人教版19.1平行四边形测验卷
- 格式:doc
- 大小:132.50 KB
- 文档页数:4
数学:第19章平行四边形综合检测题〔人教新课标八年级下〕一、选择题〔每题3分,共30分〕1. □ABCD 中,如果∠B=100°,那么∠A 、∠D 的值分别是 〔 〕 A .∠A=80°,∠D=100° B .∠A=100°,∠D=80° C .∠B=80°,∠D=80° D .∠A=100°,∠D=100°2. 假设□ABCD 的周长为28,△ABC 的周长为17cm ,那么AC 的长为 〔 〕 A .11cm B . 5.5cm C .4cm D .3cm3. 在给定的条件中,能作出平行四边形的是 〔 〕 A .以60cm 为对角线,20cm 、34cm 为两条邻边 B .以20cm 、36cm 为对角线,22cm 为一条边 C .以6cm 为一条对角线,3cm 、10cm 为两条邻边 D .以6cm 、10cm 为对角线,8cm 为一条边4. 〔08广东湛江市〕 如图2所示,等边三角形ABC 的边长为1,按图中所示的规律,用2008个这样的三角形镶嵌而成的四边形的周长是〔 〕A.2008B.2009C.2010 D.20115. 从等腰三角形底边上任一点分别作两腰的平行线,所成的平行四边形的周长等于这个等腰三角形的 〔 〕A .周长B .周长的一半C .腰长D .腰长的2倍6.如图1,在平行四边形ABCD 中,以下各式不一定正确的选项是 〔 〕A.︒=∠+∠18021B.︒=∠+∠18032C.︒=∠+∠18043D.︒=∠+∠18042图1 图27.如图2,在□ABCD 中,EF//AB ,GH//AD ,EF 与GH 交于点O ,那么该图中的平行四边形的个数共有 〔 〕A.7 个B.8个C.9个D.11个8.如图3,□ABCD 中,对角线AC ,BD 相交于点O ,将△AOD 平移至△BEC 的位置,那么图中与OA 相等的其它线段有 〔 〕A.1条B.2条C.3条D. 4条CAB4题┅图39.三角形三条中位线的长分别为3、4、5,那么此三角形的面积为〔〕A.12B.24C.36D.4810. 四边形ABCD,仅从以下条件中任取两个加以组合,使得ABCD是平行四边形,一共有多少种不同的组合?〔〕AB∥CD BC∥AD AB=CD BC=ADA.2组B.3组C.4组D.6组二、填空题〔每题4分,共40分〕11.在平行四边形ABCD中,假设∠A-∠B=70°,那么∠A=_______,∠B=_______,∠C=_______,∠D=_________.12.在□ABCD中,AC⊥BD,相交于O,AC=6,BD=8,那么AB=________,BC= _________.13.如图4,□ABCD中,AB=4,BC=6,BC边上的高AE=2,那么DC边上的高AF的长是________.图4 图514.如图5,△ABC中,D、E分别是AB、AC边的中点,且DE=6cm,那么BC=__________.15.用40cm长的长绳围成一个平行四边形,使长边与短边的比是3:2,那么长边是____cm,短边是_____cm.16.如图6,在ABCD中,AB=2cm,BC=3cm,∠B、∠C的平分线分别交AD于F、E,那么EF 的长为_____.图6 图7 图817.如图7,□ABCD中,DB=DC,∠C=70°,AE⊥BD于E,那么∠DAC=_____度.18.如图8,E、F是□ABCD对角线BD上的两点,请你添加一个适当的条件:,使四边形AECF是平行四边形.19. 如图9,四边形ABCD是平行四边形,对角线AC、BD相交于点O,边AB可以看成由_____________平移得来的,△ABC可以看成由__________绕点O旋转______________得来.20. 有公共顶点的两个全等三角形,其中一个三角形绕公共顶点旋转180°后与另一个重合,那么不共点的四个顶点的连线构成____________形.三、解答题图1D CBA图2F EDCBAODCBA图921. 如图10,在□ABCD 中,E 、F 分别是BC 、AD 上的点,且AE ∥CF ,AE 与CF 相等吗?说明理由.22.如图11所示,D 是等腰三角形ABC 底边BC 上的一点,点E ,F 分别在AC,AB 上,且DE ∥AB ,DF ∥AC 求证:DE+DF=AB23. 如图12,E F ,是平行四边形ABCD 的对角线AC 上的点,CE AF .请你猜测:BE 与DF 有怎样的位置..关系和数量..关系? 并对你的猜测加以证明:24. 李大伯家有一口如图13所示的四边形的池塘,在它的四个角上均有一棵大柳树,李大伯开挖池塘,使池塘面积扩大一倍,又想保持柳树不动,如果要求新池塘成平行四边形的形状.请问李大伯愿望能否实现?假设能,请画出你的设计;假设不能,请说明理由.答案1.A2.D3.B4.C5.D6.D7.C8.B9.B 10.C11.125°,55°,125°,55°; 12. 