sin a注:由于平面上点的极坐标的表示形式不唯一,即()()()()θπρθπρθπρθρ+--+-+,,,,2,,,都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程θρ=点⎪⎭⎫⎝⎛4,4ππM 可以表示为⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+45,424,424,4ππππππππM M M 或或等多种形式,其中,只有⎪⎭⎫⎝⎛4,4ππM 的极坐标满足方程θρ=.二、参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标()y x ,都是某个变数t 的函数()()⎩⎨⎧==t g y t f x ①,并且对于t 的每一个允许值,由方程组①所确定的点()y x M ,都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数()y x ,的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数()y x ,中的一个与参数t 的关系,例如()t f x =,把它代入普通方程,求出另一个变数与参数的关系()t g y =,那么()()⎩⎨⎧==t g y t f x 就是曲线的参数方程,在参数方程与普通方程的互化中,必须使()y x ,的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
高中极坐标与参数方程知识点总结1. 极坐标与参数方程的概念极坐标和参数方程都是描述平面上点的位置的数学表示方法。
极坐标的表示方式是使用极径和极角来确定一个点的位置,而参数方程则是使用两个参数来表示一个点的横纵坐标。
在极坐标中,一个点的位置由它到极点的距离(极径)和与极轴的夹角(极角)确定。
极坐标通常表示为(r,θ),其中r表示极径,即点到极点的距离,而θ表示极角,即点与极轴的夹角。
参数方程则是使用参数来表示点的横纵坐标。
常见的参数方程形式是x=f(t)和y=g(t),其中x和y表示点的横纵坐标,而t是参数。
通过改变参数t的取值,可以得到点的坐标。
2. 极坐标的转换极坐标与直角坐标(笛卡尔坐标)之间可以相互转换。
下面是极坐标到直角坐标的转换公式:x = r * cos(θ)y = r * sin(θ)其中(x, y)是点在直角坐标系中的坐标,r是极径,θ是极角。
而直角坐标到极坐标的转换公式如下:r = √(x^2 + y^2)θ = arctan(y / x)其中√表示开平方,arctan表示反正切函数。
3. 参数方程的性质参数方程可以用来描述一条曲线或图形。
通过改变参数的取值范围,可以观察到曲线的形态和特点。
•曲线方程:将参数方程解析为表达式形式,得到的就是曲线的方程。
例如,参数方程为x=f(t)和y=g(t),将其解析为y=f(x)的形式,即可得到曲线方程。
•曲线的对称性:通过观察参数方程中各个参数的表达式,可以得到曲线的对称性。
例如,如果x=f(t)中含有关于t的奇函数,那么对应的曲线关于y轴对称;如果y=f(t)中含有关于t的偶函数,那么对应的曲线关于x轴对称。
•曲线的特殊点:通过令参数值为特定的数值,可以得到曲线上的特殊点。
例如,在参数方程x=f(t)和y=g(t)中,当t=a时,对应的点就是曲线上的一个特殊点。
4. 极坐标和参数方程的应用极坐标和参数方程在数学和物理等领域有广泛的应用。
第一部分:坐标系与参数方程【考纲知识梳理】1平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换® :«x x,(九>0)的作用下,点卩区y)对应到点y i .y, — 0P x,/ ,称‘为平面直角坐标系中的坐标伸缩变换,简称伸缩变换2•极坐标系的概念(1)极坐标系MR如图(1)所示,在平面内取一个定点O,叫做极点,自极点O引一条射线Ox,叫做极轴。
再选定一个长度单位一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景。
平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可•但极坐标系和平面直角坐标系都是平面坐标系•(2)极坐标设M是平面内一点,极点。
与点M的距离|OM|叫做点M的极径,记为。
以极轴Od始边射线0M为终边的角• xOM叫做点M的极角,记为厂有序数对「门叫做点M的极坐标,记作M「门•一般地,不作特殊说明时,我们认为'_0户可取任意实数•特别地,当点M在极点时,它的极坐标为0宀R。
和直角坐标不同,平面内一个点的极坐标有无数种表示•如果规定亍• 0,0 "::^ :::2二,那么除极点外,平面内的点可用唯一的极坐标几二表示。
