电力电子变压器原理、现状、应用场合介绍复习过程
- 格式:doc
- 大小:272.00 KB
- 文档页数:18
电力电子变压器介绍0、前言电力电子变压器(Power Electronic Transformer 简称PET)作为一种新型的能量转换设备,与传统的变压器相比,具有体积小、重量轻、空载损耗小、不需要绝缘油等优点。
它是集电力电子、电力系统、计算机、数字信号处理以及自动控制理论等领域为一体的电力系统前沿研究课题,通过电力电子器件和电力电子变流技术,对能量进行转换与控制,以替代传统的电力变压器。
1、基本原理PET 的设计思路源于具有高频连接的AC/AC变换电路, 其基本原理见图1, 即通过电力电子变换技术将变压器原边的工频交流输入信号变换为高频信号, 经高频变压器耦合到副边后, 再经电力电子变换还原成工频交流输出。
因高频变压器起隔离和变压作用, 因铁心式变压器的体积与频率成反比, 所以高频变的体积远小于工频变压器, 其整体效率高。
图1 电力电子变压器基本原理框图PET 的具体实现方案分两种形式: 一是在变换中不含直流环节, 即直接AC/AC变换, 其原理是: 在高频变压器原边进行高频调制, 在副边同步解调; 二是在变换中存在直流环节, 通常在变压器原边进行AC/AC变换, 再将直流调制为高频信号经高频变压器耦合到副边后, 在副边进行DC/AC变换。
比较两种方案, 后种控制特性良好, 通过PWM 调制技术可实现变压器原副边电压、电流和功率的灵活控制, 有望成为今后的发展方向。
2、研究现状自1970 年美国GE 公司首先发明了具有高频连接的AC/AC 变换电路后, 很多科研工作者对各种不同结构的具有高频连接的AC/AC 变换器进行了深入的探讨和研究, 并提出了PET 的概念。
美国海军和美国电力科学研究院(EPRI)的研究小组先后提出了一种固态变压器结构, Koo suke Harada等人也提出了一种智能变压器, 他们通过对高频技术的使用, 使变压器体积减小, 实现恒压、恒流、功率因数校正等功能。
早期的PET的理论和实现研究由于受当时电力电子器件和功率变换技术发展水平的限制, 所提出的各种设计方案均未能实用化, 特别是在可用于实际输配电系统(10kV以上)的PET的研究方面进展不大。
变压器的基本原理与应用分析变压器是电力传输和配电系统中不可或缺的电气设备,它的基本原理与应用广泛。
本文将分析变压器的基本原理以及它在各个领域的应用。
一、基本原理变压器基本上由两个或更多个密封的线圈组成,通过共享磁场来传递电能。
主要原理是电磁感应。
当交流电流通过一个线圈,它将产生一个交变磁场。
这个磁场通过铁芯(通常是一个铁心闭合的磁路)传导给另一个线圈,从而在这个线圈上诱导出电压和电流。
变压器主要有两个线圈,即主线圈和副线圈。
主线圈连接到供电系统,副线圈连接到负载。
根据两个线圈的匝数比例,可以实现电压的升降。
当主线圈中的电压较高时,副线圈中的电压就会较低,并且电流也会相应的变化。
二、应用领域1. 电力传输和配电系统:变压器在电力传输和配电系统中的应用非常重要。
电压的升高或降低使输电更加高效。
电压升高可以减少输电线路中的电流损耗,降低能源消耗。
而电压降低则可以适应用户需求,保证电器设备的正常运行。
2. 电子设备:变压器也被广泛应用于各种电子设备中。
例如,电视机、计算机以及家庭电器等。
变压器将家庭用电的电压从220伏变为适用于这些设备的低电压。
这样不仅可以保护设备免受过高电压的损坏,还可以降低能源消耗。
3. 电动机:变压器还在电动机中起着重要作用。
电动机通常需要较高的电流才能正常工作。
变压器提供了所需的电流,以保证电机的正常运行。
同时,变压器还可以调节电机的转速和扭矩,使其适应不同工作条件。
4. 电气焊接:在电气焊接过程中,变压器用于提供电弧所需的高电流。
变压器将低电压变为高电压,并将电流输出到焊枪,从而实现焊接过程。
