c语言实现迷宫最优路径选择
- 格式:doc
- 大小:60.50 KB
- 文档页数:6
⽤C语⾔解决迷宫问题#include <stdio.h>#include <stdlib.h>#define ROW 10#define COL 10/*迷宫中位置信息*/typedef struct position{int x;int y;}position;/*在迷宫中的当前位置的信息,也是⼊栈的基本元素*/typedef struct SElem{int di;position seat;}SElem;/*链式栈中节点的定义*/typedef struct position_stack{SElem p;struct position_stack *next;}*Stack_pNode,Stack_Node;void InitStack(Stack_pNode *Link){*Link = NULL;}void push(Stack_pNode *Link,SElem e){Stack_pNode new_SElem = (Stack_pNode)calloc(1,sizeof(Stack_Node));new_SElem->p = e;new_SElem->next = NULL;if (*Link == NULL)*Link = new_SElem;else{new_SElem->next = *Link;*Link = new_SElem;}}int pop(Stack_pNode *Link,SElem *e){if (*Link == NULL)return 0;*e = (*Link)->p;Stack_pNode q = *Link;*Link = (*Link)->next;free(q);return 1;}int top(Stack_pNode Link, SElem *e){if (Link == NULL)return 0;*e = Link->p;return 1;}int empty(Stack_pNode Link){if (Link == NULL)return 1;elsereturn 0;}int reverse(Stack_pNode *Link){Stack_pNode p, q, r;if (*Link == NULL || (*Link)->next == NULL)return 0;r = *Link;p = (*Link)->next;q = NULL;while (p){r->next = q;q = r;r = p;p = p->next;}r->next = q;*Link = r;}void print(Stack_pNode Link){Stack_pNode r = Link;while (r){printf("(%d,%d) -> ",r->p.seat.x,r->p.seat.y);r = r->next;}printf("exit\n");}int curstep = 1;/*纪录当前的⾜迹,填写在探索前进的每⼀步正确的路上*//*迷宫地图。
C语⾔递归实现迷宫寻路问题迷宫问题采⽤递归和⾮递归两种⽅法,暂时完成递归⽅法,后续会补上⾮递归⽅法#include<stdio.h>#include<stdbool.h>bool findPath(int a[][8],int i,int j){//递归找出⼝if(i==6&&j==6)//如果找到了⽬标a[6][6]则返回truereturn true;if(a[i][j]==0)//若当前路径未被找到,则继续{a[i][j]=2;//当前⾛的路径置为2,表⽰⾛过if(findPath(a,i+1,j)||findPath(a,i,j+1)||findPath(a,i-1, j)||findPath(a,i-1,j))//每个⽅向都判断,依次展开递归,寻找最佳路径return true;//若选择的路径可以⾛,则返回trueelse{//若当前选择的路径不能⾛a[i][j]=0;//弹栈并恢复路径,回退到上⼀次的位置return false;}}else//未能找到最终点return false;}void print(int a[][8])//打印当前的⼆维数组表{for(int i=0;i<8;i++){for(int j=0;j<8;j++){printf("%d ",a[i][j]);}printf("\n");}}int main(){int a[8][8]={0};for(int i=0;i<8;i++)//设置围墙和障碍物{a[0][i]=1;a[i][0]=1;a[7][i]=1;a[i][7]=1;}a[3][1]=1;a[3][2]=1;print(a);printf("-----------after find path-----------\n");findPath(a, 1, 1);print(a);}。
c语言随机生成迷宫算法迷宫是一种很有趣的游戏,它可以让人们在寻找出路的过程中培养思考能力和耐心。
在许多计算机游戏中,迷宫也是一个常见的题材。
那么,如何用C语言自动生成一个迷宫呢?下面就来详细介绍一下。
第一步,确定迷宫大小首先要确定迷宫的大小,也就是行和列的数量。
这可以通过用户输入来实现,也可以直接在程序中定义。
第二步,初始化迷宫在程序中,我们通常用一个二维数组来表示迷宫,数组元素的值表示对应的格子状态,0表示可通过,1表示不可通过。
因此,我们需要在程序中初始化迷宫,将所有的格子都标记为1,表示不可通过。
第三步,生成迷宫路径接下来,我们需要随机生成一个迷宫路径。
随机生成迷宫路径的方法有很多种,这里介绍一种比较简单的方法:深度优先搜索算法。
深度优先搜索算法是一种递归算法,可以从迷宫的起点开始,不断随机选择一个方向,往前走,直到无法再往前为止。
然后回到上一次的分支点,选择另一个方向继续走,直到整个迷宫路径都被探索完毕。
在探索的过程中,我们可以将经过的格子标记为0,表示可通过,同时记录路径上的所有分支点,方便后面生成迷宫时打通墙壁。
第四步,随机挖墙迷宫路径已经生成完毕,接下来我们需要随机挖墙,打通路径上的墙壁,让迷宫变成一张连接所有路径的图。
随机挖墙的方法也有很多种,这里介绍一种比较常见的方法:挖掉一些分支点周围的墙壁。
