专题11 统计-备战2019年高考数学(文)之纠错笔记系列(原卷版)
- 格式:doc
- 大小:3.36 MB
- 文档页数:47
原创精品资源学科网独家享有版权,侵权必究!1易错点1忽略了n 的取值已知数列{}n a 满足3123=()n a a a a n n ∈*N L ,求数列{}n a 的通项公式n a .【错解】由3123=n a a a a n L ,可得31231=(1),n a a a a n --L 两式相除可得33=(1)n n a n -. 【错因分析】31231=(1)n a a a a n --L 仅适用于n ∈*N 且2n >时的情况,故不能就此断定33=(1)n n a n -就是数列{}n a 的通项公式.已知数列的递推公式求通项公式的常见类型及解法(1)形如a n +1=a n f (n ),常用累乘法,即利用恒等式a n =a 1·a 2a 1·a 3a 2·…·a n a n -1求通项公式.(2)形如a n +1=a n +f (n ),常用累加法.即利用恒等式a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)求通项公式.(3)形如a n +1=ba n +d (其中b ,d 为常数,b ≠0,1)的数列,常用构造法.其基本思路是:构造a n +1+x =b (a n +x )(其中x =d b -1),则{a n +x }是公比为b 的等比数列,利用它即可求出a n .(4)形如a n +1=pa n qa n +r (p ,q ,r 是常数)的数列,将其变形为1a n +1=r p ·1a n +q p .若p =r ,则⎩⎨⎧⎭⎬⎫1a n 是等差数列,且公差为q p ,可用公式求通项;若p ≠r ,则采用(3)的办法来求.(5)形如a n +2=pa n +1+qa n (p ,q 是常数,且p +q =1)的数列,构造等比数列.将其变形为a n +2-a n +1=(-q )·(a n +1-a n ),则{a n -a n -1}(n ≥2,n ∈N *)是等比数列,且公比为-q ,可以求得a n -a n -1=f (n ),然后。
专题07 不等式易错点1 忽视不等式隐含条件致误设2()f x ax bx =+,若1≤(1)f -≤2,2≤(1)f ≤4,则(2)f -的取值范围是________.【错解】由1(1)22(1)4f f ≤-≤⎧⎨≤≤⎩得1224a b a b ≤-≤⎧⎨≤+≤⎩①②,①+②得:332a ≤≤, ②−①得:112b ≤≤.由此得4≤(2)f -=4a −2b ≤11,所以(2)f -的取值范围是[4,11].【错因分析】错误的主要原因是多次使用同向不等式的可加性而导致了(2)f -的范围扩大.【试题解析】解法一:设(2)f -=m (1)f -+n (1)f (m 、n 为待定系数),则4a −2b =m (a −b )+n (a +b ),即4a −2b =(m +n )a +(n −m )b ,于是得42m n n m +=⎧⎨-=-⎩,解得31m n =⎧⎨=⎩.∴(2)f -=3(1)f -+(1)f .又∵1≤(1)f -≤2,2≤(1)f ≤4,∴5≤3(1)f -+(1)f ≤10,即5≤(2)f -≤10.解法二:由(1)(1)f a b f a b -=-⎧⎨=+⎩,得1[(1)(1)]21[(1)(1)]2a f fb f f ⎧=-+⎪⎪⎨⎪=--⎪⎩,∴(2)f -=4a −2b =3(1)f -+(1)f .又∵1≤(1)f -≤2,2≤(1)f ≤4,∴5≤3(1)f -+(1)f ≤10,即5≤(2)f -≤10.解法三:由题意,得1224a b a b ≤-≤⎧⎨≤+≤⎩,确定的平面区域如图中阴影部分所示.当(2)f -=4a −2b 过点31(,)22A 时,取得最小值3142522⨯-⨯=;当(2)f -=4a −2b 过点B (3,1)时,取得最大值4×3−2×1=10,∴5≤(2)f -≤10. 【答案】[5,10](1)此类问题的一般解法:先建立待求整体与已知范围的整体的关系,最后通过“一次性”使用不等式的运算求得整体范围;(2)求范围问题如果多次利用不等式的性质有可能扩大变量取值范围.1.已知α,β满足11123αβαβ-≤+≤⎧⎨≤+≤⎩,则3αβ+的取值范围是A .[]1,7B .[]5,13-C .[]5,7-D .[]1,13【答案】A【解析】设3αβ+=λ(α+β)+v (α+2β)=(λ+v )α+(λ+2v )β.比较α、β的系数,得123v v λλ+=⎧⎨+=⎩,从而解出λ=﹣1,v =2.由11123αβαβ-≤+≤⎧⎨≤+≤⎩得112246αβαβ-≤--≤⎧⎨≤+≤⎩,两式相加,得1≤3αβ+≤7.故3αβ+的取值范围是[1,7].故选A.【名师点睛】本题考查待定系数法,考查不等式的基本性质,属于基础题.该问题是已知不等关系求范围的问题,可以用待定系数法来解决.易错点2 忽略不等式性质成立的条件给出下列命题:①若,0a b c <<,则c ca b<; ②若33acbc -->,则a b >;③若a b >且*k ∈N ,则kka b >; ④若0c a b >>>,则a b c a c b>--其中正确命题的序号是【错解】①11a b a b <⇒>,又0c <,则c ca b<,故①正确;②当0c <时,a b <,故②不正确;③正确;④由0c a b >>>知0c a c b ->->,∴110c a c b <<--,故a a bc a c b c b<<---,故④不正确.故填①③【错因分析】①③忽略了不等式性质成立的条件;④中的推论显然不正确【试题解析】①当ab <0时,c ca b<不成立,故①不正确; ②当c <0时,a >b 不成立,故②不正确;③当a =1,b =−2,k =2时,命题不成立,故③不正确; ④由a >b >0⇒−a <−b <0⇒0<c −a <c −b ,两边同乘以1()()c a c b --,得110c b c a<<--,又0a b >>, ∴a a bc a c b c b>>---,故④正确.故填④【答案】④不等式的性质的几点注意事项(1)在应用传递性时,如果两个不等式中有一个带等号而另一个不带等号,那么等号是传递不过去的.如a ≤b ,b <c ⇒a <c .(2)在乘法法则中,要特别注意“乘数c 的符号”,例如当c ≠0时,有a >b ⇒ac 2>bc 2;若无c ≠0这个条件,a >b ⇒ac 2>bc 2就是错误结论(当c =0时,取“=”).(3)“a >b >0⇒a n >b n (n ∈N *,n >1)”成立的条件是“n 为大于1的自然数,a >b >0”,假如去掉“n 为大于1的自然数”这个条件,取n =-1,a =3,b =2,那么就会出现“3-1>2-1”的错误结论;假如去掉“b >0”这个条件,取a =3,b =-4,n =2,那么就会出现“32>(-4)2”的错误结论.2.下列不等式中,正确的是A .若,a b c d >>,则a c b d +>+B .若a b >,则a c b c +<+C .若,a b c d >>,则ac bd >D .若,a b c d >>,则a b c d> 【答案】A【解析】若a b >,则a c b c +>+,故B 错; 设3,1,1,2a b c d ===-=-,则ac bd <,a bc d<,所以C 、D 错. 故选A.【名师点睛】本题考查不等式的性质,注意正、负号的应用.根据不等式的性质和代特殊值逐一排除即可.错点3 忽略对二次项系数的讨论导致错误已知关于x 的不等式mx 2+mx +m -1<0恒成立,则m 的取值范围为______________.【错解】由于不等式mx 2+mx +m -1<0对一切实数x 都成立, 所以m <0且Δ=m 2-4m (m -1)<0,解得m <0.故实数m 的取值范围为(-∞,0).【错因分析】由于本题中x 2的系数含有参数,且当m =0时不等式不是一元二次不等式,因此必须讨论m 的值是否为0.而错解中直接默认不等式为一元二次不等式,从而采用判别式法处理导致漏解.【试题解析】由于不等式mx 2+mx +m -1<0对一切实数x 都成立,当m =0时,-1<0恒成立;当m ≠0时,易知m <0且Δ=m 2-4m (m -1)<0,解得m <0.综上,实数m 的取值范围为(-∞,0]. 【答案】(-∞,0]解一元二次不等式的一般步骤一化:把不等式变形为二次项系数大于零的标准形式. 二判:计算对应方程的判别式.三求:求出对应的一元二次方程的根,或根据判别式说明方程有没有实根. 四写:利用“大于取两边,小于取中间”写出不等式的解集.3.已知命题“2,10x ax ax ∀∈-+>R ”为真命题,则实数a 的取值范围是__________. 【答案】[)0,4【解析】由题意得不等式210ax ax -+>对x ∈R 恒成立. ①当0a =时,不等式10>在R 上恒成立,符合题意. ②当0a ≠时,若不等式210ax ax -+>对x ∈R 恒成立,则2040a a a >⎧⎨∆=-<⎩,解得04a <<.综上可得04a ≤<,所以实数a 的取值范围是[)0,4.【名师点睛】不等式20ax bx c >++的解是全体实数(或恒成立)的条件是当0a =时,0,0b c >=或当0a ≠时,00a >⎧⎨∆<⎩;不等式20ax bx c <++的解是全体实数(或恒成立)的条件是当0a =时,0,0b c <=或当0a ≠时,00a <⎧⎨∆<⎩.解不等式恒成立问题的技巧(1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数.一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.易错点4 解含参不等式时不能正确分类导致错误解不等式(2)1()1a x a x ->∈-R .【错解】原不等式可化为(2)101a x x -->-,即(2)(1)01a x x x --->-, 等价于[(1)(21)](1)0a x a x ---->,即21()(1)01a x x a --->-, 因为21111a aa a --=--,所以 当01a a >-,即1a >或0a <时,2111a a ->-; 当01a a =-,即0a =时,2111a a -=-; 当01a a <-,即01a <<时,2111a a -<-. 综上,当1a >或0a <时,原不等式的解集为{|1x x <或21}1a x a ->-; 当0a =时,原不等式的解集为{|1}x x ≠; 当01a <<时,原不等式的解集为21{|1a x x a -<-或1}x >. 【错因分析】显然当a =0时,原不等式是不成立的,故上述求解过程是错误的.实际上错解中的变形非同解变形,因为a -1的符号是不确定的,错解中仅考虑了当a -1>0时的情况. 【试题解析】显然当0a =时,原不等式是不成立的. 当a ≠0时原不等式可化为(2)101a x x -->-,即(2)(1)01a x x x --->-, 等价于[(1)(21)](1)0a x a x ---->(*),当1a =时,(*)式可转化为(1)0x -->,即10x -<,即1x <.当1a >时,(*)式可转化为21()(1)01a x x a --->-. 当1a <时,(*)式可转化为21()(1)01a x x a ---<-. 又当1a ≠时,21111a aa a --=--, 所以当1a >或0a <时,2111a a ->-; 当01a <<时,2111a a -<-. 综上,当1a >时,原不等式的解集为{|1x x <或21}1a x a ->-; 当1a =时,原不等式的解集为{|1}x x <; 当01a <<时,原不等式的解集为21{|1}1a x x a -<<-;当0a =时,原不等式的解集为∅; 当0a <时,原不等式的解集为21{|1}1a x x a -<<-.在求解此类问题时,既要讨论不等式中相关系数的符号,也要讨论相应方程两个根的大小.在不等式转化的过程中,要特别注意等价性;在比较两根的大小时,也要注意等价性,否则将导致分类讨论不完全而出错.4.已知()()21210m x m x -+-+->,其中02m <<. (1)解关于x 的不等式;(2)若1x >时,不等式恒成立,求实数m 的范围. 【答案】(1)见解析;(2)12m ≤<.【解析】(1)()()[11]10m x x -+->,02m <<.当10m -=时,不等式为10x ->,不等式的解集为{}|1x x >; 当10m ->时,不等式的解集为1{|1}1x x x m><-或; 当10m -<时,不等式的解集为1{|1}1x x m<<-. 综上得:当1m =时,不等式的解集为{}|1x x >;当01m <<时,不等式的解集为1{|1}1x x m<<-;当12m <<时,不等式的解集为1{|1}1x x x m><-或. (2)1x >时,不等式恒成立即为()110m x -+>恒成立, ∴11m x-->, ∴1m ≥, ∴12m ≤<.【名师点睛】(1)本题主要考查一元二次不等式的解法和不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析推理转化能力.(2)解答第2问的关键是转化,先转化为()110m x -+>恒成立,再转化为11m x-->恒成立,即得m的取值范围.解含有参数的一元二次不等式的步骤:(1)二次项系数若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程的根的个数,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.易错点5 不能准确把握目标函数的几何意义致误设变量x ,y 满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则目标函数z =3x −2y 的最小值为A .−5B .−4C .−2D .3【错解】不等式组表示的平面区域如图所示,由图可知,当直线z =3x −2y 平移到过点(1,0)时取得最小值,即z min =3×1−2×0=3.故选D.【错因分析】本题易出现以下两个错误:一是理所当然地把目标函数“z ”跟“截距”画上等号,没有正确理解目标函数的意义致错;二是不能正确区分直线斜率的“陡峭”程度,导致最优解不正确,相应地导致目标函数的最小值求解错误.【试题解析】不等式组表示的平面区域是如图所示的阴影部分,结合图形,可知当直线3x −2y =z 平移到过点(0,2)时,z =3x −2y 的值最小,最小值为−4,故选B.形如z =Ax +By (B ≠0),即A z y x B B =-+,zB为该直线在y 轴上的截距,z 的几何意义就是该直线在y 轴上截距的B 倍,至于z 与截距能否同时取到最值,还要看B 的符号.5.若实数x ,y 满足约束条件2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则22z x y =+的最大值是AB .4C .9D .10【答案】D【解析】由实数x ,y 满足约束条件2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩作出可行域,如图.()03A -,,()02C ,,联立2239x y x y +=⎧⎨-=⎩解得()31B -,,22x y +的几何意义为可行域内动点与原点距离的平方,其最大值为()2223110OB =+-=.故选D.【名师点睛】本题主要考查了简单的线性规划和二元一次不等式组,在求目标函数的最值时根据22z x y =+的几何意义,将其转化为点到点距离的平方,从而得到结果易错点6 忽略等号成立的一致性导致错误若x >0,y >0,且x +2y =1,则11x y+的最小值为_______________.【错解】因为x >0,y >0,所以1=x +2y ≥8xy ≤1,即xy ≤18,故1xy ≥8.因为11x y +≥11x y +≥=11x y +的最小值为【错因分析】在求解过程中使用了两次基本不等式:x +2y ≥,11x y +≥“=”需满足x =2y 与x =y ,互相矛盾,所以“=”不能同时取到,从而导致错误.【试题解析】因为x +2y =1,x >0,y >0,所以1111(2)()x y x y x y +=++=233x yy x++≥+且仅当2x y y x =,即x =,即1,12x y ==-时取等号.故11x y +的最小值为3+.连续应用基本不等式求最值时,要注意各不等式取等号时的条件是否一致,若不能同时取等号,则连续用基本不等式是求不出最值的,此时要对原式进行适当的拆分或合并,直到取等号的条件成立.6.若正数,x y 满足40x y xy +-=,则3x y+的最大值为 A .13 B .38C .37D .1【答案】A【解析】因为40x y xy +-=,化简可得4x y xy +=,左右两边同时除以xy 得141y x +=.求3x y+的最大值,可先求333x y x y+=+的最小值.因为1413333x y x y y x ⎛⎫⎛⎫⎛⎫+⨯=+⨯+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭4143333x y y x =+++1433≥+3≥,当且仅当433x y y x =时取等号.所以3x y +的最大值为13.故选A.【名师点睛】本题考查了基本不等式的简单应用,关键要注意“1”的灵活应用,属于基础题.一、不等关系与不等式 1.比较大小的常用方法(1)作差法的一般步骤是:作差,变形,定号,得出结论.注意:只需要判断差的符号,至于差的值究竟是什么无关紧要,通常将差化为完全平方式的形式或者多个因式的积的形式.(2)作商法的一般步骤是:作商,变形,判断商与1的大小,得出结论. 注意:作商时各式的符号为正,若都为负,则结果相反. (3)介值比较法:①介值比较法的理论根据是:若a >b ,b >c ,则a >c ,其中b 是a 与c 的中介值. ②介值比较法的关键是通过不等式的恰当放缩,找出一个比较合适的中介值. 2.不等式的性质及应用(1)应用不等式性质解题的指导思想:理解不等式的性质时,首先要把握不等式性质成立的条件,特别是实数的正负和不等式的可逆性;其次,要关注常见函数的单调性对于理解不等式性质的指导性. (2)解决此类问题常用的两种方法:一是直接使用不等式的性质逐个验证;二是利用特殊值法排除错误答案.利用不等式的性质判断不等式是否成立时要特别注意前提条件. 3.求代数式的取值范围的一般思路(1)借助性质,转化为同向不等式相加进行解答; (2)借助所给条件整体使用,切不可随意拆分所给条件;(3)结合不等式的传递性进行求解;(4)要注意不等式同向可乘性的适用条件及整体思想的运用. 二、一元二次不等式及其解法 1.解一元二次不等式的一般步骤(1)一化:把不等式变形为二次项系数大于零的标准形式. (2)二判:计算对应方程的判别式.(3)三求:求出对应的一元二次方程的根,或根据判别式说明方程有没有实根. (4)四写:利用“大于取两边,小于取中间”写出不等式的解集. 2.解含有参数的一元二次不等式的步骤(1)二次项系数若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程的根的个数,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式. 3.解不等式恒成立问题的技巧(1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.即①若()f x 在定义域内存在最大值m ,则()f x a <(或()f x a ≤)恒成立⇔a m >(或a m ≥); ②若()f x 在定义域内存在最小值m ,则()f x a >(或()f x a ≥)恒成立⇔a m <(或a m ≤); ③若()f x 在其定义域内不存在最值,只需找到()f x 在定义域内的最大上界(或最小下界)m ,即()f x 在定义域内增大(或减小)时无限接近但永远取不到的那个值,来代替上述两种情况下的m ,只是等号均可以取到.(2)解决恒成立问题一定要搞清谁是主元,谁是参数.一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.4.已知不等式的解集求参数的解题方法已知不等式的解集求参数问题的实质是考查三个“二次”间的关系.其解题的一般思路为(1)根据所给解集确定相应方程的根和二次项系数的符号(2)由根与系数的关系,或直接代入方程,求出参数值或参数之间的关系,进而求解.5.简单分式不等式的解法若()f x 与()g x 是关于x 的多项式,则不等式()0()f xg x >(或<0,或≥0,或≤0)称为分式不等式.解分式不等式的原则是利用不等式的同解原理将其转化为有理整式不等式(组)求解.即()0()0()0()()0()0()0()f x f x f x f x g x g x g x g x ><⎧⎧>⇒⇒⋅>⎨⎨><⎩⎩或; ()0()0()0()()0()0()0()f x f x f x f x g x g x g x g x ><⎧⎧<⇒⇒⋅<⎨⎨<>⎩⎩或;()()0()0()()0()0()0()f x g x f x f x g x f x g x g x ⋅≥⎧≥⇒⇒⋅>=⎨≠⎩或; ()()0()0()()0()0()0()f x g x f x f x g x f x g x g x ⋅≤⎧≤⇒⇒⋅<=⎨≠⎩或. 对于形如()()f xg x >a (或<a )的分式不等式,其中a ≠0,求解的方法是先把不等式的右边化为0,再通过商的符号法则,把它转化为整式不等式求解. 6.简单高次不等式的解法不等式的最高次项的次数高于2的不等式称为高次不等式.解高次不等式常用的方法有两种: (1)将高次不等式()0(0)f x ><中的多项式()f x 分解成若干个不可约因式的乘积,根据实数运算的符号法则,把它等价转化为两个或多个不等式(组).于是原不等式的解集就是各不等式(组)解集的并集. (2)穿针引线法:①将不等式化为标准形式,一端为0,另一端为一次因式(因式中x 的系数为正)或二次不可约因式的乘积;②求出各因式的实数根,并在数轴上标出;③自最右端上方起,用曲线自右向左依次由各根穿过数轴,遇奇次重根穿过,遇偶次重根穿而不过(奇过偶不过);④记数轴上方为正,下方为负,根据不等式的符号写出解集. 三、简单的线性规划问题1.画二元一次不等式表示平面区域的一般步骤为:第一步,“直线定界”,即画出边界0Ax By C ++=,要注意是虚线还是实线;第二步,“特殊点定域”,取某个特殊点00(,)x y 作为测试点,由00Ax By C ++的符号就可以断定0Ax By C ++>表示的是直线0Ax By C ++=哪一侧的平面区域;第三步,用阴影表示出平面区域. 2.复杂不等式(组)表示的平面区域高次不等式、绝对值不等式及双向不等式都可以转化为不等式(组),从而画出这些不等式(组)表示的平面区域.对于含绝对值的不等式表示的平面区域的作法:先分情况讨论去掉绝对值符号,从而把含绝对值的不等式转化为一般的二元一次不等式(组),然后按照“直线定界,特殊点定域”的方法作出所求的平面区域. 3.求平面区域面积问题的步骤(1)画出不等式组表示的平面区域.(2)判断平面区域的形状(三角形区域是比较简单的情况),求出各边界交点的坐标.(3)若图形为规则图形,则直接利用面积公式求解;若图形为不规则图形,则运用割补法计算平面区域的面积,其中求解距离问题时常常用到点到直线的距离公式. 4.简单线性规划问题的解法在确定线性约束条件和线性目标函数的前提下,用图解法求最优解的步骤可概括为“画、移、求、答”,即:(1)画:在平面直角坐标系中,画出可行域和直线0ax by += (目标函数为z ax by =+); (2)移:平行移动直线0ax by +=,确定使z ax by =+取得最大值或最小值的点; (3)求:求出使z 取得最大值或最小值的点的坐标(解方程组)及z 的最大值或最小值; (4)答:给出正确答案. 5.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解. (3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案. 6.求线性目标函数最值的两种方法(1)平移直线法:作出可行域,正确理解z 的几何意义,确定目标函数对应的直线,平移得到最优解.对一个封闭图形而言,最优解一般在可行域的顶点处取得,在解题中也可由此快速找到最大值点或最小值点. (2)顶点代入法:①依约束条件画出可行域;②解方程组得出可行域各顶点的坐标;③分别计算出各顶点处目标函数z ax by =+的值,经比较后得出z 的最大(小)值. 求解时需要注意以下几点:(ⅰ)在可行解中,只有一组(x ,y )使目标函数取得最值时,最优解只有1个.如边界为实线的可行域当目标函数对应的直线不与边界平行时,会在某个顶点处取得最值.(ⅱ)同时有多个可行解取得一样的最值时,最优解有多个.如边界为实线的可行域,目标函数对应的直线与某一边界线平行时,会有多个最优解.(ⅲ)可行域一边开放或边界线为虚线均可导致目标函数找不到相应的最值,此时也就不存在最优解. 四、基本不等式1.利用基本不等式求最值的方法利用基本不等式,通过恒等变形及配凑,使“和”或“积”为定值.常见的变形手段有拆、并、配. (1)拆——裂项拆项对分子的次数不低于分母次数的分式进行整式分离——分离成整式与“真分式”的和,再根据分式中分母的情况对整式进行拆项,为应用基本不等式凑定积创造条件. (2)并——分组并项目的是分组后各组可以单独应用基本不等式,或分组后先由一组应用基本不等式,再组与组之间应用基本不等式得出最值. (3)配——配式配系数有时为了挖掘出“积”或“和”为定值,常常需要根据题设条件采取合理配式、配系数的方法,使配式与待求式相乘后可以应用基本不等式得出定值,或配以恰当的系数后,使积式中的各项之和为定值. 注意:①基本不等式涉及的量为正实数,同时验证等号能否取到.②分子、分母有一个一次,一个二次的分式结构的函数以及含有两个变量的函数,适合用基本不等式求最值.取倒数以应用基本不等式是对分式函数求最值的一种常见方法. 2.有关函数最值的实际问题的解题技巧(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值. (2)设变量时一般要把求最大值或最小值的变量定义为函数. (3)解应用题时,一定要注意变量的实际意义及其取值范围.