轴对称与轴对称图形测试题月考题
- 格式:doc
- 大小:163.50 KB
- 文档页数:4
《轴对称》检测题一、选择题1.下列图形不是轴对称图形的是( )2.已知点P(3,-2)与点Q 关于x 轴对称,则点Q 的坐标为( )A.(-3,2) B.(-3,-2) C.(3,2) D.(3,-2)3.已知等腰△ABC 的周长为18 cm,BC=8 cm,若△ABC 与△A′B′C′全等,则△A′B′C′的腰长等于( )A.8 cm B.2 cm 或8 cm C.5 cm D.8 cm 或 5 cm4.下列说法正确的是( )A.等腰三角形的高、中线、角平分线互相重合B.顶角相等的两个等腰三角形全等C.等腰三角形的两个底角相等D.等腰三角形一边不可以是另一边的2 倍5.如图,在△ABC 中,AB=AC,∠A=40°,AB 的垂直平分线交AB 于D,交AC 于点E,连接BE,则∠CBE 的度数为( )A.70°B.80°C.40°D.30°6.如图,在△ABC 中,AB=AC,∠A=36°,BD,CE 分别为∠ABC 与∠ACB 的角平分线,BD,CE 相交于点F,则图中的等腰三角形有( )A.6 个B.7 个C.8 个D.9 个,第5 题图) ,第6 题图) ,第7 题图),第8 题图)7.如图,在△ABC 中,∠A=90°,∠C=30°,AD⊥BC 于D,BE 是∠ABC 的平分线,且交AD 于P,如果AP=2 ,则AC 的长为( )A.2 B.4 C.6 D.88.如图,在△ABC 中,∠ACB=100°,AC=AE,BC=BD,则∠DCE 的度数为( ) A.20°B.25°C.30°D.40°9.等腰三角形一腰上的高等于该三角形另一边长的一半,则其顶角等于( )A.30°B.30°或150°C.120°或150°D.120°,30°或150°10.如图,在△ABC 中,∠A=90°,AB=20 cm,AC=12 cm,点P 从点B 出发以每秒3 cm 的速度向点A 运动,点Q 从点A 同时出发以每秒2 cm 的速度向点C 运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ 是等腰三角形时,运动的时间是( ) A.2.5 秒B.3 秒C.3.5 秒D.4 秒,第10 题图) ,第13 题图),第14 题图)二、填空题(每小题 3 分,共24 分)11.国旗上的五角星是轴对称图形,它有条对称轴.12.等腰三角形的一个内角为68°,则其他两内角的度数为.13.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中最大角的度数是.14.如图,在Rt△ABC 中,∠B=90°,AB=3 cm,S△ABC=6 cm2,将△ABC 折叠,使点C 与点A 重合,得折痕DE,则△ABE 的周长等于_ cm.15.如图,在ABC 中,∠ABC=120°,AB=BC,过AB 的中点M 作MN⊥AB,交AC 于点N,若AC=12 cm,则CN=.16.在平面直角坐标系xOy 中,已知点P(2,2),点Q 在y 轴上,△PQO 是等腰三角形,则满足条件的点Q 共有个.,第15 题图) ,第17 题图),第18 题图)17.如图,已知△ABC 为等边三角形,点O 是BC 上任意一点,OE,OF 分别与两边垂直,且等边三角形的高为1,则OE+OF 的值为.18.如图是由9 个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是a,则六边形的周长是.三、解答题19.(8 分)如图,在三角形纸片ABC 中,∠A=65°,∠B=80°,将纸片的一角折叠,使点C 落在△ABC 内,若∠1=20°,求∠2 的度数.20.(8 分)如图,A,B 两村在一条小河的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2) 若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.21.(8 分)如图,一艘轮船以每小时20 海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向上,轮船航行2 小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向上.当轮船到达灯塔C 的正东方向D 处时,又航行了多少海里?22.(10 分)在一次数学课上,王老师在黑板上画出下图,并写下了四个等式:①AB=DC,②BE=CE,③∠B=∠C,④∠BAE=∠CDE.要求同学从这四个等式中选出两个作为条件,推出△AED 是等腰三角形,请你试着完成王老师提出的要求,并说明理由.(写出一种即可)已知:.求证:△AED 是等腰三角形.证明:23.(10 分)如图,已知等腰Rt△OAB 中,∠AOB=90°,等腰Rt△EOF 中,∠EOF=90°,连接AE,BF.求证:(1)AE=BF;(2)AE⊥BF.24.(10 分)如图,大海中有两个岛屿A 与B,在海岸线PQ 上点E 处测得∠AEP=74°,∠BEQ =30°,在点F 处测得∠AFP=60°,∠BFQ=60°.(1)判断AE,AB 的数量关系,并说明理由;(2)求∠BAE 的度数.25.(12 分)如图,△ABC 为等边三角形,AE=CD,AD,BE 相交于点P,BQ⊥A D 于Q,PQ=3,PE=1,求AD 的长.2 参考答案1.C 2.C 3.D 4.C 5.D 6.C 7.C 8.D 9.D 10.D 11.5 12.56°,56° 或 68°,44° 13.125° 14.7 15.8 cm 16.4 17.1 18.3 0a19.延长 AE ,BF 交于点 D.∵∠A =65°,∠B =80°,∴∠D =180°-80°-65°=35°,∴∠C180°-20°=35°,又∵∠1=20°,∠CEF =∠DEF ,∠1+∠CEF +∠DEF =180°,∴∠CEF = 2 =80°,∴∠CFE =180°-80°-35°=65°,∴∠2=180°-65°×2=50°20.(1)如图①点 M 即为所求 (2)如图②点 N 即为所求21.∵∠CAB =30°,∠CBD =60°,∴∠BCA =∠CAB =30°,∴AB =B C ,∴BC =20×2= 40(海里),∵∠CDB =90°,∠CBD =60°,∴∠DCB =30°,∴BD 1 =2BC =20(海里)22.∵∠B =∠C ,∠AEB =∠DEC ,BE =CE ,∴△ABE ≌△DCE ,∴AE =DE ,∴△AED 是等腰三角形23.(1)∵Rt △OAB 与 Rt △EOF 是等腰直角三角形,∴AO =OB ,OE =OF ,∠AOB =∠EOF =90°,∴∠AOB -∠EOB =∠EOF -∠EOB ,即∠AOE =∠BOF ,∴△AEO ≌△BFO(SAS ), ∴AE =BF (2)延长 AE 交 BF 于 D ,交 OB 于 C ,则∠BCD =∠ACO ,由(1)知:∠OAC = ∠OBF ,∴∠BDA =∠AOB =90°,∴AE ⊥BF24.(1)AE =AB ,理由:∵∠BEF =30°,∠AFE =60°,∴∠EOF =90°,∵∠BFQ =60°,∠BEF =30°,∴∠EBF =30°,∴BF =EF ,∴OE =OB ,即 AF 垂直平分 BE ,∴AE =AB (2)∵∠AEP =74°,∴∠AE B =180 °-74°-30°=76°,∴∠BAE =180°-76°×2=28°25.∵△ABC 为等边三角形, ∴∠BAC = ∠C = 60° , AB = AC ,又 ∵AE = CD , ∴△ABE ≌△CAD(SAS ) , ∴∠ABE = ∠CAD , B E = A D , ∵∠BPQ = ∠BAP + ∠ABE =∠BAP +∠PAE =∠BAC =60°,又∵BQ ⊥PQ ,∴∠AQB =90°,∴∠PBQ =30°,∴PQ =1PB ,∴PB =2PQ =6,∴BE =PB +PE =6+1=7,∴AD =BE =7。
轴对称与轴对称图形 同步练习
一、选择题
⒈图中的图形中是常见的安全标记,其中是轴对称图形的是 ( )
⒉下列图形中一定是轴对称图形的是 ( )
A 、梯形
B 、直角三角形
C 、角
D 、平行四边形 ⒊下列轴对称图形中,只有两条对称轴的图形是 ( ) A . B . C . D .
⒋下列说法不正确的是 ( )
A.两个关于某直线对称的图形一定全等
B.对称图形的对称点一定在对称轴的两侧
C.两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴
D.平面上两个全等的图形不一定关于某直线对称
二、填空题
⒌右图是从镜中看到的一串数字,这串数字应为 . ⒍计算器的显示器上数字,这十个数字中是轴对称图形的数字是__________________ ⒎线段的对称轴有__________条,是________________________________,等腰三角形的对称轴是_______________.
