八年级数学上册三角形双休作业一作业
- 格式:ppt
- 大小:2.78 MB
- 文档页数:25
等边三角形1. 关于等边三角形的说法:(1)等边三角形有三条对称轴;(2)有一个角等于60°的等腰三角形是等边三角形;(3)有两个角等于60°的三角形是等边三角形;(4)等边三角形两边中线上的交点到三边的距离相等.其中正确的说法有()A.1个B.2个C.3个D.4个2.如图,D是等边△ABC的边AB上的一点,CD=BE,∠1=∠2,则△ADE是()A.等腰三角形B.等腰直角三角形C.等边三角形D.直角三角形3.如图所示,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC.∠EBC=∠E=60°,若BE=6,DE=2,则BC的长度是()A.6B.8C.9D.104.如图,在△ABC中,点A关于BD的对称点为点E,点B关于DE的对称点为C,∠CBD=30°,AC=9,则AD的长为()A.5B.4C.3D.25.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t <6),连接DE,当△BDE是直角三角形时,t的值为()A.2B.3.5C.3.5或4.5D.6.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边三角形ABC 和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.则四个结论:①AD=BE;②∠OED=∠EAD;③∠AOB=60°;④DE=DP中错误的是()A.①B.②C.③D.④7.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.8.如图,在△ABC中,AB=AC,∠A=60°,BE⊥AC于E,延长BC到D,使CD=CE,连接DE,若△ABC的周长是24,BE=a,则△BDE的周长是9.如图,已知O是等边三角形△ABC内一点,∠AOB、∠BOC、∠AOC的度数之比为6:5:4,在以OA、OB、OC为边的三角形中,此三边所对的角的度数是10.如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)求证:△ODE是等边三角形.(2)线段BD、DE、EC 三者有什么数量关系?写出你的判断过程.11.如图,在等边△ABC中,点D、E、F分别在AB、BC、AC上.(1)如果AD=2BD,BE=2CE,CF=2AF,求证:△DEF是等边三角形;(2)如果AD=3BD,BE=3CE,CF=3AF,△DEF仍是等边三角形吗?(3)直接写出D、E、F三点满足什么条件时,△DEF是等边三角形.12.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD.(1)当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当a为多少度时,△AOD是等腰三角形?等边三角形课后作业参考答案1. 解析:根据利用等边三角形的性质分析即可解:根据等边三角形的性质:(1)等边三角形三条边都相等,三个内角都相等,每一个角为60度;(2)等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一);(3)等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线;由此分析判定(1)(2)(3)(4)都正确,所以正确的说法有4个,故选D2.解析:证明△ADE是哪一种三角形,可以从三边AD,AE,DE入手.解:因为△ABC为等边三角形,所以∠ABC=60°.又因为CD=BE,∠1=∠2,且AC=AB,所以△ADC≌△AEB,所以AD=AE,∠EAD=∠CAB=60°,所以△ADE为等边三角形.故选C.3.解析:根据角平分线、高、等腰直角三角形的性质依次判断即可得出答案.解:①∵∠1=∠2=22.5°,又∵AD是高,∴∠2+∠C=∠3+∠C,∴∠1=∠3,②∵∠1=∠2=22.5°,∴∠ABD=∠BAD,∴AD=BD,又∵∠2=∠3,∠ADB=∠ADC,∴△BDH≌△ADC,∴DH=CD,∵AB=BC,∴BD+DH=AB,③无法证明,④可以证明,故选C4. 解析作出辅助线后根据等腰三角形的性质得出BE=6,DE=2,进而得出△BEM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案.解:延长ED交BC于M,延长AD交BC于N,作DF∥BC,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∴△EFD为等边三角形,∵BE=6,DE=2,∴DM=4,∵△BEM 为等边三角形,∴∠EMB=60°,∵AN ⊥BC ,∴∠DNM=90°,∴∠NDM=30°,∴NM=2,∴BN=4,∴BC=2BN=8,故选B5. 解析:由Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,可求得AB 的长,由D 为BC 的中点,可求得BD 的长,然后分别从若∠DEB=90°与若∠EDB=90°时,去分析求解即可求得答案.解:∵Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,∴AB=2BC=4(cm ),∵BC=2cm ,D 为BC 的中点,动点E 以1cm/s 的速度从A 点出发,∴BD=21BC=1(cm ),BE=AB-AE=4-t (cm ), 若∠BED=90°,当A→B 时,∵∠ABC=60°,∴∠BDE=30°,∴BE=21BD=21(cm ), ∴t=3.5,当B→A 时,t=4+0.5=4.5.若∠BDE=90°时,当A→B时,∵∠ABC=60°,∴∠BED=30°,∴BE=2BD=2(cm),∴t=4-2=2,当B→A时,t=4+2=6(舍去).综上可得:t的值为2或3.5或4.5.故选D.6. 解析:根据等边三角形的性质就可以得出△ACD≌△BCE,∠ACB=∠CED=60°,就有BC∥DE,∠OED=∠CBE,由∠CBE=∠CAD而得出结论,∠DPC=∠PCA+∠PAC=60°+∠CAP >∠DCP=60°而得出DE≠DP从而得出结论.解:∵△ABC和△CDE都是等边三角形,∴AC=BC,EC=DC=DE,∠ACB=∠DCE=∠DEC=60°,∴BC∥DE,∠ACB+BCD=∠DCE+∠BCD,∴∠OED=∠CBE,∠ACD=∠BCE.在△ACD和△BCE在AC=BC, ∠ACD=∠BCE, EC=DC∴△ACD≌△BCE(SAS),∴∠CAD=∠CBE.AD=BE,故①正确;∴∠OED=∠②正确.∵∠AOB=∠EAD+∠AEO,∴∠AOB=∠CBE+∠AEO.∵∠CBE+∠AEO=∠ACB=60°,∴∠AOB=60°.故③正确∵∠ACB+∠DCE+∠BCD=180°,∴∠BCD=60°.∵∠DPC=∠PCA+∠PAC=60°+∠CAP >∠DCP=60°,∴④错误.故选D7.解析:根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E 的度数.解:∵△ABC 是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD ,∴∠CDG=30°,∠FDE=150°,∵DF=DE ,∴∠E=15°.故答案为:158.解析:根据在△ABC 中,AB=AC ,∠A=60°,可得△ABC 的形状,再根据△ABC 的周长是24,可得AB=BC=AC=8,根据BE ⊥AC 于E ,可得CE 的长,∠EBC=30°,根据CD=CE ,可得∠D=∠CED ,根据∠ACB=60°,可得∠D ,根据∠D 与∠EBC ,可得BE 与DE 的关系,可得答案.解:∵在△ABC 中,AB=AC ,∠A=60°,∴△ABC 是等边三角形,∵△ABC 的周长是24,∴AB=AC=BC=8,∵BE ⊥AC 于E ,∴CE=21AC=4,∠EBC=21∠ABC=30°, ∵CD=CE ,∴∠D=∠CED ,∵∠ACB 是△CDE 的一个外角,∴∠D+∠CED=∠ACB=60°∴∠D=30°,∴∠D=∠EBC,∴BE=DE=a,∴△BED周长是DE+BE+BD=a+a+(8+4)=2a+12,故答案为:2a+12.9. 解析:求出∠AOB、∠BOC、∠AOC的度数,将△AOC绕点A顺时针旋转60°得到三角形AO'B,连接OD O',证等边三角形BOO',推出△BOO'即是以OA,OB,OC为边长构成的三角形即可.解:∵∠AOB+∠BOC+∠AOC=360°且∠AOB:∠BOC:∠AOC=6:5:4,∴∠AOB=144°,∠BOC=120°,∠AOC=96°,将△AOC绕点A顺时针旋转60°得到三角形AO′B,连接OO′,∵△AO′B≌△AOC,∴∠AO′B=∠AOC=96°,O′B=OC,AO′=AO,∵∠OAO′=60°(将△AOC绕点A顺时针旋转60°得到三角形AO′B),AO=AO′,∴△AOO′是等边三角形,∴OO′=AO,∴△BOO′即是以OA,OB,OC为边长构成的三角形,∵∠AOO′=∠AO′O=60°,∴∠BOO′=∠AOB-∠AOO′=144°-60°=84°,∠BO′O=∠AO′B-∠AO′O=96°-60°=36°,∠O′BO=180°-84°-36°=60°,以OA,OB,OC为三边所构成的三角形中,三边所对的角度分别是60°,36°,84°.故答案为:36°或60°或84°10. 解析:(1)根据平行线的性质及等边三角形的性质可得到△ODE是等边三角形;(2)根据角平分线的性质及平行线的性质可得到∠DBO=∠DOB,根据等角对等边可得到DB=DO,同理可证明EC=EO,因为DE=OD=OE,所以BD=DE=EC;(3)根据直角三角形及等边三角形的性质解答即可.(1)证明:∵△ABC是等边三角形,∴∠ABC=∠A CB=60°,∵OD∥AB,OE∥AC,∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°,∴△ODE是等边三角形;(2)BD=DE=EC,其理由是:∵OB平分∠ABC,且∠ABC=60°,∴∠ABO=∠OBD=30°,∵OD∥AB,∴∠BOD=∠ABO=30°,∴∠DBO=∠DOB,∴DB=DO,同理,EC=EO,∵DE=OD=OE,∴BD=DE=EC;11. 解析:(1)根据等边△ABC中AD=2BD,BE=2CE,CF=2AF,可得AD=BE=CF,AF=BD=CE,证得△ADF≌△BED≌△CFE,即可得出:△DEF是等边三角形.(2)根据等边△ABC中AD=3BD,BE=3CE,CF=3AF,可得AD=BE=CF,AF=BD=CE,证得△ADF ≌△BED≌△CFE,即可得出:△DEF是等边三角形.(3)根据等边△ABC中AD=nBD,BE=nCE,CF=nAF,可得AD=BE=CF,AF=BD=CE,证得△ADF ≌△BED≌△CFE,即可得出:△DEF是等边三角形.解:(1)∵△ABC为等边三角形,且AD=2BD,BE=2CE,CF=2AF,∴AD=BE=CF,AF=BD=CE,∠A=∠B=∠C=60°,根据SAS可得△ADF≌△BED≌△CFE(SAS),∴DF=ED=EF,∴△DEF是一个等边三角形.(2)∵△ABC为等边三角形,且AD=3BD,BE=3CE,CF=3AF,∴AD=BE=CF,AF=BD=CE,∠A=∠B=∠C=60°,根据SAS可得△ADF≌△BED≌△CFE(SAS),∴DF=ED=EF,∴△DEF是一个等边三角形.(3)当AD=nBD,BE=nCE,CF=nAF时,△DEF是等边三角形.理由如下:∵△ABC为等边三角形,且AD=nBD,BE=nCE,CF=nAF,∴AD=BE=CF,AF=BD=CE,∠A=∠B=∠C=60°,根据SAS可得△ADF≌△BED≌△CFE(SAS),∴DF=ED=EF,∴△DEF是一个等边三角形.12.解析:(1)首先根据已知条件可以证明△BOC≌△ADC,然后利用全等三角形的性质可以求出∠ADO的度数,由此即可判定△AOD的形状;(2)利用(1)和已知条件及等腰三角形的性质即可求解.解:(1)∵△OCD是等边三角形,∴OC=CD,而△ABC是等边三角形,∴BC=AC,∵∠ACB=∠OCD=60°,∴∠BCO=∠ACD,在△BOC与△ADC中,∵OC=CD, ∠BCO=∠ACD, BC=AC∴△BOC≌△ADC,∴∠BOC=∠ADC,而∠BOC=α=150°,∠ODC=60°,∴∠ADO=150°-60°=90°,word∴△ADO是直角三角形;(2)∵设∠CBO=∠CAD=a,∠ABO=b,∠BAO=c,∠CAO=d,则a+b=60°,b+c=180°-110°=70°,c+d=60°,a+d=50°∠DAO=50°,∴b-d=10°,∴(60°-a)-d=10°,∴a+d=50°,即∠CAO=50°,①要使AO=AD,需∠AOD=∠ADO,∴190°-α=α-60°,∴α=125°;②要使OA=OD,需∠OAD=∠ADO,∴α-60°=50°,∴α=110°;③要使OD=AD,需∠OAD=∠AOD,∴190°-α=50°,∴α=140°.所以当α为110°、125°、140°时,三角形AOD是等腰三角形.11 / 11。
八年级上册《数学》三角形专项练习题11.1.1三角形的边一、能力提升1.如图,在图形中,三角形有()A.4个B.5个C.6个D.7个2.已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A.2B.3C.5D.133.若一个三角形的两条边长分别为3和8,而第三条边长为奇数,则第三条边长为()A.5或7B.7C.9D.7或94.在△ABC中,若三条边长均为整数,周长为11,且有一条边长为4,则这个三角形最长边可能取值的最大值是()A.7B.6C.5D.45.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 为公共边的“共边三角形”有对.6.若等腰三角形的腰长为6,则它的底边长a的取值范围是.7.用7根相同的火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为.8.已知等腰三角形的两边长分别为3cm和7cm,求这个三角形的周长.9.已知等腰三角形的周长是16cm.(1)若其中一边的长为4cm,求另外两边的长;(2)若其中一边的长为6cm,求另外两边的长.10.若a,b,c是△ABC的三边长,请化简|a-b-c|+|b-c-a|+|c-a-b|.11.已知等腰三角形的周长为20cm,设腰长为xcm.(1)用含x的式子表示底边长.(2)腰长x能否为5cm,为什么?(3)求x的取值范围.二、创新应用12.在平面内,分别用3根、5根、6根、…小棒首尾依次相接,能搭成什么形状的三角形?通过尝试,形状如表所示.小棒数目3 5 6 ……示意图……形状等边三角形等腰三角形等边三角形……(1)4根小棒能搭成三角形吗?(2)8根、12根小棒能搭成几种不同形状的三角形?并画出它们的示意图.答案一、能力提升1.B2.B;由题意知2+x>13,且x<13+2,解得11<x<15,因为x为正整数,所以x 可以是12,13,14.故选B.3.D;由题意知第三条边长大于5小于11.因为第三条边长为奇数,所以它的大小为7或9.4.C由题意知三角形的三条边长分别为2,4,5或3,4,4,所以最长边可能取值的最大值为5.5.3;△BDC与△BEC,△BDC与△BAC,△BEC与△BAC,共3对.6.0<a<12.7.2.8.解:若腰长为3cm,则三边长分别为3cm,3cm,7cm,而3+3<7,此时不能构成三角形;若腰长为7cm,则三边长分别为3cm,7cm,7cm.此时能构成三角形,其周长为3+7+7=17(cm).故这个三角形的周长为17cm. 9.解:(1)若腰长为4cm,则底边长为16-4-4=8(cm).三边长分别为4cm,4cm,8cm,不符合三角形的三边关系,所以应该是底边长为4cm.所以腰长为(16-4)÷2=6(cm).三边长分别为4cm,6cm,6cm,符合三角形的三边关系.所以另外两边的长都为6cm.(2)若腰长为6cm,则底边长为16-6-6=4(cm).三边长分别为4cm,6cm,6cm,符合三角形的三边关系.所以另外两边的长分别为6cm 和4cm.若底边长为6cm,则腰长为(16-6)÷2=5(cm).三边长分别为6cm,5cm,5cm,符合三角形的三边关系.所以另外两边的长都为5cm.10.解:因为a,b,c是△ABC的三边长,所以a<b+c,b<c+a,c<a+b,即a-b-c<0,b-c-a<0,c-a-b<0.所以|a-b-c|+|b-c-a|+|c-a-b|=-(a-b-c)-(b-c-a)-(c-a-b)=a+b+c.11.解:(1)底边长为(20-2x)cm.(2)不能.理由如下:若腰长为5cm,则底边长为20-2×5=10(cm).因为5+5=10,不满足三角形的三边关系.所以腰长不能为5cm.(3)根据题意,得解得0<x<10.由三角形的三边关系,得x+x>20-2x,解得x>5.综上所述,x的取值范围是5<x<10.二、创新应用12.解:(1)4根小棒不能搭成三角形.(2)8根小棒能搭成一种三角形,示意图如图甲;12根小棒能搭成三种不同形状的三角形,示意图如图乙.11.1.2三角形的高、中线与角平分线一、能力提升1.若一个三角形中仅有一条高在三角形的内部,则该三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.直角三角形或钝角三角形2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D.在△ABC中,边AC上的高是线段()A.AEB.CDC.BFD.AF3.如图,线段AE是△ABC的中线,已知EC=6,DE=2,则线段BD的长为()A.2B.3C.4D.64.如图,在△ABC中,∠C=90°,D,E为AC上的两点,且AE=DE,BD平分∠EBC,则下列说法不正确的是()A.线段BC是△ABE的高B.线段BE是△ABD的中线C.线段BD是△EBC的角平分线D.∠ABE=∠EBD=∠DBC5.如图,在△ABC中,E,F分别是AB,AC的中点,△CEF的面积为2.5,则△ABC的面积为()A.6B.7C.8D.106.如图,BD和CE是△ABC的两条角平分线,且∠DBC=∠ECB=31°,则∠ABC=度,∠ACB=度.7.如图,线段AD,CE分别是△ABC中边BC,AB上的高.若AD=10,CE=9,AB=12,则BC的长是.8.