(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.1.[2018北京文]设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则 A .对任意实数a ,()2,1A ∈B .对任意实数a ,(2,1)A ∉C .当且仅当a <0时,(2,1)A ∉D .当且仅当32a ≤时,(2,1)A ∉ 2.已知集合{}{}22|230,|4A x x x B x x =--≥=≤,则A B =A .[−2,−1]B .[−1,2)C .[−1,1]D .[1,2)3.已知a <0,b <-1,则下列不等式成立的是A .2a aa b b >> B .2a a a b b >> C .2a aa b b>>D .2a a a b b>>4.对于任意实数,不等式恒成立,则实数的取值范围是 A .B .C .D .5.已知 lg a +lg b =0,则 lg(a +b )的最小值为 A .lg 2B .C .-lg 2D .26.[2018天津文]设变量,x y 满足约束条件52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,,则目标函数35z x y =+的最大值为A .6B .19C .21D .457.已知,若,则当取得最小值时,A .2B .4C .6D .88.设实数满足,则的最小值为 A .4 B .C .D .09.若存在实数使不等式组与不等式都成立,则实数的取值范围是 A .B .C .D .10.已知,x y 满足2303301x y x y y +-≤⎧⎪+-≥⎨⎪≤⎩,2z x y =+的最大值为m ,若正数,a b 满足a b m +=,则14a b +的最小值为 A .B .32 C .D .5211.已知关于x 的不等式x 2−4ax +6a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+的最小值是A .B .C .D .12.若函数y =R ,则实数k 的取值范围是______.13.能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a+b >c ”是假命题的一组整数a ,b ,c 的值依次为 . 14.已知是任意实数,则关于的不等式的解集为 .15.[2018天津文]已知,a b ∈R ,且360a b -+=,则128ab+的最小值为_____________. 16.已知,若,则的最小值为 .17.已知实数x ,y 满足不等式组则z =x 2+y 2-10y+25的最大值为 .18.设实数x ,y 满足则u =的取值范围是 .19.[2018江苏卷]在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC于点D ,且1BD =,则4a c +的最小值为________.20.[2018北京文]若 ,y 满足12x y x +≤≤,则2y − 的最小值是_________.21.[2018新课标I 文]若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.22.[2018新课标II 文]若,x y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,, 则z x y =+的最大值为__________.23.[2018新课标Ⅲ文]若变量x y ,满足约束条件23024020.x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,则13z x y =+的最大值是________.24.某研究所计划利用宇宙飞船进行新产品搭载试验,计划搭载若干件新产品A,B,该研究所要根据产品的研制成本、产品重量、搭载试验费用和预计收益来决定具体安排,通过调查得到的有关数据如表:已知研制成本、搭载试验费用之和的最大资金为300万元,最大搭载重量为110千克,则如何安排这两种产品进行搭载,才能使总预计收益达到最大,最大预计收益是多少?________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________。
专题10 圆锥曲线易错点1 混淆“轨迹”与“轨迹方程”如图,已知点0(1)F ,,直线:1l x =-,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且QP QF FP FQ ⋅=⋅,求动点P 的轨迹.1.求轨迹方程时,若题设条件中无坐标系,则需要先建立坐标系,建系时,尽量取已知的相互垂直的直线为坐标轴,或利用图形的对称性选轴,或使尽可能多的点落在轴上.求轨迹方程的方法有:(1)直接法:直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.(2)定义法:求轨迹方程时,若动点与定点、定直线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可直接根据定义先确定轨迹类型,再写出其方程.(3)相关点法:动点所满足的条件不易得出或转化为等式,但形成轨迹的动点,()P x y 却随另一动点(),Q x y ''的运动而有规律地运动,而且动点Q 的轨迹方程为给定的或容易求得的,则可先将x ',y '表示成关于x ,y 的式子,再代入Q 的轨迹方程整理化简即得动点P 的轨迹方程.(4)参数法:若动点,()P x y 坐标之间的关系不易直接找到,且无法判断动点,()P x y 的轨迹,也没有明显的相关动点可用,但较易发现(或经分析可发现)这个动点的运动受到另一个变量的制约,即动点,()P x y 中的x ,y 分别随另一变量的变化而变化,我们可称这个变量为参数,建立轨迹的参数方程,这种求轨迹方程的方法叫做参数法.2.求轨迹方程与求轨迹是有区别的,若是求轨迹,则不仅要求出方程,而且还要说明和讨论所求轨迹是什么样的图形,即说出图形的形状、位置等.1.已知点P (2,2),圆C :2280x y y +-=,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及POM △的面积.【答案】(1)221(3))(2x y -+-=;(2)165. 【解析】(1)圆C 的方程可化为22(4)16x y +-=,所以圆心为C (0,4),半径为4.设M (x ,y ),则(,)4CM x y =-,2(),2MP x y =--.由题设知0CM MP ⋅=,故(2)(4)(2)0x x y y -+--=,即221(3))(2x y -+-=.由于点P 在圆C 的内部,所以M 的轨迹方程是221(3))(2x y -+-=.(2)由(1)可知M 的轨迹是以点N (1,3)为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以直线l 的斜率为13-,故直线l 的方程为1833y x =-+. 又|OM |=|OP |=,点O 到直线l,|PM |,所以POM △的面积为165.易错点2 求轨迹方程时忽略变量的取值范围已知曲线C :y =x 2-2x +2和直线l :y =kx (k ≠0),若C 与l 有两个交点A 和B ,求线段AB 中点的轨迹方程.【错解】依题意,由⎩⎨⎧y =x 2-2x +2,y =kx ,分别消去x 、y 得,(k 2-1)x 2+2x -2=0,① (k 2-1)y 2+2ky -2k 2=0.②设AB 的中点为P (x ,y ),则在①②中分别有12212212121x x x k y y k y k +⎧==⎪⎪-⎨+⎪==⎪-⎩,故线段AB 中点的轨迹方程为220x y x --=.【错因分析】消元过程中,由于两边平方,扩大了变量y 的允许范围,故应对x ,y 加以限制.【试题解析】依题意,由⎩⎨⎧y =x 2-2x +2y =kx,分别消去x 、y 得,(k 2-1)x 2+2x -2=0,① (k 2-1)y 2+2ky -2k 2=0.②设AB 的中点为P (x ,y ),则在①②中分别有⎩⎪⎨⎪⎧x =x 1+x 22=11-k 2, ③y =y 1+y 22=k1-k 2, ④又对②应满足222212221221044(2)(1)0201201k k k k k y y k k y y k ∆⎧-≠⎪=-⨯-⨯->⎪⎪⎨+=>-⎪⎪⎪=>-⎩,解得22<k <1.结合③④,则有x >2,y > 2.所以所求轨迹方程是x 2-y 2-x =0(x >2,y >2). 【参考答案】轨迹方程是x 2-y 2-x =0(x >2,y>2).1.一般地,在直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程(,)0f x y =的实数解建立了如下的关系: (1)曲线上点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线.2.要注意有的轨迹问题包含一定的隐含条件,由曲线和方程的概念可知,在求曲线时一定要注意它的“完备性”和“纯粹性”,即轨迹若是曲线的一部分,应对方程注明x 的取值范围,或同时注明x ,y 的取值范围.学@#科网2.已知ABC △的三边a 、b 、c (a >b >c )成等差数列,A 、C 两点的坐标分别是(-1,0)、(1,0),求顶点B 的轨迹方程.【答案】x 24+y 23=1(-2<x <0).故所求的轨迹方程为x 24+y 23=1(-2<x <0).本题在求出顶点B 的轨迹方程后,容易忽略了题设中的条件a >b >c ,使变量x 的范围扩大,从而导致错误.另外,注意当点B 在x 轴上时,A 、B 、C 三点不能构成三角形.易错点3 忽略椭圆定义中的限制条件若方程22186x y k k +=--表示椭圆,则实数k 的取值范围为________________.【错解】由8060k k ->⎧⎨->⎩,可得68k <<,所以实数k 的取值范围为(6,8).【错因分析】忽略了椭圆标准方程中a >b >0这一限制条件,当a =b >0时表示的是圆的方程.【试题解析】由806086k k k k ->⎧⎪->⎨⎪-≠-⎩,可得68k <<且7k ≠,所以实数k 的取值范围为(6,7)∪(7,8).【方法点睛】准确理解椭圆的定义,明确椭圆定义中的限制条件,才能减少解题过程中的失误,从而保证解题的正确性.【参考答案】(6,7)∪(7,8).平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆. 这两个定点叫做椭圆的焦点,两个定点之间的距离叫做椭圆的焦距,记作122F F c =. 定义式:12122(2)PF PF a a F F +=>.要注意,该常数必须大于两定点之间的距离,才能构成椭圆.3.已知F 1,F 2为两定点,|F 1F 2|=8,动点M 满足|MF 1|+|MF 2|=8,则动点M 的轨迹是A .椭圆B .直线C .圆D .线段【答案】D平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆.若忽略了椭圆定义中|F 1F 2|<2a 这一隐含条件,就会错误地得出点M 的轨迹是椭圆.易错点4 忽略对椭圆焦点位置的讨论已知椭圆的标准方程为2221(0)36x y k k+=>,并且焦距为8,则实数k 的值为_____________.1.解决已知椭圆的焦点位置求方程中的参数问题,应注意结合焦点位置与椭圆方程形式的对应关系求解.2.求椭圆的方程有两种方法:(1)定义法.根据椭圆的定义,确定a2,b2的值,结合焦点位置可写出椭圆方程.(2)待定系数法.这种方法是求椭圆的方程的常用方法,其一般步骤是:第一步,做判断.根据条件判断椭圆的焦点在x轴上,还是在y轴上,还是两个坐标轴都有可能(这时需要分类讨论).第二步,设方程.根据上述判断设方程为22221(0)x y a b a b +=>>或22221(0)y x a b a b+=>>.第三步,找关系.根据已知条件,建立关于,,a b c 的方程组(注意椭圆中固有的等式关系222c a b =-). 第四步,得椭圆方程.解方程组,将解代入所设方程,即为所求.3.用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,需要分焦点在x 轴上和在y 轴上两种情况讨论,也可设椭圆的方程为Ax 2+By 2=1(其中A >0,B >0,A ≠B ).求椭圆的标准方程的方法可以采用待定系数法,此时要注意根据焦点的位置选择椭圆的标准方程;也可以利用椭圆的定义及焦点位置或点的坐标确定椭圆的标准方程.4.已知a =c =,则该椭圆的标准方程为A .2211312x y +=B .2211325x y +=或2212513x y +=C .22113x y +=D .22113x y +=或22113y x +=【答案】D易错点5 忽略椭圆的范围设椭圆的中心是坐标原点,长轴在x 轴上,离心率e =已知点3(0,)2P ,求椭圆的标准方程.1.椭圆22221(0)x y a b a b +=>>的范围就是方程中变量x ,y 的范围,由22221x y a b +=得222211x y a b =-≤,则||x a ≤;222211y x b a=-≤,则||y b ≤.故椭圆落在直线x =±a ,y =±b 围成的矩形内,因此用描点法画椭圆的图形时就可以不取“矩形”范围以外的点了.同时,在处理椭圆的一些参数或最值问题时要注意x ,y 的取值范围.2.设椭圆22221(0)x y a b a b+=>>上任意一点,()P x y ,则当0x =时,||OP 有最小值b ,P 点在短轴端点处;当x a =±时,||OP 有最大值a ,P 点在长轴端点处.3.(1)解决椭圆x 2a 2+y 2b 2=1(a >b >0)中的范围问题常用的关系有:①-a ≤x ≤a ,-b ≤y ≤b ; ②离心率0<e <1;③一元二次方程有解,则判别式0∆≥.(2)解决与椭圆有关的最值问题常用的方法有以下几种: ①利用定义转化为几何问题处理;②利用三角替代(换元法)转化为三角函数的最值问题处理; ③利用数与形的结合,挖掘数学表达式的几何特征,进而求解;④利用函数最值的研究方法,将其转化为函数的最值问题来处理,此时,应注意椭圆中x 、y 的取值范围,常常是化为闭区间上的二次函数的最值来求解.5.已知椭圆2222:1(0)x y C a b a b+=>>的上顶点为(0,1)B ,且过点2P . (1)求椭圆C 的方程及其离心率;(2)斜率为k 的直线l 与椭圆C 交于,M N 两个不同的点,当直线,OM ON 的斜率之积是不为0的定值时,求此时MON △的面积的最大值.【答案】(1)2214x y +=,2e =;(2)1. 学!@科网由22,14y kx m x y =+⎧⎪⎨+=⎪⎩,消去y ,得()222418440k x kmx m +++-=,易错点6 忽略双曲线定义中的限制条件已知F 1(-5,0),F 2(5,0),动点P 满足|PF 1|-|PF 2|=2a ,当a 为3和5时,点P 的轨迹分别为A .双曲线和一条直线B .双曲线和一条射线C .双曲线的一支和一条直线D .双曲线的一支和一条射线在求解与双曲线有关的轨迹问题时,准确理解双曲线的定义,才能正确解题.当||MF 1|-|MF 2||=2a <|F 1F 2|(a >0),即|MF 1|-|MF 2|=±2a ,0<2a <|F 1F 2|时,点M 的轨迹是双曲线,其中取正号时为双曲线的右(上)支,取负号时为双曲线的左(下)支;当||MF 1|-|MF 2||=2a =|F 1F 2|(a >0)时,点M 的轨迹是以点F 1,F 2为端点的两条射线; 当||MF 1|-|MF 2||=2a >|F 1F 2|(a >0)时,点M 的轨迹不存在.6.如图,在ABC △中,已知||AB =A ,B ,C 满足2sin sin 2sin A C B +=,以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系,求顶点C 的轨迹方程.【答案】221(26x y x -=>.【解析】由题意可得(A -,B .【名师点睛】求解与双曲线有关的轨迹问题时要特别注意:(1)双曲线的焦点所在的坐标轴;(2)检验所求的轨迹对应的是双曲线的一支还是两支.易错点7 忽略双曲线中的隐含条件已知M是双曲线2216436x y-=上一点,F1,F2是双曲线的左、右焦点,且1||17MF=,则2MF=_____________.1.在求解双曲线上的点到焦点的距离d时,一定要注意d c a≥-这一隐含条件.2.双曲线方程中,a b 的大小关系是不确定的,但必有0,0c a c b >>>>.3.由22221(0,0)x y a b a b-=>>,知≥1,所以x ≤-a 或x ≥a ,因此双曲线位于不等式x ≥a 和x ≤-a 所表示的平面区域内,同时,也指明了坐标系内双曲线上点的横坐标的取值范围.关于双曲线内线段最长或最短(距离最远或最近)问题,有以下结论:)双曲线的左、右顶点距离相应焦点最近; )双曲线上一点与某焦点的距离的值最小为c7.若双曲线22:1916x y E -=的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2PF 等于A .11B .9C .5D .3【答案】B【解析】由双曲线定义得1226PF PF a -==,即236PF -=,解得29PF =,故选B .易错点8 忽略双曲线的焦点所在位置的讨论已知双曲线的渐近线方程是2y x =±,焦距为1.求解双曲线的标准方程时,先确定双曲线的类型,也就是确定双曲线的焦点所在的坐标轴是x 轴还是y 轴,从而设出相应的标准方程的形式,然后利用待定系数法求出方程中的22,a b 的值,最后写出双曲线的标准方程.对于双曲线的渐近线,有下面两种考查方式:)已知双曲线的方程求其渐近线方程;)给出双曲线的渐近线方程求双曲线方程,由渐近线方程可确定2.在求双曲线的方程时,若不知道焦点的位置,则进行讨论,或可直接设双曲线的方程为221(0)Ax By AB +=<.已知双曲线的渐近线方程,而不知焦点所在的坐标轴时,双曲线的方程有两个,为避免分类讨论,可设C .53或54D .2或153【答案】C满足的等式或不等式,一般利用双曲线中21b,注意区分双曲线中易错点9 忽略直线与双曲线只有一个公共点的特殊情况若过点(1,1)P 且斜率为k 的直线l 与双曲线2214y x -=只有一个公共点,则k =___________.1. 直线与双曲线有三种位置关系:(1)无公共点,此时直线有可能为双曲线的渐近线. (2)有一个公共点,分两种情况:①直线是双曲线的切线,特别地,直线过双曲线一个顶点,且垂直于实轴; ②直线与双曲线的一条渐近线平行,与双曲线的一支有一个公共点. (3)有两个公共点,可能都在双曲线一支上,也可能两支上各有一点.2.研究直线与双曲线位置关系的一般思路仍然是联立二者的方程,解方程组或者转化为一元二次方程,依据根的判别式和根与系数的关系求解.要注意讨论转化以后的方程的二次项系数,即若二次项系数为0,则直线与双曲线的渐近线平行或重合;若二次项系数不为0,则进一步研究二次方程的根的判别式∆,得到直线与双曲线的交点个数.9.已知直线y kx =与双曲线22416x y -=.当k 为何值时,直线与双曲线: (1)有两个公共点;(2)有一个公共点;(3)没有公共点. 【答案】见解析.【名师点睛】研究直线与双曲线位置关系的一般思路仍然是联立二者的方程,解方程组或者转化为一元二次方程,依据根的判别式和根与系数的关系求解.要注意讨论转化以后的方程的二次项系数,即若二次项系数为0,则直线与双曲线的渐近线平行或重合;若二次项系数不为0,则进一步研究二次方程的根的判别式∆,得到直线与双曲线的交点个数.易错点10 忽略抛物线定义中的限制条件已知点P 到F (4,0)的距离与到直线5x =-的距离相等,求点P 的轨迹方程.【错解】由抛物线的定义,可知点P 的轨迹是抛物线.因为焦点在x 轴上,开口向右,焦点到准线的距离9p =,所以抛物线的方程为218y x =.1.抛物线的标准方程是特殊的抛物线方程,对坐标轴的位置有严格的要求.若从题意中无法判断方程是否为标准方程,可按求曲线方程的一般步骤求解.2.抛物线定义中要求直线l 不经过点F ,若l 经过F 点,则轨迹为过定点F 且垂直于定直线l 的一条直线.因此当动点P 到定点F 的距离与它到定直线l 的距离相等时,不能盲目套用抛物线定义.10.已知圆C 的方程22100x y x +-=,求与y 轴相切且与圆C 外切的动圆圆心P 的轨迹方程.【答案】220(0)y x x =>或)00(y x =<.【名师点睛】抛物线的轨迹问题,既可以用轨迹法直接求解,也可以转化为利用抛物线的定义求解,利用抛物线的定义求解的关键是找到条件满足动点到定点的距离等于到定直线的距离,需要依据条件进行转化.易错点11 忽略抛物线的焦点所在位置的讨论设抛物线y 2=mx 的准线与直线x =1的距离为3,求抛物线的方程.【错解】易知准线方程为x =-m4,因为准线与直线x =1的距离为3, 所以准线方程为x =-2, 所以-m4=-2,解得m =8,故抛物线方程为y 2=8x .【错因分析】题目条件中未给出m 的符号,当m >0或m <0时,抛物线的准线是不同的,错解中考虑问题欠周到.【试题解析】当m >0时,准线方程为x =-m4,由条件知1-(-m4)=3,所以m =8.此时抛物线方程为y 2=8x ; 当m <0时,准线方程为x =-m4,由条件知-m4-1=3,所以m =-16,此时抛物线方程为y 2=-16x .所以所求抛物线方程为y 2=8x 或y 2=-16x .【参考答案】y 2=8x 或y 2=-16x .1.抛物线的四种标准方程与对应图形如下表所示:注:抛物线标准方程中参数p 的几何意义是:抛物线的焦点到准线的距离,所以p 的值永远大于0. 2.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点的位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.用待定系数法求抛物线标准方程的步骤:若无法确定抛物线的位置,则需分类讨论.特别地,已知抛物线上一点的坐标,一般有两种标准方程.11.顶点在原点,且过点(1,1)-的抛物线的标准方程是 A .2y x =-B .2x y =C .2y x =-或2x y =D .2y x =或2x y =-【答案】C【解析】当焦点在x 轴上时,设方程为2y ax =,将(1,1)-代入得1a =-,2y x ∴=-;当焦点在y 轴上时,设方程为2x ay =,将(1,1)-代入得1a =,2x y ∴=.故选C .本题若只考虑焦点在x 轴的负半轴上的情况,而忽略了焦点也可能在y 轴的正半轴上的情况,则会出现漏解.易错点12 忽略直线与抛物线有一个公共点的特殊情况求过定点(11)P -,,且与抛物线22y x =只有一个公共点的直线l 的方程.直线l y kx b =+:与抛物线22(0)y px p =>公共点的个数等价于方程组22y x p bxy k ⎧⎨==+⎩的解的个数.(1)若0k ≠,则当0∆>时,直线和抛物线相交,有两个公共点;当0∆=时,直线和抛物线相切,有一个公共点;当0∆<时,直线和抛物线相离,无公共点.(2)若0k =,则直线y b =与抛物线22(0)y px p =>相交,有一个公共点.特别地,当直线l 的斜率不存在时,设x m =,则当0m >时,直线l 与抛物线相交,有两个公共点;当0m =时,直线l 与抛物线相切,有一个公共点;当0m <时,直线l 与抛物线相离,无公共点.12.“直线与抛物线相切”是“直线与抛物线只有一个公共点”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A本题易忽略直线平行于抛物线的对称轴时,直线与抛物线也只有一个交点,而漏掉k =0.一、曲线与方程 1.求曲线方程的步骤求曲线的方程,一般有下面几个步骤:(1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合{|()}P M p M =; (3)用坐标表示条件p (M ),列出方程(,)0f x y =; (4)化方程(,)0f x y =为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上.一般地,化简前后方程的解集是相同的,步骤(5)可以省略不写.若遇到某些点虽适合方程,但不在曲线上时,可通过限制方程中x ,y 的取值范围予以剔除.另外,也可以根据情况省略步骤(2),直接列出曲线方程. 2.两曲线的交点(1)由曲线方程的定义可知,两条曲线交点的坐标应该是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;反过来,方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.(2)两条曲线有交点的充要条件是它们的方程所组成的方程组有实数解.可见,求曲线的交点问题,就是求由它们的方程所组成的方程组的实数解问题.二、椭圆 1.椭圆的定义平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆. 这两个定点叫做椭圆的焦点,两个定点之间的距离叫做椭圆的焦距,记作122F F c =. 定义式:12122(2)PF PF a a F F +=>.要注意,该常数必须大于两定点之间的距离,才能构成椭圆. 2.椭圆的标准方程焦点在x轴上,22221(0) x ya ba b+=>>;焦点在y轴上,22221(0) y xa ba b+=>>.说明:要注意根据焦点的位置选择椭圆方程的标准形式,知道,,a b c之间的大小关系和等量关系:222,0,0a cb a b a c-=>>>>.3.椭圆的几何性质椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围)有两种方法:三、双曲线 1. 