⒏数的运算中有一些有趣的对称式,如12×231=132×21,请你仿照这个等式填空:__________×462=__________×__________.
8题)。
轴对称的性质测试题(有答案)下面是查字典数学网为您推荐的轴对称的性质测试题(有答案),希望能给您带来帮助。
轴对称的性质测试题(有答案)1、如图所示的两位数中,是轴对称图形的有 ( )A. 1个B.2个C.3个D.4个2、下列说法不正确的是 ( )A.两个关于某直线对称的图形一定全等B. 对称图形的对称点一定在对称轴的两侧C.两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴D.平面上两个全等的图形不一定关于某直线对称3、请按要求画图并回答问题:(1)画线段AB; (2)画AB的中垂线MN,垂足为O;(3)在MN上任取一点P,连接PA、PB ,PA =PB吗?为什么?(4)B吗? APO= BPO吗?为什么?(5)再在MN上任取一点Q,连接QA、QB,那么PAQ= PBQ吗?4、如图表示长方形纸片ABCD沿对角线BD折叠后的情况,图中有没有关于某条直线对称的图形?如有,请作出对称轴,有没有相等的线段、相等的角(不含直角)?如有,请写出相等的线段、相等的角.八. 【课后作业】及时巩固、查漏补缺1、下列说法正确的是 ( )A.直线上的一点关于直线的对称点不存在B.关于直线对称的两个图形全等C.△ABC和△A1B1C 1关于直线对称,则△ABC是轴对称图形D.AD是△ABC的中线,若ABAC,则△ABC关于AD对称的图形不存在2、一束太阳光垂直照到水平地面上,小明想利用平面镜反射的太阳光观察一个呈水平方向的小洞内的情况,则平面镜与水平面所成的锐角的度数为( )A.45B.60C.70D.803、作出下列图形的对称轴:4、如图:直线l是四边形ABCD的对称轴,若AB=CD,有下面的结论:①AB∥CD;②AC③ AO=CO;④ABBC.其中正确的有__________.5、如图,矩形CDEF的台球面上有位于点A、B两球,试问怎样撞击球 A,使球A先碰到台边EF反弹后再击中球B?更多初二数学试题,请关注查字典数学网。
一、填空题(每题2分,共32分)1.线段轴是对称图形,它有_______条对称轴,正三角形的对称轴有条.2.下面是我们熟悉的四个交通标志图形,请从几何图形的性质考虑,哪一个..与其他三个..不同请指出这个图形,并说明理由.答:这个图形是:(写出序号即可),理由是.3.等腰△ABC中,若∠A=30°,则∠B=________.4.△ABC中,AD⊥BC于D,且BD=CD,若AB=3,则AC=__ __.5.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若CD=4,则点D到AB的距离是__________.6.判断下列图形(如图所示)是不是轴对称图形.7.等腰△ABC中,AB=AC=10,∠A=30°,则腰AB上的高等于___________.8.如图,△ABC中,AD垂直平分边BC,且△ABC的周长为24,则AB+BD = ;又若∠CAB=60°,则∠CAD = .9.如图,△ABC中,EF垂直平分AB,GH垂直平分AC,设EF与GH相交于O,则点O与边BC的关系如何请用一句话表示:.如图:等腰梯形ABCD中,AD∥BC,AB=6,AD=5,BC=8,且AB∥____________.11.请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.12.等腰梯形的腰长为2,上、下底之和为10且有一底角为60°,则它的两底长分别为B E CDAABC DBHFAECGO第8题图第9题图第10题图____________.13.等腰三角形的周长是25 cm,一腰上的中线将周长分为3∶2两部分,则此三角形的底边长为__ ___.14.如图,三角形1与_____成轴对称图形,整个图形中共有_____条对称轴.15.如图,将长方形ABCD沿对角线BD折叠,使点C恰好落在如图C1的位置,若∠DBC=30º,则∠ABC1=________.16.如图是小明制作的风筝,为了平衡制成了轴对称图形,已知OC是对称轴,∠A=35º,∠BCO=30º,那么∠AOB=____ ___.二、解答题(共68分)17.(5分)已知点M)5,3(ba-,N)32,9(ba+关于x轴对称,求a b的值.18.(5分)已知AB=AC,BD=DC,AE平分∠FAC,问:AE与AD是否垂直为什么19.(5分)如图,已知:△ABC中,BC<AC,AB边上的垂直平分线DE交AB于D,交AC 于E,AC=9 cm,△BCE的周长为15 cm,求BC的长.第14题图第15题图第16题图ABC DEF20.(5分)如图所示,已知△ABC和直线MN.求作:△A′B′C′,使△A′B′C′和△ABC关于直线MN对称.(不要求写作法,只保留作图痕迹)21.(5分)如图,A、B两村在一条小河的的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹..BA .22.(5分)如图,在ABC中,AB=AC,A=92,延长AB到D,使BD=BC,连结DC.求D的度数,ACD的度数.A23.(5分)有一本书折了其中一页的一角,如图:测得AD =30cm,BE =20cm ,∠BEG =60°,求折痕EF 的长.24.(8分)如图所示,在△ABC 中,CD 是AB 上的中线,且DA =DB =DC .(1)已知∠A =︒30,求∠ACB 的度数; (2)已知∠A =︒40,求∠ACB 的度数; (3)已知∠A =︒x ,求∠ACB 的度数; (4)请你根据解题结果归纳出一个结论.25.(6分)如图所示,在等边三角形ABC 中,∠B 、∠C 的平分线交于点O ,OB 和OC 的垂直平分线交BC 于E 、F ,试用你所学的知识说明BE =EF =FC 的道理.26.(7分)已知AB =AC ,D 是AB 上一点,DE ⊥BC 于E ,ED 的延长线交CA 的延长线于F ,试说明△ADF 是等腰三角形的理由.A DBCABOEFCAF27.(7分)等边△ABC 中,点P 在△ABC 内,点Q在△ABC 外,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形试说明你的结论.28.(5分)如图①是一张画有小方格的等腰直角三角形纸片,将图①按箭头方向折叠成图②,再将图②按箭头方向折叠成图③.(1)请把上述两次折叠的折痕用实线画在图④中.(2)在折叠后的图形③中,沿直线l 剪掉标有A 的部分,把剩余部分展开,将所得到的图形在图⑤中用阴影表示出来.轴对称单元测试答案(二)一、填空题ACBPQ1.2,3 2.④,不是轴对称图形3.75度或30度4.3 5.4 6.(1)(3)(6)是轴对称图形,(2)(4)(5)不是轴对称图形7.5 8.12 9.点O到BC两端的距离相等10.1511.正反写的4和6 12.4,6 13.353cm或5cm 14.2、4,2 15.30度16.130度二、解答题18.垂直19.BC=6cm 20.略21.略22.22度,66度23.20cm 24.(1)90度;(2)90度;(3)90度;(4)三角形中,一边上的中线等于这边的一半,那么这边所对的角等于90度25.略26.略27.是等边三角形28.略-。
轴对称测试题及答案一、选择题(每题3分,共30分)1. 下列图形中,哪一个是轴对称图形?A. 不规则多边形B. 等腰三角形C. 任意四边形D. 圆形答案:B、D2. 轴对称图形的定义是什么?A. 一个图形关于某条直线对称B. 一个图形关于某点对称C. 一个图形关于某面对称D. 一个图形关于某曲线对称答案:A3. 一个图形关于一条直线对称,那么这条直线被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:A4. 下列哪个图形不是轴对称图形?A. 正方形B. 等边三角形C. 半圆形D. 非等腰的梯形答案:D5. 一个图形关于某点对称,那么这个点被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:B6. 一个图形关于某面对称,那么这个面被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:C7. 轴对称图形的对称轴可以有多少条?A. 0条B. 1条C. 2条D. 无数条答案:D8. 一个图形关于某条直线对称,那么这条直线将图形分成的两部分是:A. 完全相同B. 完全相反C. 部分相同D. 完全不同答案:A9. 轴对称图形的对称轴一定是:A. 直线B. 曲线C. 点D. 面答案:A10. 下列哪个图形不是轴对称图形?A. 正五边形B. 正六边形C. 正七边形D. 正八边形答案:C二、填空题(每题4分,共20分)1. 一个图形关于一条直线对称,那么这条直线被称为______。