同时,极坐标匸户表示的点也是唯一确定的•3•极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点 ,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图(2)所示:(2)互化公式:设M是坐标平面内任意一点,它的直角坐标是x, y,极坐标是■^■-0,于是极坐标与直角坐标的互化公式如表:点M 直角坐标(x, y )极坐标(P,8 )互化公式X = P cos 日y =Psi n 日2 . 2 尸=x十ytan& (x 式0 )x在一般情况下,由tan v确定角时,可根据点M所在的象限最小正角曲线图形极坐标方程4•常见曲线的极坐标方程有一个能满足极坐标方程即可•例如对于极坐标方程「- V 点 『兀兀、fn n ] f 兀 5兀]M —+2兀 或—2兀 或M.——,——[等多种形式14 4 丿 14 4 丿 (44丿p=e .二、参数方程 i •参数方程的概念「X = f (t )一般地,在平面直角坐标系中,如果曲线上任意一点的坐标 (x, y )都是某个变数t 的函数丿①,并且对』= g (t )于t 的每一个允许值,由方程组①所确定的点M x ,y 都在这条曲线上,那么方程①就叫做这条曲线的参数点的坐标,这与点的直角坐标的唯一性明显不同 •所以对于曲线上的点的极坐标的多种表示形式 ,只要求至少 叱引可以表示为「江 Ji 、,其中,只有M —[的极坐标满足方程14 4丿方程,联系变数x,y的变数t叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程•2•参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式 ,一般地可以通过消去参数而从参数方程得到普通方 程. (2) 如果知道变数x, y 中的一个与参数t 的关系,例如x 二f t ,把它代入普通方程,求出另一个变数与参数值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
极坐标与参数方程知识点总结大全(同名752)极坐标与参数方程一、参数方程1.参数方程的概念一般地,在平面直角坐标系中, 如果曲线上任意一点的坐标x、y都是某个变数t的函数,即「x=f(t)片f(t)并且对于t每一个允许值,由方程组所确定的点M (x,y)都在这条曲线上(即曲线上的点在方程上,方程的解都在曲线上),那么方程组就叫做这条曲线的参数方程,联系x、y之间关系的变数叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程•2.参数方程和普通方程的互化曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程• 练习1 •若直线的参数方程为/二;(t为参数),则直线的畀=2-3t斜率为()D • - 22•下列在曲线”=sin? (°为参数)上的点是()y =cos廿十si门廿C ・(2, 3)D・(1八3). 2 .3 •将参数方程\x=2+^ 6(二为参数)化为普通方程为y =sin 9()A ・y=x_2B ・y=x 2C ・y = x_2(2_x_3)D ・y = x 2(0 _ y _1)注:普通方程化为参数方程,参数方程的形式不一定唯一(由上面练习(1、3 可知))。
应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。
3. 圆的参数方程如图所示,设圆0的半径为,点M从初始位置•出发,按逆时针方向在纫、f=roos>^圆0上作匀速圆周运动,设「,贝u 。
这就是圆心在原点(),半径为的圆的参数方程,其中0的几何意义是"肘转过的角度(称为旋转角)。
圆心为(%力),半径为的圆的普通方程是(工復y/它的参数方程为:4.椭圆的参数方程以坐标原点◎为中心,焦点在•轴上的椭圆的标准方程为占:f参咖其参数方程为卩,其中参数爭称为离心三+三二1("令血角;焦点在:轴上的椭圆的标准方程是其参数方程为[y=a^^其中参数卩仍为离心角,通常规定参数闻的范围为爭€ [0,注:椭圆的参数方程中,参数爷的几何意义为椭圆上任一点的 离心角,要把 它和这一点的旋转角必区分开来,除了在四个顶点处,离心角和旋转角数值可 相等外(即在Q 到加的范围内),在其他任何一点,两个角的数值都不相等。
第一部分:坐标系与参数方程【考纲知识梳理】1平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换® :严"一・x,(匸〉0 )的作用下,点p(x, y)对应到点y=U・y,(A;>0) 'Px,y■,称「为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. M於①]2•极坐标系的概念(1)极坐标系如图(1)所示,在平面内取一个定点0 ,叫做极点,自极点0引一条射线Ox,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系•注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可•但极坐标系和平面直角坐标系都是平面坐标系•(2)极坐标设M是平面内一点,极点0与点M的距离|0M|叫做点M的极径,记为;以极轴0灿始边,射线0M为终边的角• x0M叫做点M的极角,记为—有序数对几二叫做点M的极坐标记作M匸门•一般地,不作特殊说明时,我们认为「_ 0门可取任意实数•特别地,当点M在极点时,它的极坐标为0,匚< 三R 。