5. 变频调速:变压器还用于变频调速系统中。
变频器通过改变电源频率来控制电机的转速。
变压器将电网电压从高频变为低频,以适应电机的工作要求。
总结:变压器作为一种基本电气设备,广泛应用于电力传输和配电系统、电子设备、电动机、焊接以及变频调速系统等各个领域。
它通过改变电压和电流的比例来满足不同应用的需求。
变压器的基本工作原理解析一、引言变压器是电力系统中常见的电气设备,用于改变交流电压的大小。
本文将详细解析变压器的基本工作原理,包括变压器的结构、工作原理、主要参数和应用领域。
二、变压器的结构1. 主要部件变压器主要由铁心、绕组和外壳组成。
- 铁心:由硅钢片叠压而成,用于提供磁路和支撑绕组。
- 绕组:包括主绕组和副绕组,主绕组用于输入电压,副绕组用于输出电压。
- 外壳:用于保护变压器的内部部件。
2. 绝缘材料变压器的绝缘材料主要包括绝缘纸、绝缘漆和绝缘胶带。
这些材料用于保护绕组和绝缘铁心。
三、变压器的工作原理变压器的工作原理基于电磁感应定律。
当交流电通过主绕组时,产生的磁场会穿过铁心并感应到副绕组中。
根据电磁感应定律,磁场的变化会在副绕组中产生感应电动势,从而产生输出电压。
四、变压器的主要参数1. 额定容量变压器的额定容量是指变压器能够持续供应的最大功率。
常见的额定容量单位为千伏安(KVA)。
2. 额定电压变压器的额定电压是指变压器的设计电压。
主绕组和副绕组的额定电压决定了输入和输出电压的大小。
3. 额定频率变压器的额定频率是指变压器设计时所考虑的电源频率。
在电力系统中,常见的额定频率为50Hz或者60Hz。
五、变压器的应用领域变压器广泛应用于电力系统、工业生产和家庭用电等领域。
1. 电力系统:变压器用于电力输送和配电系统中,将高压电转换为低压电以供用户使用。
2. 工业生产:变压器用于工业设备的电源供应,如机电、照明设备等。
3. 家庭用电:变压器用于家庭电器的电源供应,如电视、冰箱、空调等。
六、总结本文详细解析了变压器的基本工作原理,包括变压器的结构、工作原理、主要参数和应用领域。
变压器作为电力系统中重要的电气设备,在能源转换和供电领域发挥着重要作用。
通过深入了解变压器的工作原理,我们可以更好地理解和应用这一设备。
变压器工作原理与应用变压器是一种电气设备,它通过电磁感应原理来变换交流电压和电流。
它由一个磁性材料的铁芯和绕在铁芯上的两组线圈(称为一次线圈和二次线圈)构成。
一次线圈与电源相连,二次线圈与负载相连。
变压器的工作原理:变压器的工作原理基于两个基本原理:法拉第电磁感应定律和线圈的自感。
法拉第电磁感应定律指出,当一个线圈中的磁通量发生变化时,线圈中会产生感应电动势。
线圈的自感是指,当通过一个线圈的电流改变时,线圈会产生与电流变化方向相反的感应电动势。
在变压器中,一次线圈与交流电源相连,当电源输入电流时,电流会产生磁场。
这个磁场穿过铁芯,并进入二次线圈。
因为铁芯是一个磁导体,它能够加强磁场的作用。
在二次线圈中,磁场通过线圈的变化,产生了感应电动势。
如果有负载连接在二次线圈上,感应电动势将驱动电流流过负载。
根据法拉第电磁感应定律,变压器的输入电压和输出电压之间的比例取决于一次线圈和二次线圈的匝数比。
如果一次线圈匝数较高,而二次线圈的匝数较低,输出电压将比输入电压小,也就是所谓的降压变压器。
相反,如果一次线圈的匝数较低,而二次线圈的匝数较高,输出电压将比输入电压大,这是升压变压器。
通过改变线圈的匝数比,我们可以根据不同的需求来选择适当的变压器。
变压器的应用:变压器在电力传输和电能转换中发挥着重要的作用。
下面是一些主要应用领域:1.电力输配:变压器广泛应用于电力输配系统中。
在电网中,高电压用于长距离输电,而低电压用于家庭和工业用电。
变压器通过改变输配系统中的电压,从而实现电能的传输和分配。
2.电力变换:变压器也在电力变换系统中发挥关键作用。