具体实现方法是选择一个随机的分支点,然后随机选择一个方向,检查该方向上的格子是否为墙壁,如果是墙壁,就把它打通,同时把该格子标记为已经访问过,以免重复挖掘。
然后继续在周围的格子中挑选下一个候选点,重复上述操作,直到所有的分支点周围的墙壁都被打通。
第五步,输出迷宫迷宫已经生成完毕,最后就是将其输出到屏幕上。
输出迷宫的方法也有很多种,这里介绍一种比较简单的方法:使用ASCII码字符表示迷宫。
具体实现方法是将生成的迷宫数组中的0标记为ASCII码字符' '(空格),将1标记为ASCII码字符'#'(井号),然后按照行列的顺序输出到屏幕上即可。
求迷宫问题就是求出从入口到出口的路径。
在求解时,通常用的是“穷举求解”的方法,即从入口出发,顺某一方向向前试探,若能走通,则继续往前走;否则沿原路退回,换一个方向再继续试探,直至所有可能的通路都试探完为止。
为了保证在任何位置上都能沿原路退回(称为回溯),需要用一个后进先出的栈来保存从入口到当前位置的路径。
首先用如图3.3所示的方块图表示迷宫。
对于图中的每个方块,用空白表示通道,用阴影表示墙。
所求路径必须是简单路径,即在求得的路径上不能重复出现同一通道块。
为了表示迷宫,设置一个数组mg,其中每个元素表示一个方块的状态,为0时表示对应方块是通道,为1时表示对应方块为墙,如图3.3所示的迷宫,对应的迷宫数组mg如下:int mg[M+1][N+1]={ /*M=10,N=10*/{1,1,1,1,1,1,1,1,1,1},{1,0,0,1,0,0,0,1,0,1},{1,0,0,1,0,0,0,1,0,1},/ 1{1,0,0,0,0,1,1,0,0,1}, {1,0,1,1,1,0,0,0,0,1}, {1,0,0,0,1,0,0,0,0,1}, {1,0,1,0,0,0,1,0,0,1}, {1,0,1,1,1,0,1,1,0,1}, {1,1,0,0,0,0,0,0,0,1}, {1,1,1,1,1,1,1,1,1,1} }; 伪代码:c语言描述如下:6/ 2void mgpath() /*路径为:(1,1)->(M-2,N-2)*/{int i,j,di,find,k;top++; /*初始方块进栈*/Stack[top].i=1;Stack[top].j=1;Stack[top].di=-1;mg[1][1]=-1;while (top>-1) /*栈不空时循环*/{i=Stack[top].i;j=Stack[top].j;di=Stack[top].di;if (i==M-2 && j==N-2) /*找到了出口,输出路径*/ {瀠楲瑮?迷宫路径如下:\n);for (k=0;k<=top;k++){printf(\ (%d,%d),Stack[k].i,Stack[k].j); if ((k+1)%5==0) printf(\);}6/ 3printf(\);return;}find=0;while (di<4 && find==0) /*找下一个可走方块*/ { di++;switch(di){case 0:i=Stack[top].i-1;j=Stack[top].j;break;case 1:i=Stack[top].i;j=Stack[top].j+1;break;case 2:i=Stack[top].i+1;j=Stack[top].j;break;case 3:i=Stack[top].i;j=Stack[top].j-1;break;}6/ 4if (mg[i][j]==0) find=1;}if (find==1) /*找到了下一个可走方块*/{Stack[top].di=di; /*修改原栈顶元素的di值*/ top++; /*下一个可走方块进栈*/Stack[top].i=i;Stack[top].j=j;Stack[top].di=-1;mg[i][j]=-1; /*避免重复走到该方块*/}else /*没有路径可走,则退栈*/{ mg[Stack[top].i][Stack[top].j]=0;/*让该位置变为其他路径可走方块*/top--;}}牰湩晴尨没有可走路径!\n);}6/ 5(范文素材和资料部分来自网络,供参考。
求迷宫问题就是求出从入口到出口的路径。
在求解时,通常用的是“穷举求解”的方法,即从入口出发,顺某一方向向前试探,若能走通,则继续往前走;否则沿原路退回,换一个方向再继续试探,直至所有可能的通路都试探完为止。
为了保证在任何位置上都能沿原路退回(称为回溯),需要用一个后进先出的栈来保存从入口到当前位置的路径。
首先用如图所示的方块图表示迷宫。
对于图中的每个方块,用空白表示通道,用阴影表示墙。
所求路径必须是简单路径,即在求得的路径上不能重复出现同一通道块。
为了表示迷宫,设置一个数组mg,其中每个元素表示一个方块的状态,为0时表示对应方块是通道,为1时表示对应方块为墙,如图所示的迷宫,对应的迷宫数组mg如下:int mg[M+1][N+1]={ /*M=10,N=10*/{1,1,1,1,1,1,1,1,1,1},{1,0,0,1,0,0,0,1,0,1}, {1,0,0,1,0,0,0,1,0,1}, {1,0,0,0,0,1,1,0,0,1}, {1,0,1,1,1,0,0,0,0,1}, {1,0,0,0,1,0,0,0,0,1}, {1,0,1,0,0,0,1,0,0,1}, {1,0,1,1,1,0,1,1,0,1}, {1,1,0,0,0,0,0,0,0,1}, {1,1,1,1,1,1,1,1,1,1} }; 伪代码:c语言描述如下:void mgpath() /*路径为:(1,1)->(M-2,N-2)*/ {int i,j,di,find,k;top++; /*初始方块进栈*/Stack[top].i=1;Stack[top].j=1;Stack[top].di=-1;mg[1][1]=-1;while (top>-1) /*栈不空时循环*/{i=Stack[top].i;j=Stack[top].j;di=Stack[top].di;if (i==M-2 && j==N-2) /*找到了出口,输出路径*/{printf("迷宫路径如下:\n");for (k=0;k<=top;k++){printf("\t(%d,%d)",Stack[k].i,Stack[ k].j);if ((k+1)%5==0) printf("\n");}printf("\n");return;}find=0;while (di<4 && find==0) /*找下一个可走方块*/{ di++;switch(di){case 0:i=Stack[top].i-1;j=Stack[top].j ;break;case 1:i=Stack[top].i;j=Stack[top].j +1;break;case 2:i=Stack[top].i+1;j=Stack[top].j ;break;case 3:i=Stack[top].i;j=Stack[top] .j-1;break;}if (mg[i][j]==0) find=1;}if (find==1) /*找到了下一个可走方块*/{Stack[top].di=di; /*修改原栈顶元素的di值*/top++; /*下一个可走方块进栈*/Stack[top].i=i ;Stack[top].j=j ;Stack[top].di= -1;mg[i][j]=-1; /*避免重复走到该方块*/ }else /*没有路径可走,则退栈*/{ mg[Stack[top].i][Stack[top].j]=0;/*让该位置变为其他路径可走方块*/top--;}}printf("没有可走路径!\n");}。
c语言走迷宫代码以下是一个简单的 C 语言走迷宫代码示例,使用了递归算法: ```c#include <stdio.h>#include <stdlib.h>int main() {int size, row, col, choice, i, j;maze[0][0] = "*";maze[1][0] = "O";maze[0][1] = "O";maze[1][1] = "*";size = 2;row = 2;col = 2;while (1) {printf("Enter row: ");scanf("%d", &row);printf("Enter col: ");scanf("%d", &col);if (row < 0 || row > size || col < 0 || col > size) { printf("Invalid row or col. Try again.");}if (maze[row][col] != "*") {printf("Current cell is free. Try again. ");continue;}maze[row][col] = "X";printf("Enter a choice (1-6): ");scanf("%d", &choice);switch (choice) {case 1:row++;col = 0;break;case 2:row--;col = 0;break;case 3:col++;break;col--;break;case 5:row--;col = 1;break;case 6:row++;col = 1;break;default:printf("Invalid choice. Try again. ");continue;}}printf(" maze: ");for (i = 0; i < size * size; i++) { for (j = 0; j < size; j++) {if (maze[i][j] == "*")printf("*");elseprintf("%c", maze[i][j]);}printf("");}return 0;}```该程序首先初始化了一个 2x2 的迷宫,其中 `maze[0][0]` 和`maze[1][0]` 分别标记为 `"O"` 和 `"*"`,其他地方都为空。
c语言随机生成迷宫算法
c语言随机生成迷宫算法是一种常用的算法,用于生成迷宫结构。
该算法的核心思想是通过随机生成迷宫中的墙壁和通路,来创建一个具有迷宫结构的随机图。
具体实现过程可以分为以下几个步骤:
1.初始化迷宫矩阵:创建一个二维数组,用于表示迷宫的结构。
将数组中所有元素初始化为墙壁。
2.随机选取起点:从迷宫中随机选取一个起点。
3.随机生成迷宫结构:从当前位置开始,随机选择一个方向并移动,如果该方向上的位置未被访问过,则将当前位置与该位置之间的墙壁打通,并将该位置标记为已访问。
如果该方向上的位置已被访问,则不进行操作,直接选择下一个方向。
4.生成终点:在生成迷宫结构的过程中,可以随机选择某些位置作为终点。
当达到终点时,迷宫生成结束。
5.输出迷宫结构:将迷宫矩阵输出到控制台或文件中,以便用户查看。
c语言随机生成迷宫算法可以用于游戏开发、路径规划等领域。
其优点是生成的迷宫结构随机性高,具有挑战性,而且可以根据需求进行调整。
缺点是算法复杂度较高,需要耗费大量时间和计算资源。
- 1 -。
c语言迷宫代码C语言迷宫代码是指用C语言编写的程序,用于生成和解决迷宫问题的算法。
迷宫通常由一个矩形网格组成,其中包含墙壁和通道。
目标是找到从迷宫的起点到终点的路径,同时避开墙壁。
下面是一个简单的示例代码,用于生成迷宫:```c#include <stdio.h>#include <stdlib.h>#include <stdbool.h>#define ROWS 10#define COLS 10typedef struct {int x;int y;} Point;void generateMaze(int maze[ROWS][COLS]) {for (int i = 0; i < ROWS; i++) {for (int j = 0; j < COLS; j++) {if (i % 2 == 0 || j % 2 == 0) { maze[i][j] = 1; // 墙壁} else {maze[i][j] = 0; // 通道}}}}void printMaze(int maze[ROWS][COLS]) {for (int i = 0; i < ROWS; i++) {for (int j = 0; j < COLS; j++) {printf('%d ', maze[i][j]);}printf('');}}int main() {int maze[ROWS][COLS];generateMaze(maze);printMaze(maze);return 0;}```在上面的代码中,我们使用一个二维数组来表示迷宫。