答案:对称轴2. 轴对称图形的定义是:一个图形关于某条直线对称,那么这条直线将图形分成的两部分是______。
答案:完全相同3. 一个图形关于某点对称,那么这个点被称为______。
答案:对称中心4. 轴对称图形的对称轴可以有______条。
答案:无数5. 一个图形关于某面对称,那么这个面被称为______。
答案:对称面三、简答题(每题5分,共10分)1. 请说明什么是轴对称图形,并给出一个例子。
轴对称测试题及答案Revised on November 25, 2020DCBA新人教版八年级数学上册第十二章轴对称测试题及答案一、 选择题(本大题共12小题,每小题2分,共24分)1.下列几何图形中,是轴对称图形且对称轴的条数大于1的有( )⑴ 长方形; ⑵正方形; ⑶圆; ⑷三角形; ⑸线段; ⑹射线; ⑺直线. A. 3个 B. 4个 C. 5个 D. 6个2.下列说法正确的是( )A.任何一个图形都有对称轴B.两个全等三角形一定关于某直线对称C.若△ABC 与△DEF 成轴对称,则△ABC ≌△DEFD.点A ,点B 在直线L 两旁,且AB 与直线L 交于点O ,若AO =BO ,则点A 与点B关于直线L 对称 3.如图所示是一只停泊在平静水面的小船,它的“倒影”应是图中的( )4.在平面直角坐标系中,有点A (2,-1),点A 关于y 轴的对称点是( ) A.(-2,-1) B.(-2,1) C.(2,1) D.(1,-2)5.已知点A 的坐标为(1,4),则点A 关于x 轴对称的点的纵坐标为( ) A. 1 B. -1 C. 4 D. -46.等腰三角形是轴对称图形,它的对称轴是( )A.过顶点的直线B.底边上的高C.底边的中线D.顶角平分线所在的直线. 7.已知点A (-2,1)与点B 关于直线x =1成轴对称,则点B 的坐标为( ) A.(4,1) B.(4,-1) C.(-4,1) D.(-4,-1) 8.已知点P (1,a )与Q (b ,2)关于x 轴成轴对称,又有点Q (b ,2)与 点M (m ,n )关于y 轴成轴对称,则m -n 的值为( )A. 3B.-3C. 1D. -19.等腰三角形的一个内角是50°,则另外两个角的度数分别为( )第14题°,65° °,80° °,65°或50°,80° °,50°10.等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角为( ) A. 30° B. 150° C. 30°或150° °11.等腰三角形底边长为6cm ,一腰上的中线把它的周长分成两部分的差为2cm ,则腰长为( )A. 4cmB. 8cmC. 4cm 或8cmD. 以上都不对12.已知∠AOB =30°,点P 在∠AOB 的内部,点P 1和点P 关于OA 对称,点P 2和点P 关于OB 对称,则P 1、O 、P 2三点构成的三角形是( )A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形 二、填空题:(本大题共8小题,每小题3分,共24分)13.等边三角形是轴对称图形,它有 条对称轴. A 1B 1C 1与△ABC 关于y 轴对称,那么点A 的对应点A 1的是 .16.已知∠AOB =30°,点P 在OA 上,且OP =2,点P 关于直线OB 的对称点是Q ,则PQ = .17.等腰三角形顶角为30°,腰长是4cm ,则三角形的面积为 .18.点P (1,2)关于直线y =1对称的点的坐标是 ;关于直线x =1对称的的坐标是 .19.三角形三内角度数之比为1∶2∶3,最大边长是8cm ,则最小边的长是 . 20.在△ABC 和△ADC 中,下列3个论断:①AB =AD ;②∠BAC =∠DAC ;③BC =DC.将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题 :21题⑵BEDCBAPDCBAPE DCB A .三、解答题:(本大题共52分)21.(每小题5分,共10分)作图题:(不写作法,保留作图痕迹)⑴ 如图,已知线段AB 和直线L ,作出与线段AB 关于直线L 对称的图形.⑵ 已知∠AOB 和C 、D 两点,求作一点P ,使PC =PD ,且P 到∠AOB 两边的距离相等.22.(5B (-1,0),C (-4,3).⑴求出△ABC 的面积.⑵ 在图形中作出△ABC 关于y 轴的对称图形△A 1B 1C 1. ⑶ 写出点A 1,B 1,C 1的坐标.23.(5分)如图所示,梯形ABCD 关y 轴对称,点A 的坐标为(-3,3),点B 的坐标为(-2,0).⑴ 写出点C 和点D 的坐标; ⑵ 求出梯形ABCD 的面积.24.(5分)如图,△ABC 中,DE 是AC 的垂直平分线,AE =3cm ,△ABD 的周长为13cm.求△ABC 的周长.25.(6分)如图,D 是等边三角形ABC 内一点,DB =DA ,BP =AB ,∠DPB =∠DBC.求证:∠BPD =30°.26.(8分)如图,△ABC 为任意三角形,以边AB 、AC为边分别向外作等边三角形ABD 和等边三角形ACE ,连接CD 、BE 并且相交于点P.求证:⑴CD =BE. ⑵∠BPC =120°NMF E CB AED CB A27.(6分)下面有三个结论:⑴等腰三角形两底角的平分线的交点到底边两端的距离相等.⑵等腰三角形两腰上中线的交点到底边两端的距离相等.⑶等腰三角形两腰上的高的交点到底边两端的距离相等.请你任选一个结论进行证明.28.(7分)如图,在△ABC中,AB=AC,∠A=120°,BC=6,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,求证:BM=MN=NC.参考答案和提示:一、选择题:;;;;;;;;;;;;二、填空题:13. 3;14.(-1,3);15. 4点40分;16. 2;17. 4cm2;18.(1,0),(1,2);19.4cm;20.等腰三角形的顶角平分线和底边上的中线重合.三、解答题:21.略;22.⑴=×5×3=(平方单位);⑵略;⑶A1(1,5),B1(1,0);C1(4,3).23.⑴C(2,0),D(3,3).⑵=(4+6)×3=15(平方单位).24.∵DE是线段AC的垂直平分线∴AD=CD∵△ABD的周长为13cm∴AB+BC=13cm∵AE=3cm∴AC=2AE=6cm. ∴△ABC的周长为:AB+BC+AC=19cm.25.连接CD,并延度CD交AB于E,证CE垂直平分AB,可得∠DCB=30°再证△BDC≌△BDP即可.26.略;27.略28.连接MA、NA,证明:MA=NA=MN.。
一、选择题(每题3分,共24分)1、下列图案中,不是轴对称图形的是( )AB C D2、(易错易混点)下列长度的三线段,能组成等腰三角形的是 ( ) A . 1 1 2 B. 2 2 5 C. 3 3 5 D. 3 4 5 3.如图,已知AC ∥BD ,OA =OC ,则下列结论不一定成立的是 ( ) A . ∠B=∠D B. ∠A=∠B C. AD=BC D. OA=OB 4.(易错易混点)下列说法正确的是( ) A .等腰三角形的高、中线、角平分线互相重合 B .顶角相等的两个等腰三角形全等 C .等腰三角形一边不可以是另一边的二倍 D .等腰三角形的两个底角相等5、如图,ABC △与A B C '''△关于直线l 对称,且7848A C '∠=∠=°,°,则∠B 的度数为()A .48°B .54°C .74°D .78°6、如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′等于A. 70°B. 65°C. 50°D. 25°7、已知M (a ,3)和N (4,b )关于y 轴对称,则2012()a b +的值为( ) A.1 B 、-1 C.20097D.20097-8、如图,∠BAC =110°若MP 和NQ 分别垂直平分AB 和AC ,则∠P AQ 的度数是( ) A.20° B. 40° C. 50° D. 60° 二、填空题(每题3分,共24分)9.轴对称是指____个图形的位置关系;轴对称图形是指____个具有特殊形状的图形. 10、有一条对称轴的三角形是_______三角形,有三条对称轴的三角形是______三角形. 11. 如图,在∆ABC 中,090=∠A ,BD 是∠ABC 的平分线,DE 是BC 的垂直平分线,则∠C =____.12、(易错易混点)在△ABC 中,AB =AC ,AB 的垂直平分线与AC 所在的直线相交所得到锐角为50°,则∠B 等于_____________度.13、如图,在∆ABC 中,AB =AC ,050=∠A ,P 是∆ABC 内一点,且∠PBC = ∠PCA ,则∠BPC =_____.14、如图,△ABC 中,∠A =36°,AB =AC ,BD 平分∠ABC ,DE ∥BC ,则图中等腰三角形有_____________个.15、如图,△ABC 中,DE 是AC 的垂直平分线,AE =3cm ,△ABD 的周长为13cm ,则△ABC 的周长为____________.16.如图,点P 在∠AOB 的内部,点M 、N 分别是点P 关于直线OA 、OB •的对称点,线段MN 交OA 、OB 于点E 、F ,若△PEF 的周长是20cm ,则线段MN 的长是___________.三、解答题(17-20题每题10分,21题12分)17、右图(实线部分)补成以虚线L为对称轴的轴对称图形,你会得到一只美丽蝴蝶的图案(不用写作法、保留作图痕迹).请用一句话说明你的画图思路18、如图,写出△ABC的各顶点坐标,并画出△ABC关于Y轴对称的△A1B1C1,写出△ABC关于X轴对称的△A2B2C2的各点坐标。