双曲线的定义(1)定义:平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|且大于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两个焦点间的距离叫做双曲线的焦距.(2)符号语言:1212202,MF MF a a F F =<-<. (3)当122MF MF a -=时,曲线仅表示焦点2F 所对应的双曲线的一支; 当122MF MF a -=-时,曲线仅表示焦点1F 所对应的双曲线的一支;当12||2a F F =时,轨迹为分别以F 1,F 2为端点的两条射线; 当12||2a F F >时,动点轨迹不存在. 2.双曲线的标准方程(1)焦点在x 轴上的双曲线的标准方程为22221x y a b-=(a >0,b >0),焦点分别为F 1(-c ,0),F 2(c ,0),焦距为2c ,且222c a b =+.(2)焦点在y 轴上的双曲线的标准方程为22221y x a b-=(a >0,b >0),焦点分别为F 1(0,-c ),F 2(0,c ),焦距为2c ,且222c a b =+. 3.双曲线的几何性质在解决双曲线中与焦点三角形有关的问题时,首先要注意定义中的条件12||||||2PF PF a -=的应用;其次是要利用余弦定理、勾股定理等知识进行运算,在运算中要注意整体思想和一些变形技巧的应用. 4.等轴双曲线实轴和虚轴等长的双曲线叫做等轴双曲线.等轴双曲线具有以下性质:(1)方程形式为22(0)x y λλ-=≠;.求双曲线的离心率一般有两种方法:满足的等式或不等式,一般利用双曲线中四、抛物线 1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F ) 距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.抛物线关于过焦点F 与准线垂直的直线对称,这条直线叫抛物线的对称轴,简称抛物线的轴.注意:直线l 不经过点F ,若l 经过F 点,则轨迹为过定点F 且垂直于定直线l 的一条直线. 2.抛物线的标准方程(1)顶点在坐标原点,焦点在x 轴正半轴上的抛物线的标准方程为22(0)y px p =>;(2)顶点在坐标原点,焦点在x 轴负半轴上的抛物线的标准方程为22(0)y px p =->;(3)顶点在坐标原点,焦点在y 轴正半轴上的抛物线的标准方程为22(0)x py p =>;(4)顶点在坐标原点,焦点在y 轴负半轴上的抛物线的标准方程为22(0)x py p =->.注意:抛物线标准方程中参数p 的几何意义是抛物线的焦点到准线的距离,所以p 的值永远大于0,当抛物线标准方程中一次项的系数为负值时,不要出现p <0的错误. 3.抛物线的几何性质4.抛物线的焦半径抛物线上任意一点00(),P x y 与抛物线焦点F 的连线段,叫做抛物线的焦半径. 根据抛物线的定义可得焦半径公式如下表:5.抛物线的焦点弦抛物线的焦点弦即过焦点F 的直线与抛物线所成的相交弦.焦点弦公式既可以运用两次焦半径公式得到,也可以由数形结合的方法求出直线与抛物线的两交点坐标,再利用两点间的距离公式得到,设AB 为焦点弦,11(,)A x y ,22(,)B x y ,则其中,通过抛物线的焦点作垂直于对称轴而交抛物线于A ,B 两点的线段AB ,称为抛物线的通径. 对于抛物线22(0)y px p =>,由(,)2p A p ,(,)pB p -,可得||2AB p =,故抛物线的通径长为2p .,体现了抛物线上的点到焦点的距离等于到准线的距离,因此,涉及抛物线的焦半径、焦点弦的问题,可以优先考虑利用抛物线的定义将点到焦点的距离转化为点到准线的距离,即五、直线与圆锥曲线的位置关系 1.曲线的交点在平面直角坐标系xOy 中,给定两条曲线12,C C ,已知它们的方程为12:(,)0,:(,)0C f x y C g x y ==,求曲线12,C C 的交点坐标,即求方程组(,)0(,)0f x yg x y =⎧⎨=⎩的实数解.方程组有几组实数解,这两条曲线就有几个交点.若方程组无实数解,则这两条曲线没有交点. 2.直线与圆锥曲线的位置关系直线与圆锥曲线相交时,直线与椭圆有两个公共点,与双曲线、抛物线有一个或两个公共点.(1)直线与椭圆有两个交点⇔相交;直线与椭圆有一个交点⇔相切;直线与椭圆没有交点⇔相离. (2)直线与双曲线有两个交点⇔相交.当直线与双曲线只有一个公共点时,除了直线与双曲线相切外,还有可能是直线与双曲线相交,此时直线与双曲线的渐近线平行. 直线与双曲线没有交点⇔相离. (3)直线与抛物线有两个交点⇔相交.当直线与抛物线只有一个公共点时,除了直线与抛物线相切外,还有可能是直线与抛物线相交,此时直线与抛物线的对称轴平行或重合. 直线与抛物线没有交点⇔相离. 3.弦长的求解(1)当弦的两端点坐标易求时,可直接利用两点间的距离公式求解;(2)当直线的斜率存在时,斜率为k 的直线l 与圆锥曲线C 相交于1122(,),(,)A x y B x y 两个不同的点,则弦长1212||(0)=AB x x y y k =-=-≠. (3)当弦过焦点时,可结合焦半径公式求解弦长. 4.中点弦问题(1)AB 为椭圆22221(0)x y a b a b+=>>的弦,1122(,),(,)A x y B x y ,弦中点M (x 0,y 0),则AB 所在直线的斜率为2020b x k a y =-,弦AB 的斜率与弦中点M 和椭圆中心O 的连线的斜率之积为定值22b a -.(2)AB 为双曲线22221(0,0)x y a b a b-=>>的弦,1122(,),(,)A x y B x y ,弦中点M (x 0,y 0),则AB 所在直线的斜率为2020b x k a y =,弦AB 的斜率与弦中点M 和双曲线中心O 的连线的斜率之积为定值22b a .(3)在抛物线22(0)y px p =>中,以M (x 0,y 0) 为中点的弦所在直线的斜率0pk y =.1.(2018新课标全国Ⅰ文)已知椭圆222:14x y C a +=的一个焦点为(2,0),则C 的离心率为A .13B .12C .2D .32.(2018浙江)双曲线2213x y -=的焦点坐标是A .(,0),0)B .(−2,0),(2,0)C .(0,,(0D .(0,−2),(0,2)3.双曲线22221(0,0)x y a b a b-=>>A .y =B .y =C .y x =D .y x = 4.(2018新课标全国Ⅱ文)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .12-B .2CD 15.“”是“曲线=为双曲线”的A .充分不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件6.顶点在坐标原点,对称轴为坐标轴,又过点的抛物线方程是A .B .C .或D .或7.已知点及抛物线上一动点,则的最小值为 A .B .C .D .8.已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线方程为A .B .C .D .9.已知1F ,2F 是椭圆22221(0)x y C a b a b +=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A .23 B .12 C .13D .1410.(2018新课标全国Ⅲ文)已知双曲线2222:1(0,0)x y C a b a b-=>>,则点(4,0)到C 的渐近线的距离为AB .2C .2D .11.设抛物线2:4C y x =的焦点为F ,过点(2,0)-且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5 B .6 C .7D .812.若双曲线:C 22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为A .2BCD。
第十一章 概率与统计1.【2019高考新课标Ⅰ,文6】某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A. 8号学生 B. 200号学生C. 616号学生D. 815号学生 【答案】C 【解析】 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =, 所以610n a n=+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C .【点睛】本题主要考查系统抽样.2.【2019高考新课标Ⅱ,文4】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A. 23B.35 C. 25D. 15【答案】B 【解析】 【分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解.【详解】设其中做过测试的3只兔子为,,a b c,剩余的2只为,A B,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B,{,c,},{,c,},{b,,},{c,,}b A b B A B A B共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B{,c,},{,c,}b A b B共6种,所以恰有2只做过测试的概率为63105,选B.【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.3.【2019高考新课标Ⅲ,文3】两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A. 16B.14C.13D.12【答案】D【解析】【分析】男女生人数相同可利用整体发分析出两位女生相邻的概率,进而得解.【详解】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是12.故选D.【点睛】本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养.采取等同法,利用等价转化的思想解题.4.《【2019高考新课标Ⅲ,文4】西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A. 0.5B. 0.6C. 0.7D. 0.8【答案】C【解析】【分析】根据题先求出阅读过西游记的人数,进而得解.【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .【点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.5.【2019高考新课标Ⅱ,文14】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________. 【答案】0.98. 【解析】 【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.20.9840=. 【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.6.【2019高考江苏卷,5】已知一组数据6,7,8,8,9,10,则该组数据的方差是____. 【答案】53. 【解析】 【分析】由题意首先求得平均数,然后求解方差即可. 【详解】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 【点睛】本题主要考查方差的计算公式,属于基础题.7.【2019高考江苏卷,6】从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____.【答案】7 10.【解析】【分析】先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有2510C=种情况.若选出的2名学生恰有1名女生,有11326C C=种情况,若选出的2名学生都是女生,有221C=种情况,所以所求的概率为617 1010 +=.【点睛】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”.8.【2019高考新课标Ⅰ,文17】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.【答案】(1)43 ,55;(2)能有95%的把握认为男、女顾客对该商场服务的评价有差异.【解析】【分析】(1)从题中所给的22⨯列联表中读出相关的数据,利用满意的人数除以总的人数,分别算出相应的频率,即估计得出的概率值;(2)利用公式求得观测值与临界值比较,得到能有95%的把握认为男、女顾客对该商场服务的评价有差异.【详解】(1)由题中表格可知,50名男顾客对商场服务满意的有40人,所以男顾客对商场服务满意率估计为1404 505P==, 50名女顾客对商场满意的有30人,所以女顾客对商场服务满意率估计为2303 505P==,(2)由列联表可知22100(40203010)1004.762 3.8417030505021K⨯-⨯==≈>⨯⨯⨯,所以能有95%的把握认为男、女顾客对该商场服务的评价有差异.【点睛】该题考查的是有关概率与统计的知识,涉及到的知识点有利用频率来估计概率,利用列联表计算2K的值,独立性检验,属于简单题目.9.【2019高考新课标Ⅱ,文19】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602 .【答案】(1) 增长率超过0400的企业比例为21100,产值负增长的企业比例为2110050=;(2)平均数0.3;标准差0.17. 【解析】 【分析】(1)本题首先可以通过题意确定100个企业中增长率超过0400的企业以及产值负增长的企业的个数,然后通过增长率超过0400的企业以及产值负增长的企业的个数除随机调查的企业总数即可得出结果;(2)可通过平均值以及标准差的计算公式得出结果。
易错点1 忽略概率加法公式的应用前提致错某商店日收入(单位:元)在下列范围内的概率如下表所示:已知日收入在[1000,3000)(元)范围内的概率为0.67,求月收入在[1500,3000)(元)范围内的概率.【错解】记这个商店日收入在[1000,1500),[1500,2000),[2000,2500),[2500,3000) (元)范围内的事件分别为A,B,C,D,则日收入在[1500,3000)(元)范围内的事件为B+C+D,所以P(B+C+D)=1-P(A)=0.88.【错因分析】误用P(B+C+D)=1-P(A).事实上,本题中P(A)+P(B)+P(C)+P(D)≠1,故事件A与事件B+C+D 并不是对立事件.【试题解析】因为事件A,B,C,D互斥,且P(A)+P(B)+P(C)+P(D)=0.67,所以P(B+C+D)=0.67-P(A)=0.55.在应用概率加法公式时,一定要注意其应用的前提是涉及的事件是互斥事件.对于事件A,B,有()()()P A B P A P B=+,只有当事件A,B互斥时,等号才成立.1.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为13,得到黑球或黄球的概率为512,得到黄球或绿球的概率也是512,试求得到黑球、黄球、绿球的概率各是多少?【答案】得到黑球的概率为14,得到黄球的概率为16,得到绿球的概率为14.【解析】从袋中任取一球,记事件A={得到红球},事件B={得到黑球},事件C={得到黄球},事件D={得到绿球},则有()()()()()()()()()1,35,125,1221,3P AP B C P B P CP C D P C P DP B C D P A⎧=⎪⎪⎪=+=⎪⎨⎪=+=⎪⎪⎪=-=⎩解得P(B)=14,P(C)=16,P(D)=14.所以得到黑球的概率为14,得到黄球的概率为16,得到绿球的概率为14.【名师点睛】本题主要考查了等可能事件的概率,考查了互斥事件的概率加法公式,关键是明确互斥事件和的概率等于概率的和,属于中档试题,着重考查了分析问题和解答问题的能力.分别以,,,A B C D表示事件:从袋中任取一球“摸到红球”,“摸到黄球”,“摸到绿球”,则由题意得到三个和事件的概率,求解方程组,即可得到答案.易错点2 混淆“等可能”与“非等可能”从5名男生和3名女生中任选1人去参加演讲比赛,求选中女生的概率.【错解】从8人中选出1人的结果有“男生”“女生”两种,则选中女生的概率为.【错因分析】因为男生人数多于女生人数,所以选中男生的机会大于选中女生的机会,它们不是等可能的.【试题解析】选出1人的所有可能的结果有8种,即共有8个基本事件,其中选中女生的基本事件有3个,故选中女生的概率为.利用古典概型的概率公式求解时,注意需满足两个条件:(1)所有的基本事件只有有限个;(2)试验的每个基本事件是等可能发生的.2.掷一枚均匀的硬币,如果连续抛掷1000次,那么第999次出现正面向上的概率是A.1999B.11000C.9991000D.12【答案】D【解析】投掷一枚均匀的硬币正面向上的概率为12,它不因抛掷的次数而变化,因此抛掷一次正面向上的概率为12,抛掷第999次正面向上的概率还是12.故选D.【名师点睛】本题主要考查了概率的基本概念及应用,其中熟记随机事件的概率的基本概念是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.由题意投掷一枚均匀的硬币正面向上的概率为12,它不因抛掷的次数而变化,即可得到答案.错点3 几何概型中测度的选取不正确在等腰直角三角形ABC中,直角顶点为C.(1)在斜边AB上任取一点M,求AM<AC的概率;(2)在∠ACB的内部,以C为端点任作一条射线CM,与线段AB交于点M,求AM<AC的概率. 【错解】(1)如图所示,在AB上取一点C',使AC'=AC,连接CC'.由题意,知AB =AC .由于点M 是在斜边AB 上任取的,所以点M 等可能分布在线段AB 上,因此基本事件的区域应是线段AB .所以()2AC P AM AC AB '<===. (2)在∠ACB 的内部作射线CM,则所求概率为AC AC AB AB '==. 【错因分析】第(2)问的解析中错误的原因在于选择的观察角度不正确,因为在∠ACB 的内部作射线CM 是均匀分布的,所以射线CM 作在任何位置都是等可能的,则涉及的测度应该是角度而不是长度.【试题解析】(1)如图所示,在AB 上取一点C',使AC'=AC,连接CC'. 由题意,知AB =AC .由于点M 是在斜边AB 上任取的,所以点M 等可能分布在线段AB 上,因此基本事件的区域应是线段AB .所以()2AC P AM AC AB '<===.(2)由于在∠ACB 内作射线CM,等可能分布的是CM 在∠ACB 内的任一位置(如图所示),因此基本事件的区域应是∠ACB,又1(18045)67.52ACC '∠=-=,90ACB ∠=,所以()ACC P AM AC ACB '∠<==∠的角度的角度67.53904=.对一个具体问题,可以将其几何化,如建立坐标系将试验结果和点对应,然后利用几何概型概率公式. (1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在坐标轴上即可; (2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系建立与体积有关的几何概型.3.在区间[]0,1上随机取两个数x ,y ,记P 为事件“23x y +≤”的概率,则P = A .23 B .12 C .49D .29【答案】D【解析】如图所示,01,01x y ≤≤≤≤表示的平面区域为ABCD ,平面区域内满足23x y +≤的部分为阴影部分的区域APQ ,其中2,03P ⎛⎫ ⎪⎝⎭,20,3Q ⎛⎫ ⎪⎝⎭, 结合几何概型计算公式可得满足题意的概率值为1222233119P ⨯⨯==⨯. 本题选择D 选项.【名师点睛】由题意结合几何概型计算公式求解满足题意的概率值即可.数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.(1)与长度有关的几何概型,其基本事件只与一个连续的变量有关;(2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题; (3)与体积有关的几何概型,可借助空间几何体的体积公式解答问题.易错点4 错解随机变量的取值概率而致错从4名男生和2名女生中任意选择3人参加比赛,设被选中的女生的人数为X .(1)求X 的分布列;(2)求所选女生的人数至多为1的概率.【错解】(1)由题设可得X 的可能取值为0,1,2,且3436A 1(0)A 5P X ===,214236A A 1(1)A 5P X ===,3(2)1(0)(1)5P X P X P X ==-=-==, 所以X 的分布列为(2)所选女生的人数至多为1即随机变量的取值为1X ≤,其概率为2(1)(0)(1)5P X P X P X ≤==+==. 【错因分析】产生错解的原因是对随机变量的取值概率求解错误,事实上随机变量X 服从参数为6N =,2M =,3n =的超几何分布.【试题解析】(1)由题设可得X 的可能取值为0,1,2,且3436C 1(0)C 5P X ===, 122436C C 3(1)C 5P X ===,212436C C 1(2)C 5P X ===,所以X 的分布列为(2)所选女生的人数至多为1即随机变量的取值为1X ≤,其概率为4(1)(0)(1)5P X P X P X ≤==+==.4.大豆是我国主要的农作物之一,因此,大豆在农业发展中占有重要的地位,随着农业技术的不断发展,为了使大豆得到更好的种植,就要进行超级种培育研究.某种植基地培育的“超级豆”种子进行种植测试:选择一块营养均衡的可种植4株的实验田地,每株放入三粒“超级豆”种子,且至少要有一粒种子发芽这株豆苗就能有效成活,每株成活苗可以收成大豆2.205kg .已知每粒豆苗种子成活的概率为12(假设种子之间及外部条件一致,发芽相互没有影响). (1)求恰好有3株成活的概率;(2)记成活的豆苗株数为ξ,收成为()kg η,求随机变量ξ分布列及η数学期望E η. 【答案】(1)3431024;(2)见解析. 【解析】(1)设每株豆子成活的概率为0P ,则30171128P ⎛⎫=--= ⎪⎝⎭,所以4株中恰好有3株成活的概率313477343C 1881024P ⎛⎫⎛⎫=-= ⎪⎪⎝⎭⎝⎭. (2)记成活的豆苗株数为ξ,收成为=2.205ηξ,则ξ的可能取值为0,1,2,3,4,且ξ~74,8B ⎛⎫ ⎪⎝⎭, 所以ξ的分布列如下表:4 3.58E ξ∴=⨯=,()()= 2.205 2.2057.7175kg E E E ηξξ=⋅=.【名师点睛】本题主要考查离散型随机变量的分布列与数学期望,属于中档题. 求解该类问题,首先要正确理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:①阅读理解关;②概率计算关;③公式应用关.(1)利用对立事件求出每株豆子成活的概率,再结合独立事件概率公式得到结果; (2)记成活的豆苗株数为ξ,收成为=2.205ηξ,且ξ~74,8B ⎛⎫⎪⎝⎭,从而得到随机变量ξ的分布列及η的数学期望E η.易错点5 对超几何分布的概念理解不透彻而致错盒中装有12个零件,其中有9个正品,3个次品,从中任取一个,若取出的是次品不再放回,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数X 的分布列.【错解】由题意可知,X 服从超几何分布,其中12N =,3M =,3n =,所以在取得正品之前已取出次品数X 的分布列为339312C C (0,1,2,3)C ()k k P X k k -===,所以已取出次品数X 的分布列为 【错因分析】错解中未理解超几何分布的概念.本题是不放回抽样,“1X =”表示“第一次取到次品,第二次取到正品”,“2X =”表示“前两次都取到次品,第三次取到正品”,属于排列问题.而超几何分布是一次性抽取若干件产品,属于组合问题.【试题解析】由题易得X 的可能取值为0,1,2,3.19112()C 30C 4P X ===,1139212C C 9()1A 44P X ===,2139312A C 92A 2()20P X ===,3139412A C 13A 2()20P X ===, 所以已取出次品数X 的分布列为求随机变量的分布列的关键是熟练掌握排列、组合知识,求出随机变量每个取值的概率,注意概率的取值范围(非负),在由概率之和为1求参数问题中要把求出的参数代回分布列进行检验.5.某校举办校园科技文化艺术节,在同一时间安排《生活趣味数学》和《校园舞蹈赏析》两场讲座.已知A 、B 两学习小组各有5位同学,每位同学在两场讲座任意选听一场.若A 组1人选听《生活趣味数学》,其余4人选听《校园舞蹈赏析》;B 组2人选听《生活趣味数学》,其余3人选听《校园舞蹈赏析》. (1)若从此10人中任意选出3人,求选出的3人中恰有2人选听《校园舞蹈赏析》的概率; (2)若从A 、B 两组中各任选2人,设X 为选出的4人中选听《生活趣味数学》的人数,求X 的分布列和数学期望()E X . 【答案】(1)2140;(2)见解析. 【解析】(1)设“选出的3人中恰有2人选听《校园舞蹈赏析》”为事件M ,则()2173310C C 21C 40P M ==, 答:选出的3人中恰有2人选听《校园舞蹈赏析》的概率为2140. (2)X 可能的取值为0,1,2,3,()22432255C C 90=C C 50P X ==,()1122111434232255C C C +C C C 121C C 25P X ===, ()1121422255C C C 13C C 25P X ===,故()()()()32101310P X P X P X P X ==-=-=-==. 所以X 的分布列为:所以X 的数学期望为:()9123160123502510255E X =⨯+⨯+⨯+⨯=. 【名师点睛】本题主要考查了相互独立事件、互斥事件的概率计算公式、随机变量的分布列与数学期望,属于中档题.(1)利用相互独立事件与古典概率计算公式即可得出;(2)X 可能的取值为0,1,2,3,利用相互独立事件、互斥事件的概率计算公式即可得出概率、分布列与数学期望.