和直角坐标不同,平面内一个点的极坐标有无数种表示•如果规定T -0,0"::^ ::: 2-,那么除极点外,平面内的点可用唯一的极坐标几二表示;同时,极坐标订二表示的点也是唯一确定的3•极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图(2)所示:(2)互化公式:设M是坐标平面内任意一点,它的直角坐标是x, y,极坐标是:::0,于是极坐标与直角坐标的互化公式如表:点M 直角坐标(X, y )极坐标(巴日)互化公式P cos日= Psi n 日P2 =x2+ y2 tan® - y(x 式0 )x在一般情况下,由tan二确定角时,可根据点M所在的象限最小正角4•常见曲线的极坐标方程注:由于平面上点的极坐标的表示形式不唯一 ,即 几二,匚2二• v , -几二• v , -匚-二• v 都表示同一点的坐标,这与点的直角坐标的唯一性明显不同•所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可•例如对于极坐标方程P = ^点M — A [可以表示为 <4 4;p = e . 二、参数方程i •参数方程的概念「X = f (t )一般地,在平面直角坐标系中,如果曲线上任意一点的坐标 (x, y )都是某个变数t 的函数」 ①,并且对』= g (t )于t 的每一个允许值,由方程组①所确定的点M x, y 都在这条曲线上,那么方程①就叫做这条曲线的参数5 兀 〕 fn n 、 「 兀5兀、 M —,一+2兀 或M —-2兀 或M.——,——[等多种形式 14 4 「 i4 4 丿 (4 4 丿 ,其中,只有M 匕,丁的极坐标满足方程方程,联系变数x,y的变数t叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程•2•参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x,y中的一个与参数t的关系,例如x = f t,把它代入普通方程,求出另一个变数与参数的关系y = g(t ),那么丿' '就是曲线的参数方程,在参数方程与普通方程的互化中,必须使(x,y)的取y = g(t)值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
第一部分:坐标系与参数方程【考纲知识梳理】1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换()()⎩⎨⎧>•='>•='0,0,:μμλλϕy y x x 的作用下,点()y x P ,对应到点()y x P '',,称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系如图(1)所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对()θρ,叫做点M 的极坐标,记作M ()θρ,.一般地,不作特殊说明时,我们认为θρ,0≥可取任意实数.特别地,当点M 在极点时,它的极坐标为()()R ∈θθ,0。
和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用唯一的极坐标()θρ,表示;同时,极坐标()θρ,表示的点也是唯一确定的. 3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图(2)所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是()y x ,,极坐标是()()0,≥ρθρ,于是极坐标与直角坐标的互化公式如表:在一般情况下,由θtan 确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程注:由于平面上点的极坐标的表示形式不唯一,即()()()()θπρθπρθπρθρ+--+-+,,,,2,,,都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程θρ=点⎪⎭⎫ ⎝⎛4,4ππM 可以表示为⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+45,424,424,4ππππππππM M M 或或等多种形式,其中,只有⎪⎭⎫⎝⎛4,4ππM 的极坐标满足方程θρ=. 