数组中的值为1表示墙壁,值为0表示通道。
使用generateMaze函数,我们将迷宫的墙壁和通道初始化为适当的值。
然后使用printMaze函数打印迷宫。
通过运行上面的代码,我们可以得到一个简单的迷宫的表示:```1 1 1 1 1 1 1 1 1 11 0 1 0 1 0 1 0 1 11 1 1 1 1 1 1 1 1 11 0 1 0 1 0 1 0 1 11 1 1 1 1 1 1 1 1 11 0 1 0 1 0 1 0 1 11 1 1 1 1 1 1 1 1 11 0 1 0 1 0 1 0 1 11 1 1 1 1 1 1 1 1 11 0 1 0 1 0 1 0 1 1```当然,上述代码只是生成了一个简单的迷宫,还没有解决迷宫问题。
C语⾔实现⾛迷宫本⽂实例为⼤家分享了C语⾔实现⾛迷宫的具体代码,供⼤家参考,具体内容如下描述给⼀张个迷宫,问能否从起点⾛到终点,只能往上下左右⾛,不能斜着⾛输⼊多组测试数据,每组第⼀⾏两个正整数,分别为n和m表⽰n这个迷宫有n⾏m列(0<n,m<10)接着是n⾏m列,'#'表⽰路‘*'表⽰墙‘S'表⽰起点‘T'表⽰终点输出每组测试数据输出⼀个结果,如果能从S⾛到T,输出“YES”,否则输出“NO”输⼊样例:2 2S*#T3 3S*##T##输出样例:YESNO有两种⽅法可以解决这个问题第⼀种深度优先搜索:站在⼊⼝,考虑⾃⼰下⼀步可以⾛哪⾥,⾛到下⼀个位置后,再考虑下⼀步怎么⾛,⼀直⾛下去,直到没有路,然后再返回最近的⼀个岔路⼝,选其它任⼀条没试过的路,如果不能⾛,再尝试其他的路,直到这个岔路⼝的路全部试完,再回到上⼀个路⼝,看是否能⾛到出⼝,相当于⼀条路⾛到⿊#include<bits/stdc++.h>using namespace std;char a[20][20]; //存储迷宫字符数组int flag,m,n;int sdep_x[4]={-1,1,0,0},sdep_y[4]={0,0,-1,1};//控制上下左右⽅向int vis[20][20]; //标记⾛过的路void dfs(int x,int y){vis[x][y]=1; //代表被标记过了if(a[x][y]=='T') //找到出⼝{flag=1;return;}for(int i=0;i<4;i++) //搜索路径{int h=x+sdep_x[i];int l=y+sdep_y[i];if(a[h][l]!='*'&&!vis[h][l]&&h>=0&&h<n&&l>=0&&l<m)//搜索路径的条件{dfs(h,l);}}}int main(){while(cin>>n>>m){memset(vis,0,sizeof(vis));//初始化数组flag=0;int f,g;for(int i=0;i<n;i++)for(int j=0;j<m;j++)cin>>a[i][j];for(int i=0;i<n;i++)for(int j=0;j<m;j++){if(a[i][j]=='S')//先找到路⼝{f=i;g=j;}}dfs(f,g);if(flag)cout<<"YES"<<endl;elsecout<<"NO"<<endl;}return 0;}第⼆种⽅法⼴度优先搜索:这⼀步之后,把接下来⼀步的所有路都列出来,在之后的所有扩展之中,在以⼀个为下⼀步,再将所有的该步可以到达的下⼀步,全部列举出来,再将第⼆步的其他选择中的每⼀步,都⼀⼀做扩展,每次扩展,都要检查所扩展的地⽅有没有到达搜索的要求。
#include〈stdio。
h〉#include〈stdlib。
h>#include〈time.h>#define stack_init_size 200#define stack_increment 10#define ERROE 0#define TRUE 1#define FALSE 0#define OVERFLOW 0#define OK 1typedef int Status;typedef struct{int x;int y;}PosType;typedef struct {int ord; // 通道块在路径上的“序号”PosType seat; //通道块在迷宫中的“坐标位置”int di; //从此通道块走向下一通道块的“方向”}SElemType;typedef struct{SElemType *base;SElemType *top;int stacksize;}SqStack;int mg[20][20];/*随机生成迷宫的函数/*为了能够让尽量能通过,将能通过的块和不能通过的块数量比大致为2:1*/void Random(){int i,j,k;srand(time(NULL));mg[1][0]=mg[1][1]=mg[18][19]=0; //将入口、出口设置为“0"即可通过for(j=0;j〈20;j++)mg[0][j]=mg[19][j]=1;/*设置迷宫外围“不可走”,保证只有一个出口和入口*/ for(i=2;i〈19;i++)mg[i][0]=mg[i—1][19]=1; /*设置迷宫外围“不可走”,保证只有一个出口和入口*/ for(i=1;i〈19;i++)for(j=1;j<19;j++){k=rand()%3; //随机生成0、1、2三个数if(k)mg[i][j]=0;else{if((i==1&&j==1)||(i==18&&j==18)) /*因为距入口或出口一步的路是必经之路,故设该通道块为“0”加大迷宫能通行的概率*/mg[i][j]=0;elsemg[i][j]=1;}}}//构造一个空栈Status InitStack(SqStack &s){s。