例如,发电厂中的发电机会产生高压交流电,这些电能需要转换为适合输电和使用的低压交流电。
变压器被用于这个过程。
3.焊接和充电:在一些焊接和充电系统中,需要较高的电压和电流来提供足够的能量。
这时可以使用升压变压器,将输入电压升高到所需的级别。
4.电子设备:在一些电子设备中,如电视机、计算机和音响系统中,需要稳定的低电压供电。
电子变压器原理电力电子变压器是一种将电力电子变换器(整流器、逆变器)和高频变压器相结合,实现传统电力变压器电气量变换、能量传递以及系统隔离等基本功能的输配电装置。
由于目前应用于电力系统的功率器件,无论在容量还是耐压等级方面,都较输电系统低,所以预计电力电子变压器未来在电力系统应用应首先在配电领域实现。
电力电子变压器的电力电子变换器(整流、逆变器)应包括主电路和控制电路两部分组成。
对于配电系统的变压器,为了与常规电力变压器一致,所以将与电源侧相连的电力电子变换器及与其对应的高频变压器的相应绕组定义为一次侧;将与负荷侧相连的电力电子变换器及与其对应的高频变压器的相应绕组定义为二次侧。
二者之间通过高频变压器相连。
工作原理为:在一次侧,工频母线高压通过电力电子变换器的作用变成高频交流方波,即一次侧将电压的频率提高,实现升频的作用。
由于变压器的体积与铁芯材料饱和磁通密度和绕组最大容许温升有关,饱和磁通密度大的变压器的体积也大。
而铁芯材料的饱和磁通密度又和变压器的工作频率成反比,所以一次侧电力电子变换器的升频作用,可以提升铁芯材料的利用率,以减小变压器的体积,节省变压器所占空间。
这也是电力电子变压器相比于传统电力变压器的一大优点。
五、电子变压器作用在电子线路中起着升压、降压、隔离、整流、变频、倒相、阻抗匹配、逆变、储能、滤波等作用。
六、12v电子变压器电路图该电子变压器工作原理与开关电源相似,由VD1~VD4把市电整成直流,再把直流整成几十千赫兹的高频电流,然后用铁氧体变压器对高频、高压脉冲降压(如图所示)。
图中R2、C1、VD5为启动触发电路。
C2、C3、L1、L2、L3、VT1、VT2构成高频振荡部分。
VD1~VD4为1N4007型整流二极管,VD5为32V的触发二极管。
L1、L2、L3分别绕在H7&TImes;4&TImes;2立方米的磁环上,相位如图中所示。
L4、L5绕在H31&TImes;18&TImes;7立方米的磁环上,VT1、VT2选用耐压BVceo≥350V的大功率硅管。
#科普园地#电力电子变压器及其发展综述Summary of Development of Power Electronic Transformer潘诗锋,赵剑锋(东南大学电气系,江苏南京210096)摘要:介绍了电力电子变压器的优点、工作原理、目前研究状况。
指出了用电力电子变压器解决电能质量问题是今后的发展趋势,拓宽了电力电子变压器的应用场合,使得其不但可以使用在对能量转换装置的体积、重量有特殊要求的场合,如航海、航空、航天等领域,还可以为电能质量敏感负荷供电。
它是建设/绿色电网0/数字电网0的关键设备之一,对其进行研制和使用可取得巨大的经济和社会效益。
关键词:电力电子变压器;电能质量;绿色电网;数字电网中图分类号:TM41文献标识码:E文章编号:1009-0665(2003)06-0052-03收稿日期: 2003-06-28传统的电力变压器具有制作工艺简单、可靠性高等优点,在电网中得到广泛应用。
但是,它的缺点也十分明显,如体积、重量、空载损耗大;过载时易导致输出电压下降、产生谐波;负载侧发生故障时,不能隔离故障,从而导致故障扩大;带非线性负荷时,畸变电流通过变压器耦合进入电网,造成对电网的污染;电源侧电压受到干扰时,又会传递到负载侧,导致对敏感负荷的影响;使用绝缘油造成环境污染;需要配套的保护设备对其进行保护[1]。
作为一种新型的能量转换设备,与传统的变压器相比,电力电子变压器具有体积小、重量轻、空载损耗小、不需要绝缘油等优点。