二、参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标()y x ,都是某个变数t 的函数()()⎩⎨⎧==t g y t f x ①,并且对于t 的每一个允许值,由方程组①所确定的点()y x M ,都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数()y x ,的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数()y x ,中的一个与参数t 的关系,例如()t f x =,把它代入普通方程,求出另一个变数与参数的关系()t g y =,那么()()⎩⎨⎧==t g y t f x 就是曲线的参数方程,在参数方程与普通方程的互化中,必须使()y x ,的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M是平面内一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作.一般地,不作特殊说明时,我们认为可取任意实数.特别地,当点在极点时,它的极坐标为(0, )(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是(),于是极坐标与直角坐标的互化公式如表:在一般情况下,由确定角时,可根据点所在的象限最小正角.4.常见曲线的极坐标方程半径为的圆,半径为,注:由于平面上点的极坐标的表示形式不唯一,即都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程点可以表示为等多种形式,其中,只有的极坐标满足方程.二、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数①,并且对于的每一个允许值,由方程组①所确定的点都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数中的一个与参数的关系,例如,把它代入普通方程,求出另一个变数与参数的关系,那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
极坐标与参数方程知识点、题型总结知识点和题型总结:一、伸缩变换伸缩变换是指点P(x,y)在变换作用下对应到点P'(x',y'),其中x' = λx (λ。
0),y' = μy (μ。
0)。
这个变换称为伸缩变换。
二、极坐标和直角坐标的转换1、极坐标定义在平面上,点M的极坐标表示为(ρ,θ),其中ρ表示OM 的长度,θ表示∠MOx的角度,且θ∈[0,2π),ρ≥0.点P的直角坐标为(x,y),极坐标为(ρ,θ)。
2、直角坐标转换为极坐标x = ρcosθ,y = ρsinθ。
3、极坐标转换为直角坐标ρ = √(x²+y²),tanθ = y/x (x≠0),x = ρcosθ,y = ρsinθ。
4、直线和圆的极坐标方程方法一:先求出直角坐标方程,再把它化为极坐标方程。
方法二:1)若直线过点M(ρ,θ),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α) = ρsin(θ-α)。
2)若圆心为M(ρ,θ),半径为r的圆方程为ρ²-2ρrcos(θ-θ)+ρ²-r² = 0.三、参数方程1、参数方程的概念在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数,且对于t的每一个允许值,由这个方程所确定的点M(x,y)都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数。
相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。
2、常见曲线的参数方程1)直线的标准参数方程过定点(x,y),倾角为α的直线:x = x+tcosα,y = y+tsinα (t为参数)。
其中参数t的几何意义是点P(x,y),点M对应的参数为t,则PM = |t|。
直线上P1,P2对应的参数是t1,t2.|P1P2| = |t1-t2| = √((x1-x2)²+(y1-y2)²)。
极坐标与参数方程知识点总结极坐标与参数方程是解析几何中的重要概念,它们在描述曲线、图形和方程等方面具有独特的优势和应用。
本文将对极坐标与参数方程的相关知识点进行总结,以便读者更好地理解和掌握这两个概念。
首先,我们来介绍极坐标的概念。
极坐标是一种描述平面上点位置的方法,它不同于直角坐标系,而是以原点O为极点,以x轴正半轴为极轴,通过极径r和极角θ来确定点P的位置。
其中,极径r表示点P到极点O的距离,而极角θ表示点P与极轴的夹角。
通过极坐标系,我们可以更方便地描述圆、椭圆、双曲线等曲线,同时也可以简化一些复杂的曲线方程。
其次,参数方程是另一种描述曲线的方法。
参数方程是指用参数方程式表示的曲线方程,其中曲线上的点的坐标由参数表示。
一般而言,参数方程由x=f(t)和y=g(t)两个函数组成,其中t是参数。
通过参数方程,我们可以描述一些直角坐标系下难以表示的曲线,比如螺线、心形线等。