轴对称测试题及答案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】DCBA新人教版八年级数学上册第十二章轴对称测试题及答案一、 选择题(本大题共12小题,每小题2分,共24分)1.下列几何图形中,是轴对称图形且对称轴的条数大于1的有( )⑴ 长方形; ⑵正方形; ⑶圆; ⑷三角形; ⑸线段; ⑹射线; ⑺直线. A. 3个 B. 4个 C. 5个 D. 6个2.下列说法正确的是( )A.任何一个图形都有对称轴B.两个全等三角形一定关于某直线对称C.若△ABC 与△DEF 成轴对称,则△ABC ≌△DEFD.点A ,点B 在直线L 两旁,且AB 与直线L 交于点O ,若AO =BO ,则点A 与点B关于直线L 对称 3.如图所示是一只停泊在平静水面的小船,它的“倒影”应是图中的( )4.在平面直角坐标系中,有点A (2,-1),点A 关于y 轴的对称点是( ) A.(-2,-1) B.(-2,1) C.(2,1) D.(1,-2)5.已知点A 的坐标为(1,4),则点A 关于x 轴对称的点的纵坐标为( ) A. 1 B. -1 C. 4 D. -46.等腰三角形是轴对称图形,它的对称轴是( )A.过顶点的直线B.底边上的高C.底边的中线D.顶角平分线所在的直线. 7.已知点A (-2,1)与点B 关于直线x =1成轴对称,则点B 的坐标为( ) A.(4,1) B.(4,-1) C.(-4,1) D.(-4,-1) 8.已知点P (1,a )与Q (b ,2)关于x 轴成轴对称,又有点Q (b ,2)与 点M (m ,n )关于y 轴成轴对称,则m -n 的值为( )A. 3B.-3C. 1D. -19.等腰三角形的一个内角是50°,则另外两个角的度数分别为( )第14题°,65° °,80° °,65°或50°,80° °,50°10.等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角为( ) A. 30° B. 150° C. 30°或150° °11.等腰三角形底边长为6cm ,一腰上的中线把它的周长分成两部分的差为2cm ,则腰长为( )A. 4cmB. 8cmC. 4cm 或8cmD. 以上都不对12.已知∠AOB =30°,点P 在∠AOB 的内部,点P 1和点P 关于OA 对称,点P 2和点P 关于OB 对称,则P 1、O 、P 2三点构成的三角形是( )A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形 二、填空题:(本大题共8小题,每小题3分,共24分)13.等边三角形是轴对称图形,它有 条对称轴. A 1B 1C 1与△ABC 关于y 轴对称,那么点A 的对应点A 1的是 .16.已知∠AOB =30°,点P 在OA 上,且OP =2,点P 关于直线OB 的对称点是Q ,则PQ = .17.等腰三角形顶角为30°,腰长是4cm ,则三角形的面积为 .18.点P (1,2)关于直线y =1对称的点的坐标是 ;关于直线x =1对称的的坐标是 .19.三角形三内角度数之比为1∶2∶3,最大边长是8cm ,则最小边的长是 . 20.在△ABC 和△ADC 中,下列3个论断:①AB =AD ;②∠BAC =∠DAC ;③BC =DC.将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题 :21题⑵BEDCBAPDCBAPE DCB A .三、解答题:(本大题共52分)21.(每小题5分,共10分)作图题:(不写作法,保留作图痕迹)⑴ 如图,已知线段AB 和直线L ,作出与线段AB 关于直线L 对称的图形.⑵ 已知∠AOB 和C 、D 两点,求作一点P ,使PC =PD ,且P 到∠AOB 两边的距离相等.22.(5B (-1,0),C (-4,3).⑴求出△ABC 的面积.⑵ 在图形中作出△ABC 关于y 轴的对称图形△A 1B 1C 1. ⑶ 写出点A 1,B 1,C 1的坐标.23.(5分)如图所示,梯形ABCD 关y 轴对称,点A 的坐标为(-3,3),点B 的坐标为(-2,0).⑴ 写出点C 和点D 的坐标; ⑵ 求出梯形ABCD 的面积.24.(5分)如图,△ABC 中,DE 是AC 的垂直平分线,AE =3cm ,△ABD 的周长为13cm.求△ABC 的周长.25.(6分)如图,D 是等边三角形ABC 内一点,DB =DA ,BP =AB ,∠DPB =∠DBC.求证:∠BPD =30°.26.(8分)如图,△ABC 为任意三角形,以边AB 、AC为边分别向外作等边三角形ABD 和等边三角形ACE ,连接CD 、BE 并且相交于点P.求证:⑴CD =BE. ⑵∠BPC =120°NMF E CB AED CB A27.(6分)下面有三个结论:⑴等腰三角形两底角的平分线的交点到底边两端的距离相等.⑵等腰三角形两腰上中线的交点到底边两端的距离相等.⑶等腰三角形两腰上的高的交点到底边两端的距离相等.请你任选一个结论进行证明.28.(7分)如图,在△ABC中,AB=AC,∠A=120°,BC=6,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,求证:BM=MN=NC.参考答案和提示:一、选择题:;;;;;;;;;;;;二、填空题:13. 3;14.(-1,3);15. 4点40分;16. 2;17. 4cm2;18.(1,0),(1,2);19.4cm;20.等腰三角形的顶角平分线和底边上的中线重合.三、解答题:21.略;22.⑴=×5×3=(平方单位);⑵略;⑶A1(1,5),B1(1,0);C1(4,3).23.⑴C(2,0),D(3,3).⑵=(4+6)×3=15(平方单位).24.∵DE是线段AC的垂直平分线∴AD=CD∵△ABD的周长为13cm∴AB+BC=13cm∵AE=3cm∴AC=2AE=6cm. ∴△ABC的周长为:AB+BC+AC=19cm.25.连接CD,并延度CD交AB于E,证CE垂直平分AB,可得∠DCB=30°再证△BDC≌△BDP即可.26.略;27.略28.连接MA、NA,证明:MA=NA=MN.。
《轴对称》测试题包含答案轴对称是指一个物体或图形相对于某个中心轴线对称。
在数学中,轴对称也被称为镜像对称。
轴对称在几何学、物理学和艺术中都有广泛的应用。
下面是一些轴对称的测试题及其答案,帮助你更好地理解和掌握轴对称的概念。
1.画出以下几何图形的轴对称轴线: a) 正方形 b) 长方形 c) 圆形 d) 三角形答案: a) 从正方形的中心点连接任意相对的两个顶点,得到的线段就是正方形的轴对称轴线。
b) 从长方形的中心点连接任意相对的两个顶点,得到的线段就是长方形的轴对称轴线。
c) 圆形的轴对称轴线可以是任意一条穿过圆心的直径线。
d) 三角形的轴对称轴线是连接每个顶点与对边中点的线段。
2.判断以下物体是否具有轴对称: a) 人体 b) 椅子 c) 钻石 d) 马答案:a) 人体不具有轴对称,因为我们的身体左右两侧并不完全对称。
b) 椅子具有轴对称,因为椅子的左右两侧是镜像对称的。
c) 钻石具有轴对称,因为它的左右两侧是完全对称的。
d) 马不具有轴对称,因为马的左右两侧并不完全对称。
3.在平面直角坐标系中,点A(2, 3)关于y轴的轴对称点是什么?答案:点A关于y轴的轴对称点是(-2, 3)。
4.在平面直角坐标系中,抛物线y = x^2的图像关于x轴和y轴的轴对称图形分别是什么?答案:抛物线y = x^2关于x轴的轴对称图形是y = -x^2,关于y轴的轴对称图形是y = x^2。
5.用轴对称的方法,画出一个完整的五角星。