它是集电力电子、电力系统、计算机、数字信号处理以及自动控制理论等领域为一体的电力系统前沿研究课题,通过电力电子器件和电力电子变流技术,对能量进行转换与控制,以替代传统的电力变压器。
研究电力电子变压器的初衷是为了降低传统变压器的体积和重量。
因为,变压器的体积和重量与它的运行频率成反比,借助于电力电子技术提高其变换频率,就可减小体积和重量。
美国海军于20世纪70年代末至80年代初,首先对其进行了研究[2],美国电科院于1995年也进行了相关研究[3]。
变压器工作原理及其应用研究随着电力系统的不断发展和电气设备的广泛应用,变压器作为电力传输与转换的核心设备,已成为现代工业生产和人民生活中不可或缺的组成部分。
本文将详细介绍变压器的工作原理以及其在电力系统中的应用研究。
一、变压器概述变压器是一种将电压和电流互相转换的电器。
它由铁心和两个或多个线圈组成。
当输入线圈(称为初级线圈或励磁线圈)上施加交流电时,由于线圈中所产生的磁场,在铁心中产生磁通量。
这个磁通量会诱导出第二个线圈(称为次级线圈或工作线圈)中的电动势,输出电压和电流与输入电压和电流成比例关系。
变压器的工作原理是基于电磁感应原理的。
在变压器内部,通过交流电的变化产生磁场,这种磁场通过变换器铁芯传递到另一侧,从而实现了电能的转换。
由于变压器本质上是一个能够将交流电信号的电压和电流互相转换的电器,因此应用范围非常广泛,其中包括电力系统、工业制造、家庭用电等领域。
二、变压器分类根据变压器的用途和结构特点,可以将其分为多种类型,例如:(1)按用途分:变压器可以分为电力变压器和专用变压器两种。
其中,电力变压器主要用于电力系统中,将高电压电力传输线路上的输电电压变成合适的值,并通过变压器将电流输送到各个用户端;专用变压器则主要应用于一些特定制造领域。
(2)按结构分:变压器可以分为干式变压器和油浸式变压器。
干式变压器主要由铁心、绕组和外壳组成,适用于一些相对较小的电力设备和照明设备;油浸式变压器由铁心、绕组、油箱、散热器和辅助设备等组成,适用于电力系统的高电压、大容量、特殊场合等需要。
(3)按连接方式分:变压器可以分为三种连接方式,即星形连接、三角形连接和混合连接。
其中星形连接是一种常用的连接方式,具有电气隔离效果,可以有效防止传递电流;三角形连接则可以直接将三相电源连接到变压器上,简单、稳定。
三、变压器的应用研究变压器的应用范围非常广泛。
它不仅在电力系统中扮演着重要角色,同时也广泛应用于家庭、商业和工业领域。
变压器的工作原理及应用变压器是一种用来改变电力中的电压和电流的电气设备,它通过电磁感应原理,将输入电路中的交流电能,经过磁场的作用转化为输出电路中所需的电压和电流。
在本文中,我将详细介绍变压器的工作原理以及它在各个领域的应用。
一、工作原理变压器主要由两个线圈(即初级线圈和次级线圈)以及一个磁性铁芯组成。
当交流电通过主线圈(初级线圈)时,产生一个变化的磁场。
这个磁场穿过磁性铁芯并作用于次级线圈,从而在次级线圈中产生电压。
根据法拉第电磁感应定律,当磁通量变化时,会在线圈中产生感应电动势。
根据这个原理,变压器可以实现电压的升高或降低。
当初级线圈的匝数较多时,根据匝数的比例关系,次级线圈中的电压将会升高。
相反,当初级线圈的匝数较少时,次级线圈的电压将会降低。
这种通过变压器改变电压的方式,被广泛应用于电力系统、电子设备以及各个工业领域。
二、应用领域1. 电力系统:变压器是电力系统中最常见的设备之一。
它用于将发电厂产生的高电压转换为输送和分配所需的低电压。
这样可以减少能量传输中的能量损耗,并保证电力系统的安全稳定运行。
2. 电子设备:变压器在电子设备中被广泛应用。
例如,充电器和适配器中常常包含变压器,用于改变交流电到直流电的电压。
同时,变压器还用于隔离电路和稳压电源,保护电子设备的稳定工作。