5, 5; 13. 3; 14. 12cm ; 15.12, 8; 16.1; 17.20; 18. BE=DF .〔或∠BAE=∠CDF 等〕. 19. 边DC,△CDA,180° 20. 平行四边图10 图11 A B C DE F 图12 AB CD图1321. AE=CF;证明∵四边形ABCD为平行四边形,∴AF∥CE,又∵AE∥CF∴四边形AECF为平行四边形,AE=CF;22.证明:∵DE∥AB,DF∥AC∴四边形AEDF是平行四边形,∴DF=AE,又∵DE∥AB,∴∠B=∠EDC,又∵AB=AC,∴∠B=∠C,∴∠C=∠EDC,∴DE=CE,∴DF+DE=AE+CE=AC=AB.23.如下图,连结BD,交AC于点O,连结DE,BF.四边形ABCD是平行四边形BO OD∴=,AO CO=又AF CE=AE CF∴=EO FO∴=∴四边形BEDF是平行四边形BE DF∴∥24.能实现.如图:□EFGH是要求的图形ACD EFO。
数学:19.1平行四边形同步测试题A(人教新课标八年级下)A 组:一、相信你的选择(每小题3分,共21分)1.如图1,在平行四边形ABCD 中,下列各式不一定正确的是 ( ).(A)︒=∠+∠18021 (B)︒=∠+∠18032(C)︒=∠+∠18043 (D)︒=∠+∠18042图1 图22.如图2,在□ABCD 中,EF//AB ,GH//AD ,EF 与GH 交于点O ,则该图中的平行四边形的个数共有 ( ).(A)7 个 (B)8个 (C)9个 (D)11个3.下列给出的条件中,能判定四边形ABCD 是平行四边形的是 ( ).(A)AB ∥CD ,AD=BC (B)AB=AD ,CB=CD(C)AB=CD ,AD=BC (D)∠B=∠C ,∠A=∠D5.如图3 ,在□ABCD 中, ∠B=110°,延长AD 至F,延长CD 至E,连接EF,则∠E+∠F 的值为( ).(A)110° (B)30° (C)50° (D)70°图3 图46.如图4,□ABCD 中,对角线AC ,BD 相交于点O ,将△AOD 平移至△BEC 的位置,则图中与OA 相等的其它线段有( ).(A)1条 (B)2条 (C) 3条 (D) 4条7.如图5,点D 、E 、F 分别是AB 、BC 、CA 边的中点,则图中的平行四边形一共有( ).(A)1个 (B)2个 (C)3个 (D)4个图58.(08泰州市)在平面上,四边形ABCD 的对角线AC 与BD 相交于O ,且满足AB=CD .有下列四个条件:(1)OB=OC ;(2)AD ∥BC ;(3)BO DO CO AO =;(4)∠OAD=∠OBC .若只增加其中的一个条件,就一定能使∠BAC=∠CDB 成立,这样的条件可以是A .(2)、(4)B .(2)C .(3)、(4)D .(4)二、试试你的身手(每小题4分,共24分)1.在平行四边形ABCD 中,若∠A-∠B=70°,则∠A=_______,∠B=_______,∠C=_______,∠D=_________.2.在□ABCD中,AC⊥BD,相交于O,AC=6,BD=8,则AB=________,BC= _________.3.如图6,已知□ABCD中,AB=4,BC=6,BC边上的高AE=2,则DC边上的高AF的长是________.图6 图74.如图7,△ABC中,D、E分别是AB、AC边的中点,且DE=6cm,则BC=__________.5.用40cm长的长绳围成一个平行四边形,使长边与短边的比是3:2,则长边是____cm,短边是_____cm.图9 图107.如图9,□ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAC=_____度.8.如图10,E、F是□ABCD对角线BD上的两点,请你添加一个适当的条件: ,使四边形AECF是平行四边形.三、、挑战你的技能(共52分)1.(12分) 如图11,在□ABCD中,已知对角线AC和BD相交于点O,△AOB的周长为25,AB=12,求对角线AC与BD的和.图112. (12分)如图12,在□ABCD中,已知点E和点F分别在AD和BC上,且AE=CF,连结CE和AF,试说明四边形AFCE是平行四边形.图12 3.(14分)如图13 ,□ABCD中,BD⊥AB,AB=12cm,AC=26cm,求AD、BD长.图134.(14分)如图14,E、F是四边形ABCD的对角线AC上的两点,AF=CE ,DF=BE ,DF ∥BE .求证:(1)⊿AFD ≌⊿CEB .(2)四边形ABCD 是平行四边形.图14(A)参考答案:一、1.D 2.C 3.C 4.C 5.D 6.B 7.C 8.D二、1.125°,55°,125°,55°; 2. 5, 5; 3. 3; 4. 12cm ; 5.12, 8; 6.1; 7.20; 8.BE=DF .(或∠BAE=∠CDF 等).三、1. 