答案:首先,画一个正五边形,然后将正五边形的中心点与每个顶点连接,得到五个三角形。
接下来,将每个三角形沿着与顶点相对的边的中点进行翻转,得到五角星的完整图形。
这些测试题希望能够帮助你理解和掌握轴对称的概念。
通过练习和实践,你可以更好地应用轴对称的知识,并在几何学、物理学和艺术中发挥出色。
记得多多练习,加深对轴对称的理解和应用。
轴对称测试题及答案初二一、选择题(每题3分,共30分)1. 轴对称图形的定义是什么?A. 能被一条直线分成两个完全相同的图形B. 能被一个点分成两个完全相同的图形C. 能被一个面分成两个完全相同的图形D. 能被一条曲线分成两个完全相同的图形答案:A2. 下列哪个图形不是轴对称图形?A. 正方形B. 等边三角形C. 菱形D. 圆答案:D3. 轴对称图形的对称轴是什么?A. 任意一条直线B. 任意一条曲线C. 经过图形中心的直线D. 经过图形中心的曲线答案:C4. 一个图形关于某条直线对称,那么这条直线是该图形的什么?A. 对称轴B. 对称中心C. 对称点D. 对称线段答案:A5. 一个图形关于某点对称,那么这个点是该图形的什么?A. 对称轴B. 对称中心C. 对称点D. 对称线段答案:B6. 两个图形关于某条直线对称,那么这条直线是两个图形的什么?A. 对称轴B. 对称中心C. 对称点D. 对称线段答案:A7. 两个图形关于某点对称,那么这个点是两个图形的什么?A. 对称轴B. 对称中心C. 对称点D. 对称线段答案:B8. 一个图形的对称轴有几条?A. 一条B. 两条C. 无数条D. 没有答案:C9. 一个图形的对称中心有几个?A. 一个B. 两个C. 无数个D. 没有答案:A10. 一个图形的对称点有多少个?A. 一个B. 两个C. 无数个D. 没有答案:C二、填空题(每题3分,共30分)1. 轴对称图形的对称轴是________。
答案:经过图形中心的直线2. 一个图形的对称中心是________。
答案:图形上所有对称点的集合3. 一个图形的对称点是________。
答案:关于对称轴或对称中心对称的点4. 一个图形的对称轴可以是________。
答案:直线或曲线5. 一个图形的对称中心可以是________。
答案:点或线段6. 一个图形的对称点可以是________。
答案:图形上的任意点7. 一个图形的对称轴数量可以是________。
初二数学轴对称与轴对称图形练习题一、选择题1、下列图形中一定是轴对称的图形是()。
A、梯形B、直角三角形C、角D、平行四边形2、等腰三角形的一个内角是50°,则另外两个角的度数分别是()。
A、65° 65°B、50°80°C、65°65°或50°80°D、50° 50°3、如果等腰三角形的两边长是6和3,那么它的周长是()。
A、9B、12C、12或15D、154、到三角形的三个顶点距离相等的点是()。
A、三条角平分线的交点B、三条中线的交点C、三条高的交点D、三条边的垂直平分线的交点5、等腰三角形的一个外角等于100°,则与它不相邻的两个内角的度数分别为()。
A、40° 40°B、80°20°C、50°50°D、50° 50°或80°20 °6、∠AOB的平分线上一点P到OA的距离为5,Q是OB上任一点,则()。
A、PQ>5B、PQ≥5C、PQ<5D 、PQ≤57、下列轴对称的图形中,对称轴最少的是()。
A、等边三角形B、等腰梯形C、正方形D、圆8、已知等腰△AOB的底边=8cm,且︱AC-BC︱=5cm,则腰AC的长为()。
A、13 cm或3 cmB、3 cmC、13 cmD、8 cm或6 cm9、下列说法错误的是()A、等腰三角形底边上的高所在的直线是它的对称轴B、等腰三角形底边上的中线所在的直线是它的对称轴C、等腰三角形顶角的平分线所在的直线是它的对称轴D、等腰三角形定有三条对称轴二、填空题1、△ABC中,DE垂直平分AC,与AC交于点E ,与BC交于点D,∠C=15°,∠BAD=60,则△ABC是()三角形。
2、∠AOB 内部有一点P,分别作出点P关于OA、OB的对称点P1、P2,连接P1P2,分别交OA、OB、于点M、N,若P1P2=5cm,则△PMN的周长为()。
第十二章 轴对称 全章测试一、选择题(每小题2分,共20分) 1、下列说法正确的是( ).A .轴对称涉及两个图形,轴对称图形涉及一个图形B .如果两条线段互相垂直平分,那么这两条线段互为对称轴C .所有直角三角形都不是轴对称图形D .有两个内角相等的三角形不是轴对称图形2、点M (1,2)关于x 轴对称的点的坐标为( ).A .(-1,-2)B .(-1,2)C .(1,-2)D .(2,-1) 3、下列图形中对称轴最多的是( ) .A .等腰三角形B .正方形C .圆D .线段4、已知直角三角形中30°角所对的直角边为2cm ,则斜边的长为( ). A .2cm B .4cm C .6cm D .8cm5、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( ).A .11cmB .7.5cmC .11cm 或7.5cmD .以上都不对 6、如图:DE 是△ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC 的周长为( )厘米.A .16B .18C .26D .28 7、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ).A .1个B .2个C .3个D .4个8、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ). A .75°或15° B .75° C .15° D .75°和30° 9、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,AlODCBA我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是().A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行10、等腰三角形ABC在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标,能确定的是 ( ) .A.横坐标 B.纵坐标 C.横坐标及纵坐标 D.横坐标或纵坐标二、填空题(每小题2分,共20分)11、设A、B两点关于直线MN对称,则______垂直平分________.12、已知点P在线段AB的垂直平分线上,PA=6,则PB= .13、等腰三角形一个底角是30°,则它的顶角是__________度.14、等腰三角形的两边的边长分别为20cm和9cm,则第三边的长是__________cm.15、等腰三角形的一内角等于50°,则其它两个内角各为.16、如图:点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P 1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为.17、如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为122cm,则图中阴影部分的面积为2cm.18、如图所示,两个三角形关于某条直线对称,则 = .19.已知A(-1,-2)和B(1,3),将点A向______平移________ 个单位长度后得到的点与点B关于y轴对称.20.坐标平面内,点A和B关于x轴对称,若点A到x轴的距离是3cm,则点B到x•ADEF BC BCAD ECBA OA B CDE轴的距离是_________cm . 三、解答题(每小题6分,共60分) 21、已知:如图,已知△ABC ,的图形(1)分别画出与△ABC 关于x 轴、y 轴对称△A 1B 1C 1 和△A 2B 2C 2 ;(2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标; (3)求△ABC 的面积.22、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.23、如图:在△ABC 中,∠B=90°,AB=BD ,AD=CD ,求∠CAD 的度数.24、已知:E 是∠AOB的平分线上一点,EC⊥OA ,ED⊥OB ,垂足分别为C 、D .求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.25、已知:如图△ABC 中,AB=AC ,∠C=30°,AB⊥AD,AD=4cm ,求BC 的长. 26、如图,已知在△ABC 中,AB=AC ,∠BAC=120o ,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F .