掌握离散型随机变量的分布列,须注意:(1)分布列的结构为两行,第一行为随机变量X 所有可能取得的值;第二行是对应于随机变量X 的值的事件发生的概率.看每一列,实际上是上为“事件”,下为“事件发生的概率”,只不过“事件”是用一个反映其结果的实数表示的.每完成一列,就相当于求一个随机事件发生的概率. (2)要会根据分布列的两个性质来检验求得的分布列的正误.易错点6 混淆互斥事件与相互独立事件而致错甲投篮命中率为0.9,乙投篮命中率为0.8,每人投3次,两人都恰好投中2次的概率是多少?【错解】设“甲恰好投中2次”为事件A ,“乙恰好投中2次”为事件B , 则“两人都恰好投中2次”为事件A B ,所以222233()()()C 0.90.1C 0.80.2P AB P A P B =+=⨯⨯+⨯⨯=0.627.【错因分析】产生错解的原因是把相互独立事件同时发生当成互斥事件来考虑,将“两人都恰好投中2次”理解为“甲恰好投中2次”与“乙恰好投中2次”的和.【试题解析】设“甲恰好投中2次”为事件A ,“乙恰好投中2次”为事件B ,且A ,B 相互独立, 则“两人都恰好投中2次”为事件AB ,所以222233()()()C 0.90.1C 0.80.2P AB P A P B ==⨯⨯⨯⨯⨯=0.093312.1.运用公式P (AB )=P (A )P (B )时一定要注意公式成立的条件,只有当事件A 、B 相互独立时,公式才成立.2.独立重复试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中某事件发生的概率相等.注意恰好与至多(少)的关系,灵活运用对立事件.6.一张储蓄卡的密码共有6位数字,每位数字都可以从09~中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过2次就按对的概率为A .25 B .310 C .15D .110【答案】C【解析】一张储蓄卡的密码共有6位数字,每位数字都可以从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,任意按最后一位数字,不超过2次就按对的概率为: P =19110109+⨯=15. 故选C .【名师点睛】本题考查概率的求法,考查互斥事件概率加法公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.利用互斥事件概率加法公式和相互独立事件概率乘法公式直接求解.一、随机事件与概率 1.事件关系的判断方法对互斥事件要把握住不能同时发生,而对于对立事件除不能同时发生外,其并事件应为必然事件,这些也可类比集合进行理解,具体应用时,可把所有试验结果写出来,看所求事件包含哪些试验结果,从而断定所给事件的关系.2.基本事件个数的计算方法(1)列举法;(2)列表法;(3)利用树状图列举. 3.求互斥事件概率的两种方法(1)直接求法:将所求事件分解为一些彼此互斥的事件的和,运用互斥事件概率的加法公式计算. (2)间接求法:先求此事件的对立事件,再用公式P (A )=1-()P A 求得,即运用逆向思维(正难则反),特别是“至多”“至少”型题目,用间接求法往往会较简便. 二、古典概型1.求古典概型的基本步骤 (1)算出所有基本事件的个数n .(2)求出事件A 包含的所有基本事件数m . (3)代入公式P (A )=mn ,求出P (A ).2.基本事件个数的确定方法(1)列举法:此法适用于基本事件较少的古典概型.(2)列表法:此法适用于从多个元素中选定两个元素的试验,也可看成是坐标法. 3.求与古典概型有关的交汇问题的方法解决与古典概型交汇命题的问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算. 三、几何概型1.求解与长度(角度)有关的几何概型的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度).然后求解,要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度、角度). 2.求解与体积有关的几何概型的方法对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求. 3.求解与面积有关的几何概型的方法求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解. 四、离散型随机变量分布列的常见类型及解题策略(1)与排列组合有关分布列的求法.可由排列组合、概率知识求出概率,再求出分布列. (2)与频率分布直方图有关分布列的求法.可由频率估计概率,再求出分布列.(3)与互斥事件有关分布列的求法.弄清互斥事件的关系,利用概率公式求出概率,再列出分布列.(4)与独立事件(或独立重复试验)有关分布列的求法.先弄清独立事件的关系,求出各个概率,再列出分布列.(5)超几何分布的特点超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:①考察对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体个数X的概率分布.超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.五、n次独立重复试验与二项分布1.条件概率的两种解法(1)定义法:先求P(A)和P(AB),再由P(B|A)()=()P ABP A求P(B|A).(2)基本事件法:借助古典概型概率公式,先求事件A包含的基本事件数n(A).,再求事件AB所包含的基本事件数n(AB),得P(B|A)()() n ABn A =.2.求相互独立事件同时发生的概率的方法(1)利用相互独立事件的概率乘法公式直接求解;(2)正面计算较繁琐或难以入手时,可从其对立事件入手计算.4.古典概型中,A发生的条件下B发生的条件概率公式为P(B|A)()()=()()P AB n ABP A n A=,其中,在实际应用中P(B|A)=()()n ABn A是一种重要的求条件概率的方法.5.相互独立事件与互斥事件的区别相互独立事件是指两个事件发生的概率互不影响,计算式为P(AB)=P(A)P(B).互斥事件是指在同一试验中,两个事件不会同时发生,计算公式为P(A∪B)=P(A)+P(B).6.n次独立重复试验中,事件A恰好发生k次可看作是C kn个互斥事件的和,其中每一个事件都可看作是k 个A事件与n-k个A事件同时发生,只是发生的次序不同,其发生的概率都是p k(1-p)n-k.因此n次独立重复试验中事件A恰好发生k次的概率为C k n p k(1-p)n-k.1.(2018年全国卷II理)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A.112B.114C.115D.1182.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4C.0.6 D.0.73.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A.0.6B.0.5C.0.4D.0.34.“上医医国”出自《国语・晋语八》,比喻高贤能治理好国家.现把这四个字分别写在四张卡片上,其中“上”字已经排好,某幼童把剩余的三张卡片进行排列,则该幼童能将这句话排列正确的概率是A.13B.16C.14D.1125.已知随机变量X服从正态分布N(3,δ2),且P(x≤6)=0.9,则P(0<x<3)=A.0.4 B.0.5C.0.6 D.0.76.已知某运动员每次投篮命中的概率是40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定l,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下10组随机数:907 966 191 925 271 431 932 458 569 683该运动员三次投篮恰有两次命中的概率为A.15B.35C.310D.9107.传说战国时期,齐王与田忌各有上等,中等,下等三匹马,且同等级的马中,齐王的马比田忌的马强,但田忌的上、中等马分别比齐王的中、下等马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹马,每匹马赛一次,赢得两局者为胜.如果齐王将马按上,中,下等马的顺序出阵,而田忌的马随机出阵比赛,则田忌获胜的概率是A.B.C.D.8.有一底面半径为1,高为2的圆柱,点O为圆柱下底面圆的圆心,在这个圆柱内随机取一点P,则点P 到点O的距离大于l的概率为A.13B.23C.34D.149.有三箱粉笔,每箱中有100盒,其中有一盒是次品,从这三箱粉笔中各抽出一盒,则这三盒中至少有一盒是次品的概率是A.0.01×0.992B.0.012×0.99C.13C0.01×0.992D.1-0.99310.运行如图所示的程序框图,设输出数据构成的集合为,从集合中任取一个元素,则函数是增函数的概率为A.B.C.D.11.设函数f(x)=e,01ln e,1ex xx x⎧≤<⎨+≤≤⎩在区间[0,e]上随机取一个实数x,则f(x)的值不小于常数e的概率是A.1eB.1﹣1eC.e1e+D.11e+12.(2018新课标I卷理)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 313.(2018年江苏卷)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.14.(2018上海卷)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是_____.15.已知向量()()2,1,,x y ==,a b 若{}{}1,0,1,2,1,0,1x y ∈-∈-,则向量∥a b 的概率为_______. 16.(1)一个盒子中有6个白球、4个黑球,每次从中不放回地任取1个,连取两次,求在第一次取到白球的条件下,第二次取到黑球的概率为____________;(2)有一批种子的发芽率为0.95,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,这粒种子能成长为幼苗的概率为____________. 17.设集合1{|216}4x A x =<<,()2{|ln 3}B x y x x ==-,从集合A 中任取一个元素,则这个元素也是集合B 中元素的概率是__________.18.设随机变量X 的分布列为则a = ;E (X )= .19.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[)20,25,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.20.为了减少雾霾,还城市一片蓝天,某市政府于12月4日到12月31日在主城区实行车辆限号出行政策,鼓励民众不开车低碳出行,某甲乙两个单位各有200名员工,为了了解员工低碳出行的情况,统计了12月5日到12月14日共10天的低碳出行的人数,画出茎叶图如下:(1)若甲单位数据的平均数是122,求;(2)现从如图的数据中任取4天的数据(甲、乙两单位中各取2天),记其中甲、乙两单位员工低碳出行人数不低于130人的天数为,令,求的分布列和期望.21.某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如下表:从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:(1)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品”的规定?(2)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?22.(2018天津理)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16. 现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足..的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________。
2019年考试大纲解读11 概率与统计(六)统计1.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相关性(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.(七)概率1.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.2.古典概型(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率.3.随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.(二十一)概率与统计1.概率(1)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性. (2)理解超几何分布及其导出过程,并能进行简单的应用.(3)了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.(4)理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.(5)利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义.2.统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.(1)独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.(2)回归分析了解回归分析的基本思想、方法及其简单应用.概率与统计作为高考的必考内容,在2019年的高考中预计仍会以“一小一大”的格局呈现.小题一般比较简单,出现在选择题或填空题中比较靠前的位置,命题角度主要有两个方面:一是统计数据的分析,多以统计图表(折线图或柱状图)的形式提供数据,进行数据的特征分析,如均值、方差、最值点及趋势分析等;二是概率的求解,以古典概型的求解为主,涉及简单的排列组合知识,几何概型可能会与其他知识模块内容结合起来考查,如与函数、不等式、解析几何或定积分的计算等相结合.解答题一般出现在第18题或第19题的位置,属于中档题目,题目涉及两个以上的知识模块,具有一定的综合性.命题角度主要有三个方面:一是统计图表与分布列的综合,涉及用频率估计概率、互斥事件、对立事件以及相互独立事件等的概率求解,以离散型随机变量的分布列、数学期望的求解为核心;二是统计数据的数字特征与回归分析、独立性检验等的综合,此类问题计算量较大,注重数据的分析与应用;三是统计图表与函数内容的结合,包括函数解析式的求解与应用等,这有可能重新成为命题的热点.考向一三种抽样方法样题1 从某社区65户高收入家庭,280户中等收入家庭,105户低收入家庭中选出100户调查社会购买力的某一项指标,应采用的最佳抽样方法是A.系统抽样B.分层抽样C.简单随机抽样D.各种方法均可【答案】B【解析】从某社区65户高收入家庭,280户中等收入家庭,105户低收入家庭中选出100户调查社会购买力的某一项指标,因为社会购买力的某项指标,受到家庭收入的影响,而社区中各个家庭收入差别明显,所以应用分层抽样法,故选B.考向二频率分布直方图的应用样题2 (2017新课标全国Ⅱ理科)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg).其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:,(2)根据箱产量的频率分布直方图得列联表:2K的观测值,由于,故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图面积为,。
2019年考试大纲解读11 概率与统计编者寄语高考数学能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。
要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义。
高考数学要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。
高考数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和应用性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求。
《考试大纲》是高考数学命题专家的指导思想,更是高中生进行科学高效复习数学的行动指南。
因此,研读考纲,研究高考,对赢取新时代新高考的新胜利,具有十分重要的现实意义。
(六)统计1.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相关性(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.(七)概率1.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.2.古典概型(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率.3.随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.(二十一)概率与统计1.概率(1)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性. (2)理解超几何分布及其导出过程,并能进行简单的应用.(3)了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.(4)理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.(5)利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义.2.统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.(1)独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.(2)回归分析了解回归分析的基本思想、方法及其简单应用.概率与统计作为高考的必考内容,在2019年的高考中预计仍会以“一小一大”的格局呈现.小题一般比较简单,出现在选择题或填空题中比较靠前的位置,命题角度主要有两个方面:一是统计数据的分析,多以统计图表(折线图或柱状图)的形式提供数据,进行数据的特征分析,如均值、方差、最值点及趋势分析等;二是概率的求解,以古典概型的求解为主,涉及简单的排列组合知识,几何概型可能会与其他知识模块内容结合起来考查,如与函数、不等式、解析几何或定积分的计算等相结合.解答题一般出现在第18题或第19题的位置,属于中档题目,题目涉及两个以上的知识模块,具有一定的综合性.命题角度主要有三个方面:一是统计图表与分布列的综合,涉及用频率估计概率、互斥事件、对立事件以及相互独立事件等的概率求解,以离散型随机变量的分布列、数学期望的求解为核心;二是统计数据的数字特征与回归分析、独立性检验等的综合,此类问题计算量较大,注重数据的分析与应用;三是统计图表与函数内容的结合,包括函数解析式的求解与应用等,这有可能重新成为命题的热点.考向一三种抽样方法样题1 从某社区65户高收入家庭,280户中等收入家庭,105户低收入家庭中选出100户调查社会购买力的某一项指标,应采用的最佳抽样方法是A.系统抽样B.分层抽样C.简单随机抽样D.各种方法均可【答案】B【解析】从某社区65户高收入家庭,280户中等收入家庭,105户低收入家庭中选出100户调查社会购买力的某一项指标,因为社会购买力的某项指标,受到家庭收入的影响,而社区中各个家庭收入差别明显,所以应用分层抽样法,故选B.考向二频率分布直方图的应用样题2 (2017新课标全国Ⅱ理科)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg).其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:,(2)根据箱产量的频率分布直方图得列联表:2K的观测值,由于,故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图面积为,箱产量低于55kg的直方图面积为,故新养殖法箱产量的中位数的估计值为.【名师点睛】利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.考向三线性回归方程及其应用样题3 (2018新课标全国Ⅱ理科)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1217,,…,)建立模型①:;根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立模型②:ˆ9917.5y t =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案】(1)见解析;(2)利用模型②得到的预测值更可靠.理由见解析. 【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为(亿元).(2)利用模型②得到的预测值更可靠. 理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线上下.这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠.考向四概率的求解样题4(2018新课标全国Ⅱ理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A.112B.114C.115D.118【答案】C【名师点睛】古典概型中基本事件数的探求方法:(1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.样题5 如图,茎叶图表示的是甲,乙两人在5次综合测评中的成绩,其中一个数字被污染,则甲的平均成绩超过乙的平均成绩的概率为A.12B.35C.45D.710【答案】C考向五 离散型随机变量及其分布列、均值与方差样题6 (2018新课标全国Ⅰ理科)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为)(p f ,求)(p f 的最大值点0p .(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; (ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验? 【答案】(1)00.1p =;(2)(i )490;(ii )应该对余下的产品作检验. 【解析】(1)20件产品中恰有2件不合格品的概率为.因此.令()0f p '=,得0.1p =.当(0,0.1)p ∈时,()0f p '>;当(0.1,1)p ∈时,()0f p '<. 所以()f p 的最大值点为00.1p =.(2)由(1)知,0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知,,即.所以.(ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于400EX >,故应该对余下的产品作检验.考向六 正态分布样题7 已知随机变量ξ服从正态分布()2,N μσ,若,则等于A .0.3B .0.35C .0.5D .0.7【答案】B【解析】根据正态分布密度曲线的对称性可知,,函数的对称轴是4ξ=,所以,故选B .样题8 (2017新课标全国Ⅰ理科)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.269.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得,,其中i x 为抽取的第i 个零件的尺寸,.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则,,.(2)(i )如果生产状态正常,一个零件尺寸在之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的. (ii )由,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=, 由样本数据可以看出有一个零件的尺寸在之外,因此需对当天的生产过程进行检查.剔除之外的数据9.22,剩下数据的平均数为,因此μ的估计值为10.02.,剔除之外的数据9.22,剩下数据的样本方差为,因此σ的估计值为.【名师点睛】数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平.求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望.正态分布是一种重要的分布,之前考过一次,尤其是正态分布的3σ原则.考向七独立性检验样题9 (2018年高考新课标Ⅲ卷理)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,【答案】(1)第二种生产方式的效率更高,理由见解析;(2)见解析;(3)能.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.学-科网以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知.列联表如下:(3)由于,所以有99%的把握认为两种生产方式的效率有差异.。
原创精品资源学科网独家享有版权,侵权必究!