如图,在△ABC中,AB=AC,线段AD是△ABC的中线,△ABC的周长为34cm,△ABD的周长为30cm,求AD的长.9.已知在等腰三角形ABC中,AB=AC,若腰AC上的中线BD将等腰三角形ABC的周长分成15和6两部分,求三角形ABC的腰长及底边长.10.如图,AD是△CAB的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是△EDF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.二、创新应用11.有一块三角形优良品种试验基地,如图,由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择.(画图即可)答案一、能力提升1.D;直角三角形和钝角三角形都只有一条高在三角形的内部.2.C3.C4.D5.D;∵F为AC的中点,∴线段EF为△AEC的中线,∴S△AEC=2S△CEF=5.∵E为AB的中点,∴线段CE为△ABC的中线,∴S△ABC=2S△AEC=10.6.62;62.7.10.8;S△ABC=BC·AD=AB·CE,则BC===10.8.8.解:∵线段AD是△ABC的中线,∴BC=2BD.∵AB=AC,△ABC的周长为34cm,∴2AB+2BD=34cm,即AB+BD=17cm.又△ABD的周长为30cm,即AB+BD+AD=30cm,∴AD=13cm.9.解:设AB=AC=2x,则AD=CD=x.当AB+AD=15,BC+CD=6时,有2x+x=15,所以x=5,AB=AC=2x=10,BC=6-5=1.当BC+CD=15,AB+AD=6时,有2x+x=6,所以x=2,AB=AC=2x=4,BC=13.因为4+4<13,所以不能组成三角形.故三角形ABC的腰长为10,底边长为1.10.解:DO是△EDF的角平分线.证明如下:∵AD是△CAB的角平分线,∴∠EAD=∠FAD.∵DE∥AB,DF∥AC,∴∠EDA=∠FAD,∠FDA=∠EAD.∴∠EDA=∠FDA,即DO是△EDF的角平分线.二、创新应用11.解:如图(答案不唯一).11.1.3三角形的稳定性一、能力提升1.如图,桥梁的斜拉钢索是三角形的结构,主要是为了()A.节省材料,节约成本B.保持对称C.利用三角形的稳定性D.美观漂亮2.下列不是利用三角形稳定性的是()A.伸缩晾衣架B.三角形房架C.自行车的三角形车架D.矩形门框的斜拉条3.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短4.王师傅用四根木条钉成一个四边形木架.如图,要使这个木架不变形,他至少还要再钉上()根木条.A.0B.1C.2D.35.如图,要使四边形木条框架ABCD变“活”(具有不稳定性),应将木条拆除.6.伸缩铁门能自由伸缩,主要是应用了四边形的.7.我们所用的课桌和所坐的凳子,时间长了总是摇摇晃晃的,这是什么原因?要使自己用的桌凳不晃动应该怎么办?如图,如果有六边形木框,要使它不变形,应该怎么办?二、创新应用8.如图,我们知道要使四边形木架不变形,至少要钉一根木条.那么要使五边形木架不变形,至少要钉几根木条?要使七边形木架不变形,至少要钉几根木条?要使n边形木架不变形,又至少要钉多少根木条呢?答案一、能力提升1.C.2.A.3.A;打开的那一扇窗户下边的一部分OB、窗户框下边的一部分OA 及AB组成一个三角形,根据三角形的稳定性,知可用AB固定窗户.4.B.5.AC.6.不稳定性.7.解:这是因为课桌和凳子的四个侧面都是四边形木架,当交接处松动后就具有不稳定性.解决这类问题的方法是在每个侧面加上一根木条(或木板),使之成为三角形.要使六边形木框不变形,至少应加3根木条使其划分为三角形.二、创新应用8.解:要使五边形木架不变形,至少要钉2根木条;要使七边形木架不变形,至少要钉4根木条;要使n边形木架不变形,至少要钉(n-3)根木条.11.2.1三角形的内角一、能力提升1.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B的度数为()A.50°B.75°C.100°D.125°2.如图,CD∥AB,∠1=120°,∠2=80°,则∠E等于()A.40°B.60°C.80°D.120°3.(2020·辽宁锦州中考)如图,在△ABC中,∠A=30°,∠B=50°,CD平分∠ACB,则∠ADC的度数是()A.80°B.90°C.100°D.110°4.在△ABC中,若∠A=∠B+∠C,则∠A的度数是.5.如图,点B,C,D在同一条直线上,CE∥AB,∠ACB=90°.如果∠ECD=36°,那么∠A的度数是.6.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2的度数是.7.在△ABC中,若最大角∠A等于最小角∠C的两倍,最大角又比另一个角大20°,则△ABC的三个角的度数分别是多少?8.如图,E是△ABC中边AC上的一点,过点E作ED⊥AB,垂足为D.若∠1=∠2,则△ABC是直角三角形吗?为什么?9.如图,在△ABC中,D是BC上一点,F是BA延长线上一点,连接DF交AC于点E,且∠B=42°,∠C=59°,∠DEC=47°,求∠F的度数.二、创新应用10.如图,在△ABC中,∠ABC,∠ACB的平分线相交于点D.(1)若∠ABC+∠ACB=110°,则∠BDC=;(2)若∠A=100°,则∠BDC=;(3)若∠A=n°,求∠BDC的度数.答案一、能力提升1.B;设∠C的度数为x°,则∠B的度数为x°+25°,则55°+x°+x°+25°=180°,解得x=50,则∠B=75°.2.A;∵CD∥AB,∠1=120°,∴∠CDB=∠1=120°,∴∠EDC=60°.∵∠2=80°,∴∠E=180°-80°-60°=40°.3.C∵∠A=30°,∠B=50°,∴∠ACB=180°-∠A-∠B=100°.又CD平分∠ACB,∴∠ACD=∠ACB=50°.∴∠ADC=180°-∠A-∠ACD=100°.4.90°.5.54°.6.270°.由三角形三内角之间的关系,得∠3+∠4=90°,所以∠1+∠2=(180°-∠3)+(180°-∠4)=2×180°-(∠3+∠4)=360°-90°=270°.7.解:设∠C=x°,则∠A=2x°,∠B=2x°-20°,根据三角形的内角和定理,有2x+(2x-20)+x=180,解得x=40,即∠C=40°.所以2x=80,∠A=80°,2x-20=60,∠B=60°.故△ABC的三个角的度数分别为∠A=80°,∠B=60°,∠C=40°.8.解:△ABC是直角三角形.理由如下:∵ED⊥AB,∴∠ADE=90°,∴∠1+∠A=90°.又∠1=∠2,∴∠2+∠A=90°.∴△ABC是直角三角形.9.解:在△EDC中,∠EDC=180°-(∠C+∠DEC)=180°-(59°+47°)=74°.∴∠FDB=180°-∠EDC=180°-74°=106°.在△BDF中,∠F=180°-(∠B+∠FDB)=180°-(42°+106°)=32°.二、创新应用10.解:(1)125°.(2)140°.(3)∵∠A=n°,∴∠ABC+∠ACB=180°-n°.∵BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=∠ABC+∠ACB=(∠ABC+∠ACB)=×(180°-n°)=90°-.∴∠BDC=180°-(∠DBC+∠DCB)=180°-=90°+.11.2.2三角形的外角一、能力提升1.一副三角尺有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165°B.120°C.150°D.135°2.如图,在△ABC中,AD为边BC上的中线,在△ABD中,AE为边BD上的中线,在△ACD中,AF为边DC上的中线,则下列结论错误的是()A.∠1>∠2>∠3>∠CB.BE=ED=DF=FCC.∠1>∠4>∠5>∠CD.∠1=∠3+∠4+∠53.如图,若∠A=32°,∠B=45°,∠C=38°,则∠DFE等于()A.120°B.115°C.110°D.105°4.(2020·湖北中考)将一副三角尺按如图摆放,点E在AC上,点D在BC 的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°5.如图,∠ABC的平分线与∠ACD的平分线相交于点P.若∠A=60°,则∠P等于()A.30°B.40°C.50°D.60°6.(2020·湖北黄冈中考)如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=.7.如图,已知在△ABC中,D是AB上一点,E是AC上一点,BE与CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°,则∠BDC=,∠BFC=.8.如图,D,E,F分别是△ABC三边延长线上的点,求∠D+∠E+∠F+∠1+∠2+∠3的度数.9.如图,在△ABC中,E是AC延长线上的一点,D是BC上的一点.求证:(1)∠BDE=∠E+∠A+∠B.(2)∠BDE>∠A.10.如图,在△ABC中,D是边BC上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.二、创新应用11.如图①,有一个五角形图案ABCDE,你能说明∠A+∠DBE+∠C+∠D+∠E=180°吗?如果点B向下移动到AC上(如图②)或AC的另一侧(如图③),上述结论是否依然成立?请说明理由.答案一、能力提升1.A如图,∵∠2=90°-45°=45°,∴∠1=∠2-30°=15°.∴∠α=180°-∠1=165°.2.C由三角形的一个外角大于与它不相邻的内角,知∠1>∠2>∠3>∠C,故选项A正确;根据三角形中线的定义,知BE=ED=DF=FC,故选项B正确;∠4与∠5的大小不能判定,故选项C错误;根据三角形的一个外角等于与它不相邻两个内角的和,知∠1=∠2+∠4,∠2=∠3+∠5,所以∠1=∠3+∠4+∠5,故选项D正确.3.B4.A5.A利用三角形的外角性质,得∠P=∠PCD-∠PBD=(∠ACD-∠ABC)=∠A=30°.6.30°.7.97°;117°.8.解:∵∠D+∠3=∠CAB,∠E+∠1=∠ABC,∠F+∠2=∠ACB,∴∠D+∠E+∠F+∠1+∠2+∠3=∠CAB+∠ABC+∠ACB=180°.9.证明:(1)∵∠BDE,∠DCE分别是△CDE,△ABC的一个外角,∴∠BDE=∠E+∠DCE,∠DCE=∠A+∠B,∴∠BDE=∠E+∠A+∠B.(2)由(1)得∠BDE=∠E+∠A+∠B,∴∠BDE>∠A.10.解:∵∠3是△ABD的外角,∴∠3=∠1+∠2.∵∠1=∠2,∠3=∠4,∴∠4=2∠2.在△ABC中,∵∠2+∠4=180°-∠BAC=180°-63°=117°,∴∠1=∠2=117°÷(1+2)=39°.∴∠DAC=∠BAC-∠1=63°-39°=24°.二、创新应用11.解:在题图①中,∠A+∠C=∠DNM, ①∠DBE+∠E=∠DMN, ②①+②,得∠A+∠DBE+∠C+∠E=∠DNM+∠DMN.∵∠D+∠DNM+∠DMN=180°,∴∠A+∠DBE+∠C+∠D+∠E=180°.在题图②、题图③中,上述结论仍然成立,理由与题图①完全相同.11.3.1多边形一、能力提升1.在下列关于正多边形的特征说法中,错误的是()A.每一条边都相等B.每一个内角都相等C.每一个外角都相等D.所有对角线都相等2.过多边形的一个顶点可以引2017条对角线,则这个多边形的边数是()A.2017B.2018C.2019D.20203.如果过多边形的一个顶点的对角线把多边形分成8个三角形,那么这个多边形的边数为()A.8B.9C.10D.114.将一个四边形截去一个角后,它不可能是()A.三角形B.四边形C.五边形D.六边形5.在n边形的一边上任取一点(不包含顶点)与各顶点相连,可得三角形的个数是()A.nB.n-2C.n-1D.n+16.过m边形的一个顶点有7条对角线,n边形没有对角线,则m n=.7.已知一个多边形的边数恰好是从这个多边形的一个顶点出发所作的对角线的条数的2倍,求此多边形的边数.二、创新应用8.观察下面图形,解答下列问题:(1)在上面第四个图中画出六边形的所有对角线;(2)观察规律,把下表填写完整.边数 3 4 5 6 7 …n对角线条0 2 5 …数答案一、能力提升1.D2.D3.C4.D一个多边形截去一个角后,可能出现三种情况:少一个角、角的个数不变或多一个角.5.C6.1000;从m边形的一个顶点出发有(m-3)条对角线,由m-3=7,得m=10. n边形没有对角线,所以n=3.所以m n=103=1000.7.解:设这个多边形的边数为n,则从多边形的一个顶点出发所作的对角线的条数为n-3.依题意,得n=2(n-3),解得n=6.二、创新应用8.解:(1)(2)边数 3 4 5 6 7 …n对角线条数0 2 5 9 14 …n(n-3)11.3.2多边形的内角和一、能力提升1.如果一个正多边形的每一个外角都是锐角,那么这个正多边形的边数一定不小于()A.3B.4C.5D.62.(2020·山东济宁中考)一个多边形的内角和是1080°,则这个多边形的边数是()A.9B.8C.7D.63.若一个多边形的边数由5增加到11,则内角和增加的度数是()A.1080°B.720°C.540°D.360°4.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是()A.110°B.108°C.105°D.100°5.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形6.若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是.7.如图,在四边形ABCD中,∠A+∠B=210°,且∠ADC的平分线与∠DCB的平分线相交于点O,则∠COD的度数是.8.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.9.如图,求∠A+∠B+∠OCD+∠ODC+∠E+∠F的度数.二、创新应用10.在一个多边形中,一个内角相邻的外角与其他各内角的和为600°.(1)如果这个多边形是五边形,请求出这个外角的度数;(2)是否存在符合题意的其他多边形?如果存在,请求出边数及这个外角的度数;如果不存在,请说明理由.答案一、能力提升1.C每个外角都是锐角,即小于90°,设边数为n,则这些锐角的和一定小于n×90°.而外角和为360°,所以360°<n×90°,n>4,即n不小于5.2.B设这个多边形的边数是n,则(n-2)×180°=1080°,解得n=8.3.A因为每增加一条边,内角和增加180°,所以增加6条边,内角和增加180°×6=1080°.4.D由题意知∠AED的补角为80°,则∠AED=100°.5.D多边形的外角和是360°,内角和等于外角和的一半,则内角和是180°,可知此多边形为三角形.6.6因为凸n边形的内角和为1260°,所以(n-2)×180°=1260°,得n=9.故从一个顶点出发引的对角线的条数为9-3=6.7.105°∵四边形的内角和为360°,∠A+∠B=210°,∴∠ADC+∠BCD=360°-210°=150°.∵DO,CO分别为∠ADC与∠BCD的平分线,∴∠ODC=∠ADC,∠OCD=∠BCD.∴∠ODC+∠OCD=(∠ADC+∠BCD)=×150°=75°.∴∠COD=180°-75°=105°.8.解:由题意知这个多边形的内角和为3×360°-180°=900°.设这个多边形的边数为n,根据题意,得(n-2)×180°=900°,解得n=7.故这个多边形的边数为7.9.解:如图,连接BE,则在△COD与△BOE中,∠ODC+∠OCD+∠COD=180°,∠OBE+∠OEB+∠BOE=180°.∵∠COD与∠BOE是对顶角,∴∠COD=∠BOE.∵∠ODC+∠OCD=180°-∠COD,∠OBE+∠OEB=180°-∠BOE,∴∠ODC+∠OCD=∠OBE+∠OEB.∴题图中的∠A+∠B+∠OCD+∠ODC+∠E+∠F等于上图中的∠A+∠F+∠ABC+∠DEF+∠OBE+∠OEB=∠A+∠F+∠ABE+∠BEF=360°,即所求六个角的和为360°.二、创新应用10.解:(1)设这个外角的度数是x°,则(5-2)×180-(180-x)+x=600,解得x=120.故这个外角的度数是120°.(2)存在.设边数为n,这个外角的度数是x°,则(n-2)×180-(180-x)+x=600,整理得x=570-90n.因为0<x<180,即0<570-90n<180,并且n为正整数,所以n=5或n=6.故这个多边形的边数是6,这个外角的度数为30°.。
⼈教版2021年⼋年级数学上册课时作业本全等三⾓形-证明题专练(含答案)⼈教版2021年⼋年级数学上册课时作业本全等三⾓形-证明题专练1.如图,已知∠B+∠CDE=180°,AC=CE.求证:AB=DE.2.如图,在△ABC中,AB=AC,AM平分∠BAC,交BC于点M,D为AC上⼀点,延长AB到点E,使CD=BE,连接DE,交BC于点F,过点D作DH∥AB,交BC于点H,G是CH的中点.(1)求证:DF=EF.(2)试判断GH,HF,BC之间的数量关系,并说明理由.3.如图,已知AB=AD,AC=AE,∠BAD=∠CAE=90°,试判断CD与BE的⼤⼩关系和位置关系,并进⾏证明.4.如图,△ABC中,∠BAC=90°,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.5.如图,△ABC和△ADE都是等腰三⾓形,且∠BAC=90°,∠DAE=90°,B,C,D在同⼀条直线上.求证:BD=CE.6.已知:在△ABC中,∠BAC=90°,AB=AC,AE是过点A的⼀条直线,且BD⊥AE于D,CE⊥AE于E.(1)当直线AE处于如图①的位置时,有BD=DE+CE,请说明理由;(2)当直线AE处于如图②的位置时,则BD、DE、CE的关系如何?请说明理由;(3)归纳(1)、(2),请⽤简洁的语⾔表达BD、DE、CE之间的关系.7.如图:AD是△ABC的⾼,E为AC上⼀点,BE交AD于F,且有BF=AC,FD=CD。
求证:BE⊥AC。