求证:BF=2CF .27、已知:△ABC 中,∠B、∠C 的角平分线相交于点D ,过D作EF//BC 交AB 于点E ,交AC 于点F .求证:BE+CF=EF .28、如图,△ABD、△AEC都是等边三角形,求证:BE=DC .29、如图所示,在等边三角形ABC中,∠B、∠C的平分线交于点O,OB和OC的垂直平分线交BC于E、F,试用你所学的知识说明BE=EF=FC的道理.30.已知:如图△ABC中,AB=AC,AD和BE是高,它们交于点H,且AE=BE,求证:AH=2BD.答案:一、选择题:1 2 3 4 5 6 7 8 9 10A C CBC B C A B A二、填空题:11.MN,AB 12.6 13.120 14.20 15.065,06580,050或0 16.15 17.6 18.030 19.上,5 20.3三、解答题略第七章:生活中的轴对称一、中考要求:1.在丰富的现实情境中,经历观察、折叠、剪纸,图形欣赏与设计等数学活动过程,进一步发展空间观念.2.通过丰富的生活实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质.3.探索并了解基本图形(线段、角、等腰三角形)的轴对称性及其相关性质.4.能够按要求作出简单平面图形经过轴对称后的图形,探索简单图形之间的轴对称关系,并能指出对称轴.5.欣赏现实中的轴对称图形,能利用轴对称进行一些图案设计,体验轴对称在现实生活中的广泛应用和丰富的文化价值.6.结合现实生活中的典型实例了解并欣赏物体的镜面对称.二、中考卷研究(一)中考对知识点的考查:2004、2005年部分省市课标中考涉及的知识点如下表:序号所考知识点比率1 轴对称图形2~6%2 轴对称的应用2~5%(二)中考热点:将图形的折叠问题,照镜问题转化为轴对称图形问题及将轴对称问题运用于综合题中是2006年的热点题型之一。
八年级数学:轴对称图形与轴对称练习(含答案)八年级数学:轴对称图形与轴对称练习(含答案)一、选择题(共8小题)1.下列各图,不是轴对称图形的是()A.B.] C.D.2.下列四句话中的文字有三句具有对称规律,其中没有这种规律的一句是()A.上海自来水来自海上B.有志者事竞成C.清水池里池水清D.蜜蜂酿蜂蜜3.下列说法错误的是()A.等边三角形有3条对称轴B.正方形有4条对称轴C.角的对称轴有2条D.圆有无数条对称轴4.如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变5.观察图形…并判断照此规律从左到右第四个图形是( )A .B .C.D.6.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分 D.对应点连线互相平行第5题图第6题图第7题图7.如图,两个三角形关于某条直线成轴对称,其中已知某些边的长度和某些角的度数,则x的度数是()A.55°B.60°C.65°D.70°8.小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是()A.B.C.D.二、填空题(共10小题)9.2011年11月2日,即20111102,正好前后对称,因而被称为“完美对称日”,请你写出本世纪的一个“完美对称日”:_________ .10.写出一个至少具有2条对称轴的图形名称_________ .11.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中的一个小正方形涂黑,所得图案是一个轴对称图形,则涂黑的小正方形可以是_________ (填出所有符合要求的小正方形的标号)12.在轴对称图形中,对应点的连线段被_________ 垂直平分.13.下列图形中,一定是轴对称图形的有_________ ;(填序号)(1)线段(2)三角形(3)圆(4)正方形(5)梯形.14.如图是汽车牌照在水中的倒影,则该车牌照上的数字是_________ .15.请同学们写出两个具有轴对称性的汉字_________ .16.如图,国际奥委会会旗上的图案由5个圆环组成.每两个圆环相交的部分叫做曲边四边形,如图所示,从左至右共有8个曲边四边形,分别给它们标上序号.观察图形,我们发现标号为2的曲边四边形(下简称“2”)经过平移能与“6”重合,2又与_________ 成轴对称.(请把能成轴对称的曲边四边形标号都填上)第11题图第14题图第16题图17.如图,长方形ABCD中,长BC=a,宽AB=b,(b<a<2b),四边形ABEH和四边形ECGF都是正方形.当a、b满足的等量关系是_________ 时,图形是一个轴对称图形.18.请利用轴对称性,在下面这组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形:三、解答题(共5小题)19.判断下列图形是否为轴对称图形?如果是,说出它有几条对称轴.20.如图,五边形ABCDE是轴对称图形,线段AF所在直线为对称轴,找出图中所有相等的线段和相等的角.21.如图,l是该轴对称图形的对称轴.(1)试写出图中二组对应相等的线段:;(2)试写出二组对应相等的角:;(3)线段AB、CD都被直线l .22.如图是由两个等边三角形(不全等)组成的图形.请你移动其中的一个三角形,使它与另一个三角形组成轴对称图形,并且所构成的图形有尽可能多的对称轴.画出你所构成的图形,它有几条对称轴?23.有一些整数你无论从左往右看,还是从右往左看,数字都是完全一样的,例如:22,131,1991,123321,…,像这样的数,我们叫它“回文数”.回文数实际上是由左右排列对称的自然数构成的,有趣的是,当你遇到一个普通的数(两位以上),经过一定的计算,可以变成“回文数”,办法很简单:只要将这个数加上它的逆序数就可以了,若一次不成功,反复进行下去,一定能得到一个回文数,比如:①132+231=363②7299+9927=17226,17226+62271=79497,成功了!(1)你能用上述方法,将下列各数“变”成回文数吗?①237 ②362(2)请写出一个四位数,并用上述方法将它变成回文数.参考答案一、选择题(共8小题)1.A 2.B 3.C 4.A 5.D 6.B 7.B 8.D二.填空题(共10小题)9.20011002,20100102(答案不唯一);10.矩形;11.2,3,4,5,712.对称轴;13.(1)(3)(4);14.21678 .;15.甲、由、中、田、日等.;16.1,3,7 ;17.;18.三.解答题(共5小题)19.解:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.则(1)(3)(5)(6)(9)不是轴对称图形;(2)(4)有1条对称轴;(7)有4条对称轴;(8)有1条对称轴;(10)有2条对称轴.20.解:相等的线段:AB=AE,CB=DE,CF=DF;相等的角:∠B=∠E,∠C=∠D,∠BAF=∠EAF,∠AFD=∠AFC.21.(1)AC=BD,AE=BE,CF=DF,AO=BO ;(2)∠BAC=∠ABD,∠ACD=∠BDC;(3)垂直平分.22.解:如图,小正三角形再大正三角形的内部,该图形有3条对称轴.23.解:(1)①237+732=969,②362+263=625,(2)1151+1511=2662;。
第1章 《轴对称与轴对称图形》 测试题命题:栗瑞宾 审核:薛波 NO.66 时间:45分钟 满分:100分一、选择题:(每题3分,共30分)1.下列轴对称图形中,对称轴最多的是A .等腰直角三角形B .线段C .正方形D .圆 2.到三角形三个顶点距离相等的是A .三边高线的交点B .三条中线的交点C .三条垂直平分线的交点D .三条内角平分线的交点 3.若△ABC 中有两边的垂直平分线的交点恰好在第三边上,则△ABC 必定为A .锐角三角形B .直角三角形C .等腰三角形D .等边三角形 4.在△ABC 中,AB=AC ,BC=5cm ,作AB 的中垂线交另一腰AC 于D ,连结BD ,如果△BCD 的周长是17cm ,则腰长为A .12cmB .6cmC .7cmD .5cm5.如图△ABC 中,∠1=∠2,∠3=∠4,若∠D =360,则∠C 的度数为 A .820B .720C .620D .5206.△ABC 中,AB=AC ,点D 在AC 边上,且 BD=BC=AD ,则∠A 的度数为 A .300 B .360 C .450 D .7007.如图△ABC 中,AB=10cm ,AC=8cm ,∠ABC 和∠ACB 的角平分线交于点O ,过点O 作BC 的平行线MN 交AB 于点M ,交AC 于点N ,则△AMN 的周长为A .10cmB .28cmC .20cmD .18cm8.已知∠AOB=400,OM 平分∠AOB ,MA ⊥OA 于A ,MB ⊥OB 于B ,则∠MAB 的度数为A .500B .400C .300D .200 9.如图,AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是A .BD+ED=BCB .DE 平分∠ADBC .AD 平分∠EDC D .ED+AC>ADAOBCN M2题图4321DCBA10.已知:△ABC 中,AB =AC ,AB 的垂直平分线MN 交AC 于D ,如图示,若∠A =36°,则下列结论:(1)∠C =72° ;(2)BD 是∠ABC(3)△ABD 是等腰三角形;(4)△BCD 的周长=AC +BC ;成立的有 A 1个 B 2个 C 3个 D 4个 二、填空题:(每题4分,共28分)11.点M (-2,1)关于x 轴对称的点N 的坐标是________, 点P (1,2)关于直线y=1对称的点的坐标是___________。