1 专题11 统计
为了了解2016年参加市运动会的240名运动员的身高情况,从中抽取40名运动员进行测量.下列说法正确的是
A .总体是240名运动员
B .个体是每一名运动员
C .40名运动员的身高是一个个体
D .样本容量是40
【错解】选择A 、B 、C 中的一个.
【错因分析】对于选项A 、B ,对总体、个体、样本的概念把握不准,误将考察的对象当作运动员;对于选项C ,把个体和样本混淆致误.
【试题解析】选D .根据统计的相关概念并结合题意可得,此题的总体、个体、样本这三个概念的考察对象都是运动员的身高,而不是运动员,并且一个个体是指一名运动员的身高,选项A ,B 表达的对象都是运动员,选项C 未将个体和样本理解透彻.在这个问题中,总体是240名运动员的身高,个体是每名运动员的身高,样本是40名运动员的身高,样本容量是40.因此选D .
【参考答案】D .
1.明确相关概念
对总体、个体、样本、样本容量的概念要熟练把握,要明确总体与样本的包含关系及样本与样本容量的区别,如本例选项C ,是对概念把握不准.
2.注意考察对象
解决考查总体、个体、样本、样本容量的概念问题时,关键是明确考察对象,根据相关的概念可知总体、个体与样本的考察对象是相同的,如本例中选项A ,B 表达的对象都是运动员的身高而不是运动员.。
2019年高考数学易混淆知识点总结易错点求函数定义域忽视细节致误错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。
在求一般函数定义域时要注意下面几点:(1)分母不为0;(2)偶次被开放式非负;(3)真数大于0;(4)0的0次幂没有意义。
函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。
对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。
易错点带有绝对值的函数单调性判断错误错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。
研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。
对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
易错点求函数奇偶性的常见错误错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。
在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。
易错点抽象函数中推理不严密致误错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。
专题02 函数易错点1 换元求解析式时忽略自变量范围的变化已知3f x -=,求f (x )的解析式.t =,则x =t 2+1,所以f (t )=3-(t 2+1)=2-t 2,即有f (x )=2-x 2.【错因分析】本例的错误是由于忽视了已知条件中“f ”作用的对象“是有范围限制的.利用换元法求函数的解析式时,一定要注意换元后新元的限制条件.t =,则t ≥0,且x =t 2+1,所以f (t )=3-(t 2+1)=2-t 2(t ≥0), 即f (x )=2-x 2(x ≥0).【参考答案】f (x )=2-x 2(x ≥0).利用换元法求函数解析式时,一定要注意保持换元前后自变量的范围.1.已知)1fx =+,则()f x =A .()211x x -≥ B .21x - C .()211x x +≥D .21x +注意:用t 替换后,要注意t 的取值范围为1t ≥,忽略了这一点,在求()f x 时就会出错.本题也可用配凑法,具体解析过程如下:))211111fx x =+=+-=-11≥,所以()()211f x x x =-≥.故选A .易错点2 分段函数的参数范围问题设函数31,1()2,1x x x f x x -<⎧=⎨≥⎩,则满足()()()2a f f f a =的a 的取值范围是A .2[,1]3B .[0,1]C .2[,)3+∞D .[1,+∞)【错解】当a <1时,f (a )=3a -1, 此时f (f (a ))=3(3a -1)-1=9a -4,()3122af a -=,方程无解.当a≥1时,()21af a >=,此时()()()22222aaa f ff a =,=, 方程恒成立,故选D .【错因分析】对字母a 的讨论不全而造成了漏解,实际上应先对3a -1与1的大小进行探讨,即参数a 的分界点应该有2个,a =23或a =1,所以在分段函数中若出现字母且其取值不明确时,应先进行分类讨论.【试题解析】①当23a <时,()311f a a <=-,()()331()194f f a a a =--=-,()3122a f a -=,显然()()()2f a f f a ≠.②当23≤a <1时,()311f a a ≥=-,()()()31,31222a a f a f f a --==,故()()()2af f f a =.③当1a ≥时,()21af a >=,()()22aff a =,()222aa f=,故()()()2af f f a =.综合①②③知a ≥23.【参考答案】C求分段函数应注意的问题:在求分段函数的值f (x 0)时,首先要判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.2.已知函数()21,022,04xa x f x x x x ⎧⎛⎫-≤<⎪ ⎪=⎨⎝⎭⎪-+≤≤⎩的值域是[]8,1-,则实数a 的取值范围是A .(],3-∞- B .[)3,0- C .[]3,1--D .{}3-【答案】B易错点3 对单调区间和在区间上单调的两个概念理解错误若函数f (x )=x 2+2ax +4的单调递减区间是(-∞,2],则实数a 的取值范围是________.【错解】函数f (x )的图象的对称轴为直线x =-a ,由于函数在区间(-∞,2]上单调递减,因此-a ≥2,即a ≤-2.【错因分析】错解中把单调区间误认为是在区间上单调.【试题解析】因为函数f (x )的单调递减区间为(-∞,2],且函数f (x )的图象的对称轴为直线x =-a , 所以有-a =2,即a =-2. 【参考答案】a =-2单调区间是一个整体概念,比如说函数的单调递减区间是I ,指的是函数递减的最大范围为区间I .而函数在某一区间上单调,则指此区间是相应单调区间的子区间.所以我们在解决函数的单调性问题时,一定要仔细读题,明确条件的含义.3.已知函数()()2212f x x a x =+-+在区间(],5-∞上为减函数,则实数a 的取值范围为__________.【解析】∵函数()2212y x a x =+-+的图象是开口方向朝上,以直线1x a =-为对称轴的抛物线,若函数()2212y x a x =+-+在区间(],5-∞上是减函数,则51a ≤-,即4a ≤-.【答案】4a ≤-易错点4 忽略定义域的对称导致函数奇偶性判断错误判断下列函数的奇偶性: (1)f (x )=(x -1)x +1x -1; (2)f (x )=1-x 2|x +2|-2.【错解】(1)f (x )=(x -1)·x +1x -1=x 2-1.∵()()f f x x -,∴f (x )为偶函数.(2) (2)||2f x x ---=, ∵f (-x )≠-f (x )且f (-x )≠f (x ),∴f (x )为非奇非偶函数.【错因分析】要判断函数的奇偶性,必须先求函数定义域(看定义域是否关于原点对称).有时还需要在定义域制约条件下将f (x )进行变形,以利于判定其奇偶性. 【试题解析】(1)由x +1x -1≥0得{x |x >1,或x ≤-1},∵f (x )定义域关于原点不对称, ∴f (x )为非奇非偶函数.(2)由⎩⎪⎨⎪⎧1-x 2≥0|x +2|-2≠0得-1≤x ≤1且x ≠0,定义域关于原点对称,又-1≤x ≤1且x ≠0时,f (x )=1-x 2x +2-2=1-x 2x ,∵()()f x f x x-=--,∴f (x )为奇函数.【参考答案】(1)非奇非偶函数;(2)奇函数.根据函数奇偶性的定义,先看函数的定义域是否关于原点对称,若是,再检查函数解析式是否满足奇偶性的条件.函数奇偶性判断的方法 (1)定义法:(2)图象法:即若函数的图象关于原点对称,则函数为奇函数;若函数图象关于y 轴对称,则函数为偶函数.此法多用在解选择填空题中.4.下列函数为奇函数的是 A .ln y x =B .e xy =C .sin y x x =D .e e x xy -=-【解析】对于选项A ,定义域为()0,+∞,不关于原点对称,故不是奇函数,所以选项A 错; 对于选项B ,()()1e ex x f x f x --==≠-,故不是奇函数,所以选项B 错; 对于选项C ,()()()()sin sin sin f x x x x x x x f x -=--=--==,所以sin y x x =为偶函数,故选项C 错;对于选项D ,()()()e e e e x x x x f x f x ---=-=--=-,所以函数e e xxy -=-为奇函数,故选项D 正确. 故选D. 【答案】D判断函数的奇偶性,应先求函数的定义域,奇函数、偶函数的定义域应关于原点对称,不关于原点对称的既不是奇函数也不是偶函数.再找()f x 与()f x -的关系,若()()f x f x -=,则函数()f x 为偶函数;若()()f x f x -=-,则函数()f x 为奇函数.易错点5 因忽略幂底数的范围而导致错误化简(1-a )[(a -1)-2(-a )12 ] 12=________.【错解】(1-a )[(a -1)-2·(-a )12 ]12 =(1-a )(a -1)-1·(-a )14 =-(-a )14 .【错因分析】忽略了题中有(-a )12 ,即相当于告知-a ≥0,故a ≤0,这样,[(a -1)-2]12 ≠(a -1)-1.实际上在解答本类题时除了灵活运用运算法则外还要关注条件中的字母是否有隐含的条件.在利用指数幂的运算性质时,要关注条件中有无隐含条件,在出现根式时要注意是否是偶次方根,被开方数是否符合要求,如本例中12()a -,则必须有-a ≥0,即a ≤0.50,0)a b ><的结果是 __________.【解析】因为0a >,0b <,所以0,a b ->a b =-,故答案为a b -.【答案】a b -易错点6 忽略了对数式的底数和真数的取值范围对数式log (a -2)(5-a )=b 中,实数a 的取值范围是 A .(-∞,5) B .(2,5)C .(2,+∞)D .(2,3)∪(3,5)【错解】由题意,得5-a >0,∴a <5.故选A .【错因分析】该解法忽视了对数的底数和真数都有范围限制,只考虑了真数而忽视了底数. 【试题解析】由题意,得⎩⎪⎨⎪⎧5-a >0,a -2>0,a -2≠1,∴2<a <3或3<a <5.故选D .【参考答案】D对数的真数与底数都有范围限制,不可顾此失彼.6.方程()()2lg 21lg 4x x -=-的解是__________.【解析】由题意知2221421040x x x x ⎧-=-⎪->⎨⎪->⎩,解得3x =或1x =-(不合题意,舍去),故3x =.【答案】3x =易错点7 复合函数理解不到位出错已知函数y =log 2(x 2-x -a )的值域为R ,求实数a 的取值范围.【错解】设f (x )=x 2-x -a ,则y =log 2f (x ),依题意,f (x )>0恒成立,∴Δ=1+4a <0, ∴a <-14,即a 的范围为(-∞,-14).【错因分析】以上解法错误在于没有准确地理解y =log 2(x 2-x -a )值域为R 的含义.根据对数函数的图象和性质,我们知道,当且仅当f (x )=x 2-x -a 的值能够取遍一切正实数.........时,y =log 2(x 2-x -a )的值域才为R .而当Δ<0时,f (x )>0恒成立,仅仅说明函数定义域为R ,而f (x )不一定能取遍一切正实数(一个不漏).要使f (x )能取遍一切正实数,作为二次函数,f (x )图象应与x 轴有交点(但此时定义域不再为R ).1.求复合函数单调性的具体步骤是: (1)求定义域; (2)拆分函数;(3)分别求y =f (u ),u =φ(x )的单调性; (4)按“同增异减”得出复合函数的单调性.2.复合函数y =f [g (x )]及其里层函数μ=g (x )与外层函数y =f (μ)的单调性之间的关系(见下表).7.已知函数f (x )=lg(ax 2+2x +1) .(1)若函数f (x )的定义域为R ,求实数a 的取值范围; (2)若函数f (x )的值域为R ,求实数a 的取值范围. 【解析】(1)欲使函数f (x )的定义域为R ,只需ax 2+2x +1>0对x ∈R 恒成立,所以有0=44 0a a ⎧⎨∆-<⎩>,解得a >1,即得a 的取值范围是(1,+∞).(2)欲使函数 f (x )的值域为R ,即要ax 2+2x +1 能够取到(0,+∞)上的所有值. ①当a =0时,a x 2+2x +1=2x +1,当x ∈(-21,+∞)时满足要求;②当a ≠0时,应有044 0a a ∆⎧⎨-≥⎩>=⇒ 0<a ≤1,当x ∈(-∞,x 1)∪(x 2,+∞)时满足要求(其中x 1,x 2是方程ax 2+2x +1=0的两根). 综上,a 的取值范围是[0,1].【参考答案】(1)(1,+∞);(2)[0,1].注意y =lg (ax 2+2x +1)的值域为R 与u =ax 2+2x +1恒为正不一样.前者要求函数u =ax 2+2x +1能取遍一切正实数,后者只要求u =ax 2+2x +1取正时,对应的x ∈R 即可.易错点8 零点存在性定理使用条件不清致误函数1()f x x x=+的零点个数为 A .0B .1C .2D .3【错解】因为(1)20f -=-<,(1)20f =>,所以函数()f x 有一个零点,故选B .【错因分析】函数的定义域决定了函数的一切性质,分析函数的有关问题时必须先求出函数的定义域.通过作图(图略),可知函数1()f x x x=+的图象不是连续不断的,而零点存在性定理不能在包含间断点的区间上使用.【试题解析】函数()f x 的定义域为{|0}x x ≠,当0x >时,()0f x >;当0x <时,()0f x <.所以函数()f x 没有零点,故选A . 【参考答案】A零点存在性定理成立的条件缺一不可,如果其中一个条件不成立,那么就不能使用该定理.8.函数()33x f x a x=--的一个零点在区间()1,2内,则实数a 的取值范围是 A .151,2⎛⎫⎪⎝⎭B .()3,6C .()0,6D .150,2⎛⎫⎪⎝⎭【解析】由基本初等函数的性质,可得函数()33x f x a x =--单调递增,Q 函数()33x f x a x=--的一个零点在区间()1,2内,∴由题意可得()()1020f f ⎧<⎪⎨>⎪⎩,解得1502a <<.故选D .【答案】D一、函数(1)映射:设A ,B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射.(2)函数:非空数集A →非空数集B 的映射,其要素为定义域A 、对应关系f ,函数的值域()C C B ⊆. 求函数定义域的主要依据: ①分式的分母不为0;②偶次方根的被开方数不小于0; ③对数函数的真数大于0;④指数函数和对数函数的底数大于0且不等于1;⑤正切函数tan y x =中,x 的取值范围是x ∈R ,且ππ+,2x k k ≠∈Z .求函数定义域的类型与方法(1)已给出函数解析式:函数的定义域是使解析式有意义的自变量的取值集合. (2)实际问题:求函数的定义域既要考虑解析式有意义,还应考虑使实际问题有意义. (3)复合函数问题:①若f (x )的定义域为[a ,b ],f (g (x ))的定义域应由a ≤g (x )≤b 解出; ②若f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在[a ,b ]上的值域. [注意] ①f (x )中的x 与f (g (x ))中的g (x )地位相同;②定义域所指永远是x 的范围. 二、函数的性质 (1)函数的奇偶性如果对于函数y =f (x )定义域内的任意一个x ,都有()()f x f x -=-(或()()f x f x -=),那么函数f (x )就叫做奇函数(或偶函数).(2)函数的单调性函数的单调性是函数的又一个重要性质.给定区间D 上的函数f (x ),若对于任意12x x D ∈,,当12<x x 时,都有12(<)f x f x )( (或12(>)f x f x )(),则称f (x )在区间D 上为单调增(或减)函数.反映在图象上,若函数f (x )是区间D 上的增(减)函数,则图象在D 上的部分从左到右是上升(下降)的.如果函数f (x )在给定区间(a ,b )上恒有f ′(x )>0(f ′(x )<0),则f (x )在区间(a ,b )上是增(减)函数,(a ,b )为f (x )的单调增(减)区间.(3)函数的周期性设函数y =f (x ),x ∈D ,如果存在非零常数T ,使得对任意x ∈D ,都有f (x +T )=f (x ),则函数 f (x )为周期函数,T 为y =f (x )的一个周期. (4)最值一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足: ①对于任意的x ∈I ,都有f (x )≤M (或f (x )≥M );②存在0x I ∈,使得()0f x M =,那么称M 是函数y =f (x )的最大值(或最小值). 三、函数图象(1)函数图象部分的复习应该解决好画图、识图、用图三个基本问题,即对函数图象的掌握有三方面的要求:①会画各种简单函数的图象;②能依据函数的图象判断相应函数的性质; ③能用数形结合的思想以图辅助解题. (2)利用函数图象的变换作图 ①平移变换0,0,()()h h h h y f x y f x h ><=−−−−−−−→=-右移个单位长度左移个单位长度, 0,0,()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位长度下移个单位长度. ②伸缩变换101,11,()()y f x y f x ωωωωω<<>=−−−−−−−−−→=横坐标伸长到原来的倍横坐标缩短到原来的倍, 01,1,()()A A A A y f x y Af x <<>=−−−−−−−−−→=纵坐标缩短到原来的倍纵坐标伸长到原来的倍.③对称变换()()x y f x y f x =−−−−−→=-关于轴对称, ()()y y f x y f x =−−−−−→=-关于轴对称, =()(2)x a y f x y f a x =−−−−−−→=-关于直线对称, ()()y f x y f x =−−−−−→=--关于原点对称.四、函数与方程、函数的应用 1.函数的零点(1)函数的零点:对于函数f (x ),我们把使f (x )=0的实数x 叫做函数f (x )的零点.(2)函数的零点与方程根的联系:函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.(3)零点存在性定理:如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,且有f (a )· f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b )使得f (c )=0, 这个c 也就是方程f (x )=0的根.2.二分法求函数零点的近似值,二分法求方程的近似解.应用二分法求函数零点近似值(方程的近似解)时,应注意在第一步中要使:(1)区间[,]a b 的长度尽量小;(2)()f a ,()f b 的值比较容易计算,且()()0f a f b ⋅<.3.应用函数模型解决实际问题的一般步骤如下:⇒⇒⇒读题建模求解反馈文字语言数学语言数学应用检验作答与函数有关的应用题,经常涉及物价、路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题.解答这类问题的关键是建立相关的函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.1.[2018年高考新课标Ⅲ卷文科]下列函数中,其图象与函数ln y x =的图象关于直线1x =对称的是 A .()ln 1y x =- B .()ln 2y x =- C .()ln 1y x =+D .()ln 2y x =+2.[2018年高考浙江卷]函数y =2xsin2x 的图象可能是A .B .C .D .3.[2017新课标I 卷文]已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图象关于直线x =1对称D .y =()f x 的图象关于点(1,0)对称4.[2017年新课标II 卷文]函数2()ln(28)f x x x =--的单调递增区间是 A .(,2)-∞- B .(,1)-∞ C .(1,)+∞D .(4,)+∞5.已知函数2log ,0()3,0,x x x f x x >⎧=⎨≤⎩则1[()]4f f =A .19 B .9 C .19-D .9-6.已知函数()log (6)a f x ax =-在(0,2)上为减函数,则a 的取值范围是 A .(1,3] B .(1,3) C .(0,1)D .[3,+∞)7.已知单调函数()f x ,对任意的x ∈R 都有()26f f x x ⎡⎤-=⎣⎦,则()2f = A .2 B .4 C .6D .88.函数()f x 对任意的实数x 都有()()()221f x f x f +-=,若()1y f x =-的图象关于直线1x =对称,且()02f =,则()()20172018f f += A .0 B .2 C .3D .49.已知函数()2f x x x x =-+,则下列结论正确的是A .()f x 是偶函数,递增区间是()0,+∞B .()f x 是偶函数,递减区间是(),1-∞-C .()f x 是奇函数,递增区间是(),1-∞-D .()f x 是奇函数,递增区间是()1,1-10.若函数()()20.9log 54f x x x =+-在区间()1,1a a -+上单调递增,且0.9lg0.9,2b c ==,则A .c b a <<B .b c a <<C .a b c <<D .b a c <<11.[2018年高考新课标I 卷文科]设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是A .(]1-∞-, B .()0+∞, C .()10-,D .()0-∞,12.[2018年高考新课标I 卷文科]已知函数()()22log f x x a =+,若()31f =,则a =________. 13.若幂函数222)33(--⋅+-=m mx m m y 的图象不过原点,则m 的取值是______.14.若函数()211e 1x a f x x ⎛⎫+=- ⎪+⎝⎭为偶函数,则a =__________.15.若函数在[-1,2]上的最大值为4,最小值为m ,且函数在上是增函数,则a =______.16.设函数()f x 在[)1,+∞上为增函数,()30f =,且()()1g x f x =+为偶函数,则不等式()220g x -<的解集为__________.学科网17.已知函数()24,1ln 1,1x x a x f x x x ⎧-+<=⎨+≥⎩,若方程()2f x =有两个解,则实数a 的取值范围是______.18.[2017新课标III 卷文]设函数10()20x x x f x x +≤⎧=⎨>⎩,,,则满足1()()12f x f x +->的x 的取值范围是______.19.[2018年高考江苏卷]函数()f x 满足()()()4f x f x x +=∈R ,且在区间(]2,2-上,()πcos ,02,21,20,2x x f x x x ⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩则()()15f f 的值为________.20.设函数32()31f x x x =++.已知0a ≠,且2()()()()f x f a x b x a -=--,x ÎR ,则实数a =_____,b =______.21.定义在实数集R 上的函数()f x 满足()()()44f x f x f x =-=-,当[]0,2x ∈时,()31xf x x =+-,则函数()()()2log 1g x f x x =--的零点个数为__________. 22.[2018年高考浙江卷]已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________。