用c语言实现迷宫求解完美源代码#include#include#include#define TRUE 1#define FALSE 0#define OK 1#define ERROR 0#define OVERFLOW -2#define UNDERFLOW -2typedef int Status;//-----栈开始-----typedef struct{//迷宫中r行c列的位置int r;int c;}PostType;//坐标位置类型typedef struct{int ord;// 当前位置在路径上的序号PostType seat;// 当前坐标int di;// 从此通块走向下一通块的“方向”}SElemType;// 栈的元素类型//定义链式栈的存储结构struct LNode{SElemType data;//数据域struct LNode *next;//指针域};struct LStack{struct LNode *top;//栈顶指针};Status InitStack(LStack &s)//操作结果:构造一个空栈S {struct LNode *p;p=(LNode *)malloc(sizeof(LNode));if(!p){printf("分配失败,退出程序");exit(ERROR);}s.top=p;p->next=NULL;return OK;}Status StackEmpty(LStack s)//若栈s为空栈,则返回TRUE,否则FALSE{if(s.top->next==NULL) return TRUE;return FALSE;}Status Push(LStack &s,SElemType e)//插入元素e成为新的栈顶元素{struct LNode *p;p=(LNode *)malloc(sizeof(LNode));if(!p) exit(OVERFLOW);s.top->data=e;p->next=s.top;s.top=p;return OK;}Status Pop(LStack &s,SElemType &e)//删除s的栈顶元素,并且用e返回其值{struct LNode *p;if(!(s.top->next)) exit(UNDERFLOW);p=s.top;s.top=p->next;e=s.top->data;free(p);return OK;}Status DestroyStack(LStack &s)//操作结果:栈s被销毁{struct LNode *p;p=s.top;while(p){s.top=p->next;free(p);p=s.top;}return OK;}//-----栈结束------//-----迷宫开始-------#define MAXLEN 10// 迷宫包括外墙最大行列数typedef struct{int r;int c;char adr[MAXLEN][MAXLEN];// 可取' ''*' '@' '#'}MazeType;// 迷宫类型Status InitMaze(MazeType&maze){// 初始化迷宫,成功返回TRUE,否则返回FALSE int m,n,i,j;printf("输入迷宫行数和列数(包括了外墙): ");scanf("%d%d",&maze.r,&maze.c); // 输入迷宫行数和列数for(i=0;i<=maze.c+1;i++){// 迷宫行外墙maze.adr[0][i]='#';maze.adr[maze.r+1][i]='#';}//forfor(i=0;i<=maze.r+1;i++){// 迷宫列外墙maze.adr[i][0]='#';maze.adr[i][maze.c+1]='#';}for(i=1;i<=maze.r;i++)for(j=1;j<=maze.c;j++)maze.adr[i][j]=' ';// 初始化迷宫printf("输入障碍的坐标((-1 -1)结束): ");scanf("%d%d",&m,&n);// 接收障碍的坐标while(m!=-1){if(m>maze.r || n>maze.c)// 越界exit(ERROR);maze.adr[m][n]='#';// 迷宫障碍用#标记printf("输入障碍的坐标((-1,-1)结束): ");scanf("%d%d",&m,&n);}//whilereturn OK;}//InitMazeStatus Pass(MazeType maze,PostType curpos){// 当前位置可同则返回TURE,否则返回FALSEif(maze.adr[curpos.r][curpos.c]==' ')// 可通return TRUE;elsereturn FALSE;}//PassStatus FootPrint(MazeType &maze,PostType curpos) {// 若走过并且可通,则返回TRUE,否则返回FALSE maze.adr[curpos.r][curpos.c]='*';//"*"表示可通return OK;}//FootPrintPostType NextPos(PostType &curpos,int i){// 指示并返回下一位置的坐标PostType cpos;cpos=curpos;switch(i){//1.2.3.4 分别表示东南西北方向case 1 : cpos.c+=1; break;case 2 : cpos.r+=1; break;case 3 : cpos.c-=1; break;case 4 : cpos.r-=1; break;default: exit(ERROR);}return cpos;}//NextposStatus MarkPrint(MazeType &maze,PostType curpos) {// 曾走过,但不是通路标记,并返回OKmaze.adr[curpos.r][curpos.c]='@';//"@" 表示曾走过但不通return OK;}//MarkPrintStatus MazePath(MazeType &maze,PostType start,PostType end){// 若迷宫maze存在通路,则求出一条同路放在栈中,并返回TRUE,否则返回FALSE struct LStack S;PostType curpos;int curstep;// 当前序号,1,2,3,4分别表示东南西北方向SElemType e;InitStack(S);curpos=start; //设置"当前位置"为"入口位置"curstep=1;// 探索第一位printf("以三元组形式表示迷宫路径:\n");do{if(Pass(maze,curpos)){// 