轴对称测试题及答案1. 什么是轴对称图形?2. 轴对称图形的性质有哪些?3. 如何判断一个图形是否是轴对称图形?4. 给定一个图形,如何找到它的对称轴?5. 如果一个图形关于某条直线对称,那么这条直线被称为什么?6. 一个等边三角形是轴对称图形吗?如果是,它有多少条对称轴?7. 给定一个矩形,它有几条对称轴?8. 一个圆有多少条对称轴?9. 给定一个点A(x, y),如果它关于x轴对称,那么它的对称点坐标是什么?10. 给定一个点A(x, y),如果它关于y轴对称,那么它的对称点坐标是什么?答案1. 轴对称图形是指一个图形可以通过一条直线(称为对称轴)进行翻转,使得图形的两部分完全重合的图形。
2. 轴对称图形的性质包括:- 对称轴两边的图形完全重合。
- 对称轴是图形上任意两点连线的中垂线。
3. 判断一个图形是否是轴对称图形的方法是:- 检查图形是否可以通过一条直线翻转后完全重合。
4. 找到图形的对称轴的方法是:- 观察图形,寻找一条直线,使得图形的任意两点关于这条直线对称。
5. 如果一个图形关于某条直线对称,那么这条直线被称为该图形的对称轴。
6. 一个等边三角形是轴对称图形,它有3条对称轴,分别是三条中线。
7. 一个矩形有2条对称轴,分别是两条对角线。
8. 一个圆有无数条对称轴,因为圆的任意直径都是它的对称轴。
9. 如果点A(x, y)关于x轴对称,那么它的对称点坐标是(-x, y)。
10. 如果点A(x, y)关于y轴对称,那么它的对称点坐标是(x, -y)。
附加练习题1. 一个正方形有几条对称轴?请说明它们的位置。
2. 如果一个图形既有轴对称又有中心对称,那么它是什么图形?3. 给定一个点A(x, y),如果它关于原点对称,那么它的对称点坐标是什么?4. 描述如何通过坐标变换将一个图形关于y轴进行对称。
5. 描述如何通过坐标变换将一个图形关于x轴进行对称。
附加练习题答案1. 一个正方形有4条对称轴,分别是两条对角线和连接相邻顶点的两条线段。
第十三章《轴对称》测试题姓名成绩50.它的一条腰上的高与底边的夹角是1等腰三角形中有一个角是︒260,则这个等腰三角形的顶角等于_______,底2、等腰三角形的三个内角与顶角的一个外角之和等于︒角等于__________.3、如果等腰三角形底边上的高等于腰长的一半,那么这个等腰三角形的顶角等于________度.4、如图,△ABC中,BC=10,边BC的垂直平分线分别交AB、BC于点E和D.BE=6,求△BCE的周长.30,求∠1和∠ADC的度数.5.如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=︒6.如图,△ABC中,AB=AC,D是BC的中点,点E在AD上,用轴对称的性质证明:BE=CE.7、如图,已知,PB⊥AB,PC⊥AC,且PB=PC,D是AP上一点.求证:∠BDP=∠CDP.8、如图,AB=AC,DB=DC,P是AD上一点.求证:∠ABP=∠ACP.6、如图,在△ABC 中,AB=AC ,BD⊥AC,求证:∠DBC=21∠A7、 如图,若AC 是BD 的中垂线,AB=5cm ,BC=3cm ,求四边形ABCD 的周长.四、作图题。
1、画出下图的对称轴.2、如图,在直线MN 上求作一点P ,使∠MPA=∠NPB.3、如图,E 、F 是△ABC 的边AB 、AC 上点,在BC 上求一点M ,使△EMF 的周长最小.第十四章 轴对称复习测试题一、选择题1.如图1,有8块相同长方形地砖拼成一个矩形地面,则每块长方形地砖地长和宽分别是( )60cm图 1A B MC NO图3 A .48cm ,12cm B .48cm ,16cm C .44cm ,16cm D .45cm ,15cm2.图2是几家银行的标志,在这几个图案中是轴对称图形的有( )个. A.1 B.2 C.3 D.4 3.直角三角形三边垂直平分线的交点位于三角形的( ) A.形内 B.形外 C.斜边的中点 D.不能确实4.在下列说法中,正确的是( )A .如果两个三角形全等,则它们必是关于直线成轴对称的图形;B .如果两个三角形关于某直线成轴对称,那么它们是全等三角形;C .等腰三角形是关于底边中线成轴对称的图形;D .一条线段是关于经过该线段中点的直线成轴对称的图形 二、填空题5.王红在电脑中用英文写个人简历时,把其中一句倒排成 : 则正确的英文为____________.6.下列10个汉字:林 上 下 目 王 田 天 王 显 吕,其中不是轴对称图形的是_______;有一条对称轴的是________;有两条对称轴的是_______;有四条对称轴的是________.7.一个汽车车牌在水中的倒影为 ,则该车的牌照号码是______.8.已知等腰三角形的一个角为42 0,则它的底角度数_______.9.如图3,已知△ABC 中,AC+BC=24,AO 、BO 分别是角平分线,且MN ∥BA ,分别交AC 于N 、BC 于M ,则△CMN 的周长为( )A .12B .24C .36D .不确定 10.判断是非题:A .等边三角形是轴对称图形,它的三条高是它的对称轴;B .等腰三角形是轴对称;C .关于某一条直线对称的两个三角形一定全等;D .若△ABC 与△A 1B 1C 1关于直线L 对称,那么它们对应边的高、中线、对应角的平分线分别关于L 对称 11.如图4所示,Rt △ABC 中,∠C=90°,AB 的垂直平分线DE 交BC 于D ,交AB 于点E .当∠B=30°时,图中不一定相等的线段有( )A .AC=AE=BEB .AD=BDC .CD=DED .AC=BD 四、解答题 12.如图所示,四边形EFGH 是一个矩形的球桌面,有黑白两球分别位于A 、B 两点,试说明怎样撞击B , 才使白球先撞击台球边EF ,反弹后又能击中黑球A ?13.如图所示,△ABC 是等边三角形,延长BC 至E ,延长BA 至F ,使AF=BE ,连结CF 、EF ,过点F 作直线FD ⊥CE 于D ,试发现∠FCE 与∠FEC 的数量关系,并说明理由.图2 F 图4A CBD E图7 B C A D14.如图7所示,已知Rt△ABC 中,∠C=90°,沿过B 点的一条直线BE 折叠这个三角形,使C 点落在AB 边上的点D .要使点D 恰为AB 的中点,问在图中还要添加什么条件?(直接填写答案)⑴写出两条边满足的条件:______.⑵写出两个角满足的条件:_____. ⑶写出一个除边、角以外的其他满足条件:___________.15.已知:如图8,△ABC 中,∠C=90°,CM ⊥AB 于M ,AT 平分∠BAC 交CM 于D ,交BC 于T ,过D 作DE ∥AB 交BC 于E ,求证CT=BE .16.用棋子摆成如图9所示的“T ”字图案.(1)摆成第一个“T ”字需要___________个棋子,第二个图案需______________个棋子; (2)按这样的规律摆下去,摆成第10个“T ”字需要_____个棋子,第n 个需_____个棋子.17.如图10,已知△ABC 中,AH ⊥BC 于H ,∠C=35°,且AB+BH=HC ,求∠B 度数.18.如图11,∠ABC 内有一点P ,在BA 、BC 边上各取一点P 1、P 2,使△PP 1P 2的周长最小.图8 AC T EB MD 图10 AB H图9(1) (2)19.如图12所示,∠BAC =105°,若MP 和NQ 分别垂直平分AB 和AC .求∠PAQ 的度数.20.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:⑴分割后的整个图形必须是轴对称图形;⑵四块图形形状相同;⑶四块图形面积相等.现已有两种不同的分法:⑴分别作两条对角线(如图7-16中的图1);⑵过一条边的四等分点作这边的垂线段(图2)(图2中两个图形的分割看作同一方法).请你按照上述三个要求,分别在下面两个正方形中给出另外..