解:因为△AOB 的周长为25,所以OA+BO+AB=25,又AB=12,所以AO+OB=25-12=13,因为平行四边形的对角线互相平分,所以AC+BD=2OA+2OB=2(0A+OB)=2×13=262. 解:因为四边形ABCD 是平行四边形,所以AD//BC,因为点E 在AD 上,点F 在BC 上,所以AE//CF,又因为AE=CF,所以四边形AFCE 是平行四边形.3. 因为四边形ABCD 是平行四边形,所以AO=CO=21AC ,OB=OD . 因为BD ⊥AB ,所以在Rt △ABO 中,AB=12cm ,AO=13cm . 所以BO=522=-AB AO .所以BD=2B0=10cm .所以在Rt △ABD 中,AB=12cm ,BD=10cm .所以AD=61222=+BD AB (cm).4. (1)因为DF ∥BE , 所以∠AFD =∠CEB . 又因为AF=CE , DF=BE ,所以△AFD ≌⊿CEB .(2)由(1)△AFD ≌⊿CEB 知AD=BC ,∠DAF =∠BCE , 所以AD ∥BC ,所以四边形ABCD 是平行四边形.B 组一、相信你的选择(每小题6分,共24分)1.如图1,△ABC 中,∠ABC =∠BAC ,D 是AB 的中点,EC ∥AB , DE ∥BC ,AC 与DE交于点O .下列结论中,不一定成立的是 ( ).(A)AC=DE (B)AB=AC (C)AD=EC (D)OA=OE图1 图22.如图2,在□ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形( ).(A)AE=CF (B)DE= BF (C)∠ADE=∠CBF (D)∠AED=∠CFB3.已知点A(2,0)、点B(-12,0)、点C(0,1),以A、B、C三点为顶点画平行四边形.则第四个顶点不可能在( ).(A)第一象限(B)第二象限(C)第三象限(D)第四象限4.如图3,O为□ABCD对角线AC、BD的交点,EF过点O且与边AD、BC分别交于点E、F,若BF=DE,则图中全等的三角形最多有( ).(A)2对(B)3对(C)5对(D)6对图3二、试试你的身手(每小题6分,共24分)1.如图4,□ABCD的周长为16cm,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE 的周长为_______.图4 图52.已知如图5,在平行四边形ABCD中,AB=4cm,AD=7cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF= ___cm .3.如图6,EF是△ABC的中位线,BD平分∠ABC交EF于D,DE=2,则EB=_____.图6 图74. 如图7,□ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为_______.三、挑战你的技能(共52分)1.(15分)请写出使如图8所示的四边形ABCD为平行四边形的条件(例如,填:AB//CD且AD//BC,在不添加辅助线的情况下,写出除上述条件外的另外四组条件.图82.(17分)工人师傅现在需要把一块三角形的铁板(如图9),通过切割焊接成一个与其面积相等的平行四边形,你能帮助他设计一种可行的方案吗?请在图中画出焊接线,并说明你的理由.图9四、探索拓广(本题20分)如图10,□ABCD中,E、F分别是边AD、BC上的点,请你自行规定E、F在边AD、BC上的位置,然后补充题设、提出结论并证明(要求:至少编制两个正确的命题,且补充题设不能相同).图10(B)参考答案:一、1. B 2.B 3.C 4.D二、1.8cm; 2.3; 3.2; 4.7三、1. (1)∠DAB=∠DCB且∠ADC=∠ABC(或两组对角分别相等);(2)AB=CD且AD=BC(或两组对边分别相等);(3)OA=OC且OD=OB(或O是AC和BD的中点;或AC与BD互相平分;或对角线互相平分);(4)AD//BC且AD=BC(或AB//DC且AB=DC;或一组对边平行且相等).(5) AB//CD且∠DAB=∠DCB(或一组对边平行且一组对角相等)2. 设计的方案如图所示,可分别取AB、AC边的中点D、E,连接DE,过点C作CF∥AB,交DE的延长线于F,把△ABC切割后,补在△CFE的位置上,就可焊接成□BCFD.理由如下:因为E是AC的中点,所以AE=CE.因为CF∥AB,所以∠ADF=∠F.又因为∠AED=∠CEF,所以△ADE≌△CFE, 所以AD=CF.因为D是AB的中点, 所以AD=BD,故BD=CF,又因为CF∥AB,所以四边形BCFD是平行四边形.3. ①设AE=CF,如图(1),已知□ABCD,AE=CF(补充条件)求证:四边形EBFD是平行四边形(提出结论)证明:连结BE、FD,在□ABCD中,AD//BC,AD=BC,又AE=CF,所以ED//BF,ED=BF (1)所以四边形EBFD是平行四边形.②设AE=BF.如图(2),已知□ABFE是平行四边形,AE=BF(补充条件)求证:四边形ABFE是平行四边形.证明:连结EF.因为四边形ABCD是平行四边形, (2) 所以AD//BC,AE//BF,又AE=BF,所以四边形ABEF是平行四边形.。