2018高考文科试题解析分类汇编:统计1.【2018高考新课标文3】在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,xn不全相等)的散点图中,若所有样本点(x i ,y i )(i=1,2,…,n)都在直线y=12x+1上,则这组样本数据的样本相关系数为(A )-1 (B )0(C )12(D )1【答案】D【【解析】有题设知,这组样本数据完全正相关,故其相关系数为1,故选 D.2.【2018高考山东文4】在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是 (A)众数(B)平均数(C)中位数(D)标准差【答案】D考点:求样本方差、标准差解析: A 样本的平均数为86,B 样本的平均数为88A 样本的方差为4)8688(104)8686(103)8684(102)8682(1012222A 样本的标准差为 2B 样本的方差为4)8890(104)8888(103)8886(102)8884(1012222B 样本的标准差为2,,两者相等3.【2018高考四川文3】交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。
假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人。
若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为()A 、101B 、808C 、1212 D、2018【答案】B [解析]N=80812964312962512962196[点评]解决分层抽样问题,关键是求出抽样比,此类问题难点要注意是否需要剔除个体. 4.【2018高考陕西文3】对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则改样本的中位数、众数、极差分别是()A .46,45,56B .46,45,53C.47,45,56 D.45,47,53【答案】A.【解析】根据图形,知共有30个数据,所以中位数是(45+47)÷2=46,众数是45,极差是68-12=56.故选A.5.【2018高考江西文6】小波一星期的总开支分布图如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为A.30%B.10%C.3%D.不能确定【答案】C【解析】观察图2得,小波一星期的食品开支为:30401008050300元;观察图1得,小波一星期的总开支为300100030%元,所以小波一星期的鸡蛋开支占总开支的百分比为303%1000.故选 C.【点评】本题考查统计图的实际应用,体现了考纲中要求了解常见的统计方法,并能利用这些方法解决一些实际问题,来年统计图很可能仍与实际问题结合考查,难度一般较小.6.【2018高考湖南文5】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为y=0.85x-85.71,则下列结论中不正确...的是A.y与x具有正的线性相关关系B.回归直线过样本点的中心(x,y)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg【答案】D【解析】由回归方程为y=0.85x-85.71知y随x的增大而增大,所以y与x具有正的线性相关关系,由最小二乘法建立的回归方程得过程知?()y bx a bx y bx a y bx,所以回归直线过样本点的中心(x,y),利用回归方程可以预测估计总体,所以D不正确. 【点评】本题组要考查两个变量间的相关性、最小二乘法及正相关、负相关的概念,并且是找不正确的答案,易错.7.【2018高考湖北文2】容量为20的样本数据,分组后的频数如下表则样本数据落在区间[10,40]的频率为A 0.35 B 0.45 C 0.55 D 0.65 【答案】B【解析】由频率分布表可知:样本数据落在区间[10,40)内的頻数为2+3+4=9,样本总数为23454220,故样本数据落在区间[10,40)内频率为90.4520.故选 B.【点评】本题考查频率分布表的应用,频率的计算.对于頻数、频率等统计问题只需要弄清楚样本总数与各区间上样本的个数即可,用区间上样本的个数除以样本总数就可得到相应区间上的样本频率.来年需注意频率分布直方图与频率分布表的结合考查.8.【2018高考广东文13由正整数组成的一组数据1234,,,x x x x ,其平均数和中位数都是2,且标准差等于1,则这组数据为 .(从小到大排列)【答案】1,1,3,3【解析】不妨设1234x x x x 得:231234144,84x x x x x x x x 2222212341(2)(2)(2)(2)420,1,2isx x x x x ①如果有一个数为0或4;则其余数为2,不合题意②只能取21ix ;得:这组数据为1,1,3,39.【2018高考山东文14】右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.【答案】9考点:频率分布直方图解析:利用组距和频率的关系,通过比例关系可直接解决。
专题概率与统计1.【2019年高考全国Ⅲ卷文数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6C.0.7 D.0.82.【2019年高考全国Ⅰ卷文数】某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生B.200号学生C.616号学生D.815号学生3.【2019年高考全国Ⅱ卷文数】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A.23B.35C.25D.154.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________.5.【2019年高考全国Ⅱ卷文数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________.6.【2019年高考全国Ⅰ卷文数】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.7.【2019年高考全国Ⅱ卷文数】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.8.【2019年高考全国Ⅲ卷文数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).9.【2019年高考天津卷文数】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?A B C D E F.享受(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为,,,,,情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.10.【2019年高考北京卷文数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(1)估计该校学生中上个月A,B两种支付方式都使用的人数;(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000元的人数有变化?说明理由.11.【安徽省江淮十校2019届高三年级5月考前最后一卷】《易经》是我国古代预测未来的著作,其中同时抛掷三枚古钱币观察正反面进行预测未知,则抛掷一次时出现两枚正面、一枚反面的概率为A .18 B .14 C .38D .1212.【山东省济宁市2019届高三第一次模拟考试】某学校从编号依次为01,02,…,90的90个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为14,23,则该样本中来自第四组的学生的编号为 A .32 B .33 C .41D .4213.【河南省洛阳市2019届高三第三次统一考试】已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A .100,10B .100,20C .200,10D .200,2014.【西藏拉萨中学2019届高三第六次月考】某次知识竞赛中,四个参赛小队的初始积分都是10分,在答题过程中,各小队每答对1题加0.5分,若答题过程中四个小队答对的题数分别是3道,7道,7道,3道,则四个小队积分的方差为 A .0.5 B .0.75 C .1D .1.2515.【陕西省2019届高三第三次联考】口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.38,摸出白球的概率是0.32,那么摸出黑球的概率是 A .0.42 B .0.28 C .0.3D .0.716.【河南省郑州市2019届高三第三次质量检测】某同学10次测评成绩的数据如茎叶图所示,总体的中位数为12,若要使该总体的标准差最小,则42x y 的值是A .12B .14C .16D .1817.【江西省新八校2019届高三第二次联考】某学校高一年级1802人,高二年级1600人,高三年级1499人,先采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三三个年级中抽取的人数分别为 A .35,33,30 B .36,32,30 C .36,33,29D .35,32,3118.【广东省汕头市2019届高三第二次模拟考试(B 卷)】在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是A .成绩在[70,80]分的考生人数最多B .不及格的考生人数为1000人C .考生竞赛成绩的平均分约70.5分D .考生竞赛成绩的中位数为75分19.【福建省泉州市2019届高三第二次(5月)质检】已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则 A .270,75x s =< B .270,75x s => C .270,75x s ><D .270,75x s ><20.【北京市清华大学附属中学2019届高三第三次模拟考试】手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性、300名男性)进行调查,对手机进行评分,评分的频数分布表如下:(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(2)把评分不低于70分的用户称为“评分良好用户”,能否有90%的把握认为“是否是评分良好用户”与性别有关?参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.21.【2019年甘肃省兰州市高考数学一诊】“一本书,一碗面,一条河,一座桥”曾是兰州的城市名片,而现在“兰州马拉松”又成为了兰州的另一张名片,随着全民运动健康意识的提高,马拉松运动不仅在兰州,而且在全国各大城市逐渐兴起,参与马拉松训练与比赛的人口逐年增加.为此,某市对人们参加马拉松运动的情况进行了统计调查.其中一项调查是调查人员从参与马拉松运动的人中随机抽取200人,对其每周参与马拉松长跑训练的天数进行统计,得到以下统计表:若某人平均每周进行长跑训练天数不少于5天,则称其为“热烈参与者”,否则称为“非热烈参与者”.(1)经调查,该市约有2万人参与马拉松运动,试估计其中“热烈参与者”的人数;(2)根据上表的数据,填写下列22⨯列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“是否热烈参与马拉松”与性别有关?参考公式及数据:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.22.【四川省成都七中2019届高三5月高考模拟测试】某学校为担任班主任的教师办理手机语音月卡套餐,为了解通话时长,采用随机抽样的方法,得到该校100位班主任每人的月平均通话时长T(单位:分钟)的数据,其频率分布直方图如图所示,将频率视为概率.(1)求图中m的值;(2)估计该校担任班主任的教师月平均通话时长的中位数;(3)在[450,500),[500,550]这两组中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求抽取的2人恰在同一组的概率.23.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考(六)】某种产品的质量按照其质量指标值M进行等级划分,具体如下表:现从某企业生产的这种产品中随机抽取了100件作为样本,对其质量指标值M进行统计分析,得到如图所示的频率分布直方图.(1)记A表示事件“一件这种产品为二等品或一等品”,试估计事件A的概率;(2)已知该企业的这种产品每件一等品、二等品、三等品的利润分别为10元、6元、2元,试估计该企业销售10000件该产品的利润;(3)根据该产品质量指标值M的频率分布直方图,求质量指标值M的中位数的估计值(精确到0.01).专题 概率与统计1.【2019年高考全国Ⅲ卷文数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5 B .0.6 C .0.7D .0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70, 则其与该校学生人数之比为70÷100=0.7.故选C .【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.2.【2019年高考全国Ⅰ卷文数】某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生D .815号学生【答案】C【解析】由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,解得15n =,不合题意;若200610n =+,解得19.4n =,不合题意;若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C .3.【2019年高考全国Ⅱ卷文数】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23 B .35 C .25D .15【答案】B【分析】首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式即可求解.【解析】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B b c A ,{,,},{,,},{,,}b c B b A B c A B ,共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,,},{,,}b c A b c B ,共6种, 所以恰有2只做过测试的概率为63105=,故选B . 【名师点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________. 【答案】53【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 5.【2019年高考全国Ⅱ卷文数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________. 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.6.【2019年高考全国Ⅰ卷文数】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.【答案】(1)男、女顾客对该商场服务满意的概率的估计值分别为0.8,0.6;(2)有95%的把握认为男、女顾客对该商场服务的评价有差异.【解析】(1)由调查数据,男顾客中对该商场服务满意的比率为400.8 50=,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为300.6 50=,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)由题可得22100(40203010)4.76250507030K⨯⨯-⨯=≈⨯⨯⨯.由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异.7.【2019年高考全国Ⅱ卷文数】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.【答案】(1)产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%;(2)这类企业产值增长率的平均数与标准差的估计值分别为30%,17%. 【解析】(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=. 产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%. (2)1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=, ()52211100i ii s n y y ==-∑ 222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦ =0.0296,0.020.17s ==≈,所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.8.【2019年高考全国Ⅲ卷文数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1)0.35a =,0.10b =;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00. 【解析】(1)由已知得0.700.200.15a =++,故0.35a =.10.050.150.700.10b=---=.(2)甲离子残留百分比的平均值的估计值为20.1530.2040.3050.2060.1070.05 4.05⨯+⨯+⨯+⨯+⨯+⨯=.