当前位置可以通过FootPrint(maze,curpos);// 留下足迹e.ord=curstep;e.seat=curpos;e.di=1;printf("%d %d %d-->",e.seat.r,e.seat.c,e.di);Push(S,e);// 加入路径if(curpos.r==end.r&&curpos.c==end.c)if(!DestroyStack(S))// 销毁失败exit(OVERFLOW);elsereturn TRUE; // 到达出口else{curpos=NextPos(curpos,1);// 下一位置是当前位置的东邻curstep++;// 探索下一步}//else}//ifelse{// 当前位置不通时if(!StackEmpty(S)){Pop(S,e);while(e.di==4&& !StackEmpty(S)){MarkPrint(maze,e.seat);Pop(S,e);// 留下不能通过的标记,并退一步}//whileif(e.di < 4){e.di++;// 换一个方向探索Push(S,e);curpos=NextPos(e.seat,e.di);// 设定当前位置是该方向上的相邻printf("%d %d %d-->",e.seat.r,e.seat.c,e.di);}//if}//if}//else}while(!StackEmpty(S));if(!DestroyStack(S))// 销毁栈exit(OVERFLOW);elsereturn FALSE;}//MazePathvoid PrintMaze(MazeType &maze){// 将标记路径信息的迷宫输出到终端int i,j;printf("\n输出迷宫(*表示通路):\n\n");printf("");for(i=0;i<=maze.r+1;i++)// 打印列数名printf("%4d",i);printf("\n\n");for(i=0;i<=maze.r+1;i++){printf("%2d",i);// 打印行名for(j=0;j<=maze.c+1;j++)printf("%4c",maze.adr[i][j]);// 输出迷宫当前位置的标记printf("\n\n");}}//PrintMazeint main(){// 主函数MazeType maze;PostType start,end;char cmd;do{printf("-------创建迷宫--------\n");if(!InitMaze(maze)){printf("Initialization errors\n");exit(OVERFLOW);// 初始化失败}do{// 输入迷宫入口坐标printf("\n输入迷宫入口坐标: ");scanf("%d%d",&start.r,&start.c);if(start.r>maze.r ||start.c>maze.c){printf("\nBeyond the maze\n"); continue;}}while(start.r>maze.r ||start.c>maze.c);do{// 输入迷宫出口坐标printf("\n输入迷宫出口坐标: ");scanf("%d%d",&end.r,&end.c);if(end.r>maze.r ||end.c>maze.c){printf("\nBeyond the maze\n"); continue;}}while(end.r>maze.r ||end.c>maze.c);if(!MazePath(maze,start,end))//迷宫求解printf("\nNo path from entranceto exit!\n"); elsePrintMaze(maze);// 打印路径printf("\n需要继续创建新的迷宫吗?(y/n): "); scanf("%s",&cmd);}while(cmd=='y' || cmd=='Y');}。
中国计量学院实验报告实验课程:算法与数据结构实验名称:迷宫的最优路径班级:学号:姓名:实验日期:2013-5-20实验题目:输入一迷宫查找并输出迷宫的最优路径指导教师:实验成绩:1. 定义一个结构体来表示起点和末点的坐标, 定义一个数组来存放迷宫struct elem{int x;// 行int y;// 列}; // 定义结构体int M[10][10];2. 给数组中空白处赋上从起点到该处步骤的值.int find(int n){for(i=0;i<9;i++)for(j=0;j<10;j++){if(M[i][j]==n){{if (M[i][j+1]==0) M[i][j+1]=n+1;else if(M[i][j+1]>n+1) M[i][j+1]=n+1;}{if (M[i+1][j]==0) M[i+1][j]=n+1;else if(M[i+1][j]>n+1) M[i+1][j]=n+1;}{if (M[i][j-1]==0) M[i][j-1]=n+1;else if(M[i][j-1]>n+1) M[i][j-1]=n+1;}{if (M[i-1][j]==0) M[i-1][j]=n+1;else if(M[i-1][j]>n+1) M[i-1][j]=n+1;}}}}3. 给最优路径附上特定的值, 方便最后的输出.for (;;){if(M[q.x+1][q.y]==(n-1)) {q.x++;M[q.x][q.y]=0;}else {if(M[q.x][q.y-1]==(n-1)) {q.y--;M[q.x][q.y]=0;}else {if(M[q.x-1][q.y]==(n-1)) {q.x--;M[q.x][q.y]=0;}else if(M[q.x][q.y+1]==(n-1)) {q.y++;M[q.x][q.y]=0;}}}n--;if(e.x==q.x&&e.y==q.y) {M[e.x][e.y]=0; break;}}四.分析与探讨程序结果正确,但是没有涉及到栈内容,使用栈可以对程序进一步改进。
c语言解决迷宫问题课程设计一、课程目标知识目标:1. 学生理解并掌握C语言中的基本控制结构,包括顺序、选择和循环结构;2. 学生掌握C语言数组的定义和使用,特别是二维数组在表示迷宫中的应用;3. 学生学会使用递归方法解决迷宫问题,理解递归调用的原理和过程;4. 学生理解并掌握迷宫问题的算法逻辑,如深度优先搜索和广度优先搜索。