人教版平行四边形整章测试题含答案(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--人教版平行四边形整章测试题含答案一、选择题1. 已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线α的取值范围为()α<16 <α<26 <α<20 D.以上答案都不正确<2. 已知ABCD是平行四边形,下列结论中,不一定正确的是()﹦CD ﹦BD C.当AC⊥BD时,它是菱形 D.当∠ABC﹦90°时,它是矩形3. 菱形的周长等于高的8倍,则此菱形较大内角是()°°°°4. 矩形一个内角的平分线把矩形的一边分成3㎝和5㎝,则矩形的周长为()㎝㎝或16㎝㎝ D.以上都不对5. 在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()(A)1:2:3:4 (B) 3:4:4:3 (C) 3:3:4:4 (D) 3:4:3:46. 小明用两根同样长的竹棒做对角线,制作四边形的风筝,则该风筝的形状一定是()(A)矩形(B)正方形(C)等腰梯形(D)无法确定7. 如图1,宽为50 cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为()(A) 400 cm2(B) 500 cm2(C) 600 cm2(D) 4000 cm28. 将一矩形纸片对折后再对折,如图(1)、(2),然后沿图(3)中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形一定是()(A)平行四边形(B)矩形(C)菱形(D)正方形9. 如图,某正方形园地是由边长为1的四个小正方形组成的,现在园地上建一个花园(即每个图中的阴影部分),使花坛面积是园地面积的一半,以下图中的设计不合要求的是()10. 如图,矩形ABCD 的边长AB =6,BC =8,将矩形沿EF 折叠,使C 点与A 点重合,则折痕EF 的长是 ( )(A )7.5 (B ) 6 (C ) 10 (D ) 5二、填空题11. 如图,把边长为AD=12cm ,AB=8cm 的矩形沿着AE 为折痕对折使点D 落在BC 上点F 处,则DE= cm 。
人教版平行四边形单元综合模拟测评检测试卷一、选择题1.如图,正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形连接AC 交EF 于G ,下列结论: ①BE =DF ,②∠DAF =15°,③AC ⊥EF ,④BE+DF =EF ,⑤EC =FG ;其中正确结论有( )个A .2B .3C .4D .52.如图,在正方形ABCD 中,点P 是AB 的中点,BE DP ⊥的延长线于点E ,连接AE ,过点A 作FA AE ⊥交DP 于点F ,连接BF 、FC.下列结论中:ABE ①≌ADF ;PF EP EB =+②;BCF ③是等边三角形;ADF DCF ④∠∠=;APFCDFSS.=⑤其中正确的是( )A .①②③B .①②④C .②④⑤D .①③⑤ 3.平行四边形的对角线分别为 x 、y ,一边长为 12,则 x 、y 的值可能是( ) A .8 与 14B .10 与 14C .18 与 20D .4 与 284.如图,点E 在正方形ABCD 外,连接AE BE DE ,,,过点A 作AE 的垂线交DE 于F ,若210AE AF BF ===,,则下列结论不正确的是( )A .AFD AEB ∆≅∆ B .点B 到直线AE 的距离为2C .EB ED ⊥D .16AFD AFB S S ∆∆+=+5.如图,在正方形ABCD 中,4AB =,E 是对角线AC 上的动点,以DE 为边作正方形DEFG ,H 是CD 的中点,连接GH ,则GH 的最小值为( )A .2B .51-C .2D .422- 6.平行四边形的一边长是12,那么这个平行四边形的两条对角线的长可以是( ) A .10和34B .18和20C .14和10D .10和127.将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,∠BAE =30°,AB =3 ,折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则BC 的长为( )A .3B .3C .2D .238.将矩形纸片 ABCD 按如图所示的方式折叠,得到菱形 AECF .若 AB =3,则 BC 的长为( )A .2B .2C .1.5D .39.