乙离子残留百分比的平均值的估计值为30.0540.1050.1560.3570.2080.15 6.00⨯+⨯+⨯+⨯+⨯+⨯=.9.【2019年高考天津卷文数】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为,,,,,A B C D E F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.【答案】(1)应从老、中、青员工中分别抽取6人,9人,10人;(2)(i)见解析,(ii)11 15.【分析】本题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.【解析】(1)由已知,老、中、青员工人数之比为6 : 9 : 10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.(2)(i)从已知的6人中随机抽取2人的所有可能结果为{, },{, },{, },{, },{, },{, },A B A C A D A E A F B C{, },{, },{, },{, {,}},,B D B E B F C D C E {,},C F {,},{,},{,}D E D F E F ,共15种.(ii )由表格知,符合题意的所有可能结果为{, },{, },{, },{, },{, },{, },{, {,},{,},{,},{,},}A B A D A E A F B D B C E B F E C F D F E F ,共11种.所以,事件M 发生的概率11()15P M =. 10.【2019年高考北京卷文数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(1)估计该校学生中上个月A ,B 两种支付方式都使用的人数;(2)从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率; (3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2 000元的人数有变化?说明理由.【答案】(1)该校学生中上个月A ,B 两种支付方式都使用的人数约为400;(2)0.04;(3)见解析. 【解析】(1)由题知,样本中仅使用A 的学生有27+3=30人, 仅使用B 的学生有24+1=25人,A ,B 两种支付方式都不使用的学生有5人.故样本中A ,B 两种支付方式都使用的学生有100–30–25–5=40人. 估计该校学生中上个月A ,B 两种支付方式都使用的人数为401000400100⨯=. (2)记事件C 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”, 则1()0.0425P C ==. (3)记事件E 为“从样本仅使用B 的学生中随机抽查1人,该学生本月的支付金额大于2 000元”. 假设样本仅使用B 的学生中,本月支付金额大于2 000元的人数没有变化, 则由(2)知,4(0)0.P E =.答案示例1:可以认为有变化.理由如下:()P E 比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化, 所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E 是随机事件,()P E 比较小,一般不容易发生,但还是有可能发生的, 所以无法确定有没有变化.11.【安徽省江淮十校2019届高三年级5月考前最后一卷】《易经》是我国古代预测未来的著作,其中同时抛掷三枚古钱币观察正反面进行预测未知,则抛掷一次时出现两枚正面、一枚反面的概率为A .18 B .14 C .38D .12【答案】C【解析】抛掷三枚古钱币出现的基本事件有:正正正,正正反,正反正,反正正,正反反,反正反,反反正,反反反,共8种,其中出现两正一反的共有3种,故所求概率为38.故选C . 12.【山东省济宁市2019届高三第一次模拟考试】某学校从编号依次为01,02,…,90的90个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为14,23,则该样本中来自第四组的学生的编号为 A .32 B .33 C .41D .42【答案】A【解析】因为相邻的两个组的编号分别为14,23,所以样本间隔为23149-=, 所以第一组的编号为1495-=,所以第四组的编号为53932+⨯=,故选A .【名师点睛】本题考查了系统抽样的相关概念,主要考查系统抽样中组距的确定,考查了推理能力,提高了学生对于系统抽样的掌握与理解,是简单题.13.【河南省洛阳市2019届高三第三次统一考试】已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A .100,10B .100,20C .200,10D .200,20【答案】D【解析】由题得样本容量为(350020004500)2%100002%200++⨯=⨯=, 抽取的高中生人数为20002%40⨯=人,则近视人数为400.520⨯=人,故选D .14.【西藏拉萨中学2019届高三第六次月考】某次知识竞赛中,四个参赛小队的初始积分都是10分,在答题过程中,各小队每答对1题加0.5分,若答题过程中四个小队答对的题数分别是3道,7道,7道,3道,则四个小队积分的方差为 A .0.5 B .0.75 C .1D .1.25【答案】C【解析】四个小队积分分别为11.5,13.5,13.5,11.5,平均数为11.513.513.511.512.54+++=,故四个小队积分的方差为221[(11.512.5)2(13.512.5)2]14⨯-⨯+-⨯=,故选C . 15.【陕西省2019届高三第三次联考】口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.38,摸出白球的概率是0.32,那么摸出黑球的概率是 A .0.42 B .0.28 C .0.3D .0.7【答案】C【分析】在口袋中摸球,摸到红球、摸到黑球、摸到白球这三个事件是互斥的,摸出黑球是摸出红球或摸出白球的对立事件,根据对立事件的概率和等于1即可得到结果.【解析】在口袋中摸球,摸到红球、摸到黑球、摸到白球这三个事件是互斥的,因为摸出红球的概率是0.38,摸出白球的概率是0.32,且摸出黑球是摸出红球或摸出白球的对立事件,所以摸出黑球的概率是10.380.320.3--=.故选C .16.【河南省郑州市2019届高三第三次质量检测】某同学10次测评成绩的数据如茎叶图所示,总体的中位数为12,若要使该总体的标准差最小,则42x y +的值是A .12B .14C .16D .18【答案】A【解析】因为中位数为12,所以4x y +=,数据的平均数为1(223420191910x y ⨯+++++++++2021)11.4+=,要使该总体的标准差最小,即方差最小,所以22(1011.4)(1011.4)x y +-++-=2222.8( 1.4)( 1.4)2()0.722x y x y +--+-≥=,当且仅当 1.4 1.4x y -=-,即2x y ==时取等号,此时总体标准差最小,4212x y +=,故选A .17.【江西省新八校2019届高三第二次联考】某学校高一年级1802人,高二年级1600人,高三年级1499人,先采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三三个年级中抽取的人数分别为 A .35,33,30 B .36,32,30 C .36,33,29D .35,32,31【答案】B【分析】先将各年级人数凑整,从而可确定抽样比;再根据抽样比计算得到各年级抽取人数. 【解析】先将每个年级的人数凑整,得高一:1800人,高二:1600人,高三:1500人,则三个年级的总人数所占比例分别为1849,1649,1549, 因此,各年级抽取人数分别为18983649⨯=,16983249⨯=,15983049⨯=,故选B . 18.【广东省汕头市2019届高三第二次模拟考试(B 卷)】在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是A .成绩在[70,80]分的考生人数最多B .不及格的考生人数为1000人C .考生竞赛成绩的平均分约70.5分D .考生竞赛成绩的中位数为75分【答案】D【解析】由频率分布直方图可得,成绩在[70,80]的频率最高,因此考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为40000.251000⨯=,故B 正确;由频率分布直方图可得:平均分等于450.1550.15650.2750.3850.15⨯+⨯+⨯+⨯+⨯+950.170.5⨯=,故C 正确;因为成绩在[40,70)的频率为0.45,由[70,80]的频率为0.3,所以中位数为0.05701071.670.3+⨯≈,故D 错误.故选D . 19.【福建省泉州市2019届高三第二次(5月)质检】已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则 A .270,75x s =< B .270,75x s => C .270,75x s ><D .270,75x s ><【答案】A【分析】分别根据数据的平均数和方差的计算公式,求得2,x s 的值,即可得到答案. 【解析】由题意,可得7050806070907050x ⨯+-+-==,设收集的48个准确数据分别记为1248,,,x x x L , 则222221248175[(70)(70)(70)(6070)(9070)]50x x x =-+-++-+-+-L 22212481[(70)(70)(70)500]50x x x =-+-++-+L ,。
2019年高考数学复习备考好用纠错笔记一、集合与简易逻辑易错点1遗忘空集致误错因分析:由于空集是任何非空集合的真子集,因此,对于集合BA,就有B=A,φ≠BA,B≠φ,三种状况,在解题中假如思维不够缜密就有可能忽视了B≠φ这种状况,导致解题结果错误。
尤其是在解含有参数的集合问题时,更要充分留意当参数在某个范围内取值时所给的集合可能是空集这种状况。
空集是一个特殊的集合,由于思维定式的缘由,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。
易错点2忽视集合元素的三性致误错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特殊是带有字母参数的集合,事实上就隐含着对字母参数的一些要求。
在解题时也可以先确定字母参数的范围后,再详细解决问题。
易错点3四种命题的结构不明致误错因分析:假如原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B 则┐A”。
这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。
在解答由一个命题写出该命题的其他形式的命题时,确定要明确四种命题的结构以及它们之间的等价关系。
另外,在否定一个命题时,要留意全称命题的否定是特称命题,特称命题的否定是全称命题。
如对“a,b都是偶数”的否定应当是“a,b不都是偶数”,而不应当是“a,b都是奇数”。
易错点4充分必要条件颠倒致误错因分析:对于两个条件A,B,假如A=B成立,则A是B的充分条件,B是A的必要条件;假如B=A成立,则A是B的必要条件,B是A的充分条件;假如AB,则A,B互为充分必要条件。
解题时最简单出错的就是颠倒了充分性与必要性,所以在解决这类问题时确定要依据充要条件的概念作出精确的推断。
易错点5逻辑联结词理解不准致误错因分析:在推断含逻辑联结词的命题时很简单因为理解不精确而出现错误,在这里我们给出一些常用的推断方法,希望对大家有所帮助:p∨q真p真或q真,命题p∨q假p假且q假(概括为一真即真);命题p∧q真p真且q真,p∧q假p假或q假(概括为一假即假);┐p真p假,┐p假p真(概括为一真一假)。
2019年高考数学总复习笔记讲义(名师精讲必考知识点+实战真题演练+答案) (总计156页,涵盖高中数学所有知识点,价值很高,可以达到事半功倍的复习效果,值得下载打印练习)高考数学总复习第一讲:函数与方程函数描述了自然界中量的依存关系,反映了一个事物随着另一个事物变化而变化的关系和规律.函数思想的实质是剔除问题的非数学特征,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系.在解决某些数字问题时,先设定一些未知数,然后把它们当作已知数,根据题设本身各量间的制约,列出等式,所设未知数沟通了变量之间的关系,这就是方程的思想.函数与方程是两个不同的概念,但它们之间有着密切的联系,一个函数若有解析表达式,那么这个表达式就可看成是一个方程.一个二元方程,两个变量存在着对应关系,如果这个对应关系是函数,那么这个方程可以看成是一个函数,一个一元方程,它的两端可以分别看成函数,方程的解即为两个函数图象交点的横坐标,因此,许多有关方程的问题可以用函数的方法解决;反之,许多有关函数的问题则可以用方程的方法解决.总之,在复习中要注意领悟蕴含在知识和解题过程中函数和方程的思想,用它来指导解题.在解题中,同时要注意从不同的角度去观察探索,寻求多种方法,从而得到最佳解题方案.一、例题分析例1.已知F(x)=xα-xβ在x∈(0,1)时函数值为正数,试比较α,β的大小.分析:一般情况下,F(x)可以看成两个幂函数的差.已知函数值为正数,即f1(x)=xα的图象在x∈(0,1)上位于f2(x)=xβ的图象的上方,这时为了判断幂指数α,β的大小,就需要讨论α,β的值在(1,+∞)上,或是在(0,1)上,或是在(0,1)内的常数,于是F(x)成为两个同底数指数函数之差,由于指数函数y=a t(0<α<1)是减函数,又因为xα-xβ>0,所以得α<β.例2.已知0<a<1,试比较的大小.分析:为比较aα与(aα) α的大小,将它们看成指数相同的两个幂,由于幂函数在区间[0,+∞]上是增函数,因此只须比较底数a与aα的大小,由于指数函数y=a x(0<a<1)为减函数,且1>a,所以a<aα,从而aα<(aα) α.比较aα与(aα) α的大小,也可以将它们看成底数相同(都是aα)的两个幂,于是可以利用指数函数是减函数,由于1>a,得到aα<(aα) α.由于a<aα,函数y=a x(0<a<1)是减函数,因此aα>(aα) α.综上,.解以上两个例题的关键都在于适当地选取某一个函数,函数选得恰当,解决问题简单.例3.关于x的方程有实根,且根大于3,求实数a的范围.分析:先将原方程化简为a x=3,但要注意0<x<3且x≠1.现将a x看成以a为底的指数函数,考虑底数a为何值时,函数值为3.如图(1),过(3,3)点的指数函数的底,现要求0<x<3时,a x=3,所以,又因为x≠1,在图(1)中,过(1,3)点的指数函数的底a=3,所以.若将a x=3变形为,令,现研究指数函数a=3t,由0<x<1且x≠1,得,如图(2),很容易得到:.通过本例,说明有些问题可借助函数来解决,函数选择得当,解决就便利.例4.函数f(x)是定义在实数集上的周期函数,且是偶函数,已知当x∈[2,3]时,f(x)=x,则当x∈[-2,0]时,f(x)的解析式是().(A)f(x)=x+4 (B)f(x)=2-x(C)f(x)=3-|x+1| (D)f(x)=3+|x+1|解法一、∵f(-2)=f(2)=2 f(-1)=f(3)=3,∴只有(A)、(C)可能正确.又∵f(0)=f(2)=2,∴(A)错,(C)对,选(C).解法二、依题意,在区间[2,3]上,函数的图象是线段AB,∵函数周期是2,∴线段AB左移两个单位得[0,1]上的图象线段CD;再左移两个单位得[–2,1]上的图象线段EF .∵函数是偶函数,∴把线段CD沿y轴翻折到左边,得[–1,0]上的图象线段FC.于是由直线的点斜式方程,得函数在[–2,0]上的解析式:即由于x∈[-2,-1]时,x+1≤0,x∈(-1,0)时,x+1>0,所以y=3-|x+1|, x∈[-2,0].解法三、当x∈[-2,-1]时,x+4∈[2,3],∵函数周期是2,∴f(x+4)=f(x).而f(x+4)=x+4,∴x∈[-2,-1]时,f(x)=x+4=3+(x+1).当x∈[-1,0]时,-x∈[0,1],且-x+2∈[2,3].∵函数是偶函数,周期又是2,∴,于是在[–2,0]上,.由于x∈[-2,-1]时,x+1≤0,x∈(-1,0)时,x+1>0,根据绝对值定义有x∈[-2,0]时,f(x)=3-|x+1|.本题应抓住“偶函数”“周期性”这两个概念的实质去解决问题.例5.已知y=log a(2-ax)在[0,1]上是x的减函数,则a的取值范围是().(A)(0,1)(B)(1,2)(C)(0,2)(D)[2,+∞]分析:设t=2-ax,则y=log a t,因此,已知函数是上面这两个函数的复合函数,其增减性要考查这两个函数的单调性,另外,还要考虑零和负数无对数以及参数a对底数和真数的制约作用.解法一、由于a≠1,所以(C)是错误的.又a=2时,真数为2–2x,于是x≠1,这和已知矛盾,所以(D)是错的.当0<a<1时,t=2-ax是减函数,而y=log a t也是减函数,故y=log a(2-ax)是x的增函数,所以(A)是错的.于是应选(B).解法二、设t=2-ax,y=log a t由于a>0,所以t=2-ax是x的减函数,因此,只有当a>1,y=log a t是增函数时,y=log a(2-ax)在[0,1]上才是减函数;又x=1时,y=log a(2-a),依题意,此时,函数有定义,故2–a>0综上可知:1<a<2,故应选(B).例6.已知,函数y=g(x)的图象与函数y=f-1(x+1)的图象关于y’=x对称,则g(5)=_____________-解法一、由去分母,得,解出x,得,故,于是,设,去分母得,,解出x,得,∴的反函数.∴.解法二、由,则,∴,∴.即的反函数为,根据已知:∴.解法三、如图,f(x)和f-1(x)互为反函数,当f-1(x)的图象沿x轴负方向平移一个单位时,做为“镜面”的另一侧的“象”f(x)的图象一定向下平移1个单位,因此f-1(x+1)的图象与f(x)-1的图象关于y=x对称.故f-1(x+1)的反函数是g(x)=f(x)-1,∴.本解法从图象的运动变化中,探求出f-1(x+1)的反函数,体现了数形结合的优势出二、巩固练习(1)已知函数在区间上的最大值为1,求实数a的值.(1)解:f(x)在区间上最大值可能在端点外取得,也可能在顶点外取得,,,而顶点横坐标,最大值在顶点外取得,故此解舍去.当最大值为f(2)时,f(2)=1,,顶点在应在区间右端点取得最大值,此解合理.当最大值在顶点处取得时,由,解得,当,此时,顶点不在区间内,应舍去.综上,.(2)函数的定义域是[a,b],值域也是[a,b],求a.b的值.2)解:y=f(x)的图象如图,分三种情况讨论.当a<b≤0时,f(x)为递增函数,有,解得,,由于b>0,应舍去.当0≤a<b时,f(x)为递减函数,有,解得:a=1,b=2.当a<0<b时,f(x)最大值在顶点处取得,故,,所以最小值应在a处取得.(2)解:y=f(x)的图象如图,分三种情况讨论.当a<b≤0时,f(x)为递增函数,有,解得,,由于b>0,应舍去.当0≤a<b时,f(x)为递减函数,有,解得:a=1,b=2.当a<0<b时,f(x)最大值在顶点处取得,故,,所以最小值应在a处取得.,解得:,综上,或(3)求函数的最小值.解(3)分析:由于对数的底已明确是2,所以只须求的最小值.(3)解法一:∵,∴x>2.设,则,由于该方程有实根,且实根大于2,∴解之,μ≥8.当μ=8时,x=4,故等号能成立.于是log2≥0且x=4时,等号成立,因此的最小值是3.解法二:∵,∴x>2设,则=∴μ≥8且,即x=4时,等号成立,∴log2μ≥3且x=4时,等号成立.故的最小值是3.(4)已知a>0,a≠1,试求方程有解时k的取值范围.4)解法一:原方程由②可得:③,当k=0时,③无解,原方程无解;当k≠0时,③解为,代入①式,.解法二:原方程,原方程有解,应方程组,即两曲线有交点,那么ak<-a或0<ak<a(a>0)∴k<-1或0<k<1.(5)设函数(Ⅰ)解不等式f(x)≤1(Ⅱ)求a的取值范围,使f(x)在[0,+∞]上是单调函数.5)解(Ⅰ),不等式f(x≤1),即由此得:1≤1+ax即ax≥0,其中常数a>0,∴原不等式即∴当0<a<1时,所给不等式解集为,当a≥1时,所给不等式解集为{x|x≥0}.(Ⅱ)在区间[0,+∞)上任取x1,x2,使得x1<x2,(ⅰ)当a≥1时,∵∴又∴所以,当a≥1时,函数f(x)在区间[0,+∞)上是单调递减函数.(ⅱ)当0<a<1时,在[0,+∞)上存在两点满足f(x1)=1,f(x2)=1 ,即f(x1)=f(x2),∴函数f(x)在区间[0,+∞)上不是单调函数.高考数学总复习第二讲:分类讨论分类又称逻辑划分.分类讨论即是一种数学思维方法,也是一种重要的解题策略,常常能起到简化问题、解决问题的作用.数字的解题过程,实质是一个变形过程,往往需要一些条件的限制,从而引起分类讨论.分类讨论的关键问题就是:对哪个变量分类,如何分类.分类的原则:由分类的定义,分类应满足下列要求:(1)保证各类对象即不重复又不遗漏.(2)每次分类必须保持同一分类标准.应用分类讨论解决数学问题的一步骤:(1)确定讨论对象和需要分类的全集.(2)确定分类标准(3)确定分类方法(4)逐项进行讨论(5)归纳小结应该注意的是,在运用时,不要盲目或机械地进行分类讨论,有的题目虽然含有分类因素,但不要急于分类讨论,要首先对问题作深入的研究,充分挖掘题目的已知量与未知量之间的关系,寻求正确的解题策略,则可以简化分类讨论的步骤或避免不必要的分类讨论,使解题更简单.