8.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.9.如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.10.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°.11.如图,在△ABC中,AD平分∠BAC.(1)求证:S△ABD:S△ACD=AB:AC;(2)若AB=4,AC=5,BC=6,求BD的长.12.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD 上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.⼩王同学探究此问题的⽅法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成⽴,并说明理由;实际应⽤:如图3,在某次军事演习中,舰艇甲在指挥中⼼(O处)北偏西30°的A处,舰艇⼄在指挥中⼼南偏东70°的B处,并且两舰艇到指挥中⼼的距离相等,接到⾏动指令后,舰艇甲向正东⽅向以60海⾥/⼩时的速度前进,舰艇⼄沿北偏东50°的⽅向以80海⾥/⼩时的速度前进.1.5⼩时后,指挥中⼼观测到甲、⼄两舰艇分别到达E,F处,且两舰艇之间的夹⾓为70°,试求此时两舰艇之间的距离.13.如图,已知A(﹣2,0),B(0,﹣4),C(1,1),点P为线段OB上⼀动点(不包括点O),CD⊥CP交x轴于点D,当P点运动时:(1)求证:∠CPO=∠CDO;(2)求证:CP=CD;(3)下列两个结论:①AD﹣BP的值不变;②AD+BP的值不变,选择正确的结论求其值.参考答案1.证明:如图,过E点作EH∥AB交BD的延长线于H,故∠A=∠CEH,在△ABC与△EHC中,∴△ABC≌△EHC(ASA),∴AB=HE,∵∠B+∠CDE=180°,∠HDE+∠CDE=180° ∴∠HDE=∠B=∠H,∴DE=HE.∵AB=HE,∴AB=DE.2.3.证明:CD=BE,CD⊥BE,理由如下:因为∠BAD=∠CAE=90°,所以∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠DAC.因为,所以△BAE≌△DAC(SAS).所以BE=DC,∠BEA=∠DCA.如图,设AE与CD相交于点F,因为∠ACF+∠AFC=90°,∠AFC=∠DFE,所以∠BEA+∠DFE=90°.即CD⊥BE.4.证明:因为∠CEB=∠CAB=90°所以:ABCE四点共元⼜因为:∠ABE=∠CBE所以:AE=CE所以:∠ECA=∠EAC取线段BD的中点G,连接AG,则:AG=BG=DG所以:∠GAB=∠ABG⽽:∠ECA=∠GBA所以:∠ECA=∠EAC=∠GBA=∠GAB⽽:AC=AB所以:△AEC≌△AGB所以:EC=BG=DG所以:BD=2CE5.证明:∵△ABC和△ADE都是等腰直⾓三⾓形∴AD=AE,AB=AC,⼜∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.6.解:(1)在△ABC中,∠BAC=90°,∴∠BAD=90°-∠EAC。
《三角形》作业设计方案(第一课时)一、作业目标本作业设计旨在通过实践操作和理论练习,使学生能够:1. 理解三角形的定义、分类及基本性质;2. 掌握三角形内角和定理及外角定理;3. 学会应用三角形的基本知识解决简单的实际问题;4. 培养学生的空间想象能力和逻辑推理能力。
二、作业内容作业内容主要包括以下部分:1. 基础练习:包括三角形的定义、分类的填空题和选择题,旨在加深学生对三角形基本概念的理解。
2. 理论应用:设计一系列应用题,让学生运用三角形内角和定理解决实际问题,如通过已知角度求其他角度,或通过已知两边求其他边等。
3. 实践操作:要求学生自行绘制不同种类的三角形,并测量其内角、外角及边长,记录数据并分析。
4. 探究性学习:设计一份关于三角形性质的探究报告,引导学生通过自主学习,探究三角形的其他性质及定理。
三、作业要求1. 按时完成:学生需在规定时间内完成作业,养成良好的学习习惯。
2. 独立完成:鼓励学生独立思考,独立完成作业,不抄袭他人答案。
3. 细致认真:要求学生在完成作业过程中细心检查,确保答案准确无误。
4. 规范书写:要求学生的答案书写规范,条理清晰,便于教师批改。
四、作业评价1. 评价标准:根据学生的作业完成情况,从正确性、条理性、创新性、独立性等方面进行评价。
2. 评价方式:采取教师批改、同学互评、自我评价相结合的方式,全面了解学生的学习情况。
3. 反馈方式:通过课堂讲解、个别辅导、作业评语等方式,及时向学生反馈评价结果,鼓励学生进步。
五、作业反馈1. 对学生的优秀作业进行展示,激励学生互相学习。
2. 对学生在作业中出现的错误进行点评,帮助学生找出错误原因并改正。
3. 根据学生的作业情况,调整教学计划,强化学生的薄弱环节。
4. 鼓励学生提出疑问和建议,以便更好地改进教学方法和作业设计。
六、总结本作业设计旨在通过多样化的练习和实践活动,帮助学生全面掌握三角形的相关知识,提高学生的空间想象能力和逻辑推理能力。
三角形全等的判定HL1.如图,若∠B=∠C=90°,AB=AC,则△ABD≌△ACD的理由是(D)A.SAS B.AASC.ASA D.HL2.如图,△ABC中,CD⊥AB于D,根据“HL”判定,还需添加条件,可使△ACD≌△BCD.(A)A.AC=BC B.AD=BDC.∠ACD=∠BCD D.∠A=∠B3.如图,在Rt△ABC的斜边BC上截取CD=CA,DE⊥BC交AB于E,则有(C)A.DE=DB B.AE=BEC.DE=AE D.AE=BD4.如图,AB=EF,BC⊥AE于C,FD⊥AE于D,CE=DA.求证:AB∥EF.【解题过程】证明:先证DE=AC,再证△ABC≌△EFD(HL)得∠A=∠E,∴AB∥EF.5.如图,已知∠A=∠D=90°,E,F在线段BC上,且∠B=∠C,BE=CF.求证:△ABF≌△DCE.【解题过程】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE.∵∠A=∠D=90°,∴△ABF≌△DCE(AAS).知识点二直角三角形全等的判定综合6.如图,AD,BE是△ABC的高,CA=CB,则图中的全等三角形共有(C)A.1对B.2对C.3对D.4对7.如图,AC⊥AB,BD⊥CD,请添加一个条件,使△ABC≌△DCB.(1)添加__∠ABC=∠DCB__,根据是AAS;(2)添加__∠ACB=∠DBC__,根据是AAS;(3)添加__AB=CD__,根据是HL;(4)添加__AC=BD__,根据是HL.8.如图,在△ABC中,∠C=90°,DE⊥AB于E,BE=BC,如果AC=6,那么AD+DE等于__6__.9.如图,OA=OB,AC=BD,OA⊥AC,OB⊥BD,OM⊥CD于M.求证:CM=DM.【解题过程】证明:连接OC,OD,先证△OAC≌△OBD(SAS),再证Rt△OCM≌Rt△ODM(HL),∴CM=DM.10.如图,在△ABC中,D是AB的中点,DM⊥AC于M,DN⊥BC于N,且DM=DN.(1)求证:AM=BN;(2)求证:AC=BC.【解题过程】证明:(1)连接CD,先证△DAM≌△DBN(HL),∴AM=BN;(2)再证△CDM≌△CDN(HL),∴CM=CN,∴AC=BC.11.如图1,已知P(2,2),点A在x轴正半轴上运动,点B在y轴上运动,且PA=PB.(1)求证:PA⊥PB;(2)若点A(8,0),则点B的坐标为(0,-4);(3)求OA-OB的值;(4)如图2,若点B在y轴正半轴上运动时,其他条件不变,直接写出OA+OB的值是__4__.图1图2【解题过程】证明:(1)作PM⊥x轴于M,PN⊥y轴于N,∴PM=PN=2.∵PA=PB,∴△PMA≌△PNB(HL),∴∠PBN=∠PAM,∴∠BPA=∠BOA=90°,∴PA⊥PB.(2)设OB=x,则AM=BN=x+2,∴OA=x+4=8,∴x=4,∴B(0,-4).(3)OA-OB=(OM+MA)-(BN-ON)=OM+ON=4.(4)同(1)可得OA+OB=(OM+MA)+(ON-BN)=OM+ON=4.12.如图,∠A=∠D=90°,AB=CD,BE=CF,求证:△ABF≌△DCE.【点睛】①误把BE=CF看作两三角形对应边.②误把HL用作SAS.。
人教版2020年八年级上册数学国庆假期作业第11章《三角形》练习题一.选择题1.下列图中不具有稳定性的是()A.B.C.D.2.下列各组值代表线段的长度,其中能组成三角形的是()A.1,2,3.5B.20,15,8C.5,15,8D.4,5,93.下列说法正确的是()A.三角形的角平分线、中线和高都在三角形内B.直角三角形只有一条高C.三角形的高至少有一条在三角形内D.三角形的高是直线,角平分线是射线,中线是线段4.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A.A、C两点之间B.E、G两点之间C.B、F两点之间D.G、H两点之间5.如图,在△ABC中,BC边上的高为()A.AD B.BE C.BF D.CG6.适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形7.已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形8.已知,在△ABC中,∠B是∠A的3倍,∠C比∠A大30°,则∠A的度数是()A.30°B.50°C.70°D.90°9.如图,AD是△ABC的外角∠EAC的平分线,AD∥BC,∠B=32°,则∠C的度数是()A.64°B.32°C.30°D.40°10.如图,△ABC中,BO,CO分别是∠ABC,∠ACB的平分线,∠A=50°,则∠BOC等于()A.110°B.115°C.120°D.130°11.如图,△ABC中,∠A=110°,若图中沿虚线剪去∠A,则∠1+∠2等于()A.110°B.180°C.290°D.310°12.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130°D.180°13.如图,BP、CP是△ABC的外角角平分线,若∠P=60°,则∠A的大小为()A.30°B.60°C.90°D.120°14.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70°B.80°C.90°D.100°二.填空题15.若三角形三边长为3,2x+1,10,则x的取值范围是.16.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D.若∠A=32°,则∠BCD =°.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B=.18.BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是.19.如图,共有个三角形.20.已知:如图所示,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△ABC=4cm2,则阴影部分的面积为cm2.21.如图,在△ABC中,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC,内角∠ABC,外角∠ACF,以下结论:①AD∥BC;②∠ACB=∠ADB;③∠ADC+∠ABD=90°;④,其中正确的结论有.三.解答题22.说出下列各图中∠1的度数.23.如图,O是△ABC内的一点,连结OB,OC,求证:AB+AC>OB+OC.24.已知:a、b、c为三角形的三边长化简:|b+c﹣a|+|b﹣c﹣a|﹣|c﹣a﹣b|﹣|a﹣b+c|25.若一个三角形的三边长分别是a,b,c,其中a和b满足方程,若这个三角形的周长为整数,求这个三角形的周长.26.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.27.如图,已知六边形ABCDEF的每个内角都相等,连接AD.(1)若∠1=48°,求∠2的度数;(2)求证:AB∥DE.28.如图,在三角形ABC中,AD⊥BC于点D,且AD平分∠BAC,点E是BA的延长线上任一点,过点E作EF⊥BC于点F,与AC交于点G.(1)求证:AD∥EF.(2)若∠CGF=36°,求∠B的度数.(3)猜想∠E与∠AGE的大小关系,并证明你的猜想.29.某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC =;(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC与∠A的数量关系,并证明.30.平面内的两条直线有相交和平行两种位置关系.(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D 之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.参考答案一.选择题1.解:因为三角形具有稳定性,四边形不具有稳定性,故选:B.2.解:A、1+2<3.5,不能组成三角形,故此选项错误;B、15+8>20,能组成三角形,故此选项正确;C、5+8<15,不能组成三角形,故此选项错误;D、4+5=9,不能组成三角形,故此选项错误;故选:B.3.解:A、错误.三角形的高不一定在三角形内.B、错误.直角三角形也有三条高.C、正确.D、错误.三角形的高,角平分线,中线都是线段.故选:C.4.解:工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在E、G两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选:B.5.解:由图可知,△ABC中,BC边上的高为AD,故选:A.6.解:∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,即6∠A=180°,∴∠A=30°,∴∠B=60°,∠C=90°,∴△ABC为直角三角形.故选:B.7.解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故选:C.8.解:由题意,解得,故选:A.9.解:∵AD∥BC,∴∠EAD=∠B=32°,∵AD是△ABC的外角∠EAC的平分线,∴∠EAC=2∠EAD=64°,∵∠EAC是△ABC的外角,∴∠C=∠EAC﹣∠B=64°﹣32°=32°,故选:B.10.解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣50°=130°,∵BO,CO分别是∠ABC,∠ACB的平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°.故选:B.11.解:∵∠A=110°,∴∠B+∠C=70°,∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=290°.故选:C.12.解:法一:如图,∠BAC=180°﹣90°﹣∠1=90°﹣∠1,∠ABC=180°﹣60°﹣∠3=120°﹣∠3,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,在△ABC中,∠BAC+∠ABC+∠ACB=180°,∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,∴∠1+∠2=150°﹣∠3,∵∠3=50°,∴∠1+∠2=150°﹣50°=100°.法二:图中∠1+∠2+∠3+小三角形的三个内角再加两个等边三角形的两个内角,再加正方形的一个内角,总和为180°*3=540°,减去三角形的三个内角之和180°,再减去两个三角形的内角60°*2=120°,再减去正方形的内角90°,则易得∠1+∠2+∠3=540°﹣120°﹣180°﹣90°=150°,而∠3=50°,所以∠1+∠2=100°.故选:B.13.证明:∵BP、CP是△ABC的外角的平分线,∴∠PCB=∠ECB,∠PBC=∠DBC,∵∠ECB=∠A+∠ABC,∠DBC=∠A+∠ACB,∴∠PCB+∠PBC=(∠A+∠ABC+∠A+∠ACB)=(180°+∠A)=90°+∠A,∴∠P=180°﹣(∠PCB+∠PBC)=180°﹣(90°+∠A)=90°﹣∠A=60°,∴∠A=60°,故选:B.14.解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM﹣∠ABC=60°,∠ACB=180°﹣∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠PBC=20°,∴∠P=180°﹣∠PBC﹣∠BCP=30°,∴∠A+∠P=90°,故选:C.二.填空题15.解:由三角形三边关系定理得:10﹣3<2x+1<10+3,且2x+1>0解得:3<x<6,即x的取值范围是3<x<6.故答案为:3<x<6.16.解:∵∠C=90°,∴∠BCD+∠ACD=90°,∵CD⊥AB,∴∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD=∠A=32°,故答案为:32.17.解:∵AE平分∠BAC,∴∠1=∠EAD+∠2,∴∠EAD=∠1﹣∠2=30°﹣20°=10°,Rt△ABD中,∠B=90°﹣∠BAD=90°﹣30°﹣10°=50°.故答案为50°.18.解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差=(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC,∵AB=5,BC=3,∴△ABD和△BCD的周长的差=5﹣3=2.故答案为:2.19.解:图中有:△ABC,△ABD,△ABE,△ACD,△ACE,△ADE,共6个.故答案为:620.解:∵D为BC中点,根据同底等高的三角形面积相等,∴S△ABD=S△ACD=S△ABC=×4=2,同理S△BDE=S△CDE=S△BCE=×2=1,∴S△BCE=2,∵F为EC中点,∴S△BEF=S△BCE=×2=1.故答案为1.21.解:①∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确;②∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,故②错误;③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°,故③正确;④∵BD平分∠ABC,∴∠ABD=∠DBC,∵AD∥BC,∴∠DCF=∠ADC,∵∠ADC+∠ABD=90°,∵∠DCF=90°﹣∠ABC=∠DBC+∠BDC,∴∠BDC=90°﹣2∠DBC,∴∠DBC=45°﹣∠BDC,故④正确;故答案是:①③④.