参数方程的引入,使得我们能够更加灵活地描述曲线的形状和特征。
极坐标与参数方程在解析几何中有着广泛的应用。
比如,在极坐标系下,描述圆心在极点O处的圆的方程为r=a,其中a为常数;描述直线的方程为r=acos(θ-α),其中a和α为常数。
而在参数方程中,我们可以通过调整参数的取值来描述曲线的不同部分,从而更加全面地了解曲线的性质和特点。
除了在解析几何中的应用,极坐标与参数方程还在物理学、工程学等领域有着重要的作用。
比如,在天文学中,描述天体运动的轨道往往需要使用极坐标或参数方程;在工程学中,描述某些曲线形状或运动轨迹也需要借助于极坐标或参数方程。
因此,对极坐标与参数方程的深入理解和掌握,对于相关领域的研究和实践具有重要意义。
综上所述,极坐标与参数方程是解析几何中的重要概念,它们在描述曲线、图形和方程等方面具有独特的优势和应用。
通过本文的总结,相信读者对极坐标与参数方程有了更清晰的认识,也能更好地运用它们进行相关领域的研究和实践。
希望本文能够对读者有所帮助,谢谢阅读!。
1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个xx单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M是平面内一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作.一般地,不作特殊说明时,我们认为可取任意实数.特别地,当点在极点时,它的极坐标为(0, )(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的xx单位,如图所示:(2)互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是(),于是极坐标与直角坐标的互化公式如表:在一般情况下,由确定角时,可根据点所在的象限最小正角.4.常见曲线的极坐标方程半径为的圆,半径为,注:由于平面上点的极坐标的表示形式不唯一,即都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程点可以表示为等多种形式,其中,只有的极坐标满足方程.二、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数①,并且对于的每一个xx,由方程组①所确定的点都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数中的一个与参数的关系,例如,把它代入普通方程,求出另一个变数与参数的关系,那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M是平面内一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作.一般地,不作特殊说明时,我们认为可取任意实数.特别地,当点在极点时,它的极坐标为(0, )(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是(),于是极坐标与直角坐标的互化公式如表:点直角坐标极坐标互化公式在一般情况下,由确定角时,可根据点所在的象限最小正角.4.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为的圆圆心为,半径为的圆圆心为,半径为的圆过极点,倾斜角为的直线(1)(2)过点,与极轴垂直的直线过点,与极轴平行的直线注:由于平面上点的极坐标的表示形式不唯一,即都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程点可以表示为等多种形式,其中,只有的极坐标满足方程.二、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数①,并且对于的每一个允许值,由方程组①所确定的点都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数中的一个与参数的关系,例如,把它代入普通方程,求出另一个变数与参数的关系,那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
参数方程与极坐标方程例题和知识点总结一、参数方程参数方程是在数学中常用的一种表示曲线的方式,它通过引入一个参数来描述曲线上点的坐标。
(一)参数方程的定义一般地,在平面直角坐标系中,如果曲线上任意一点的坐标$x$、$y$都是某个变数$t$的函数:\\begin{cases}x = f(t) \\y = g(t)\end{cases}\并且对于$t$的每一个允许的取值,由方程组所确定的点$(x,y)$都在这条曲线上,那么这个方程组就叫做曲线的参数方程,联系变数$x$、$y$的变数$t$叫做参变数,简称参数。