一、例题分析例1:求函数求的值域.分析:根据绝对值的定义及题设中函数的表达式可知,要分别对绝对值号中的sinx,cosx,tgx,ctgx按照其大于零,小于零(不能为零)来讨论,以去掉绝对值号.而决定三角函数值正负的因素是角x所在的象限,故按角x的终边所在的象限为分类标准,进行分类讨论:解(1)角x在第一象限时,(2)角x在第二象限时,(3)角x在第三象限时,(4)角x在第四象限时,综上所述:函数的值域{4,0,-2}说明:数学中的概念有些是含有不同种类的,当题目涉及这样的概念时,必须按给出概念的分类方式进行分类讨论,才能使解答完整无误.例2,已知扇形的圆心角为60°,半径为5cm,求这个扇形的内接长方形的最大面积.图解:如图一,内接长方形CDEF的面积为:S=ED·EF ,ED=OE·sinθ=5sinθ在△EFO中,运用正弦定理,得∴∴∴如图二.取的中点M,连接OM分扇形为两个小扇形,在这二个小扇形中,各有原内接长方形的一半,∴内接长方形的面积为一个小扇形中内接长方形面积的2倍.即∴再比较S大与S大′的大小综上,所求扇形的最大内接长方形的面积为.说明:本题是由图形的位置及形状不能确定引起的分类讨论,其原因在于扇形内接长方形相对于扇形的位置不确定,故而求出两种位置下的面积而后判断最大为多少.例3 已知直角坐标平面上点Q(2,0)和圆C,x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数λ(λ>0)求动点M的轨迹方程,说明它表示什么曲线.解如图,设直线MN切圆O于N,则动点M组成的集合是P={M||MN|=λ|MQ|}(其中λ>0)∵圆半径|ON|=1,∴|MN|2=|MO|2-|ON|2=|MO|2-1设点M的坐标为(x,y),则整理得:检验,坐标适合这个方程的点都属于集合P,故这个方程为所求的轨迹方程.当λ=1时,方程化为,它表示一条直线,该直线与x轴垂直且交x轴于点当λ≠1时,方程化为它表示圆,该圆圆心的坐标为,半径为说明:本题在求出轨迹方程之后,在判定为何曲线时,因参数引起了分类讨论:一些问题中的数学表达式中因含有会导致不同结论的参数,从而需对参数分情况讨论为,求得问题的结果.例4 已知a>1,解关于x的不等式:解:原不等式(i)当1<a<2时,由①得:x<a或x>2∵∴又∵∴∴解集为(ii)当a=2时,由①得x≠2,由③得∴解集为(iii)当a>2时,由①得,x<2或x>a∵∴解集为说明:本题中参数a,在求解集过程中,不同的取值,影响解集,故而要分类讨论,这是变形所需.例5 某城市用水收费方法是:水费=基本费+超额费+排污费,若每月水量不超过最低限量am3时,只付基本费8元和每户每定额排污费c元;若用水量超过am3时,除了付给同上的基本费和排污费外,超过部分每方米付b元的超额费.已知每户每月的排污费不超过4元,该市一家庭今年第一季度的用水量和支付费用如下表所示:解:设每月用水量为xm3,支付费用为y元.则由题意知0<c≤4,8+c≤12.故第2、3月份用水量15 am3,13 am3大于最低用水限量am3将分别代入中,得①再分析1月份用水量是否超过最低限量am3不妨设8>a,将中,得9=8+2(8–a)+c,得2a=c+15 ②∴1月份用水量不超过最低限量.又∵y=8+c∴9=8+c,c=1∴a=10,b=2,c=1说明:本题为实际应用问题,在解题过程中,隐含着分类讨论:a>8,a=8,a<8,根据条件,逐一讨论,使问题得以解决.例6 设a>0,且a≠1,解关于x的不等式:解:原不等式当0<a<1时,原不等式或(Ⅱ)或(Ⅲ)解不等式组(Ⅰ),得;解不等式组(Ⅱ),得解不等式组(Ⅲ),无解.∴原不等式的解集为当a>1时,原不等式(Ⅰ)或(Ⅱ)或(Ⅲ)解不等式组(Ⅰ),得解不等式组(Ⅱ),得a≤x<a2;不等式(Ⅲ)无解∴原不等式的解集是说明:本题在对a进行分类的过程中,又对x进行分类,以丢掉绝对值符号,是多次分类:例7 设,比较的大小.分析:本题可用比差法,但要对a进行分类讨论,而用商比较法,可以不再进行分类讨论,解起来简单了.解∵0<x<1∴∴说明:分类讨论的目的是为了解决问题,但要视情况而定,若能不分类即可把问题解决就不要分类讨论二、习题练习.1.已知不共面的三条直线a、b、c,a∥b∥c,过a作平面α,使b、c到α的距离相等,则满足条件的平面α有()(A)1个(B)2个(C)4个(D)无数个2.函数与它的反函数是同一函数的充要条件是()(A)a=1,b=0 (B) a=-1,b=0(C)a=±1,b=0 (D)a=1,b=0 或a=-1,b∈R3.已知k是常数,若双曲线的焦距与k值R无关,则k的取值范围是()(A)-2<k≤2(B)k>5(C)-2<k≤0(D)0≤k<24.已知数列{a n}前n次之和S n满足,则a n=_________.5.直线m过点P(-2,1),点A(-1,-2)到直线m的距离等于1,则直线m的方程为________.6.根据实数k的不同取值,讨论直线y=k(x+1)与双曲线的公共点个数.7.已知数列{a n}和函数当n为正偶数时,;当n为正奇数时,.求{a n}的通项公式.8.设a>0,a≠1,解关于x的不等式.三、习题解答1.B)提示:两种情况:过a与b、c所确定平面平行,或过a与b、c所确定平面相交.2.选(D),提示:的反函数为,依题意∴由①得a=±1,当a=1时,b=0,当a= -1时,b∈R. 3.选(C)提示:表示双曲线,则,此时,,不合题意,当k≤0时,-2<k≤0,此时,,则,与k无关.4.提示:由且当n≥2时,,若,∴5.4x+3y+5=0,或x=-2 提示:直线m的斜率不存在时,方程为x=-1,满足条件,当斜率存在时,设其方程为y-1=k(x+2),由点到直线的距离公式,可得6.解:由消去y整理得当时,,此时直线分别与双曲线的渐近线平行,它仍分别与双曲线的一支交于一点当时,∴当时,直线分别与双曲线只有一个公共点;当时,直线与双曲线有两个公共点;当时,直线与双曲线无交点.7.解当n为正偶数时,此时n-1为为正奇数,则∴∴当n为正奇数时,(n>1)此时n-1为为正偶数,则∴,解得而当n=1时,由已知得∴故数列的通项公式为8.解:原不等式当原不等式∴原不等式的解集是;当原不等式∴原不等式的解集为高考数学总复习第三讲:数形结合一、专题概述---什么是数形结合的思想数形结合的思想,就是把问题的数量关系和空间形式结合起来加以考察的思想.恩格斯说:“纯数学的对象是现实世界的空间形式和数量关系.”“数”和“形”是数学中两个最基本的概念,它们既是对立的,又是统一的,每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述,数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的性质,解决几何的问题.实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.数形结合包括:函数与图象、方程与曲线、复数与几何的结合;几何语言叙述与几何图形的结合等.二、例题分析1.善于观察图形,以揭示图形中蕴含的数量关系.观察是人们认识客观事物的开始,直观是图形的基本特征,观察图形的形状、大小和相互位置关系,并在此基础上揭示图形中蕴含的数量关系,是认识、掌握数形结合的重要进程.例1.函数的图象的一条对称轴方程是:(A)(B)(C)(D)分析:通过画出函数的图象,然后分别画出上述四条直线,逐一观察,可以找出正确的答案,如果对函数的图象做深入的观察,就可知,凡直线x=a通过这一曲线的一个最高点或一个最低点,必为曲线的一条对称轴,因此,解这个问题可以分别将代入函数的解析式,算得对应的函数值分别是:,其中只有–1是这一函数的最小值,由此可知,应选(A)2.正确绘制图形,以反映图形中相应的数量关系.观察图形,既要定性也要定量,借助图形来完成某些题时,仅画图示“意”是不够的,还必须反映出图形中的数量关系.例2.问:圆上到直线的距离为的点共有几个?分析由平面几何知:到定直线L:的距离为的点的轨迹是平行L的两条直线.因此问题就转化为判定这两条直线与已知圆的交点个数.将圆方程变形为:,知其圆心是C(-1,-2),半径,而圆心到定直线L的距离为,由此判定平行于直线L且距离为的两条直线中,一条通过圆心C,另一条与圆C相切,所以这两条直线与圆C共有3个公共点(如图1)启示:正确绘制图形,一定要注意把图形与计算结合起来,以求既定性,又定量,才能充分发挥图形的判定作用.3.切实把握“数”与“形”的对应关系,以图识性以性识图.数形结合的核心是“数”与“形”的对应关系,熟知这些对应关系,沟通两者的联系,才能把握住每一个研究对象在数量关系上的性质与相应的图形的特征之间的关联,以求相辅相成,相互转化.例3.判定下列图中,哪个是表示函数图象.分析由=,可知函数是偶函数,其图象应关于y轴对称,因而否定(B)、(C),又,的图象应当是上凸的,(在第Ⅰ象限,函数y单调增,但变化趋势比较平缓),因而(A)应是函数图象.例4.如图,液体从一圆锥形漏斗注入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟注完.已知圆柱中液面上升的速度是一个常量,H是圆锥形漏斗中液面下落的距离,则H与下落时间t(分)的函数关系用图象表示只可能是().分析由于圆柱中液面上升的速度是一个常量,所以H与t的关系不是(B),下落时间t越大,液面下落的距离H应越大,这种变化趋势应是越来越快,图象应当是下凸的,所以只可能是(D).例5.若复数z满足,且,则在复平面上对应点的图形面积是多少?分析满足的复数z对应点的图形是:以C(1,1)为圆心,为半径的圆面,该圆面与图形的公共部分为图中所示阴影部分(要注意到∠AOC=45°)因此所求图形的面积为:4.灵活应用“数”与“形”的转化,提高思维的灵活性和创造性.在中学数学中,数形结合的思想和方法体现最充分的是解析几何,此外,函数与图象之间,复数与几何之间的相互转化也充分体现了数形结合的思想和方法.通过联想找到数与形之间的对应关系是实现转化的先决条件,而强化这种转化的训练则是提高思维的灵活性和创造性的重要手段.例6.已知C<0,试比较的大小.分析这是比较数值大小问题,用比较法会在计算中遇到一定困难,在同一坐标系中,画出三个函数:的图象位于y轴左侧的部分,(如图)很快就可以从三个图象的上、下位置关系得出正确的结论:例7 解不等式解法一(用代数方法求解),此不等式等价于:解得故原不等式的解集是解法二(采用图象法)设即对应的曲线是以为顶点,开口向右的抛物线的上半支.而函数y=x+1的图象是一直线.(如图)解方程可求出抛物线上半支与直线交点的横坐标为2,取抛物线位于直线上方的部分,故得原不等式的解集是.借助于函数的图象或方程的曲线,引入解不等式(或方程)的图象法,可以有效地审清题意,简化求解过程,并检验所得的结果.例8 讨论方程的实数解的个数. 分析:作出函数的图象,保留其位于x 轴上方的部分,将位于x 轴下方的部分沿x 轴翻折到x 轴上方,便可得到函数的图象.(如图)再讨论它与直线y=a 的交点个数即可.∴当a <0时,解的个数是0; 当a=0时或a >4时,解的个数是2; 当0<a <4时,解的个数是4; 当a=4时,解的个数是3.9.已知直线和双曲线有且仅有一个公共点,则k 的不同取值有()(A )1个(B )2个(C )3个 (D )4个分析:作出双曲线的图象,并注意到直线是过定点()的直线系,双曲线的渐近线方程为∴过()点且和渐近线平行的直线与双曲线有且仅有一个公共点,此时k 取两个不同值,此外,过()点且和双曲线相切的直线与双曲线有且仅有一个公共点,此时k 取两个不同的值,故正确答案为(D )例9.已知直线和双曲线有且仅有一个公共点,则k 的不同取值有()(A )1个(B )2个(C )3个 (D )4个 分析:作出双曲线的图象,并注意到直线是过定点()的直线系,双曲线的渐近线方程为∴过()点且和渐近线平行的直线与双曲线有且仅有一个公共点,此时k取两个不同值,此外,过()点且和双曲线相切的直线与双曲线有且仅有一个公共点,此时k取两个不同的值,故正确答案为(D)例10.设点P(x,y)在曲线上移动,求的最大值和最小值.解曲线是中心在(3,3),长轴为,短轴为的椭圆.设,即y=kx为过原点的直线系,问题转化为:求过原点的直线与椭圆相切时的斜率.(如图所示)消去y得解得:故的最大值为,最小值为例11.求函数(其中a,b,c是正常数)的最小值.分析采用代数方法求解是十分困难的,剖析函数解析式的特征,两个根式均可视为平面上两点间的距离,故设法借助于几何图形求解.如图设A(0,a),B(b,-c)为两定点,P(x,0)为x轴上一动点,则其中的等号在P为线段AB与x轴的交点外,即时成立.故y的最小值为例12.P是椭圆上任意一点,以OP为一边作矩形O P Q R(O,P,Q,R依逆时针方向排列)使|OR|=2|OP|,求动点R的轨迹的普通方程.分析在矩形O P Q R中(如图),由∠POR=90°,|OR|=2|OP|可知,OR是OP逆时针旋转90°,并将长度扩大为原来的2倍得到的.这一图形变换恰是复数乘法的几何意义,因此,可转化为复数的运算,找到R和P的两点坐标之间的关系,以求得问题的解决.解,设R点对应的复数为:,P点对应的复数为则故即由点在椭圆上可知有:整理得:就是R点的轨迹方程,表示半长轴为2a,半短轴为2b,中心在原点,焦点在y轴上的椭圆.三解题训练1.求下列方程实根的个数:(1)(2)(3)实数值,方程的实根 2.无论m取任何个数都是()(A)1个(B)2个(C)3个(D)不确定3.已知函数的图象如右图则()(A)b∈(-∞,0)(B)b∈(0,1)(C)b∈(1,2) (D)b∈(2,+ ∞)4.不等式的解集是()(A)(0,+∞)(B)(0,1)(C)(1,+∞)(D)(–∞,0)5.不等式一定有解,则a的取值范围是()(A)(1,+∞)(B)[1,+ ∞](C)(-∞,1)(D)(0,1]6.解下列不等式:(1)(2)7.复平面内点A、B分别对应复数2,2+i,向量绕点A逆时针方向旋转至向量,则点C对应的复数是_______.8.若复数z满足|z|<2,则arg(z-4)的最大值为___________9.若复数z满足10.函数的图象是平面上两定点距离之差的绝对值等于定长的点的轨迹,则这两定点的坐标是( )(A)(–,–)(,)(B)(–,)(,–)(C)(–2,2)(2,2)(D)(2,–2)(–2,2)11.曲线与直线的交点个数是().(A)0(B)1 (C)2(D)312.曲线与直线有两个交点,则实数k的取值是()(A)(B)(C)(D)13.已知集合,满足,求实数b的取值范围.14.函数的值域是()(A)(B)(C)(D)四、练习答案1.(1)2个(2)63个(3)2个提示:分别作出两个函数的图象,看交点的个数.2.B、提示:注意到方程右式,是过定点(,0)的直线系.3.A、提示:由图象知f(x)=0的三个实根是0,1,2这样,函数解析式可变形f(x)=ax(x-1)(x-2),又从图象中可以看出当x∈(0,1)∪(2,+∞)时,f(x)>0.而当x>2时,x,(x-1),(x-2)均大于0,所以a>0,而可知b=-3a<0,故选(A) 4.A5.A6.(可以利用图象法求解)(1)x≤-1或0<x≤3(2)x≤-17.18.210°9.10.A11.D 提示:在曲线方程中,分x≥0或x<0两种情形讨论,作出图形即可.12.C13.14.A 提示:f(x)可以视作:A(cosx,sinx),B(1,2),则f(x)=k AB,而A点为圆x2+y2=1上的动点高考数学总复习第四讲:参数问题一、专题概述:什么是参数数学中的常量和变量相互依存,并在一定条件下相互转化.而参数(也叫参变量)是介于常量和变量之间的具有中间性质的量,它的本质是变量,但又可视为常数,正是由于参数的这种两重性和灵活性,在分析和解决问题的过程中,引进参数就能表现出较大的能动作用和活力,“引参求变”是一种重要的思维策略,是解决各类数学问题的有力武器.参数广泛地存在于中学的数学问题中,比如:代数中、函数的解析式,数列的通项公式;含参数的方程或不等式;解析几何中含参数的曲线方程和曲线的参数方程等等.参数是数学中的活泼“元素”,特别是一个数学问题中条件与结论涉及的因素较多,转换过程较长时,参数的设定和处理的作用尤为突出,合理选用参数,并处理好参数与常数及变数的联系与转换,在某些问题的求解过程中起到了十分关键的作用.二、例题分析1.待定系数法待定系数法是指利用已知条件确定一个解析式或某一数学表达式中的待定参数的值,从而得到预期结果的方法.待定系数法是解决数学问题时常用的数学方法之一.要判断一个数学问题能否使用待定系数法求解,关键是要看所求数学问题的结果是否具有某种确定的数学表达式,如果具有确定的数学表达式,就可以使用待定系数法求解.(1)用待定系数法求函数的解析式或数列的通项公式例1.,当x ∈(-2,6)时,f(x)>0当时,f(x)<0求a、b及f(x)解当a=0时,显然不符合题设条件,故a≠0,于是可由题设条件画出f(x)的草图.如图所示由图知,x=-2和x=6是方程的两根,a<0利用一元二次方程的根与系数的关系,得:解得∴。
2019高考数学一轮备考:高三纠错笔记【】回望高三复习历程,小编不得不说其中的第一轮复习极其重要,它将涵盖所有的知识点,是我们对所学知识查缺补漏的最好机会,也可以说是全面复习的唯一机会,下面是2019高考数学一轮备考:高三纠错笔记欢迎大家参考!1.集合与简易逻辑易错点1:遗忘空集致误错因分析:由于空集是任何非空集合的真子集,因此,对于集合BA,就有B=A,BA,B,三种情况,在解题中如果思维不够缜密就有可能忽视了B这种情况,导致解题结果错误。
尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。
易错点2:忽视集合元素的三性致误错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
在解题时也可以先确定字母参数的范围后,再具体解决问题。
易错点3:四种命题的结构不明致误错因分析:如果原命题是若A则B,则这个命题的逆命题是若B则A,否命题是若┐A则┐B,逆否命题是若┐B则┐A。
这里面有两组等价的命题,即原命题和它的逆否命题等价,否命题与逆命题等价。
在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。
另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。
如对a,b都是偶数的否定应该是a,b不都是偶数,而不应该是a ,b都是奇数。
易错点4:充分必要条件颠倒致误课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
为什么?还是没有彻底“记死”的缘故。
要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。
可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
专题11 统计易错点1 不能正确区分总体、样本、样本容量为了了解2016年参加市运动会的240名运动员的身高情况,从中抽取40名运动员进行测量.下列说法正确的是A.总体是240名运动员B.个体是每一名运动员C.40名运动员的身高是一个个体D.样本容量是40【错解】选择A、B、C中的一个.【错因分析】对于选项A、B,对总体、个体、样本的概念把握不准,误将考察的对象当作运动员;对于选项C,把个体和样本混淆致误.【试题解析】选D.根据统计的相关概念并结合题意可得,此题的总体、个体、样本这三个概念的考察对象都是运动员的身高,而不是运动员,并且一个个体是指一名运动员的身高,选项A,B表达的对象都是运动员,选项C未将个体和样本理解透彻.在这个问题中,总体是240名运动员的身高,个体是每名运动员的身高,样本是40名运动员的身高,样本容量是40。
因此选D.【参考答案】D.1.明确相关概念对总体、个体、样本、样本容量的概念要熟练把握,要明确总体与样本的包含关系及样本与样本容量的区别,如本例选项C,是对概念把握不准.2.注意考察对象解决考查总体、个体、样本、样本容量的概念问题时,关键是明确考察对象,根据相关的概念可知总体、个体与样本的考察对象是相同的,如本例中选项A,B表达的对象都是运动员的身高而不是运动员.1.为了了解中国好声音第二季的56名学员的年龄情况,从中抽取14名学员进行调查,则下列说法正确的是A.总体是56 B.个体是每一名学员C.样本是14名学员D.样本容量是14【答案】D易错点2 对随机抽样的概念理解不透彻对于下列抽样方法:①运动员从8个跑道中随机抽取1个跑道;②从20个零件中一次性拿出3个来检验质量;③某班50名学生,指定其中成绩优异的2名学生参加一次学科竞赛;④为了保证食品安全,从某厂提供的一批月饼中,拿出一个检查后放回,再拿一个检查,反复5次,拿了5个月饼进行检查。
其中,属于简单随机抽样的是_______.(把正确的序号都填上) 【错解】②③④【错因分析】对简单随机抽样的概念理解不透彻。
原创精品资源学科网独家享有版权,侵权必究!
1
易错点1 不能正确区分总体、样本、样本容量
为了了解2016年参加市运动会的240名运动员的身高情况,从中抽取40名运动员进行测量.下列说法正确的是
A .总体是240名运动员
B .个体是每一名运动员
C .40名运动员的身高是一个个体
D .样本容量是40
【错解】选择A 、B 、C 中的一个.
【错因分析】对于选项A 、B ,对总体、个体、样本的概念把握不准,误将考察的对象当作运动员;对于选项C ,把个体和样本混淆致误.
【参考答案】D .
1.明确相关概念
对总体、个体、样本、样本容量的概念要熟练把握,要明确总体与样本的包含关系及样本与样本容量的区别,如本例选项C ,是对概念把握不准.
2.注意考察对象
解决考查总体、个体、样本、样本容量的概念问题时,关键是明确考察对象,根据相关的概念可知总体、个体与样本的考察对象是相同的,如本例中选项A ,B 表达的对象都是运动员的身高而不是运动员.。