三.解答题22.解:(1)∠1=180°﹣60°﹣30°=90°;(2)∠1=45°+50°=95°;(3)∠1=120°﹣35°=55°.23.证明:如图,延长BO交AC于点D,∵AB+AD>OB+OD,OD+CD>OC,∴AB+AD+CD>OB+OC,即:AB+AC>OB+OC.24.解:∵a、b、c为三角形三边的长,∴a+b>c,a+c>b,b+c>a,∴原式=|(b+c)﹣a|+|b﹣(c+a)|﹣|c﹣(a+b)|﹣|(a+c)﹣b|=b+c﹣a+a+c﹣b﹣a﹣b+c+b﹣a﹣c=2c﹣2a.25.解:由,解得,∴3<c<5,∵周长为整数,∴c=4,∴周长=4+4+1=9.26.解:∵∠CAB=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.27.解:(1)∵六边形ABCDEF的各内角相等,∴一个内角的大小为,∴∠E=∠F=∠BAF=120°.∵∠F AB=120°,∠1=48°,∴∠F AD=∠F AB﹣∠DAB=120°﹣48°=72°.∵∠2+∠F AD+∠F+∠E=360°,∠F=∠E=120°,∴∠ADE=360°﹣∠F AD﹣∠F﹣∠E=360°﹣72°﹣120°﹣120°=48°.(2)证明:∵∠1=120°﹣∠DAF,∠2=360°﹣120°﹣120°﹣∠DAF=120°﹣∠DAF,∴∠1=∠2,∴AB∥DE.28.(1)证明:∵AD⊥BC,EF⊥BC,∴∠ADC=∠EFC=90°,∴AD∥EF;(2)∵AD∥EF,∠CGF=36°,∴∠CGF=∠CAD=36°,∵AD平分∠BAC,∴∠BAD=∠CAD=36°,∴∠B=180°﹣∠BAD﹣∠BDA=54°;(3)∠E=∠AGE,证明:理由是:∵AD∥EF,∴∠E=∠BAD,∠AGE=∠CAD,∵∠BAD=∠CAD,∴∠E=∠AGE.29.解:(1)∵BP、CP分别平分∠ABC和∠ACB,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣(∠ABC+∠ACB),=180°﹣(∠ABC+∠ACB),=180°﹣(180°﹣∠A),=180°﹣90°+∠A,=90°+32°=122°,故答案为:122°;(2)∵CE和BE分别是∠ACB和∠ABD的角平分线,∴∠1=∠ACB,∠2=∠ABD,又∵∠ABD是△ABC的一外角,∴∠ABD=∠A+∠ACB,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BEC的一外角,∴∠BEC=∠2﹣∠1=∠A+∠1﹣∠1=∠A=;(3)∠QBC=(∠A+∠ACB),∠QCB=(∠A+∠ABC),∠BQC=180°﹣∠QBC﹣∠QCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BQC=90°﹣∠A.30.解:(1)不成立.结论是∠BPD=∠B+∠D延长BP交CD于点E,∵AB∥CD∴∠B=∠BED又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.(3)连接EG并延长,根据三角形的外角性质,∠AGB=∠A+∠B+∠E,又∵∠AGB=∠CGF,在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.。
三角形内角和定理1. 任何一个三角形的三个内角中至少有()A.一个角大于60° B.两个锐角 C.一个钝角 D.一个直角2.在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A=∠B=α∠C;④∠A﹕∠B﹕∠C=1﹕2﹕3中能确定△ABC 为直角三角形的条件有( )A.2个B.3个C.4个D.5个3. 如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=()A.20° B.60° C.70° D.80°4. 如图,若△ABC的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E,则图中与∠ICE一定相等的角(不包括它本身)有( )个.A.1 B.2 C.3 D.45. (绵阳中考)如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=( )A.118° B.119° C.120° D.121°6。
一副三角板,如图所示叠放在一起,则图中∠α的度数是7. 如图,AD是△ABC的高,BE是△ABC的内角平分线,BE、AD相交于点F,已知∠BAD=40°,则∠BFD=8。
如图,在△ABC中,∠B=30°,∠C=70°,AD平分∠BAC,交BC于F,DE⊥BC于E,则∠D=9. 如图,E和D分别在△ABC的边BA和CA的延长线上,CF,EF分别平分∠ACB和∠AED,若∠B=60°,∠D=40°,则∠F的大小是.10。
如图,按规定,一块模板中AB、CD的延长线应相交成85°角.因交点不在板上,不便测量,工人师傅连接AC,测得∠BAC=32°,∠DCA=65°,此时AB、CD的延长线相交所成的角是不是符合规定?为什么?11。
等边三角形一.等边三角形的概念等边三角形:三条边都相等的三角形叫做等边三角形.等边三角形是一种特殊的等腰三角形.二.等边三角形的性质等边三角形的三个内角都相等,并且每一个角都等于60︒.三.等边三角形的判定判定1:三个角都相等的三角形是等边三角形.判定2:有一个角是60︒的等腰三角形是等边三角形.四.直角三角形性质定理在直角三角形中,如果一个锐角等于30︒,那么它所对的直角边等于斜边的一半.B'CBA证明:90ACB ∠=︒,30A ∠=︒,延长BC 至'B 使'CB CB =,那么有AC 垂直平分'BB ,所以'AB AB =,因为60B ∠=︒,所以'ABB △是等边三角形,所以'2AB BB BC ==,即12BC AB =.五.等边三角形与全等三角形综合等边三角形与全等三角形综合问题主要分两种类型:一是以等边三角形为载体来考察全等三角形的综合问题;二是利用全等三角形的性质和判定证明三角形是等边三角形.不管是哪种类型都要注意60°角和边的等量关系的应用,尤其是后面学习旋转之后,会出现一些比较难的等边三角形和全等三角形结合的问题.一.考点:1.等边三角形的性质与判定;2.直角三角形性质定理;3.等边三角形与全等三角形综合.二.重难点:1.等边三角形是特殊的等腰三角形,具有等腰三角形的所有性质.做题时常作为隐藏条件考察.2.等边三角形的判定用定义判断的不多,一般都是利用有一个角是60︒的等腰三角形是等边三角形来判定,所以在构造全等是要注意同时兼顾边相等,并且可以推导出有一个角为60°.3.等边三角形的性质非常特殊,在证明或计算中要注意边角之间的转化,尤其是含30°角的直角三角形中边的关系.4.在解决建立在等边三角形根底上的全等综合问题时,关键是抓住边相等,角度都是特殊角.三.易错点:在利用直角三角形性质定理的过程中,需要注意两点:一是必须在直角三角形中才能运用,锐角三角形和钝角三角形均不存在上述关系;二是一定要注意是30︒所对的直角边等于斜边的一半.题模一:等边三角形的性质例三个等边三角形的位置如下列图,假设∠3=50°,那么∠1+∠2=____°.【答案】130【解析】∵图中是三个等边三角形,∠3=50°,∴∠ABC=180°-60°-50°=70°,∠ACB=180°-60°-∠2=120°-∠2,∠BAC=180°-60°-∠1=120°-∠1,∵∠ABC+∠ACB+∠BAC=180°,∴70°+〔120°-∠2〕+〔120°-∠1〕=180°,∴∠1+∠2=130°.故答案为:130.例如图,等边△ABC的周长是9,D是AC边上的中点,E在BC的延长线上.假设DE=DB,那么CE的长为____.【答案】 32 【解析】 该题考察的是∵△ABC 为等边三角形,D 为AC 边上的中点,BD 为ABC ∠的平分线,∴60ABC ∠=︒,30DBE ∠=︒,又DE DB =, ∴30E DBE ∠=∠=︒,∴30CDE ACB E ∠=∠-∠=︒,即CDE E ∠=∠,∴CD CE =;∵等边△ABC 的周长为9,∴3AC =,∴1322CD CE AC ===, 即32CE =.例 在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60°,得到△BAE ,连接ED ,假设BC=5,BD=4.那么以下结论错误的选项是〔 〕A . AE ∥BCB . ∠ADE=∠BDC C . △BDE 是等边三角形D . △ADE 的周长是9 【答案】B【解析】 此题考察的是图形旋转的性质及等边三角形的判定与性质,平行线的判定,熟知旋转前、后的图形全等是解答此题的关键. 首先由旋转的性质可知∠AED=∠ABC=60°,所以看得AE∥BC,先由△ABC 是等边三角形得出AC=AB=BC=5,根据图形旋转的性质得出AE=CD ,BD=BE ,故可得出AE+AD=AD+CD=AC=5,由∠EBD=60°,BE=BD 即可判断出△BDE 是等边三角形,故DE=BD=4,故△AED 的周长=AE+AD+DE=AC+BD=9,问题得解.∵△ABC 是等边三角形,∴∠ABC=∠C=60°,∵将△BCD 绕点B 逆时针旋转60°,得到△BAE,∴∠EAB=∠C=∠ABC=60°,∴AE∥BC,应选项A 正确;∵△ABC 是等边三角形,∴AC=AB=BC=5,∵△BAE△BCD 逆时针旋旋转60°得出,∴AE=CD,BD=BE ,∠EBD=60°,∴AE+AD=AD+CD=AC=5,∵∠EBD=60°,BE=BD ,∴△BDE 是等边三角形,应选项C 正确;∴DE=BD=4,∴△AED 的周长=AE+AD+DE=AC+BD=9,应选项D 正确;而选项B 没有条件证明∠ADE=∠BDC,∴结论错误的选项是B ,应选:B .题模二:等边的判定例 如下列图,AD 是ABC △的中线,60ADC ∠=°,8BC =,把ADC △沿直线AD 折叠后,点C 落在C '位置,那么BC '的长为________.【答案】 4【解析】 此题考察的是等边三角形.由题意,60ADC ADC '∠=∠=︒,DC DC DB '==. 180606060BDC '∠=︒-︒-︒=︒,有一个角为60︒的等腰三角形为等边三角形,118422BC BD BC '===⋅=. 故此题的答案是4.例 :如图,点C 为线段AB 上一点,ACM ∆,CBN ∆都是等边三角形,AN 交MC 于点E ,BM 交CN 于点F .〔1〕求证:AN BM =;〔2〕求证:CEF ∆为等边三角形.ACD B C '【答案】见解析【解析】〔1〕ACM∆是等边三角形,∆,CBN∠=∠=︒,ACM NCBAC MC=,60∴=,BC NC∠=∠.∴∠+∠=∠+∠,即ACN MCBACM MCN NCB MCN在ACN=,ACN MCB=,∠=∠,NC BC∆中,AC MC∆和MCB∴=.ACN MCB∴∆≅∆,AN BM〔2〕ACN MCB∴∠=∠,∆≅∆,CAN CMB又18060∴∠=∠,∠=︒-∠-∠=︒,MCF ACEMCF ACM NCB在CAE∠=∠,=,ACE MCF∆和CMF∠=∠,CA CM∆中,CAE CMF∴∆为等腰三角形,∴=,CEFCAE CMF∴∆≅∆,CE CF又60∠=︒,CEF∴∆为等边三角形.ECF例如图,六边形ABCDEF的六个内角都相等,假设AB=1,BC=CD=3,DE=2,那么这个六边形的周长等于____.【答案】15【解析】如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△AHF、△BGC、△DPE、△GHP都是等边三角形.∴GC=BC=3,DP=DE=2.∴GH=GP=GC+CD+DP=3+3+2=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-2=2.∴六边形的周长为1+3+3+2+4+2=15.故答案为:15.题模三:30°的角直角三角形等于斜边的一边例如图,ABC⊥,那么以下关系式正确的为〔〕=,30∠=︒,AB AD∆中,AB ACCA.BD CDBD CD=D.4==B.2BD CDBD CD=C.3【答案】B【解析】该题考察的是特殊的直角三角形.∠=∠=︒,C CAD30∴DAC∆为等腰三角形,∴CD AD=,在Rt BAD∆中,30∠=︒,B∴22==BD AD CD应选B.例如图,30∥10PC=,那么OC=__________,⊥于D,PC OB∠=︒,OP平分AOBAOB∠,PD OBPD=__________.【答案】【解析】该题考察的是角平分线的性质定理和含30°直角三角形的性质.∵OP平分AOB∠,∴AOP BOP∠=∠,∵PC OB∥,∴CPO BOP∠=∠,∴CPO AOP∠=∠,∴PC OC=,∵10PC=,∴10OC PC==,过P作PE OA⊥于点E,∵PD OB ⊥,OP 平分AOB ∠,∴PD PE =,∵PC OB ∥,30AOB ∠=︒∴30ECP AOB ∠=∠=︒在Rt ECP ∆中,152PE PC == ∴5PE PD ==例 如图,在△ABC 中,AB=AC ,D 、E 是△ABC 内两点,AD 平分∠BAC ,∠EBC=∠E=60°,假设BE=6cm ,DE=2cm ,那么BC=____.【答案】 8cm【解析】 延长ED 交BC 于M ,延长AD 交BC 于N ,作DF∥BC,∵AB=AC,AD 平分∠BAC,∴AN⊥BC,BN=CN ,∵∠EBC=∠E=60°,∴△BEM 为等边三角形,∴△EFD 为等边三角形,∵BE=6cm,DE=2cm ,∴DM=4cm,∵△BEM 为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,OD B P CAE∴NM=2cm,∴BN=4cm,∴BC=2BN=8cm.故答案为:8cm .题模四:等边三角形与全等三角形综合例 :如图,等边三角形ABD 与等边三角形ACE 具有公共顶点A ,连接CD ,BE ,交于点P . 〔1〕观察度量,BPC ∠的度数为_______.〔直接写出结果〕〔2〕假设绕点A 将△ACE 旋转,使得180BAC ∠=︒,请你画出变化后的图形.〔示意图〕 〔3〕在〔2〕的条件下,求出BPC ∠的度数.【答案】 〔1〕120°〔2〕见解析〔3〕120°【解析】 此题考察等边三角形及全等三角形的性质与判定.〔1〕BPC ∠的度数为120°,理由为:证明:∵△ABD 与△ACE 都是等边三角形,∴60DAB ABD CAE ∠=∠=∠=︒,AD AB =,AC AE =,∴DAB BAC CAE BAC ∠+∠=∠+∠,即DAC BAE ∠=∠,在△DAC 与△BAE 中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△DAC ≌△BAE 〔SAS 〕,∴ADC ABE ∠=∠,∵60ADC CDB ∠+∠=︒,∴60ABE CDB ∠+∠=︒,∴120BPC DBP PDB ABE CDB ABC ∠=∠+∠=∠+∠+∠=︒;〔2〕作出相应的图形,如下列图;〔3〕∵△ABD 与△ACE 都是等边三角形,∴60ADB DAB ABD CAE ∠=∠=∠=∠=︒,AD AB =,AC AE =,∴DAB DAE CAE DAE ∠+∠=∠+∠,即DAC BAE ∠=∠,在△DAC 与△BAE 中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△DAC ≌△BAE 〔SAS 〕,∴ADC ABE ∠=∠,∵60ABE DBP ∠+∠=︒,∴60ADC DBP ∠+∠=︒,∴120BPC BDP PBD ADC DBP ADB ∠=∠+∠=∠+∠+∠=︒例 如图,ABC ∆是边长为3的等边三角形,BDC ∆是等腰三角形,且120BDC ∠=︒.以D 为顶点作一个60︒角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,那么AMN ∆的周长为____【答案】 6【解析】 延长NC 到E ,连接DE ,使CE BM =,连接DE .ABC ∆为等边三角形,BCD ∆为等腰三角形,且120BDC ∠=︒,603090MBD MBC DBC ∴∠=∠+∠=︒+︒=︒,18018090DCE ACD ABD ∠=︒-∠=︒-∠=︒,又BM CE =,BD CD =,CDE BDM ∴∆∆≌,CDE BDM∴∠=∠,DE DM =,1206060NDE NDC CDE NDC BDM BDC MDN ∠=∠+∠=∠+∠=∠-∠=︒-︒=︒,在DMN ∆和DEN ∆中,DM DE =,60MDN EDN ∠=∠=︒,DN DN =,DMN DEN ∴∆∆≌,MN NE CE CN BM CN ∴==+=+.=6AMN L AM MN AN AM BM CN AN AB AC ∆∴+==+++=+=例 如图△ABC 为等边三角形,直线a ∥AB ,D 为直线BC 上任一动点,将一60°角的顶点置于点D处,它的一边始终经过点A,另一边与直线a交于点E.〔1〕假设D 恰好在BC 的中点上〔如图1〕求证:△ADE 是等边三角形;〔2〕假设D 为直线BC 上任一点〔如图2〕,其他条件不变,上述〔1〕的结论是否成立?假设成立,请给予证明;假设不成立,请说明理由.【答案】 见解析【解析】 〔1〕证明:∵a ∥AB ,且△ABC 为等边三角形,∴60ACE BAC ABD ∠=∠=∠=︒,AB AC =,∵BD CD =,∴AD ⊥BC∵60ADE ∠=︒,∴30EDC ∠=︒,∴18090DOC EDC ACB ∠=︒-∠-∠=︒,∴30DEC DOC ACE ∠=∠-∠=︒,∴EDC DEC ∠=∠,∴EC CD DB ==,∴△ABD ≌△ACE .∴AD AE =,且60ADE ∠=︒,∴△ADE 是等边三角形;〔2〕在AC 上取点F ,使CF CD =,连结DF ,∵60ACB ∠=︒,∴△DCF 是等边三角形,∵60ADF FDE EDC FDE ∠+∠=∠+∠=︒,∴ADF EDC ∠=∠,∵DAF ADE DEC ACE ∠+∠=∠+∠,∴DAF DEC ∠=∠,∴△ADF ≌△EDC 〔AAS 〕,∴AD ED =,又∵60ADE ∠=︒,∴△ADE 是等边三角形.作业1如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF ⊥DE,交BC的延长线于点F.〔1〕求∠F的度数;〔2〕假设CD=2,求DF的长.