技能目标:1. 学生能够运用C语言编写程序,实现迷宫的创建、显示和路径寻找的功能;2. 学生通过调试和优化程序,培养解决问题的能力和程序调试技巧;3. 学生能够运用所学知识,迁移到类似问题解决上,提高编程解决实际问题的能力。
情感态度价值观目标:1. 学生在解决迷宫问题的过程中,培养逻辑思维能力和创新意识,激发学习兴趣;2. 学生通过小组合作完成任务,培养团队协作精神,增强沟通与表达能力;3. 学生在编程实践中,体验编程的魅力,提高对信息技术的认识和热爱;4. 学生面对编程难题时,能够保持积极的心态,勇于克服困难,培养坚持不懈的精神。
二、教学内容1. C语言基础回顾:顺序结构、选择结构(if-else)、循环结构(for、while);2. 二维数组:定义、初始化、访问元素,以及二维数组在迷宫问题中的应用;3. 函数:理解递归的概念、编写递归函数,掌握迷宫问题中的递归回溯法;4. 算法逻辑:深度优先搜索和广度优先搜索在迷宫问题中的实现;5. 程序设计:迷宫地图的创建、显示,路径寻找算法的设计与实现;6. 调试技巧:学会使用断点调试、查看变量值等方法,对程序进行优化;7. 小组合作:分组完成任务,进行程序设计、调试和优化,分享成果。
教学内容安排与进度:第一课时:C语言基础回顾,二维数组及其在迷宫问题的应用;第二课时:递归函数的概念和编写,迷宫问题的递归回溯法;第三课时:深度优先搜索和广度优先搜索算法在迷宫问题中的实现;第四课时:程序设计,小组合作,迷宫地图的创建和路径寻找;第五课时:程序调试和优化,成果分享,总结与拓展。
c语言课程设计 迷宫问题一、课程目标知识目标:1. 学生能够理解并掌握C语言中的基本语法,如变量定义、数据类型、运算符、控制语句等;2. 学生能够运用数组解决二维迷宫问题,理解数组在存储空间中的应用;3. 学生能够掌握递归算法的基本原理,并将其应用于迷宫问题的解决。
技能目标:1. 学生能够运用C语言编写简单的程序,解决迷宫问题,培养编程解决问题的能力;2. 学生能够通过分析迷宫问题,培养逻辑思维和问题分解能力;3. 学生能够运用所学知识,调试并优化迷宫问题的解决方案。
情感态度价值观目标:1. 学生在解决迷宫问题的过程中,培养面对困难时的耐心和毅力,增强解决问题的信心;2. 学生通过团队协作,学会与他人沟通、分享和合作,培养团队精神;3. 学生能够认识到编程在解决实际问题中的价值,激发对计算机科学的兴趣。
课程性质:本课程为C语言程序设计课程,通过迷宫问题引导学生运用所学知识解决实际问题。
学生特点:学生已具备一定的C语言基础,具有一定的逻辑思维能力和编程能力。
教学要求:教师应引导学生通过实践探索,掌握迷宫问题的解决方法,注重培养学生的编程技能和团队协作能力。
在教学过程中,将目标分解为具体的学习成果,以便进行教学设计和评估。
二、教学内容本课程教学内容紧密围绕课程目标,结合课本相关章节,具体安排如下:1. C语言基础语法回顾:变量定义、数据类型、运算符、控制语句(选择、循环)等,对应教材第1-3章;- 课堂讲解:10分钟;- 实践操作:20分钟。
2. 数组的应用:介绍二维数组在迷宫问题中的应用,对应教材第4章;- 课堂讲解:15分钟;- 实践操作:25分钟。
3. 递归算法:讲解递归的基本概念及其在迷宫问题中的应用,对应教材第6章;- 课堂讲解:20分钟;- 实践操作:30分钟。
4. 迷宫问题解决方案:结合前面所学知识,设计并实现迷宫问题的解决方案;- 课堂讲解:10分钟;- 实践操作:40分钟。
5. 团队协作与项目实践:分组进行迷宫问题的编程实践,培养学生的团队协作能力和编程技能;- 实践操作:2课时。
迷宫寻路c语言课程设计一、课程目标知识目标:1. 学生能理解并掌握C语言中的基本语法结构,如变量声明、循环控制(for、while)和条件判断(if-else)。
2. 学生能够运用数组解决迷宫问题,理解二维数组在表示迷宫地图中的应用。
3. 学生能够描述并实现深度优先搜索(DFS)和广度优先搜索(BFS)算法在迷宫寻路中的应用。
技能目标:1. 学生能够设计并编写简单的C程序来解决迷宫寻路问题,培养编程思维和问题解决能力。
2. 学生通过迷宫程序的调试和优化,培养代码测试与错误排查的能力。
3. 学生能够通过团队协作,共同完成复杂迷宫的路径查找,提高团队沟通与协作技巧。
情感态度价值观目标:1. 学生在编程实践中培养耐心、细心和逻辑思维能力,形成积极面对困难的良好心态。
2. 学生通过解决迷宫问题,体会编程的乐趣和成就感,增强对计算机科学的兴趣和认识。
3. 学生在小组合作中学会尊重他人意见,培养集体荣誉感和合作精神。
课程性质分析:本课程设计属于实践性较强的信息技术学科课程,以项目驱动的形式进行,强调理论与实践相结合,注重培养学生的动手能力和实际问题解决能力。
学生特点分析:考虑到学生处于能够理解抽象概念,具备一定逻辑推理能力的年级,课程设计将结合学生的好奇心和求知欲,通过解决迷宫寻路问题,激发学生的学习兴趣。
教学要求:1. 教师应引导学生掌握C语言基础,强调算法在实际问题中的应用。
2. 教学过程中鼓励学生主动探索和尝试,注重启发式教学。
3. 教学评估应关注学生的程序编写能力、问题解决策略及合作交流能力。
二、教学内容1. C语言基础回顾:变量定义、基本数据类型、运算符、控制结构(if-else、for、while)。
2. 数组与二维数组:数组的定义与使用,二维数组在表示迷宫地图中的应用。
3. 函数的定义与调用:编写自定义函数处理迷宫问题,如判断路径可行性、打印路径等。
4. 深度优先搜索(DFS)算法:介绍DFS算法原理,编写DFS算法寻找迷宫路径。
中国计量学院实验报告
实验课程:算法与数据结构实验名称:迷宫的最优路径班级:学号:
姓名:实验日期:2013-5-20
一.实验题目:
输入一迷宫
查找并输出迷宫的最优路径
实验成绩:指导教师:
二.算法说明
1.定义一个结构体来表示起点和末点的坐标,定义一个数组来存放迷宫. struct elem
{
int x;//行
int y;//列
}; //定义结构体
int M[10][10];
2.给数组中空白处赋上从起点到该处步骤的值.