(二)参数方程的常见形式1、直线的参数方程若直线经过点$M(x_0,y_0)$,倾斜角为$\alpha$,则直线的参数方程为:\\begin{cases}x = x_0 + t\cos\alpha \\y = y_0 + t\sin\alpha\end{cases}\($t$为参数)2、圆的参数方程圆心在点$(a,b)$,半径为$r$的圆的参数方程为:\\begin{cases}x = a + r\cos\theta \\y = b + r\sin\theta\end{cases}\($\theta$为参数)3、椭圆的参数方程焦点在$x$轴上的椭圆:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$ ($a > b > 0$)的参数方程为:\\begin{cases}x = a\cos\varphi \\y = b\sin\varphi\end{cases}\($\varphi$为参数)(三)参数方程的应用1、求曲线的轨迹方程例:已知点$M(x,y)$在圆$x^2 + y^2 = 4$上运动,求点$N(2x 3, 2y + 4)$的轨迹方程。
设点$M(2\cos\theta, 2\sin\theta)$,则点$N(4\cos\theta 3, 4\sin\theta + 4)$所以$x = 4\cos\theta 3$,$y = 4\sin\theta + 4$消去参数$\theta$可得:$(x + 3)^2 +(y 4)^2 = 16$2、参数方程在物理中的应用在研究物体的运动时,常常使用参数方程来描述物体的位置、速度等随时间的变化关系。
注:文档可能无法思考全面,请浏览后下载,供参考。 极坐标与参数方程 一、参数方程 1.参数方程的概念 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的
函数,即 )()(tfytfx 并且对于t每一个允许值,由方程组所确定的点M(x,y)都在这条曲线上(即曲线上的点在方程上,方程的解都在曲线上),那么方程组就叫做这条曲线的参数方程,联系x、y之间关系的变数叫做参变数,简称参数.
相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.参数方程和普通方程的互化 曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程. 练习
1.若直线的参数方程为12()23xttyt为参数,则直线的斜率为( ) A.23 B.23 C.32 D.32 2.下列在曲线sin2()cossinxy为参数上的点是( ) A.1(,2)2 B.31(,)42 C.(2,3) D.(1,3) 3.将参数方程222sin()sinxy为参数化为普通方程为( ) A.2yx B.2yx C.2(23)yxx D.2(01)yxy
注:普通方程化为参数方程,参数方程的形式不一定唯一(由上面练习(1、3可知))。应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。 注:文档可能无法思考全面,请浏览后下载,供参考。
3.圆的参数方程 如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在
圆上作匀速圆周运动,设,则。 这就是圆心在原点,半径为的圆的参数方程,其中的几何意义是转过的角度(称为旋转角)。
圆心为,半径为的圆的普通方程是,
它的参数方程为:。 4.椭圆的参数方程 以坐标原点为中心,焦点在轴上的椭圆的标准方程为
其参数方程为,其中参数称为离心角;焦点在轴上的椭圆的标准方程是其参数方程为其中参数仍为离心角,通常规定参数的范围为∈[0,2)。 注:椭圆的参数方程中,参数的几何意义为椭圆上任一点的离心角,要把它和这一点的旋转角区分开来,除了在四个顶点处,离心角和旋转角数值可相等外(即在到的范围内),在其他任何一点,两个角的数值都不相等。但
当时,相应地也有,在其他象限内类似。 5.双曲线的参数方程 注:文档可能无法思考全面,请浏览后下载,供参考。
以坐标原点为中心,焦点在轴上的双曲线的标准方程为其参数方程为,其中
焦点在轴上的双曲线的标准方程是其参数方程为 以上参数都是双曲线上任意一点的离心角。 6.抛物线的参数方程 以坐标原点为顶点,开口向右的抛物线的参数方程为
7.直线的参数方程 经过点,过,倾斜角为的直线的参数方程为
。
注:直线参数方程中参数的几何意义:过定点,倾斜角为的直线的参数方程为,其中表示直线上以定点为起点,任一点为终点的有向线段的数量,当点在上方时,>0;当点在下方时,<0;当点与重合时,=0。我们也可以把参数理解为以为原点,直线向上的方向为正方向的数轴上的点的坐标,其单位长度与原直角坐标系中的单位长度相同。 注:文档可能无法思考全面,请浏览后下载,供参考。
北京高考近几年真题 (2014年北京.3题5分)曲线1cos2sinxy(为参数)的对称中心( )
.A在直线2yx上 .B在直线2yx上
.C在直线1yx上 .D在直线1yx上
(2012年北京.9题5分)直线21xtyt(t为参数)与曲线3cos3sinxy(为参数)
的交点个数为 .