【答案】〔1〕30°〔2〕4【解析】〔1〕∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;〔2〕∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.作业2 如下列图,ABC ∆、ADE ∆与EFG ∆都是等边三角形,D 和G 分别为AC 和AE 的中点,假设4AB =时,那么图形ABCDEFG 外围的周长是_____【答案】 15【解析】 ABC ∆、ADE ∆与EFG ∆都是等边三角形,AD DE ∴=,EF EG =,D 和G 分别为AC 和AE 的中点,4AB =,2DE EA ∴==,1GF EF ==,∴图形ABCDEFG 外围的周长是432115⨯++=.作业3 如图1,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向右平移到△A ′B ′D ′的位置,得到图2,那么阴影局部的周长为____.【答案】 2【解析】∵两个等边△ABD,△CBD 的边长均为1,将△ABD 沿AC 方向向右平移到△A′B′D′的位置, ∴A′M=A′N=MN,MO=DM=DO ,OD′=D′E=OE,EG=EC=GC ,B′G=RG=RB′, ∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;故答案为:2.作业4 如下列图,等边△ABC 的边长为a ,P 是△ABC 内一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,点D 、E 、F 分别在BC 、AC 、AB 上,猜想:PD PE PF ++=__________,并证明你的猜想.【答案】 见解析【解析】 PD PE PF a ++=.理由如下:如图,延长EP 交AB 于G ,延长FP 交BC 于H ,∵PE ∥BC ,PF ∥AC ,△ABC 是等边三角形,∴60PGF B ∠=∠=︒,60PFG A ∠=∠=︒,∴△PFG 是等边三角形,同理可得△PDH 是等边三角形,∴PF PG =,PD DH =,又∵PD ∥AB ,PE ∥BC ,∴四边形BDPG 是平行四边形,∴PG BD =,∴PD PE PF DH CH BD BC a ++=++==.故答案为a .作业5 :如图,ABC △是等边三角形.D 、E 是ABC △外两点,连结BE 交AC 于M ,连结AD 交CE 于N ,AD 交BE 于F ,AD EB =.当AFB ∠度数多少时,ECD △是等边三角形?并证明你的结论.【答案】 60AFB ∠=︒【解析】 该题考察的是全等三角形的判定和性质.60AFB ∠=︒,A C MFEN D B理由如下:∵△ABC 是等边三角形,∴CA CB =,460∠=︒,∵245∠+∠=∠,135∠+∠=∠,且360∠=︒,∴12∠=∠,又∵BE AD =,在△BCE 和△ACD 中, 1. 12CA CB AD BE =⎧⎪∠=∠⎨⎪=⎩∴△BCE ≌△ACD 〔SAS 〕 ∴CE CD =,BCE ACD ∠=∠,∴66BCE ACD ∠-∠=∠-∠,即4760∠=∠=,∴△ECD 是等边三角形.作业6 在△ABC 中,AB AC =,BAC ∠=α()060︒<α<︒,将线段BC 绕点B 逆时针旋转60︒得到线段BD .〔1〕如图1,直接写出ABD ∠的大小〔用含α的式子表示〕;〔2〕如图2,150BCE ∠=︒,60ABE ∠=︒,判断△ABE 的形状并加以证明;〔3〕在〔2〕的条件下,连结DE ,假设45DEC ∠=︒,求α的值.【答案】 〔1〕302α︒-〔2〕见解析〔3〕30︒ 【解析】 该题考察的是三角形综合.〔1〕∵AB AC =∴1809022ABC ACB ︒-αα∠=∠==︒-,A D B CADB C E∴90603022ABD ACB DBC αα∠=∠-∠=︒--︒=︒-,………………………………………1分 〔2〕△ABE 是等边三角形, ………………………………………………………2分 连结AD ,CD .∵60DBC ∠=︒,BD BC =,∴ △BDC 是等边三角形,60BDC ∠=︒,BD DC = ………………3分 又∵AB AC =,AD AD =,∴ △ABD ≌△ACD .∴ADB ADC ∠=∠,∴150ADB ∠=︒. ………………4分∵60ABE DBC ∠=∠=︒,∴ABD EBC ∠=∠.又∵BD BC =,150ADB ECB ∠=∠=︒,∴ △ABD ≌△EBC .∴AB EB =.∴ △ABE 是等边三角形. …………………………………………5分〔3〕∵△BDC 是等边三角形,∴ 60BCD ∠=︒.∴ 90DCE BCE BCD ∠=∠-∠=︒又∵45DEC ∠=︒,∴CE CD BC ==.………………………………………………………6分∴15EBC ∠=︒. ∵302EBC ABD α∠=∠=︒-, ∴ 30α=︒. ……………………………………………………………7分作业7 将一张矩形纸片ABCD 如下列图折叠,使顶点C 落在C '点.2AB =,30DEC '∠=︒,那么折痕DE 的长为〔 〕A . 2B . 23C . 4D . 1【答案】C【解析】 该题考察的是图形的翻折.因为四边形ABCD 是矩形,所以AB CD =,由题意可知'30CED DEC ∠=∠=︒,1sin 2CD CED DE ∠==,所以2224DE CD ==⨯=.所以,此题的正确答案是C .作业8 如图,在等边△ABC 中,2AB =,点P 是AB 边上任意一点〔点P 可以与点A 重合〕,过点P 作PE ⊥BC ,垂足为E ,过点E 作EF ⊥AC ,垂足为F ,过点F 作FQ ⊥AB ,垂足为Q ,求当BP 的长等于多少时,点P 与点Q 重合?【答案】 43BP =【解析】 设BP x =,在直角三角形PBE 中,30BPE ∠=︒ ∴12BE x =,那么122EC x =- 在直角△EFC 中,30FEC ∠=︒, ∴11124FC EC x ==-,∴1214AF FC x =-=+ 同理:1128AQ x =+ 当点P 与点Q 重合时,2BP AQ +=即11228x x ⎛⎫++= ⎪⎝⎭,解得43x =A BE C DC '故当43BP =时,点P 与点Q 重合.作业9 如图,ABC ∆为等边三角形,AD 平分BAC ∠,ADE ∆是等边三角形,以下结论中 ①AD BC ⊥,②EF FD =, ③BE BD =,④60ABE ∠=︒.正确的个数为〔 〕A . 1B . 2C . 3D . 4【答案】D【解析】 该题考察的是三角形的性质.∵△ABC 为等边三角形,AD 为角平分线,∴AD BC ⊥,30BAD ∠=︒,60ABD ∠=︒∵△ADE 是等边三角形,30BAD ∠=︒,∴30EAB EAD BAD ∠=∠-∠=︒,EA DA =,在△AEF 和△ADF 中,EA DA EAB DAB AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△ADF 〔SAS 〕,∴EF FD =,同理,△AEB ≌△ADB ,∴60ABE ABD ∠=∠=︒,EB DB =,故正确的个数为4个,故此题答案为D .作业10 如图,过边长为2的等边ABC ∆的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连PQ 交AC 边于D ,那么DE 的长为〔 〕A . 13B . 12C . 23D . 1【答案】D【解析】 过P 作BC 的平行线交AC 于F ,Q FPD ∴∠=∠,ABC ∆是等边三角形,60APF B ∴∠=∠=︒,60AFP ACB ∠=∠=︒,APF ∴∆是等边三角形,AP PF ∴=,AP CQ =,PF CQ ∴=,在PFD ∆和QCD ∆中,FPD Q ∠=∠, PDF QDC PF CQ ∠=∠=,PFD QCD ∴∆∆≌,FD CD ∴=,PE AC ⊥于E ,APF ∆是等边三角形,AE EF ∴=,AE DC EF FD ∴+=+,12ED AC ∴=,2AC =,1DE ∴=.作业11 如图,在等边ABC △中,点D 、E 分别在边BC 、AC 上,且AE CD =,BE 与AD 相交于点P ,BQ AD ⊥于点Q .〔1〕求证:ABE CAD △≌△;〔2〕请问PQ 与BP 有何关系?并说明理由.【答案】 〔1〕见解析〔2〕2BP PQ =【解析】 该题考察全等三角形的判定与性质.∵△ABC 为等边三角形.∴AB AC =,60BAC ACB ∠=∠=︒,在△BAE 和△ACD 中:AE CD BAC ACB AB AC =⎧⎪∠=∠⎨⎪=⎩∴△BAE ≌△ACD〔2〕2BP PQ =∵△BAE ≌△ACD∴ABE CAD ∠=∠∵BPQ ∠是△ABP 的外角,∴BPQ ABE BAD ∠=∠+∠,∴60BPQ CAD BAD BAC ∠=∠+∠=∠=︒∵BQ AD ⊥,AB P EQD C∴30∠=︒PBQ∴如有侵权请联系告知删除,感谢你们的配合!。
数学作业本八年级上册北师大版一、三角形。
1. 三角形的基本概念。
- 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
- 三角形的表示方法:用符号“△”表示,如△ABC。
- 三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。
- 三角形的分类。
- 按角分类:锐角三角形(三个角都是锐角)、直角三角形(有一个角是直角)、钝角三角形(有一个角是钝角)。
- 按边分类:不等边三角形(三边都不相等)、等腰三角形(有两边相等),其中等边三角形(三边都相等)是特殊的等腰三角形。
2. 三角形的内角和与外角。
- 三角形内角和定理:三角形三个内角的和等于180°。
- 三角形的外角:三角形的一边与另一边的延长线组成的角。
- 三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角。
二、实数。
1. 平方根与算术平方根。
- 平方根:如果一个数的平方等于a,那么这个数叫做a的平方根,记作x = ±√(a)(a≥0)。
- 算术平方根:正数a的正的平方根叫做a的算术平方根,记作√(a)(a > 0),0的算术平方根是0。
2. 立方根。
- 立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根,记作x=sqrt[3]{a}。
- 立方根的性质:正数的立方根是正数,负数的立方根是负数,0的立方根是0。
3. 实数的概念与分类。
- 无理数:无限不循环小数叫做无理数,如π,√(2)等。
- 实数:有理数和无理数统称为实数。
实数可以分为正实数、0、负实数。
三、一次函数。
1. 函数的概念。
- 变量与常量:在一个变化过程中,数值发生变化的量称为变量,数值始终不变的量称为常量。
- 函数的定义:在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
参考答案第十一章 三角形11.1与三角形有关的线段11.1.1三角形的边1.(1)3;әA B C,әA B D,әA D C(2)A B,B D,A D;A,B,D(3)øA D C,øD C A,øC A D2.(1)3(2)123.(1)> (2)> (3)> (4)<4.(1)能.理由略(2)不能.理由略(3)能.理由略(4)不能.理由略5.a=5c m或7c m,周长为17c m或19c m6.35c m的长铁条合适,10c m的长铁条不合适.理由略11.1.2三角形的高㊁中线与角平分线11.1.3三角形的稳定性1.略2.(1)4c m2(2)30ʎ(3)2.4c m3.(1)D (2)B4.14c m5.(1)C D,B C(2)әA B C,әA B E,әA E C(3)әD B C,әD B E,әD E C6.25ʎ,25ʎ*7.(1)S1=S2.理由略(2)S3=S5,因为S3+S6=S5+S6=12S(3)S7=S8=S9=S10=S11=S1211.2与三角形有关的角11.2.1三角形的内角(1)1.(1)180ʎ,75ʎ(2)30ʎ,60ʎ,90ʎ2.(1)77ʎ(2)70ʎ3.33ʎ4.ø2=50ʎ,øB=50ʎ,øA C B=90ʎ5.(1)120ʎ(2)1256.øA B P=30ʎ+25ʎ=55ʎ,øB A P=80ʎ11.2.1三角形的内角(2)1.302.(1)3(2)43.D4.115ʎ5.42ʎ6.R tәA B D,R tәA C D,R tәA D E.理由略11.2.2三角形的外角1.C2.60ʎ3.145ʎ4.(1)øA B C=90ʎ,øC=45ʎ(2)40ʎ,50ʎ,90ʎ5.40ʎ.理由:ø3=ø2+180ʎ-140ʎ6.74ʎ*7.øC A D=30ʎ,øA E D=80ʎ,øE A D=10ʎ11.3多边形及其内角和11.3.1多边形1.(1)首尾顺次相接,n边形(2)顶点,对角线,n(n-3)2(3)相等,相等2.1;øB C D;2;øD C E,øB C F3.略4.①④5.(1)⑤ (2)①ˑ ②ˑ ③6.(1)图略,3,4(2)4,5,5,6(3)n-3,n-211.3.2多边形的内角和1.(1)720ʎ(2)八(3)45ʎ2.53.36ʎ,72ʎ,108ʎ,144ʎ4.1165.116.160ʎ复习题1.A B C,A D E2.①3.1,图略4.125.62ʎ,118ʎ6.(1)由A CʅB C,得ø1+øB C D=90ʎ,又因为ø1=øB,所以øB+øB C D=90ʎ,所以C D是әA B C的高(2)2c m7.118.øA E B=øC.理由略9.(1)26ʎ(2)略10.(1)øI=90ʎ+12øA,øO=12øA,øP=90ʎ-12øA.理由略(2)125ʎ,35ʎ,55ʎ11.(1)19,0(2)0<x<19第十二章 全等三角形12.1全等三角形1.(1) (2)ˑ (3)ˑ (4)2.C,øA,A C3.97,104.B C与D E,A C与A E,øB A C与øD A E,øC与øE5.直线B C,逆时针旋转180ʎ,平移B C长度6.(1)øE D C,E C(2)6,90ʎ12.2三角形全等的判定(1)1.S S S2.A B=B C,A B D,C B E3.提示:由әA B DɸәB A C(S S S),得øD=øC4.略5.øB A D=øC A D,理由略.提示:әA O EɸәA O F(S S S)6.(1)略(2)A BʊD E,A CʊD F,理由略*7.提示:由әA B DɸәA C D(S S S),可得A DʅB C,A D平分øB A C12.2三角形全等的判定(2)1.øB E D,D E,әB D E,S A S2.øE A D=øB A C或øE A B=øD A C或E D=B C3.B4.由әE DHɸәF DH,得E H=F H.还能得如下结论:øD E H=øD F H,øDH E=øDH F5.由әB C AɸәD E B(S A S),得B C=D E6.由әA B CɸәA B D(S A S),得øA B C=øA B D, ʑ øC B E=øD B E7.(1)A B=A C,A D=A D,øB=øC*(2)不全等.两边及一边的对角对应相等的两个三角形不一定全等12.2三角形全等的判定(3)1.C2.(1)øB C A=øE F D(2)øB=øE3.提示:由øC B A=øF E D,øB C A=øE F D,A B=D E,得әB A CɸәE D F(A A S)4.提示:由әA B CɸәE D C(A S A),得D E=A B5.提示:由әB C DɸәC B E(A S A),得B E=C D6.提示:可先证明әA O DɸәA O E,得出O D=O E;再证明әB O DɸәC O E,从而得出O B=O C12.2三角形全等的判定(4)1.D2.(1) (2)ˑ (3)ˑ (4)3.(1)A C=D C(2)øA=øD或øB=øE(3)A C=D C4.(1)提示:әA B CɸәA D C(A A S)(2)由(1)得C B=C D5.提示:әA O DɸәC O B(S A S),әA O EɸәC O F(A A S)6.全等三角形有әA B CɸәD C B(S A S),әA B OɸәD C O(A A S).理由略12.2三角形全等的判定(5)1.D2.A C=D F或B C=E F或øA=øD或øB=øE3.提示:由R tәA D EɸR tәA D F(H L),得øD A E=øD A F,即A D是øB A C的平分线4.(1)A E=D F,A BʊC D(2)略5.(1)ȵ A D=B D,A C=B E,øA D C=øB D E, ʑ әB E DɸәA C D(H L)(2)提示:由әB E DɸәA C D,得D E=D C6.当A P=A C=10c m,即点P与点C重合时,或A P=B C=5c m,即P是A C的中点时,әA B C与әA P Q全等*7.正确. ȵ R tәO C PɸR tәO D P, ʑ øC O P=øD O P,即O P平分øA O B12.2三角形全等的判定(6)1.(1)A A S(2)A S A (3)S A S(4)H L2.②④3.D4.提示:先证明әA B EɸәA C D,再证明әO B DɸәO C E5.提示:先证明әA O DɸәB O C,再证明әO C EɸәO D F6.提示:延长A M到点N,使MN=A M,连接B N.先证明әA C MɸәN B M,得到B N=A C,再由әA B N的三边关系得到A N<A B+B N, ʑ 2A M<A B+A C12.3角的平分线的性质(1)1.(1)略(2)5c m2.(1)B C,C D(2)A B,A D3.P B=P C,A B=A C4.提示:根据角平分线的性质可得A E=E F,D E=E F,故A E=D E5.提示:由әP DMɸәP E N(S A S),得P M=P N6.(1)提示:两个三角形的边A B,A C上的高相等(2)方法一:ȵ B D=C D,ʑ SәA B D=SәA C D. ʑ A B=A C方法二:过点D分别作A B,A C的垂线段,通过三角形全等证明12.3角的平分线的性质(2)1.A2.253.略4.21ʎ5.提示:可证明әC O EɸәB O D,得O E=O D6.(1)略(2)作图略,A DʅA E复习题1.A2.4对:әA F DɸәA F E,әB D FɸәC E F,әA F BɸәA F C,әA B EɸәA C D3.