3. 工业应用:变压器在工业领域中有广泛应用。
例如,变压器被用于电焊机、电力变频器、UPS电源等设备中,用于改变电压和电流,以满足不同的工作需求。
4. 交通运输:变压器在交通运输领域也有重要应用。
列车、电车和地铁系统中使用变压器将供电系统产生的高电压转换为适合车辆使用的电压。
5. 新能源领域:随着可再生能源的快速发展,变压器在太阳能、风能等领域也有广泛应用。
它们用于将可再生能源发电设备产生的电能转换为适用于电网的电压和频率。
以上仅为变压器的一些应用领域,实际上,变压器在各个领域的应用还远不止于此。
正是因为变压器具有可靠、高效和经济的特点,使得它成为现代电力传输和能源转换的重要组成部分。
初中物理电学变压器的原理和应用电学变压器是电力系统中常见且重要的设备之一,它通过变换交流电的电压和电流,实现电能的传输和变换。
本文将介绍电学变压器的原理、结构及其应用。
一、电学变压器的原理电学变压器是基于电磁感应的原理工作的。
其原理可以简单地描述为:当一组线圈(称为初级线圈)中通过交流电流时,它会在另一组线圈(称为次级线圈)中产生交流电压。
这是因为当初级线圈中的电流产生变化时,它会在附近的次级线圈中产生变化的磁场,从而在次级线圈中引起感应电动势,进而产生电压。
根据法拉第电磁感应定律,感应电动势的大小与磁场变化率成正比。
因此,如果初级线圈中的电流变化较大,那么次级线圈中产生的感应电动势也会相应较大。
通过合理选择初级线圈和次级线圈的匝数比例,可以实现从高电压到低电压或从低电压到高电压的变换。
二、电学变压器的结构电学变压器由铁心和绕组组成。
铁心通常由软磁材料制成,以提高磁路的导磁性能。
绕组由多圈的导线组成,分别包括初级线圈和次级线圈。
初级线圈与次级线圈通过铁心相互连接,形成磁路。
初级线圈通常连接到输入电源,而次级线圈连接到输出负载。
当通过初级线圈的电流变化时,它在铁心中产生变化的磁场,从而感应出次级线圈中的电压。
通过控制绕组的匝数比例,可以实现电压的变换。
三、电学变压器的应用电学变压器在电力系统中起着至关重要的作用。
其中之一是实现电能的长距离传输。
由于长距离传输会导致能量损耗,通过使用变压器将高电压的电能转换为低电压进行传输,可以减少能量损耗。
同时,在目标地点使用变压器将低电压恢复为高电压,以便供应给终端用户。
另外,电学变压器还用于调节电源电压。
例如,在工业生产中,可能需要不同的电压供应来满足不同设备的要求。
通过使用变压器,可以将输入电压调整为适合特定设备的输出电压,以确保设备的正常运行。
此外,电学变压器还用于电子设备中的隔离和耦合。
通过使用变压器可以实现电路之间的隔离,以防止电流和电压的相互影响。
同时,在一些通信设备中,通过变压器的耦合作用可以实现信号的传输和放大。
电力电子变压器的工作原理与应用一、引言电力电子变压器是一种重要的电力传输设备,具有广泛的应用领域。
本文将对电力电子变压器的工作原理和应用进行探讨。
二、电力电子变压器的工作原理电力电子变压器是将电力转换为不同电压和频率的设备。
它由脉宽调制(PWM)技术和高频变压技术组成。
过程如下:1. 输入侧整流:将交流电转换为直流电。
2. 脉宽调制(PWM):通过控制开关的开关时间和开关频率,使得直流电流在开关管的开关下形成高频、高压的方波。
3. 高频变压:利用高频方波通过高频变压器,将电压升高或降低到目标电压。
4. 输出侧整流:将高频交流电转换为直流电。
5. 输出滤波:通过滤波电路将输出的直流电转换为稳定的电源。
三、电力电子变压器的应用电力电子变压器因其高效、可靠、灵活的特点,在许多领域有广泛的应用。
1. 电力传输与分配:电力电子变压器可以将输电线路中的交流电转换为直流电,从而降低能量损耗,提高能源利用率。
同时,通过调整变压器的参数,可以实现电力传输中不同电压、频率的要求。
2. 新能源系统:电力电子变压器在新能源系统中的应用日益重要。