int find(int n)
{
for(i=0;i<9;i++)
for(j=0;j<10;j++)
{
if(M[i][j]==n)
{
{if (M[i][j+1]==0) M[i][j+1]=n+1;
else if(M[i][j+1]>n+1) M[i][j+1]=n+1;}
{if (M[i+1][j]==0) M[i+1][j]=n+1;
else if(M[i+1][j]>n+1) M[i+1][j]=n+1;}
{if (M[i][j-1]==0) M[i][j-1]=n+1;
else if(M[i][j-1]>n+1) M[i][j-1]=n+1;}
{if (M[i-1][j]==0) M[i-1][j]=n+1;
else if(M[i-1][j]>n+1) M[i-1][j]=n+1;}
}
}
}
3.给最优路径附上特定的值,方便最后的输出.
for (;;)
{
if(M[q.x+1][q.y]==(n-1)) {q.x++;M[q.x][q.y]=0;}
else {if(M[q.x][q.y-1]==(n-1)) {q.y--;M[q.x][q.y]=0;}
else {if(M[q.x-1][q.y]==(n-1)) {q.x--;M[q.x][q.y]=0;}
else if(M[q.x][q.y+1]==(n-1)) {q.y++;M[q.x][q.y]=0;}}} n--;
if(e.x==q.x&&e.y==q.y) {M[e.x][e.y]=0; break;}
}
三.测试结果
四.分析与探讨
程序结果正确,但是没有涉及到栈内容,使用栈可以对程序进一步改进。
五.附录:源代码
#include <stdio.h>
#include <stdlib.h>
struct elem
{
int x;//行
int y;//列
int di;//方向,di=1代表右,di=2代表下,di=3代表左,di=4代表上
}; //定义结构体
struct elem e, q;
int M[10][10]={
{-1,-1,-1,-1,-1,-1,-1,-1,-1,-1},
{-1, 0, 0,-1, 0, 0, 0,-1, 0,-1},
{-1, 0, 0,-1, 0, 0, 0,-1, 0,-1},
{-1, 0, 0, 0, 0,-1,-1, 0, 0,-1},
{-1, 0,-1,-1,-1, 0, 0, 0, 0,-1},
{-1, 0, 0, 0,-1, 0, 0, 0, 0,-1},
{-1, 0,-1, 0, 0, 0,-1, 0, 0,-1},
{-1, 0,-1,-1,-1, 0,-1,-1, 0,-1},
{-1,-1, 0, 0, 0, 0, 0, 0, 0,-1},
{-1,-1,-1,-1,-1,-1,-1,-1,-1,-1}};
int n=1,i,j;//从起点到某个位置的步骤
int find(int n)
{
for(i=0;i<9;i++)
for(j=0;j<10;j++)
{
if(M[i][j]==n)
{
{if (M[i][j+1]==0) M[i][j+1]=n+1;
else if(M[i][j+1]>n+1) M[i][j+1]=n+1;}
{if (M[i+1][j]==0) M[i+1][j]=n+1;
else if(M[i+1][j]>n+1) M[i+1][j]=n+1;}
{if (M[i][j-1]==0) M[i][j-1]=n+1;
else if(M[i][j-1]>n+1) M[i][j-1]=n+1;}
{if (M[i-1][j]==0) M[i-1][j]=n+1;
else if(M[i-1][j]>n+1) M[i-1][j]=n+1;}
}
}
}
int main(void)
{
int k;
/* printf("请输入迷宫:\n");
for(i=0;i<10;i++)
for (j=0;j<10;j++)
scanf("%d",&M[i][j]);*/
printf("迷宫为:\n");
for (i=0;i<10;i++) //显示迷宫
for (j=0;j<10;j++){
if(M[i][j]==-1) printf(" #");
else printf(" ");
if(j==9) printf("\n");}
printf("请输入入口的横纵坐标:\n");
scanf("%d %d",&e.x,&e.y);
if(M[e.x][e.y]==-1){printf("迷宫走不通\n");}
M[e.x][e.y]=n;
printf("请输入出口的横纵坐标:\n");
scanf("%d %d",&q.x,&q.y);
if(M[q.x][q.y]==-1){printf("迷宫走不通\n") ;}
for(k=0;k<20;k++)
{find(n);
n++;}
n=M[q.x][q.y];
M[q.x][q.y]=0;
for (;;)
{
if(M[q.x+1][q.y]==(n-1))
{q.x++;M[q.x][q.y]=0;}
else {if(M[q.x][q.y-1]==(n-1)) {q.y--;M[q.x][q.y]=0;}
else {if(M[q.x-1][q.y]==(n-1)) {q.x--;M[q.x][q.y]=0;}
else
if(M[q.x][q.y+1]==(n-1))
{q.y++;M[q.x][q.y]=0;}}}
n--;
if(e.x==q.x&&e.y==q.y) {M[e.x][e.y]=0; break;}
}
printf("最优路径为:\n");
for (i=0;i<10;i++) //显示迷宫和路径,其中#代表墙,0代表路径,空白处代表可行。
for (j=0;j<10;j++){
if(M[i][j]==-1) printf(" #");
else
if(M[i][j]==0) printf(" 0");
else printf(" ");
if(j==9) printf("\n");}
}。