由әA B CɸәA'B'C',得B C=B'C',即影子一样长4.点P为øA和øB的平分线的交点,图略5.提示:由әB D FɸәC D E(S A S),得øF=øD E C,故B FʊC E6.3c m,37ʎ7.由R tәA B DɸR tәC B E(H L),得øB A D=øB C E.ȵøE+øB C E= 90ʎ, ʑ øE+øB A D=90ʎ, ʑ A FʅC E8.(1)提示:证明әC B DɸәE F C,D B=C F(2)2(3)2第十三章 轴对称13.1轴对称13.1.1轴对称1.B2.A DʅB C,中点,垂直平分线3.(1) (2)ˑ4.①和③是轴对称图形.对称轴及对称点略5.(1)点D ,E ,F (2)l 垂直平分线段A D (3)交点在直线l 上6.图略.正三㊁四㊁五㊁ n 边形分别有3,4,5, ,n 条对称轴13.1.2 线段的垂直平分线的性质(1)1.(1)B M (2)90 (3)2c m 2.A D +D E +A E =B D +D E +E C =B C =5c m3.ȵ A C =A D , ʑ 点A 在C D 的垂直平分线上.同理,点B 在C D 的垂直平分线上, ʑ AB 垂直平分CD 4.以点A 为圆心㊁适当长为半径作弧,交l 于点B 和C ,再分别以点B 和C 为圆心㊁大于12B C 的长为半径作弧,两弧交于点D ,连接D A ,直线D A 就是所求作的垂线5.ȵ A B =A C ,B D =D C , ʑ 直线A D 是线段B C 的垂直平分线.ȵ 点E 在A D 上, ʑ E B =E C6.A C =A E =12A B =3c m13.1.2 线段的垂直平分线的性质(2)1.对应点,垂直平分线2.连接A B ,分别以点A 和B 为圆心㊁大于12A B 的长为半径画弧,两弧交于点C 和D ,连接C D ,C D 就是所求作的直线3.①②③⑤是轴对称图形.图略 4.略5.提示:作出三角形任意一边的中线即可6.方案一:两组对边中点的连线;方案二:两条对角线13.2 画轴对称图形(1)1.(1)略 (2)A 'B 2.略 3.略 4.略 5.略 6.略13.2 画轴对称图形(2)1.C 2.点P 的坐标(2,3)(1,-4)(-2.5,-6)0,-72点P 关于x 轴对称的点的坐标(2,-3)(1,4)(-2.5,6)0,72 点P 关于y 轴对称的点的坐标(-2,3)(-1,-4)(2.5,-6)0,-723.1,24.略5.(1)图略.-3,5,-1,1,-3,3 (2)图略.-1,5,-3,1,-1,3 (3)是.图略6.A 2(1,-3),B 2(4,-1),C 2-12,-2.图略13.3 等腰三角形13.3.1 等腰三角形(1)1.(1)50ʎ (2)66ʎ 2.50 3.3,904.øB C D =25ʎ,øA D C =50ʎ,øA C B =90ʎ5.由әA B C ɸәA E D (S A S ),得A C =A D .又AM ʅC D , ʑ C M =MD .ʑ M 是C D 的中点6.提示:连接A P ,证明әA D P ɸәA E P 或әB D P ɸәC E P ,得P D =P E*7.(1)15ʎ (2)20ʎ (3)øE D C =12øB A D ,理由略13.3.1 等腰三角形(2)1.70,等腰 2.(1)30ʎ (2)30ʎ或75ʎ或120ʎ3.提示:由øD B C =øD C B ,得әB C D 是等腰三角形4.30海里5.øC =30ʎ,C D =3c m 6.ȵ øB =øC =12(180ʎ-øA ), ʑ A B =A C .ȵ B D =C E , ʑ A D =A E , ʑ øA D E =øA E D =12(180ʎ-øA ),ʑ øA D E =øB , ʑ D E ʊB C*7.(第7题)13.3.2 等边三角形(1)1.(1)0.5c m (2)3 2.D 3.90ʎ4.提示: ȵ әA D F ɸәB E D ɸәC F E , ʑ A D =B E =C F5.(1)ȵ әA B C 是等边三角形,ʑ AC =C B ,øA =øE C B =60ʎ.又AD =CE ,ʑ әA D C ɸәC E B (S A S ), ʑ øC B E =øA C D(2)øC F E =øC B E +øD C B =øA C D +øD C B =øA C B =60ʎ6.提示:可证明әA B D ɸәA C E (S A S ), ʑ A D =A E ,øD A E =øB A C =60ʎ,ʑ әA D E 是等边三角形13.3.2等边三角形(2)1.2402.30ʎ,4c m,2c m3.ȵ øA=90ʎ-60ʎ=30ʎ,øC=90ʎ, ʑ A B=2B C.又ȵ A B-B C=5c m, ʑ B C=5c m4.øB=15ʎ,øD A C=øB+øA C B=30ʎ,C D=12A C=12A B=25c m5.(1)略(2)(12+43)c m6.ȵ B'D=B'E, ʑ B B'平分øA B C, ʑ øB'B D=30ʎ,ʑ B B'=2B'D=5ˑ2=10c m7.根据әA B D的画法,有A B=A C=B C=C D,ʑәA B C是等边三角形, *øA B C=øA C B=60ʎ,øD=øC B D=12øA C B=30ʎ.ʑ øA B D=60ʎ+30ʎ=90ʎ, ʑ әA B D就是所要画的三角形13.3.2等边三角形(3)1.12.60,1203.74.әO D E是等边三角形.提示:证明øD O E=2øA O B=60ʎ,O D=O C=O E即可5.(1)15时30分(2)17时30分6.(1)连接A D,证明әA D FɸәB D E,得到D E=D F,øA D F=øB D E即可*(2)әD E F仍为等腰直角三角形.连接A D,证明әA D FɸәB D E,得到D E=D F,øA D F=øB D E即可13.4课题学习最短路径问题1.提示:作点O关于A B的对称点O',连接O'C,交A B于点P2.提示:作点O关于A B的对称点O',点M关于B C的对称点M',连接O'M',交A B,B C于点P和Q3.提示:利用平移,将点C移动到边C D上的点C'处,C C'=2c m,作点O关于A B对称点O',连接O'C',交A B于点P复习题1.C2.5c m,50ʎ3.18ʎ4.略5.ȵ E DʅB C, ʑ øE+øB=90ʎ,øD F C+øC=90ʎ.ȵ A B=A C, ʑ øB=øC.又øD F C=øA F E, ʑ øE=øA F E, ʑ A E=A F.ʑ әA E F是等腰三角形6.ȵ әA C E与әA D E关于直线A E对称, ʑ D E=E C,A D=A C=C B,ʑ D E+E B+D B=E C+E B+D B=C B+D B=10c m7.ȵ øA=60ʎ,A D=12A B=A C, ʑ әA C D是等边三角形,øD C B=90ʎ-øA C D=30ʎ.øA C E=90ʎ-øA=30ʎ,øE C D=30ʎ,ʑøA C E=øE C D =øD C B8.ȵ E B=E C, ʑ øE B C=øE C B. ȵ øA B E=øA C E,ʑ øA B C=øA C B, ʑ A B=A C.又ȵ E B=E C,ʑ 点A和E在B C的垂直平分线上. ʑ A DʅB C9.(1)a=2,b=3(2)(-6,-2)10.(第10题)11.(1)略(2)P(a,b)关于直线m对称的点的坐标为(-a-4,b);P(a,b)关于直线n对称的点的坐标为(b,a)12.(1)由әA B EɸәD B C(S A S),得A E=D C(2)成立(3)等边三角形第十四章 整式的乘法与因式分解14.1整式的乘法14.1.1同底数幂的乘法1.(1)不正确.a6(2)正确(3)不正确.-79(4)不正确.-2102.(1)108(2)1211(3)-127(4)5103.(1)m6(2)x2m+1(3)a6(4)-x54.1020次5.(1)(a+b)3(2)(x-y)7(3)b9(4)(a-b)56.1.2ˑ1011m 14.1.2幂的乘方14.1.3积的乘方1.B2.(1)26(2)b9(3)1012(4)-x153.(1)不正确.8x3(2)不正确.a3b6(3)不正确.9a6(4)不正确.-127x3y64.(1)-a6(2)9ˑ1010(3)a12b6(4)-8x6y35.54a2,27a36.5.14ˑ108k m214.1.4整式的乘法(1)1.(1)15a5(2)-72a3b6(3)6ˑ107(4)-3x5y42.(1)不正确.3x3y2(2)不正确.-2x2-2x y3.(1)2x2+2x(2)6x2-18x y(3)-2a+2b-2c(4)-15a4+43a34.a b-b25.3x3-5x2+6x,-146.(1)2x y,4x y-2y(2)15x y+y14.1.4整式的乘法(2)1.(1)x2+3x+2(2)2x2-x-12.(1)x2-4(2)6x2+x-1(3)x2+4x y-21y2(4)6x2+11x y-10y23.(1)x2-y2(2)4x2-9(3)x2+2x y+y2(4)4x2-12x+94.(1)3m2-m n-5m+2n-2(2)6x-9,35.(a-b)(a-2b)=a2-3a b+2b26.小丽说得对,理由略14.1.4整式的乘法(3)1.(1)a2(2)a2(3)a3b3(4)12.C3.(1)100(2)a6(3)-b3(4)-a b4.(1)1(2)-1(3)1(4)15.(1)a4(2)-m3(3)1(4)2a76.104s14.1.4整式的乘法(4)1.(1)2a(2)-5y2(3)-2ˑ103(4)r32.自上而下:-x3y,6x z,-12x3.D4.(1)-14a b(2)3x+1(3)3a+4(4)-6x+2y-15.(1)-y+2x y2(2)-2a2+4a+8,26.(8.47ˑ1010)ː(2.75ˑ103ˑ105)=308年14.2乘法公式14.2.1平方差公式1.(1)a2-1(2)y-32.(1) (2) (3) (4) (5)ˑ3.(1)a2-4(2)9a2-b2(3)y2-0.09x2(4)a2-14b24.(1)(100+3)(100-3)=9991(2)(60-0.2)(60+0.2)=3599.965.(1)二,去括号后未变号(2)略6.(1)-8a2(2)5x2-34y2(3)-2a2+7a+27.(1)a2-b2(2)a-b,a+b,(a-b)(a+b)(3)(a-b)(a+b)=a2-b2 *(4)略14.2.2 完全平方公式(1)1.D2.(1)9+6x +x 2(2)y 2-14y +49 (3)x 2-10x +25 (4)9+2t +19t 23.(1)10000 (2)38809 4.(1)14x 2-2x y +4y 2 (2)-4a 2-12a -95.(1)略 (2)(a -b )2+4a b =(a +b )2(3)69 ʃ11 6.8a b14.2.2 完全平方公式(2)1.D 2.(1)y +z (2)y -z (3)2b -c ,2b -c3.(1)4x 2+12x y +9y 2 (2)4x 2-4x +14.(1)4x 2+y 2+z 2-4x y +4x z -2y z (2)a 2-4b 2+4b -15.x 2-3,1 6.(1)a 5+5a 4b +10a 3b 2+10a 2b 3+5a b 4+b 5(2)24314.3 因式分解14.3.1 提公因式法1.C2.(1)3 (2)x (3)2a 2(4)a -b 3.(1)2x 2(x +3) (2)3p q (q 2+5p 2) (3)x y (x +y -1) (4)-2a b 3(4a -3c )4.(1)(a -b )(2a -2b -1) (2)(x -y )2(3-x +y )(3)(a -b )(7+a )5.-24 6.(1)998 (2)-1020197.2r h +12πr 2,分解因式得r 2h +12πr,64πm 214.3.2 公式法(1)1.B2.(1)2x ,3y ,(2x +3y )(2x -3y )(2)5b ,4a ,(5b +4a )(5b -4a )(3)x 2-y 2,x y (x +y )(x -y )3.(1)(x +1)(x -1) (2)3(2+a )(2-a ) (3)(a +b +c )(a +b -c )(4)(a 2+9b 2)(a +3b )(a -3b )4.(1)2013 (2)-15.a 2-4b 2=(a +2b )(a -2b )=128c m26.(1)34 (2)23 (3)58 (4)10120014.3.2 公式法(2)1.D 2.(1)3a +2 (2)9y 2,3y (3)-2m n 3.(1)(x -3)2 (2)(2a +b )2 (3)-(3x -2y )2 (4)a +12b24.(5x+y)2,4255.(1)-3x(x-1)2(2)(2a+b-4)2(3)(a+2b)2(a-2b)2(4)(a+2)(a-2)6.(1)1ˑ104(2)1ˑ1047.(1)(x+2y-1)2(2)(a+b-2)2*复习题1.D2.(1)3x4y4(2)-4a b3.a2+4a b+4b2,a2-4b2,4b2-a2,-a2-4a b-4b24.(1)2a3b3c3+12a3b c3(2)-3a b+8b(3)14x2-16a2(4)16m2+8m+15.②6.(1)(x+2)(x-2)(2)(8-a)2(3)(x-y)(2+a)(4)(0.7x+0.2y)(0.7x-0.2y)7.(1)2x5(2)-7x3y2+2x2(3)-4x-12(4)x-y8.(1)(x-y)(5x-4y)(2)-a2(b-1)2(3)4a(x+2y)(x-2y)(4)(x-2)(x-3)(x+3)9.吃亏了,少了25m2,理由略10.(1)(a+2b)(2a+b)=2a2+5a b+2b2(2)如图(3)答案不唯一.如图,(a+2b)(a+b)=a2+3a b+2b2[第10(2)题][第10(3)题]11.原式=(2-1)ˑ(2+1)ˑ(22+1)ˑ(24+1)ˑ(28+1)ˑ ˑ(22048+1)=(22-1)ˑ(22+1)ˑ(24+1)ˑ(28+1)ˑ ˑ(22048+1)=(22048-1)ˑ(22048+1)=24096-112.(1)C(2)(x-2)4(3)设x2-2x=y,原式=y(y+2)+1=(y+1)2=(x2-2x+1)2=(x-1)4第十五章 分式15.1 分式15.1.1 从分数到分式1.(1)3t (2)nm +12.m ,x 5,13a 2b ,23,5π整式集合 2a ,x x -3,x 2-x +1y,x +1x -1分式集合3.(1)x ʂ0 (2)x ʂ2 (3)x ʂ0且x ʂ1 (4)x ʂʃ34.(1)m +n x +y千克 (2)b45a 5.(1)x =43 (2)x =-12 (3)-3 6.x -5x 2-3615.1.2 分式的基本性质(1)1.(1)x (2)3a 2-3a b (3)y -2 (4)1 2.(1)ˑ (2) (3)ˑ (4)ˑ 3.(1)12x (2)-x 3y(3)2a5b 4.(1)相等.因为把第一个分式的分子㊁分母同乘以3x 就是第二个分式(2)相等.因为把第一个分式的分子㊁分母同乘以3b 2就是第二个分式5.(1)5x -103x +20 (2)x -23x -1 6.(1)A (2)3y (答案不唯一) 15.1.2 分式的基本性质(2)1.B 2.A 3.(1)c b (2)-4x 5y (3)34(x -y )4.(1)x +2x -2 (2)1m (m -2) (3)x +2x -25.(1)x +2y 4x ,34 (2)a +3a -3,46.答案不唯一,例如:x 2-1x 2+x=x -1x ,1215.1.2 分式的基本性质(3)1.(1)5a (2)a 2b 22.D3.(1)412x 2与5x 12x 2 (2)3b c a 2b 2与2a c a 2b 2 (3)5a 2c 21a c 与35c 21a c (4)3a b 23b 2与a 3b24.(1)a c +c (a -1)(a +1)与a c -c (a -1)(a +1) (2)2y 2x y (y +1)与3x 2x y (y +1)5.(1)a -2a 与a 2-2a a (2)x 2-y 2x +y 与2y 2x +y6.(1)c -a (a -b )(b -c )(c -a ),a -b (a -b )(b -c )(c -a )与c -b(a -b )(b -c )(c -a )(2)2a (a -3)(a +3)(a -3)2与3(a +3)(a +3)(a -3)215.2 分式的运算15.2.1 分式的乘除(1)1.C 2.(1)不正确.-3x (2)不正确.8x 23a 2 3.(1)1 (2)-5a14x 4.(1)-1a c (2)1a (a -2) (3)2x -2x +2 (4)-13m5.s a ːm s b =b a m6.300x ㊃2x m =600m 个15.2.1 分式的乘除(2)1.B2.(1)a b (2)a 2b 2 (3)(x -1)2(4)4a 2c 4 (5)4c 2d 2a 2b 6 (6)(2a +b )2(a -b )23.(1)3c a b (2)49x 2y 2 (3)m 2n 24.(1)1b (2)-y (x +y )5.32倍15.2.2 分式的加减(1)1.(1)3x (2)x -y a (3)1 (4)-b a2.C3.(1)5y -4x 6x 2y 2 (2)3b c 3+2a36a 2b 2c 24.(1)2 (2)a b a -b (3)3x +4 (4)4x +25.(1)2a a +2 (2)1m -1 (3)2a 2a -2 6.3000a -30003a =2000a时15.2.2 分式的加减(2)1.D 2.(1)2 (2)-1a 3.(1)b 2a3 (2)1a -2 (3)1x +1 (4)1x -14.aa -3,a 可选除0,2,3以外的任意数5.方法一:原式=2x (x +4)(x -2)(x +2)㊃x 2-4x =2x +8;方法二:原式=3x x -2㊃x 2-4x -x x +2㊃x 2-4x =2x +8*6.(1)100(x +y ),100x +100y ,x +y 2,2xy x +y(2)乙购买粮食的方式更合算,理由略15.2.3 整数指数幂(1)1.(1)25,1,125 (2)25,1,1252.(1)不正确.1 (2)不正确.-1 (3)不正确.19 (4)正确3.(1)1100 (2)127 (3)1000 (4)94 4.(1)6a2c 4 (2)y 2x 6z45.