例如,电力电子变压器可以将太阳能和风能的直流输出变换为适合电网的交流电。
3. 电力电子驱动系统:电力电子变压器在电力电子驱动系统中起到关键的作用。
例如,电力电子变压器可以将交流电转换为直流电,以驱动交流电机。
4. 电动车充电系统:电力电子变压器在电动车充电系统中的应用也非常广泛。
通过电力电子变压器,可以控制电动车的充电电流和电压,实现快速充电和安全充电。
5. 航空航天领域:电力电子变压器在航空航天领域中的应用也越来越重要。
例如,电力电子变压器可以将机载系统的不同电压和频率进行转换,以满足不同设备的需求。
四、结论电力电子变压器以其灵活性和高效能的特点,在电力传输、新能源系统、电力电子驱动系统、电动车充电系统以及航空航天领域等多个领域均有广泛应用。
通过深入理解电力电子变压器的工作原理,我们可以更好地应用和开发电力电子变压器的潜力,提高能源利用效率,推动可持续发展。
电力电子变压器原理、现状、应用场合介绍电力电子变压器介绍0、前言电力电子变压器(Power Electronic Transformer 简称PET)作为一种新型的能量转换设备,与传统的变压器相比,具有体积小、重量轻、空载损耗小、不需要绝缘油等优点。
它是集电力电子、电力系统、计算机、数字信号处理以及自动控制理论等领域为一体的电力系统前沿研究课题,通过电力电子器件和电力电子变流技术,对能量进行转换与控制,以替代传统的电力变压器。
1、基本原理PET 的设计思路源于具有高频连接的AC/AC变换电路, 其基本原理见图1, 即通过电力电子变换技术将变压器原边的工频交流输入信号变换为高频信号, 经高频变压器耦合到副边后, 再经电力电子变换还原成工频交流输出。
因高频变压器起隔离和变压作用, 因铁心式变压器的体积与频率成反比, 所以高频变的体积远小于工频变压器, 其整体效率高。
图1 电力电子变压器基本原理框图PET 的具体实现方案分两种形式: 一是在变换中不含直流环节, 即直接AC/AC变换, 其原理是: 在高频变压器原边进行高频调制, 在副边同步解调; 二是在变换中存在直流环节, 通常在变压器原边进行AC/AC变换,再将直流调制为高频信号经高频变压器耦合到副边后, 在副边进行DC/AC变换。
比较两种方案, 后种控制特性良好, 通过PWM 调制技术可实现变压器原副边电压、电流和功率的灵活控制, 有望成为今后的发展方向。
2、研究现状自1970 年美国GE 公司首先发明了具有高频连接的AC/AC 变换电路后, 很多科研工作者对各种不同结构的具有高频连接的AC/AC 变换器进行了深入的探讨和研究, 并提出了PET 的概念。
美国海军和美国电力科学研究院(EPRI)的研究小组先后提出了一种固态变压器结构, Koo suke Harada等人也提出了一种智能变压器, 他们通过对高频技术的使用, 使变压器体积减小, 实现恒压、恒流、功率因数校正等功能。
早期的PET的理论和实现研究由于受当时电力电子器件和功率变换技术发展水平的限制, 所提出的各种设计方案均未能实用化, 特别是在可用于实际输配电系统(10kV以上)的PET的研究方面进展不大。
进入20 世纪90 年代,国外在这一研究领域中取得了一些新进展, 提出了新的技术方案,并制作了与配电系统电压等级相当的实验室样机。
如美国密苏里大学在ABB 和爱默生公司资助下对电力电子变压器进行了研究,完成了10kVA,7200 V /240 V的实验样机,但仅实现了基本的电压变换功能和对输入的功率因数控制。
另外,设计时为减小对开关器件的应力,输入采用多个变流器串联工作,使系统的可靠性大大降低,当其中任意一个器件出现故障都会导致工作异常。
美国威斯康星一麦迪逊大学与ABB公司合作,德克萨斯农机大学也于20世纪90年代末对电力电子变压器进行了研究,但以上工作只对其电压变换的功能进行了分析和研究。