(2014年北京.3题5分)答案:B (2012年北京.9题5分)答案:2
二、极坐标方程 1.极坐标系的概念 (1)极坐标系 极坐标系有四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向.
如图所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)极坐标 注:文档可能无法思考全面,请浏览后下载,供参考。
设M是平面内一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作. 一般地,不作特殊说明时,我们认为可取任意实数. 特别地, 当点在极点时,它的极坐标为(0, )(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示. 如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的. 2.极坐标和直角坐标的互化
例题、①直角坐标为(-2,2)、(0,2)那么它的极坐标分别表示为________、 ②极坐标为(2,3)、(1,0)那么他们的直角坐标表示为 、
注:文档可能无法思考全面,请浏览后下载,供参考。
1. ①答案:2,3π4 、(2,2) ②答案:(1,3),(1,0)
(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:
(2)互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是(),于是极坐标与直角坐标的互化公式如表:
点 直角坐标 极坐标
互化公式 在一般情况下,由确定角时,可根据点所在的象限最小正角.
(1) 点的转化 1、①直角坐标为(-2,2)、(0,2)那么它的极坐标分别表示为________、 ②极坐标为(2,3)、(1,0)那么他们的直角坐标表示为 、
1. ①答案:2,3π4 、(2,2) ②答案:(1,3),(1,0) 注:文档可能无法思考全面,请浏览后下载,供参考。
(2)方程的转化 注:文档可能无法思考全面,请浏览后下载,供参考。
2、在极坐标系中,直线l: ρsinθ+π4=2,则直线在直角坐标系中方程为 在极坐标系中,圆O: ρ=4,则在直角坐标系中,圆的方程 直线l与圆O相交,所截得的弦长为________.
答案:(1)因为 ,
所以直线 的直角坐标方程为 ,即 , 圆 的直角坐标方程为 . (2)由(1)知圆心的坐标是 ,半径是4,圆心到直线的距离
是 . 所以直线 被圆 截得的弦长是 . 3、若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________. 4、求满足条件的曲线极坐标方程 (1)直线过点M(1,0)且垂直于x轴 (2)直线过M(0,a)且平行于x轴
(3)当圆心位于M(a,0),半径为r (4)当圆心位于M ),(21,半径为2: 注:文档可能无法思考全面,请浏览后下载,供参考。 注:文档可能无法思考全面,请浏览后下载,供参考。
3.常见曲线的极坐标方程 曲线 图形 极坐标方程 圆心在极点,半径为的圆 圆心为,半径为的圆 圆心为,半径为的圆 过极点,倾斜角为的直线 (1)
(2)
过点,与极轴垂直的直线
过点,与极轴平行的直线 注:文档可能无法思考全面,请浏览后下载,供参考。
注:由于平面上点的极坐标的表示形式不唯一,即都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至
少有一个能满足极坐标方程即可.例如对于极坐标方程点可以表示为等多种形式,其中,只有的极坐标满足方程.
4.圆5cos53sin的圆心坐标是( ) A.4(5,)3 B.(5,)3 C.(5,)3 D.5(5,)3 4.化极坐标方程2cos0为直角坐标方程为( ) A.201yy2x或 B.1x C.201y2x或x D.1y 5.点M的直角坐标是(1,3),则点M的极坐标为( ) A.(2,)3 B.(2,)3 C.2(2,)3 D.(2,2),()3kkZ 6.极坐标方程cos2sin2表示的曲线为( ) A.一条射线和一个圆 B.两条直线 C.一条直线和一个圆 D.一个圆
北京高考近几年真题 (2017年北京.11题5分)在极坐标系中,点A在圆ρ2﹣2ρcosθ﹣ 注:文档可能无法思考全面,请浏览后下载,供参考。
4ρsinθ+4=0上,点P的坐标为(1,0),则|AP|的最小值为 .