(1)8m 8n 7 (2)b 138a 8 6.原式=y -9x 3,8915.2.3 整数指数幂(2)1.C 2.A3.(1)1.0ˑ105 (2)1.0ˑ10-5 (3)-1.12ˑ105 (4)-1.12ˑ10-44.(1)75 (2)3.6ˑ10-135.(1)0.00001 (2)0.000236.3.1ˑ10-315.3 分式方程(1)1.C 2.(1)x =73(2)x =4 3.m =14 4.(1)x =12 (2)x =35.(1)x =1 (2)x =-1*6.设原分式为x -16x ,则x -15x +1=12,解得原分数为153115.3 分式方程(2)1.A 2.90x +6=60x 3.设乙单独做,x 天完成,则46+4x=1,解得x =124.120元5.设原计划每天铺设x m 管道,则3000x -3000(1+25%)x =30,解得x =20,(1+25%)x =25.实际每天铺设管道25m 6.(1)70m /m i n (2)李明能在联欢会开始前赶到学校15.3 分式方程(3)1.10 2.B 3.35.6mm4.设乙每分钟输入x 名学生的成绩,则26402x =2640x-2ˑ60,解得x =11,2x =22.乙每分钟输入11名学生的成绩,甲每分钟输入22名学生的成绩5.设货车的速度是x km /h ,由题意得14401.5x +6=1440x,解得x =80.货车的速度是80k m /h ,客车的速度是120k m /h *6.255p -1元 复习题1.B2.C3.C4.3ˑ10-4微米 5.(1)1.2ˑ104 (2)10-46.(1)y 29x 6 (2)x -5 7.(1)x =1 (2)无解 8.设甲的速度为x k m /h ,则8-0.5x x =122x,解得x =4,所以甲的速度是4k m /h ,乙的速度是8k m /h9.设该市去年居民用水的价格为x 元/米3,则今年居民用水的价格为(1+25%)x元/米3.根据题意,得36(1+25%)x -18x=6,解得x =1.8,(1+25%)x =2.25.该市今年居民用水的价格为2.25元/米310.王师傅这次运输所花时间为180v h ,180v ˑ29v +14+180v ˑ20=176,解得v =45.王师傅这次运输的平均速度为45k m /h 11.(1)取a =1,b =1,得M =N =1;取a =2,b =12,得M =N =1.猜想:M =N (2)M =a a +1+b b +1=a a +a b +b b +a b =1b +1+1a +1=N ,因此M =N 总复习题1.C2.C3.D4.B5.A6.1.83ˑ10-77.538.5409.所有图案都是轴对称图形,图略10.(1)3x2-20x+26(2)-111.(1)2x(3-2y)(2)y(y+2x)(y-2x)(3)(a+3)2(a-3)2(4)(a-b)(2a-2b+3)(2a-2b-3)12.(1)无解(2)x=-713.ȵ øA=50ʎ,øB D C=85ʎ,ʑøA B D=35ʎ.又ȵB D平分øA B C,D EʊB C,得øB D E=35ʎ, ʑ øBE D=110ʎ. ʑ әB D E各内角度数分别为35ʎ,35ʎ,110ʎ14.әA B C,әA B D,әA C D;øB=36ʎ15.B E=A B-A E=7c m,在әB E F中,øB E F=øG E F=øA E G=60ʎ,得E F=2B E=14c m16.øA B C=øA D C.提示:连接B D,证明øA D B=øA B D,øC D B=øC B D,得øA D B+øC D B=øA B D+øC B D,即øA D C=øA B C17.设甲公司单独完成需要x天,则12x+121.5x=1,解得x=20,1.5x=30.甲㊁乙两公司单独完成此项工程,分别需要20天和30天18.(1)在R tәA D B与R tәC E A中,A B=A C,øB A D=øA C E, ʑ әA D BɸәC E A, ʑ A D=C E,A E=B D. ʑ D E=B D+C E(2)D E=B D+C E(3)D E=C E-B D19.(1)øA+øD=øB+øC(2)6(3)øP=45ʎ(4)øP=øB+øD2,理由略20.(1)32(2)ʃ321.略期末综合练习1.D2.D3.A4.A5.B6.D7.B8.C9.C 10.A 11.4.2ˑ10-712.23b13.3x(x+2y)(x-2y)14.ʃ4 15.116.917.= 18.24ʎ19.20ʎ或35ʎ或80ʎ或50ʎ20.2 21.a+1,选取a=2,所求的值为322.略23.提示:(1)由әB O DɸәC O E可得(2)提示:证明A B=A C,得点A,O都在B C的垂直平分线上24.(1)甲工程队每月修建绿道1.5k m,乙工程队每月修建绿道1k m(2)甲工程队至少修建绿道8个月25.(1)①30 ②|60ʎ-2α|(2)①略 ②|8-2n|。
初中数学第十一章三角形单元作业设计单第1课时11.1与三角形有关的线段作业目标1.进一步了解有关三角形三边之间的关系,能确定三角形三边长以及能够求出三角形的周长.2.经过针对性的计算,加深对三角形有关边长的知识的理解和掌握.3.通过完成作业培养学生分析、解决问题的能力增强应用意识.课程目标1.了解三角形的概念,会按边对三角形进行分类.2.掌握三角形三边关系定理.3.会运用三角形三边关系定理解决实际问题.课时题号作业类型作业目标能力层级难易程度核心素养1 1 选择题 1 了解易抽象能力2 选择题 1 掌握中模型观念、创新意识3 选择题 2 掌握易应用意思、运算能力4 选择题1,2 掌握中几何直观、运算能力变式1 填空题1,2,3 掌握中几何直观、运算能力变式2 填空题1, 2, 3 掌握中几何直观、运算能力变式3 解答题1,2,3 运用中几何直观、运算能力5 填空题1, 2, 3 运用难模型观念变式1 解答题1,2, 3 运用难模型观念11.1与三角形有关的线段(1)预设难易程度及时间实测难易程度及时间作业题目★1分钟★★1分钟★1分钟☆☆☆分钟☆☆☆分钟☆☆☆分钟1.三角形是()A.连接任意三角形组成的图形B.由不在同一条直线上的三条线段首尾顺次相接所组成的的图形C.由三条线段组成的图形D.以上说法均不对2.若△ABC三条边的长度分别为m,n,p,且则这个三角形为()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形3.下列长度的三条线段能组成三角形的是()A.1,2,3 B.2,2,4 C.3,4,5 D.3,4,8()02=-+-pnnm★★1分钟★★2分钟★★2分钟★★3分钟★★★5分钟★★★5分钟☆☆☆分钟☆☆☆分钟☆☆☆分钟☆☆☆分钟☆☆☆分钟☆☆☆分钟4.已知等腰三角形的两边长分别为3和6,则它的周长为( )A. 9B. 12C. 15D. 12或15变式:(1)若等腰三角形的两边长分别为3和7,则它的周长为_______;若等腰三角形的两边长分别是3和4,则它的周长为_____.(2)若等腰三角形的腰长为6,则它的底边长a的取值范围是________;若等腰三角形的底边长为4,则它的腰长b的取值范围是_______.(3)已知等腰三角形的两边长分别为4,9,求它的周长.5.如图,图1中共有3个三角形,图2中共有6个三角形,图3中共有10个三角形,…,以此类推,则图6中共有__________ 个三角形.变式:如图4,△ABC中,A1,A2,A3,…,An为AC边上不同的n个点,首先连接BA1,图中出现了3个不同的三角形,再连接BA2,图中便有6个不同的三角形…(1)完成下表:连接个数出现三角形个数(2)若出现了45个三角形,则共连接了多少个点?(3)若一直连接到An,则图中共有__________个三角形.第5题图4★★2分钟★★★2分钟合计25分钟☆☆☆分钟☆☆☆分钟合计分钟6.总结与思考(1)总结:三角形的概念及其组成与表示方法(2)思考:计算等腰三角形的周长时应该注意哪些问题?内容来源教辅:第1,2,3,4,5题及变式;原创:总结与思考1,2能力层级了解:第1题掌握:第2题,3题,4题变式1,2,总结与思考1运用:第4题变式3,第5题及变式1,总结与思考2作业评价学生自我评价教师评价评价等级A□ B □C□ A □B□C□评价已掌握题目:题号需加强题目:题号评语:诊断改进错题题号错题订正错因分析改进与提升第2课时11.1与三角形有关的线段作业目标1.及时对三角形三线的知识加以掌握,加深印象,提高解决问题的能力.2.通过对三角形三线的学习加深对三角形有关概念的理解和掌握,为以后的学习做铺垫.3.通过完成作业培养学生分析、解决问题的能力增强应用意识.课程目标1.理解三角形的高、中线、角平分线的概念.2.会画出三角形的高、中线、角平分线.3.会运用三角形的高、中线、角平分线进行简单计算与推理.课时题号作业类型作业目标能力层级难易程度核心素养2 1 选择题 1 了解易几何直观、空间观念2 选择题 1 了解易应用意识3 填空题1,2,3 掌握中推理能力、运算能力4 作图题1,2 掌握难应用意识、空间观念5 填空题1, 2,3 理解中推理能力、运算能力6 填空题1, 2,3 运用中推理能力、运算能力7 填空题1,2,3 理解中空间观念、运算能力8 解答题1,2,3 运用难应用意识、运算能力9 解答题1,2,3 运用难空间观念、推理能力、运算能力11.1与三角形有关的线段(2)预设难易程度及时间实测难易程度及时间作业题目★1分钟★1分钟☆☆☆分钟☆☆☆分钟1.如图所示,在△ABC中,∠ACB=90°,把△ABC沿直线AC翻折180°,使点B落在点B′的位置,则线段AC具有性质( )A.是边BB′上的中线B.是边BB′上的高C.是∠BAB′的角平分线D.以上三种性质合一2.如图所示,D,E分别是△ABC的边AC,BC的中点,则下列说法不正确的是( )A.DE是△BCD的中线B.BD是△ABC的中线C.AD=DC,BD=ECD.∠C的对边是DE第1题图B'CBAEDCBA第2题图★★2分钟★★★5分钟☆☆☆分钟☆☆☆分钟3.如图,在△ABC中,BD是∠ABC的平分线.已知∠ABC=80°,则∠DBC=________°.4.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A'B'C',图中标出了点B的对应点B .根据下列条件利用网格点和三角板(或直尺)画图:(1)补全△A'B'C';(2)画出△ABC中AB边上的中线CD;(3)画出△ABC中BC边上的高线AE.★★1分钟★★2分钟★★2分钟☆☆☆分钟☆☆☆分钟☆☆☆分钟5.如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC于点E.若∠C=26°,则∠DAE的度数为_____.6.AD为△ABC的中线,AE为△ABC的高,ABD△的面积为14,AE=7,CE=2则DE的长为_________.7.若AE是△ABC的中线,且BE=4cm,则BC=________cm.第3题图第4题图第5题图★★★5分钟★★★5分钟☆☆☆分钟☆☆☆分钟8.如图,AD,CE是△ABC的两条高.已知AD=5,CE=4.5,AB=6.(1)求△ABC的面积;(2)求BC的长.9.如图,以直角三角形AOC的直角顶点O为原点,以OC,OA所在直线为轴和轴建立平面直角坐标系,点A(0,a),C(b,0)满足a6b80-+-=.(1)a= ;b= ;直角三角形AOC的面积为.(2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发以每秒2个单位长度的速度向点O匀速移动,Q点从O点出发以每秒1个单位长度的速度向点A匀速移动,点P到达O点整个运动随之结束.AC的中点D的坐标是(4,3),设运动时间为t秒.问:是否存在这样的t,使得△ODP与△ODQ的面积相等?若存在,请求出t的值;若不存在,请说明理由.★★2分钟★★1分钟合计25分钟☆☆☆分钟☆☆☆分钟合计分钟总结与思考 :1.总结:角平分线的一般步骤是什么?2.思考:找三角形高线的时候应该注意哪些问题?内容来源教辅:第1,2,3,4,5,6,7,8,9题原创:总结与思考1,2第8题图第9题图能力层级了解:第1题,第2题理解:第5题,第7题变式掌握:第3题 ,第4题,总结与思考1运用:第6 题,第8题,第9题,总结与思考2作业评价作业目标1. 熟练应用三角形内角和定理求角的度数.2.运用三角形内角和定理进行简单的计算和证明.3.综合运用三角形内角和定理、平行线的性质和角平分线的性质解决问题. 课程 目 标 1.掌握三角形内角和定理.2.通过运用三角形内角和定理证明几何问题,提高学生的逻辑思维能力.3.通过猜想推理等数学活动,感受数学活动充满探索及数学结论的确定性. 课时 题号 作业类型作业目标能力层级 难易程度 核心素养 3 1 选择题1 了解 易 应用意识2 选择题1 理解 易 应用意识、运算能力 3 填空 1,3 掌握 中 空间观念、运算能力 4 填空 1,2 掌握 中 抽象能力、运算能力5 填空 2,3 掌握 中 推理能力6 解答题 1,2 运用 难 应用意识、运算能力7 解答题 1,3运用中空间观念、运算能力学生自我评价 教师评价评价等级A □B □C □A □B □C □评价 已掌握题目:题号需加强题目:题号评语:诊断改进错题题号错题订正错因分析改进与提升8 解答题 3 运用难推理能力、模型观念11.2与三角形有关的角(1)预设难易程度及时间实测难易程度及时间作业题目★1分钟★1分钟☆☆☆___分钟☆☆☆___分钟1.三角形的三个内角()A.至少有两个锐角B.至少有一个直角C.至多有两个钝角D.至少有一个钝角2.如果三角形的三个内角的度数比是2:3:4,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形★★1分钟★★2分钟☆☆☆___分钟☆☆☆___分钟3.如图,将三角尺的直角顶点放在直线a上,a∥b,∠1=50°,∠2=60°,则∠3的度数为_______.4.在△ABC中,如果∠A=∠B=4∠C,那么∠C=________.★★2分钟★★★5分钟☆☆☆___分钟☆☆☆___分钟5.小明在学习三角形内角和定理时,自己做了如下推理过程,请你帮他补充完整.已知:如图,△ABC中,∠A、∠B、∠C是它的三个内角,那么这三个内角的和等于多少?为什么?解:∠A+∠B+∠C=180°理由:作∠ACD=∠A,并延长BC到E∠1=∠A(已作)∴AB∥CD(_________________________)∴∠B=_____(_________________________)而∠ACB+∠1+∠2=180°∴∠ACB+_____+_____=180°(等量代换)6.在△ABC中,已知∠B-∠A=5°,∠C-∠B=20°,求三角形各内角的度数.第5题图第3题图★★4分钟☆☆☆__分钟7.如图,C处在A处的南偏西45°方向,B处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求∠ABC的度数.★★★8分钟☆☆☆__分钟8.如图,在△ABC中,OB、OC是∠ABC、∠ACB的角平分线;(1)填写下面的表格.∠A的度数50°60°70°∠BOC的度数(2)试猜想∠A与∠BOC之间存在怎样的数量关系,并证明你的猜想;(3)如图2,△ABC的高BE、CD交于O点,试说明图中∠A与∠BOD的关系.★2分钟★★2分钟合计28分钟☆☆☆__分钟☆☆☆__分钟合计__分钟总结与思考:1.总结本节课的相关知识点.2.归纳三角形内角和定理可以和哪些知识点一起综合运用?内容来源教材:第7题.教辅:第1,2,3,4,5,6,8题第8题图第7题图作 业 目 标 1.熟练应用直角三角形的两锐角互余进行计算.2.综合运用三角形内角和定理进行计算和证明.3.体会三角形内角和定理与其它知识点综合应用. 课程 目 标 1.能根据三角形内角和定理推理出直角三角形的两个锐角互余.2. 通过运用三角形内角和定理进行证明,提高学生的逻辑分析能力.3.进一步培养推理证明能力. 课时 题号 作业类型作业目标 能力层级 难易程度 核心素养 4 1 选择 1掌握 易 应用意识2 填空 1 掌握 易 应用意识、运算能力3 选择 2 掌握 中 几何直观、运算能力4 填空 2,3 运用 中 应用意识、运算能力5 填空 2,3 运用 中 应用意识、运算能力6 填空 3 运用 中 几何直观、运算能力7 解答题 1,3 运用 中 几何直观、运算能力8 解答题 2,3 运用 中 推理能力、运算能力9 解答题 2,3运用难推理能力、数学运算能力 层级了解:第1题.理解:第2,3,4题,总结与思考1 掌握:第5题运用:第6,7,8题, 总结与思考2作业评价学生自我评价教师评价评价等级 A □ B □ C □A □B □C □ 评价已掌握题目:题号__________ 需加强题目:题号__________评语:诊断改进错题题号错题订正错因分析改进与提升预设难 易程度 及时间 实测难 易程度 及时间作业题目★1分钟★1分钟☆☆☆___分钟☆☆☆___分钟1.一个三角形的一个内角等于另外两个内角的和,这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.何类三角形不能确定2.在直角△ABC中,∠B=28°,∠C=90°,则∠A的度数是_______.★★2分钟★★2分钟☆☆☆___分钟☆☆☆___分钟3.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠α的度数为( )A.75°B.105°C.135°D.165°4.如图,已知,AB∥CD,直线EF分别交AB,CD于E,F,点G在直线EF上,GH⊥AB,若∠EGH=32°,则∠DFE的度数为_________.★★3分钟★★3分钟★★4分钟☆☆☆__分钟☆☆☆__分钟☆☆☆__分钟5.如图,AE是△ABC的角平分线,AD⊥B C于点D,若∠BAC=128°,∠C=36°,则∠DAE的度数是_______.6.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别在边AB、AC上,将△ABC沿着DE折叠压平,点A与点A'重合,若∠A=70°,则∠1+∠2=____________.7.如图,AB∥CD,∠BAE=∠DCE=45°,求∠E的度数.第3题图第4题图第6题图第5题图第7题图★★ 4分钟 ☆☆☆ __分钟8.如图,AD ⊥BC ,∠1=∠2,∠C =65°.求∠BAC 的度数.★★★ 6分钟 ☆☆☆ __分钟9.如图△ABC 中,∠A =20°,CD 是∠BCA 平分的线,△CDA 中,DE 是CA 边上的高,又有∠EDA =∠CDB ,求∠B 的大小.