另外,美国德州A&M大学提出了一种基于直接AC/AC 变换的PET 的结构,见图2。
这种PET 的首要设计目标是减小变压器体积和重量并提高其整体效率, 其工作原理为: 工频信号先被变换为中频信号(600 Hz~ 112 kHz) 后通过中频隔离变压器耦合到其副边, 中频信号随后又被同步还原为工频信号。
为了减小器件开关过程中由于电流突变造成的过电压, 该方案采用了一种4级开关控制策略, 可使功率器件在无吸收电路的条件下安全换向。
图2中的中频隔离变压器采用了常规的硅钢铁心变压器。
试验表明,对于常规变压器, 当其工作频率由60 Hz 提高到110 kHz 后, 变压器的输送容量可提高3倍, 效率也有所提高。
这种PET的体积比同容量的常规变压器小1/3, 总体效率与常规变压器相当, 其原理和控制较简单, 易于实现。
但变压器副边波形基本是对原边波形的还原, 可控性不高。
图2 基于AC/AC 变换的PET(单相)为简化结构, 降低成本, Man jrekar M.D.和Kieferndorf R等人在buck-boost 变换器的基础上提出一种直接AC/AC 变换结构的PET (见图3)。
图3 基于buck-boost 的PET这种变压器的工作过程为: 输入三相电源的线电压通过功率开关S1, S2和S3被调制成高频交流加载至高频变压器的原边; 在变压器的副边, 高频交流信号经功率器件S1′, S2′和S3′同步还原为工频交流输出。
图中Li, Ci构成了LC 滤波器以减小变换器对电源注入的谐波电流。
此方案的特点是结构和控制简单, 功率器件数少, 成本低, 但由于工作过程中电流断续, 会造成器件两端出现尖峰电压, 且输出电压谐波较大。
目前国内外研究中最具代表性的电力电子变压器为交—直—交—直—交型双直流环拓扑,结构如图4所示图4 三相双直流环拓扑结构电力电子变压器截止目前,国际上对电力电子变压器的研究尚处于初级阶段,还有许多相关的理论和实际问题需要研究。
要达到实用化,功能上还需进一步完善。
3、PET优缺点分析电力电子变压器将电力电子技术应用到变压器的设计和制造当中,它通过电力电子变换技术实现电力系统中的电压变换和能量传递。
鉴于电力电子变换技术所具备的特点,电力电子变压器应具备以下优点:①改善供电电能质量,实现恒频、恒压输出:始终保证原边电流和副边电压为正弦波形,并且可实现原边功率因数始终接近于1.0;②可以高度自动化,配电网络的计算机监控系统可以直接远程通讯控制电力电子变压器,实现在线连续监测和控制;③体积小、重量轻。
由于在城市中配电变压器的分布密度相当高,因此其体积、重量及易维护性对良好的城市建设与规划非常重要:④环保效果好,可以空气自然冷却,省去充油,从而减少污染、维护简单、安全性好;⑤可以不需要常规继电保护装置;而且兼有断路器的功能,大功率电力电子器件可以瞬时(微秒级)关断故障大电流;⑥电力电子变压器可灵活可靠地将各种分布式电源融入电力系统,给用户使用电能也带来很大的方便;⑦可以改变电力系统中的有功、无功潮流,并对正常运行和故障时电力系统的功率平衡要求予以快速补偿。
电力电子变压器也有不足之处:①电力电子装置的使用可能会产生谐波,但通过适当的PWM控制可以减小到最低程度。
②按理论计算,电力电子变压器效率高于常规变压器,但在目前技术条件下,实际运行效率可能比常规变压器稍低一些。
以后随着电力电子器件发展水平的提高、控制方案的改进优化以及散热方式的改善等,电力电子变压器的运行效率会逐渐提高。
③由于目前电力电子器件较贵,因此电力电子变压器价格较常规变压器要贵一些,这将直接影响推广到实际应用。
4、PET的应用4.1 PET在分布式电源并网中的应用近年来,分布式发电系统已成为重要的能源。
分布式电源交直流兼有,容量小,分布广,且其电压或频率波动性较大。
传统逆变器采用工频变压器,成本高,体积大,逆变效率难以提高,同时需要额外的调压、调频设备才能保证供电质量。