两种不同的分割方法...........(正确画图,不写画法)6、(10分)如图,已知△ABC 中,AB=AC,P 是BC 边上的一点,过P 引直线分别交AB 于M ,交AC 的延长线于N ,且PM=PN.(1)写出图中除AB=AC,PM=PN 外的其它相等的线段. (2)证明你的结论.M CPBAN4、(10分)如图,D 是等边△ABC 内一点,AD=BD,∠CBP=∠DBC,且BP=BA,求∠P 的度数.图(1) 图(2)图14-17图(3)图(4)AB DCP2、(8分)如图,△ABC中,AB=AC,DE垂直平分AB交AC于E,垂足为D,若△ABC 的周长为28,BC=8,求△BCE的周长.ADECB13.(10分)在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC•于M,•交AB于E,AC 的垂直平分线交BC于N,交AC于F,求证:BM=MN=NC.16.已知:如图D、E分别是△ABC的边BC、AB上的点,BD=BE,AC=AD,∠B=60°,求证:AE=CD+DE.答案:1.D (点拨:设长方形地砖的长和宽分别为x㎝,(60-x)㎝,图14-17则2x=x+3(60-x),x=45,60-x=15.)2.C (点拨;只有中国建设银行的标志不是轴对称图形.) 3.C .(点拨:直角三角形斜边的中点到三顶点的距离相等.)4.B (点拨:全等的三角形不一定是成轴对称,而成轴对称的两个三角形一定是全等的.) 5.“I this year 14 years old, ”(点拨:在这句话的正上方放一面镜子,中文为:“我今年14岁,”.) 6.(点拨:林 上 下 不是轴对称图形 , 天 王 显 吕 这四个字都有1条对称轴, 目 王 有2条对称轴, 田 有4条对称轴.)7. (点拨:只需将倒影沿垂直旋转180°即可,因此该车的牌照号码为:W 5236499.) 8.42°或69°(点拨:这个42°的内角可以为等腰三角形的底角,也可为等腰三角形的顶角.) 9.24. 10.A ,B 11.D .5对.因为∠B=30°,AD=BD ,则∠DAB=30°,又因为∠C=90°, ∴∠CAD=∠EAD=30°,得CD=DE ,△ACD ≌△AED ,则AC=AE=BE .12.先作出点A 关于台球边EF 的对称点A 1,连结BA 1交EF 于点O .将球杆沿BOA 1的方向撞击B 球,可使白球先撞击台球边EF ,然后反弹后又能击中黑球A . 13.如图所示,延长BE 到G ,使EG=BC ,连FG .∵AF=BE ,△ABC 为等边三角形,∴BF =BG ,∠ABC =60°,∴△GBF 也是等边三角形.在△BCF 和△GEF 中,∵BC=EG ,∠B=∠G=60°,BF=FG , ∴△BCF ≌△GEF ,∴CE=DE ,又∵FD ⊥CE ,∴∠FCE=∠FEC (等腰三角形的“三线合一”). 14.(1)①AB=2BC 或②BE=AE 等;(2)①∠A=30°或②∠A=∠DBE 等; (3)△BEC≌△AED 等.15.过T 作TF ⊥AB 于F, 证△ACT ≌∠AFT(AAS),△DCE ≌△FTB(AAS). 16.(1)5, 8; (2)32, 3n+2.17.在CH 上截取DH=BH ,连结AD ,先证△ABH ≌△ADH,再证∠C=∠DAC,得∠B=70°.18.如图14-17,以BC 为对称轴作P 的对称点M ,以BA 为对称轴作出P 的对称点N ,连MN 交BA 、BC 于点P 1、P 2.∴ △PP 1P 2为所求作三角形.19.由于MP 、NQ 分别垂直平分AB 和AC ,所以PB =PA ,QC =QA .所以∠PBA =∠PAB ,∠QCA =∠QAC ,∠PAB +∠QAC =∠PBA +∠QCA =180-105=75°,所以:∠PAQ =105°-75°=30°. 20.如图14-18中(1)、(2)符合题意,图(3)的四部分面积相等但形状大小不同.图(1)图(2) 图(3)图14-18图7-2-8 B A FG。
八年级(上)数学学情分析
一、 选择题(每题3分,共30分)
1. 下列图案是我国几家银行的标志,其中不是..轴对称图形的是( )
2 . 如图,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )
A .在AC 、BC 两边高线的交点处
B .在A
C 、BC 两边中线的交点处 C .在AC 、BC 两边垂直平分线的交点处
D .在∠A 、∠B 两内角平分线的交点处
3 . 如图,直线L 1,L 2,L 3表示三条相互交叉的公路,现要建一个货物中转
站,•要求它到三条公路的距离相等,则可供选择的地址有( )
A .一处
B .二处
C .三处
D .四处
4 . 等腰三角形的对称轴是( )
A .顶角的平分线
B .底边上的高
C .底边上的中线
D .底边上的高所在的直线
5 . .如图,在四边形ABCD 中,边AB 与AD 关于AC 对称,则下面结论正确的是( )
①CA 平分∠BCD ;②AC 平分∠BAD ;③DB ⊥AC ;④BE=DE.
A.②
B.①②
C.②③④
D.①②③④
A .
B .
C .
D .
C
D
6.若N b a b a ++=-22)32()32(,则N 的代数式是( )
A. -24ab
B.12ab
C.24ab
D.-12ab 7.下列运算中,正确的是( )
(A )()222a b a b +=+ (B )()2
222x y x xy y --=++
(C )()()2326x x x +-=- (D )()()22a b a b a b --+=-
8.为了应用平方差公式计算()()c b a c b a -++-,必须先适当变形,下列各变形中,正确的是( )
A.()[]()[]b c a b c a +--+
B.()[]()[]c b a c b a -++-
C.()[]()[]a c b a c b +--+
D.()[]()[]c b a c b a -+--
9.已知7)(2=+b a ,3)(2=-b a ,则22b a +与ab 的值分别是 ( ) A. 4,1 B. 2,2
3 C.5,1 D. 10,2
3 10、下列名式:4422222222,)()(,,,y x y x y x y x y x --+---+--中能用平方差公 式分解因式的有( )
A 、1个,
B 、2个,
C 、3个,
D 、4个 二、填空题(每题3分,共30分)
1. 等腰三角形的一个内角是700,则它的另外两个角的度数分别是_____. 2 . 如图,三角形ABC 中,AB=AC ,∠A=40度,AB 的垂直平分线MN 交AC 于D ,连接BD ,∠DBC 等于_____度.
3. 如图所示的两个三角形关于某条直线对称,∠1=110°,∠2=46°,则x = .
4. 如图,镜子中号码的实际号___________.
5. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D,点D 到AB 的距离为5cm,则CD=_____cm. 6.232y x 与y x 612的公因式是 .
7.若3,2a b ab +=-=,则22a b += ,()2
a b -=
8.如果x 2-kx +9y 2是一个完全平方公式的结果,则常数k =________________;
9.分解因式:xy 3-4xy =_______________________。
10.计算: (x +y) ( x 2+y 2) ( x -y))(44y x + 三、 解答题(共60分)
1. (本题满分9分)如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,且到∠AOB 的两边的距离相
等.
A
B
C
D
2.(本题满分12分)计算: (1)982 (2)101×99
(3) (a +2b -3) (a -2b +3) (5).(m -n -3)2
3. (本题满分19分)分解因式:(1)22
33ax ay -= (2)2x 2-18 (3)2
69x x -+
(4)化简与求值:(a +b )(a -b )+(a +b )2-a(2a +b),其中a=23
, b =-112。
(5)已知x(x -1)-(x 2
-y)=-2.求22
2
x y xy +-的值.
4. (本题满分10分)如图,在△ABC 中,已知AB =AC ,AD 为∠BAC 的平分线,且∠2=25°,求∠BAC 和∠B 的度数
.
5.选做题: (本题满分10分) 如图,△ABC 中,∠BAC=1100,DE 、FG 分别为AB 、AC 的垂直平分线,E 、G 分别为垂足. (1) 求∠DAF 的度数.
(2)如果BC ﹦10cm ,求△DAF 的周长.
D
C。