★ 2分钟 ★★ 2分钟 合计 30分钟 ☆☆☆ __分钟 ☆☆☆ __分钟合计__分钟总结与思考 1.总结本节课的相关知识点.2.归纳直角三角形的性质可以和哪些知识点一起综合运用?内容 来源 教材:第7,8题教辅:第1,3,4,5,6,9题 改编:第2题.能力 层级理解:第1题,总结与思考1 掌握:第2,3,4,5题运用:第6,7,8,9题,总结与思考2作业评价学生自我评价教师评价评价等级 A □ B □ C □ A □ B □ C □评价已掌握题目:题号__________ 需加强题目:题号__________评语:诊断改进错题题号错题订正错因分析改进与提升第9题图第8题图初中数学第十一三角形单元作业设计单第5课时11.2与三角形有关的角作业目标1.掌握三角形外角的概念和性质,初步学会几何简单推理.2.经历探索三角形外角性质的训练,体会三角形的外角性质与其他知识点的综合运用.3.通过完成作业培养学生分析、解决问题的能力提高空间想象能力.课程目标1.掌握三角形的一个外角等于与它不相邻的两个内角和.2.通过探索三角形的外角的性质的活动,培养论证能力,拓宽解题思路,灵活应用所学知识.3.能综合运用三角形的外角的相关知识解决实际问题.课时题号作业类型作业目标能力层级难易程度核心素养5 1 填空题 1 掌握易应用意识2 填空题 1 理解易应用意识、推理能力3 选择题1,2 运用中应用意识、运算能力4 选择题1,2 运用中几何直观、运算能力5 填空题1,2 运用中推理能力、模型观念6 解答题1,2 掌握中应用意识、推理能力7 填空题2,3 运用中空间观念、几何直观、推理能力8 解答题2,3 运用中创新意识、推理能力9 证明题2,3 运用中推理能力10 解答题1,2,3 运用难推理能力、模型观念11.2.2三角形的外角预设难易程度及时间实测难易程度及时间作业题目★1分钟★1分钟☆☆☆分钟☆☆☆分钟1.已知,在△ABC中.(1)∠A=50 °,∠B=40 °,那么∠ACD=______ °(2)∠ACD=135 °,∠A=48 °,那么∠B=_______ °(3)∠ACD=125 °,∠B=45 °,那么∠A=_______ °2.如图,△ABC中,D为AC上一点,P为BD上一点,连接PC,则∠1,∠2,∠A的大小关系为(用“﹤”符号表示).第1题图★★1分钟★★2分钟★★2分钟★★2分钟☆☆☆分钟☆☆☆分钟☆☆☆分钟☆☆☆分钟3.如图,在△ABC中,CD是∠ACB的平分线,∠A=70°,∠ACB=60°,则∠BDC的度数为().A.80°B.90°C.100°D.110°4.如图所示Rt△ABC中,∠ACB=90 °,∠A=50 °,将其折叠,使点A落在边CB上的A ’处,折痕为CD,则∠A 'DB等于().A.40°B.30°C.20°D.10°5.如图,在△ABC中,∠B=30°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=______.6.(教材)如图,AB∥CD,∠A=45°,∠C=∠E,求∠C的度数.第1题图第3题图第4题图第6题图第5题图★★2分钟★★2分钟★★★4分钟★★★4分钟☆☆☆分钟☆☆☆分钟☆☆☆分钟☆☆☆分钟7.(变式)已知12l l//,一个含45︒角的直角三角板按如图所示放置,230∠=︒,则1∠=_____.8.有一个零件的形状如图,按规定∠A=100°,∠B=20°,∠C=30°,现在量得∠CDB=152°,你认为这个零件合格吗?为什么?你有几种检验的方法?9.(教材)如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,判断∠BAC=∠B+2∠E.10.(变式)如图,在△ABC中,ABC∠=ACB∠,且两角的平分线相交于点P,MBC∠、NCB∠是△ABC外角,两角平分线交于点Q,求Q∠,A∠之间的数量关系;★★2分钟★★★2分钟合计25分钟☆☆☆分钟☆☆☆分钟合计分钟5.总结与思考1.总结:总结本节课的相关知识点2.思考:归纳三角形的外角的性质可以和哪些知识点一起综合运用?第7题图第9题图第10题图第8题图内容来源教材:第6,9题教辅:第1,2,3,4,5,7,8,10题原创:总结与思考1,2能力层级了解:第1题理解:第2题掌握:第3、4、5题,总结与思考1运用:第6题及变式第7,8题,第9题以及变式第10题,总结与思考2作业评价学生自我评价教师评价评价等级A□ B □C□ A □B□C□评价已掌握题目:题号需加强题目:题号评语:诊断改进错题题号错题订正错因分析改进与提升初中数学第十一三角形单元作业设计单第6课时11.3.1多边形及其内角和作业目标1.了解多边形的有关概念(边、内角、外角、对角线、正多边形).2.灵活运用多边形有关概念解决数学问题和简单的实际问题.3.通过作业达到巩固知识,培养能力的目的.课程目标1.了解多边形的有关概念(边、内角、外角、对角线、正多边形).2.通过对多边形有关概念的探究,体会从特殊到一般的认识问题的方法.课时题号作业类型作业目标能力层级难易程度核心素养6 1 填空题 1 掌握易数学抽象2 填空题 1 运用易逻辑推理3 填空题 2 掌握中推理能力、模型观念4 选择题 2 运用易抽象能力、应用意识5 选择题 2 运用易几何直观6 选择题 2 运用中抽象能力7 解答题1,2 掌握中推理能力、运算能力8 解答题1,2 运用中几何直观9 解答题2,3 运用中几何直观10 解答题1,2,3 运用难推理能力、抽象能力、模型观念11.3.1多边形预设难易程度及时间实测难易程度及时间作业题目★1分钟★1分钟★★2分钟☆☆☆分钟☆☆☆分钟☆☆☆分钟1.(1)多边形是指;(2)多边形的内角是指;(3)多边形的外角是指;(4)多边形的对角线是指 .2.从七边形的一个顶点出发,最多可以引________条对角线,这些对角线可以将这个多边形分成________个三角形.3.(1)从n边形(n>3)的一个顶点出发可以画条对角线;(2)过n边形的一个顶点画对角线能得到个三角形.★1分钟★1分钟★★1分钟☆☆☆分钟☆☆☆分钟☆☆☆分钟4.下列说法:①等腰三角形是正多边形;②等边三角形是正多边形;③长方形是正多边形;④正方形是正多边形.其中正确的个数为().A.1个B.2个C.3个D.4个5.如图,下列图形不是凸多边形的是().6.下列说法不正确的是()A.各边都相等的多边形是正多边形B.正多边形的各边都相等C.正三角形就是等边三角形D.各内角相等的多边形不一定是正多边形★★2分钟★★2分钟☆☆☆分钟☆☆☆分钟7.如图,要把边长为12的正三角形纸板剪去三个小正三角形,得到正六边形,则剪去的小正三角形的边长是多少?8.(教材)画出下列图形的所有对角线.第7题图★★ 3分钟☆☆☆ 分钟9.如图,请回答问题:(1)该多边形如何表示?指出它的内角;(2)作出这个多边形所有过顶点A 的对角线;(3)在这个多边形的一个顶点处作出它的一个外角.★★★ 5分钟 ☆☆☆ 分钟 10.观察下列图形,并阅读图形下面的相关文字,解答下列问题:(1)九边形有多少条对角线?(2)请你试着总结一下n 边形共有多少条对角线.★★ 2分钟 ★★★ 2分钟 合计 23分钟 ☆☆☆ 分钟 ☆☆☆ 分钟合计 分钟5.总结与思考 :1.总结:总结本节课的相关知识点.2.思考: 初步感知多边形对角线条数与边的关系,由此还能得出哪些结论?内容来源教材:第8题教辅:第1,4,5,6,7,9题 改编:第2,3,10题 原创:总结与思考1,2能力层级掌握:第1,2,4,5,6,8题及总结与思考1 运用:第3,7,9,10题及总结与思考2作业评价学生自我评价 教师评价三角形的 四边形的 五边形的 六边形的 对角线有0条 对角线有2条 对角线有5条 对角线有9条第9题图第7课时11.3多边形及其内角和作业目标1.掌握多边形内角和与外角和公式.2.能够熟练运用多边形内角和与外角和公式解决实际问题.3.通过作业的完成,发展学生的合情推理能力和语言表达能力,掌握复杂问题化为简单问题、化未知为已知的思想方法.课程目标1.探索并掌握多边形的内角和与外角和公式.2.能够熟练运用多边形内角和与外角和公式解决实际问题.3. 通过动手实践,相互交流,进一步激发学习热情和求知欲望.课时题号作业类型作业目标能力层级难易程度核心素养71选择题1,2 运用易应用意识、运算能力变式1解答题1,2 运用易应用意识2填空1,2 掌握易数学抽象变式2选择题1,2 掌握易应用意识3选择题1,2 理解中应用意识、推理能力4选择题1,2 运用中推理能力、几何直观、运算能力5选择题1,2,3 运用中应用意识、运算能力6解答题1,2,3 运用难应用意识、运算能力7解答题1,2,3 运用难推理能力、几何直观、运算能力11.3.2多边形的内角和预设难易程度及时间实测难易程度及时间作业题目评价等级A□B□ C □A□B□ C □评价已掌握题目:题号需加强题目:题号评语:诊断改进错题题号错题订正错因分析改进与提升★1分钟★2分钟☆☆☆分钟☆☆☆分钟1.七边形内角和的度数是()A.1080°B.1260°C.1620°D.900°变式1:一个多边形的内角和等于900°,求它的边数.★1分钟★2分钟☆☆☆分钟☆☆☆分钟2. 七边形的外角和是;十二边形的外角和是;三角形的外角和是 .变式2:一个多边形的每个外角都等于72°,则这个多边形的边数为()A.5B.6C.7D.8★★3分钟★★3分钟☆☆☆分钟☆☆☆分钟3.四边形中,如果有一组对角都是直角,那么另一组对角可能( ).A.都是钝角B.都是锐角C.是一个锐角、一个钝角D.是一个锐角、一个直角4.如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为().A.120°B.180°C.240°D.300°★★5分钟★★★5分钟☆☆☆分钟☆☆☆分钟5.如图,小明从A点出发前进10m,向右转15°,再前进10m,又向右转15°,这样一直走下去,他第一次回到出发点A时,一共走了().A.240mB.230mC.220mD.200m6.在各个内角都相等的多边形中,一个外角等于一个内角的31,求这个多边形的每一个内角的度数和它的边数.第5题图第4题图★★★7分钟☆☆☆分钟7.小红把一副直角三角板按如图所示的方式摆放在一起,其中∠B=90°,∠D=90°,∠E=45°,∠A=30°,求∠1+∠2的度数.★★2分钟合计31分钟☆☆☆分钟合计☆☆☆分钟8.总结与思考:(1)归纳多边形内角和与外角和公式.(2)任何一个外角同与它相邻的内角有什么关系?内容来源教辅:第1题,变式2,第3题,第4题,第5题,第6题,第7题改编:变式1,第2题原创:总结与思考能力层级理解:第3题.掌握:第2题及变式运用:第1题及变式1,4,5,6,7题作业评价学生自我评价教师评价评价等级 A □B□C□A□B□C□评价已掌握题目:题号需加强题目:题号评语:诊断改进错题题号错题订正错因分析改进与提升第7题图初中数学第十一章三角形单元作业设计单作业目标1.让学生灵活运用所学知识解决问题,加强对知识的掌握、理解和应用.2.题目设计了不同层次的练习题,适合思维能力层次不同的学生,实施因材施教.3.培养学生的数形结合能力和数学应用意识,培养学生合作交流的意识与探究精神,激发学生学习数学的热情.课程目标1.理解三角形的有关线段和角,三角形三边之间的关系,三角形内角和定理,三角形的外角的性质,多边形内角、外角和公式.把握本章知识之间的联系,将知识和方法的系统化.2.在观察、操作、推理、归纳等探索过程中,体会由特殊到一般的思想方法应用,逐步养成数学推理的习惯,发展学生的合情逻辑推理能力,提高数学运算能力.3.会应用数学知识解决一些简单的实际问题,增强应用意识,使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.课时题号作业类型作业目标能力层级难易程度核心素养8 1 选择 1 掌握易应用意识2 选择 1 掌握易应用意识3 填空 1 掌握易空间观念4 填空1,3 运用中空间观念、运算能力5 解答1,2 运用中应用意识、运算能力6 证明1,2 运用中推理能力、运算能力7 解答1,2 运用中应用意识、运算能力8 解答1,2 运用中应用意识、运算能力9 证明1,2 了解难应用意识、推理能力10 解答2,3 理解难推理能力、运算能力预设难易程度及时间实测难易程度及时间作业题目★1分钟★1分钟★1分钟★★☆☆☆分钟☆☆☆分钟☆☆☆分钟☆☆☆1.下列各组线段,能组成三角形的是()A. 3cm,4cm,8cmB. 3cm,4cm,9cmC. 5cm,6cm,10cmD. 5cm,6cm,11cm2.一个多边形的内角和是外角和的2倍,它是几边形()A.五边形B.六边形C.七边形D.八边形3.在△ABC中,2∠A=∠B+∠C,则∠A=.4.已知等腰三角形两边长是5cm和11cm,则它的周长是.2分钟分钟变式:已知等腰三角形的周长为16,其一边长为6,求另外两边长.★★3分钟★★3分钟☆☆☆分钟☆☆☆分钟5.如图,AB∥CD,∠A=38°,∠C=80°,求∠M.6.已知∠B=42°,∠A+10°=∠1,∠ACD=64°,求证AB∥CD.★★3分钟★★3分钟☆☆☆分钟☆☆☆分钟7.如图,△ABC中BD平分∠ABC,∠1=∠2,∠4=∠C,求∠1的度数.8.CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC=8cm,求边AC的长.★★★2分钟★★★6分钟☆☆☆分钟☆☆☆分钟9.如图,求证∠A+∠B+∠C=∠ADC.10.如图1,在△ABC中,∠ABC,∠ACB的平分线交于点O.若∠A=80°,求∠BOC.第5题图第8题图第9题图第6题图第7题图变式1:如图2,在△ABC中,∠ABC,∠ACB外角的平分线交于点O.若∠A=80°,求∠BOC.变式2:如图3,在△ABC中,∠ABC平分线与外角∠ACE的平分线交于点O.若∠A=80°,求∠BOC.★★★3分钟合计28分钟☆☆分钟合计☆☆☆分钟总结与思考1.画出三角形这一章的知识结构思维导图.2.归纳三角形还可以和哪些知识点一起综合运用?内容来源教材:第1题,2题,6题教辅:第3题,5题,7题,9题,10题改编:第4及变式,8题原创:总结与思考1,2能力层级了解:第9题理解:第10题及变式题掌握:第1题,2题运用:第3题,4题及变式,5题,6题,7题,8题作业评价学生自我评价教师评价评价等级 A □ B □ C □ A □ B □ C □评价已掌握题目:题号评语:第10题图2第10题图3需加强题目:题号诊断改进错题题号错题订正错因分析改进与提升。
人教版八年级数学上册同步练习题 第十一章三角形 11.1与三角形有关的线段一、选择题1.三角形一边上的中线把原三角形一定分成两个 ( )A .形状相同的三角形B .面积相等的三角形C .周长相等的三角形D .直角三角形2.有四根长度分别为3,4,5,x (x 为正整数)的木棒,从中任取三根,首尾顺次相接都能组成一个三角形则组成的三角形的周长( )A .最小值是11B .最小值是12C .最大值是14D .最大值是153.已知三角形的两边分别为1和4,第三边长为整数 ,则该三角形的周长为( )A .7B .8C .9D .104.已知AD 是△ABC 的边BC 上的中线,AB=12,AC=8,则边BC 及中线AD 的取值范围是()A .420210BC AD <<,<<B .420420BC AD <<,<<C .210210BC AD <<,<< D .210420BC AD <<,<<5.下列关于三角形的高线的说法正确的是( )A .直角三角形只有一条高线B .钝角三角形的高线都在三角形的外部C .只有一条高线在三角形内部的三角形一定是钝角三角形D .钝角三角形的三条高线所在的直线的交点一定在三角形的外部6.已知等腰三角形的两条边长为1( (A .B .C .D .7.在△ABC 中,AB=6,AC=8,则BC 边上中线AD 的取值范围为( )A .2<AD <14B .1<AD <7C .6<AD <8 D .12<AD <168.已知一个三角形的两边长分别为3和4(则第三边的长不可能...的是( (A .2B .3C .4D .19.不是利用三角形稳定性的是A .自行车的三角形车架B .三角形房架C .照相机的三角架D .矩形门框的斜拉条10.已知一个三角形的三条边长均为正整数.若其中仅有一条边长为5,它又不是最短边,则满足条件的三角形有( ) A .4B .6C .8D .10二、填空题11.若三角形的两边长分别为6和7(则第三边a 的取值范围是_____(12.AD 是△ABC 的边BC 上的中线,AB=6,AC=4,则边BC 的取值范围是________,中线AD 的取值范围是________. 13.一个三角形3条边长分别为xcm 、(x+1)cm 、(x+2)cm ,它的周长不超过39cm ,则x 的取值范围是_____. 14.三角形的两边长分别是2和3,若第三边的长是奇数,则第三边的长为_____;若第三边的长是偶数,则三角形的周长为______,15.三角形纸片上有100个点,连同三角形的顶点共103个点,其中任意三点都不共线,现以这些点为顶点作三角形,并把纸片剪成小三角形,则这样的三角形共有_______个,三、解答题16.不等边ABC ∆两条高的长度分别为4和12,若第三条高的长度也是整数,求第三条高的长.17.把一条长为18米的细绳围成一个三角形,其中两边长分别为x 米和4米.(1)求x 的取值范围;(2)若围成的三角形是等腰三角形,求x 的值.18.如图,在(ABC 中(AB >BC),AC =2BC ,BC 边上的中线AD 把(ABC 的周长分成60和40两部分,求AC 和AB 的长.19.已知a ,b ,c 分别为△ABC 的三条边,且满足23a b c +=-,26a b c -=-,a b >.(1)求c 的取值范围.(2)若ABC ∆的周长为12,求c 的值.20.已知AD 是△ABC 的高,(BAD=72°,(CAD=21°,求∠BAC 的度数.21.已知三角形三条边分别为a+4(a+5(a+6,求a 的取值范围.22.在△ABC 中,AB=AC ,AC 上的中线BD 把△ABC 的周长分别24和18两部分,求三角形三边的长.23.若△ABC 中两边长之比为2:3,三边都是整数且周长为18cm ,求各边的长【参考答案】1.B 2.D 3.C 4.A 5.D 6.B 7.B8.D 9.C 10.D11.1<a<1312.2<BC <10; 1<AD <513.1<x≤1214. 3 7或915.20116.第三条高的长为5.17.(1)5<x<9(2)x=7.18.AC=48;AB=28.19.(1)36c <<;(2)5c =.20.93°; 51°21.a((322.16,16,10和12,12,18.23.各边的长分别为4cm ,6cm ,8cm .。