PET交直流环节兼有,可灵活地将各种分布式电源接入电力系统,另外由于能对整流、逆变部分进行控制,可省去额外的调压、调频设备,降低了成本。
图5为可再生能源并网发电系统组成结构图。
图5 可再生能源并网发电系统组成结构图可再生能源有多种形态,且转化为电能的方式不同,决定了可再生能源在转化为直流电能时有不同的直流侧处理电路,如光伏发电需使用DC/DC电路,而风力发电则需使用AC/DC电路。
然后经过电力电子变压器的隔离环节,将直流电转化为高频交流电。
通过高频变压器耦合到副边,再整流成直流电压。
高频变压器主要实现电压等级变换和分布式发电系统与电网的电气隔离作用。
最后通过逆变器实现和公用电网的并网。
采用电力电子变压器实现的风力和小水电单相并网逆变器结构如图6所示,该结构为交—直—交—直—交型双直流环拓扑。
图6 风力和小水电单相并网逆变器结构图输入环节为三相电压型PWM整流电路,将交流发电机的交流电变为直流,且实现直流输出电压可控、单位功率因数运行。
对PWM整流电路可以采用电压外环、电流内环的双闭环控制方案。
电压外环是为了实现对输出电压的控制,电流内环是为了实现单位功率因数控制。
为了获取快速的动态响应,电流环可以采用直接电流控制技术,电压环采用常规的PI控制。
对于并网逆变器的隔离环节,高频变压器原边的单相逆变电路,在开关损耗允许和变压器磁芯允许的范围内,逆变器输出频率越高,变压器的体积和重量越小,只须达到高频逆变目的即可。
对于变压器副边整流电路,只要能实现高频整流即可。
因此,变压器原边逆变电路和副边整流可以用开环控制方式实现,将直流调制成占空比为50%的高频方波,变压并耦合到高频变压器的副边绕组后再同步整流还原成直流。
输出环节为单相PWM逆变器,逆变器并网运行的目标:一是逆变器能够与电网稳定地并联运行,二是能将可再生能源以高功率因数回馈电网。
为了使系统在并网工作时功率因数近似为l,则必须要求逆变器输出的并网电流为正弦波,且和电网电压同频率、同相位。
多数并网逆变器对输出电流的控制是采用瞬时值控制方案。
先进的瞬时值控制一般采用闭环反馈,最典型的是输出滤波电感电流反馈构成的电流跟随控制逆变器。
比较常见的电流跟随控制技术有电流滞环瞬时值控制技术和电流正弦脉宽调制(SPWM)瞬时值控制技术。
4.2 PET在配电网中的应用在配电网中,配电线路经常会出现各种电压扰动,如电压骤升、骤降、闪变、波动等。
对于对电压敏感的负荷,如电脑、通信设备等,经常会造成巨大损失,如珍贵数据的丢失、通信的中断等。
传统的动态电压恢复器可以解决配电线路电压扰动的问题,但是传统的动态电压恢复器用一个可调自耦变压器和隔离变压器去对系统注入一个补偿电压,这种结构不但动态响应比较慢,而且大的工频变压器也是其主要缺点,工频变压器不仅体积大、成本高,而且变换效率低。
在此介绍一种基于电力电子变压器的动态电压恢复器。
该动态电压恢复器分为三级,输入级为三相半桥PWM整流器,可以从电网中获取能量,从而实现可连续运行,可以使得整流器电网侧电流正弦化,大大降低低次谐波,实现单位功率因数运行。
隔离级采用高频变压器来实现隔离、变压和能量传递,高频变压器原边的电压源变换器将直流电调制为交流电,通过高频变压器耦合到副边,然后通过副边的电压源变换器进行同步解调,还原为直流电。
输出级采用二个单相电压源逆变器并联的模式,每个单相逆变器连接LC滤波器,通过电容器将补偿电压耦合到各相中去,实现对各相电压的调节。
这种基于电力电子变压器的动态电压恢复器的工作原理为利用传感器、检测电路检测出电源侧电压;通过控制电路产生补偿给定信号;由SPWM形成PWM信号:再由驱动电路去控制电压型逆变器的功率开关;最后通过滤波器滤除高次电压谐波,在串联电容器上产生与畸变分量相反的补偿电压,从而提高负载侧的电能质量,使电能质量敏感负荷免受电压跌落、不对称、闪变、波动及谐波的影响。