如图,△ABC 中,AB =24,BC =26,CA =14.顺次连接△ABC 各边中点,得到△A 1B 1C 1;再顺次连接△A 1B 1C 1各边中点,得到△A 2B 2C 2…如此进行下去,得到n n n A B C ,则△A 8B 8C 8的周长为( )A .1B .12C .14D .1810.如图,矩形ABCD 的面积为20cm 2,对角线相交于点O .以AB 、AO 为邻边画平行四边形AOC 1B ,对角线相交于点O ;以AB 、AO 为邻边画平行四边形AO 1C 2B ,对角线相交于点O 2 :……以此类推,则平行四边形AO 4C 5B 的面积为( )A .58cm 2 B .54cm 2 C .516cm 2 D .5 32cm 2 二、填空题11.在平行四边形ABCD 中, BC 边上的高为4 ,AB =5 ,25AC = ,则平行四边形ABCD 的周长等于______________ .12.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.13.如图,正方形ABCD 的对角线相交于点O ,对角线长为1cm ,过点O 任作一条直线分别交AD ,BC 于E ,F ,则阴影部分的面积是_____.14.如图,ABC ∆是边长为1的等边三角形,取BC 边中点E ,作//ED AB ,//EF AC ,得到四边形EDAF ,它的周长记作1C ;取BE 中点1E ,作11//E D FB ,11//E F EF ,得到四边形111E D FF ,它的周长记作2C .照此规律作下去,则2020C =______.15.如图,四边形纸片ABCD 中,AB BC =, 90ABC ADC ∠=∠=︒.若该纸片的面积为10 cm 2,则对角线BD =______cm .16.菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B (23,0),∠DOB =60°,点P 是对角线OC 上一个动点,E (0,-1),则EP 十BP 的最小值为__________.17.如图,在平行四边形ABCD ,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论:①∠BCD =2∠DCF ;②EF =CF ;③S △CDF =S △CEF ;④∠DFE =3∠AEF ,-定成立的是_________.(把所有正确结论的序号都填在横线上)18.在锐角三角形ABC 中,AH 是边BC 的高,分别以AB ,AC 为边向外作正方形ABDE 和正方形ACFG ,连接CE ,BG 和EG ,EG 与HA 的延长线交于点M ,下列结论:①BG=CE ;②BG ⊥CE ;③AM 是△AEG 的中线;④∠EAM=∠ABC .其中正确的是_________.19.如图,在矩形ABCD 中,16AB =,18BC =,点E 在边AB 上,点F 是边BC 上不与点B 、C 重合的一个动点,把EBF △沿EF 折叠,点B 落在点B '处.若3AE =,当CDB '是以DB '为腰的等腰三角形时,线段DB '的长为__________.20.定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt △ABC 中,∠ACB =90°,若点D 是斜边AB 的中点,则CD =12AB ,运用:如图2,△ABC 中,∠BAC =90°,AB =2,AC =3,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED 连接BE ,CE ,DE ,则CE 的长为_____.三、解答题21.如图,在四边形ABCD 中,AB ∥DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形; (2)若5AE =,3OE =,求线段CE 的长.22.如图,在Rt ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点C 出发沿CA 方向以4cm/s 的速度向点A 匀速运动.同时点E 从点A 出发沿AB 方向以2cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是ts (0<t≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF . (1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值,如果不能,说明理由; (3)当t 为何值时,DEF 为直角三角形?请说明理由.23.在一次数学探究活动中,小明对对角线互相垂直的四边形进行了探究,得出了如下结论:如图1,四边形ABCD 的对角线AC 与BD 相交于点O ,AC BD ⊥,则2222AB CD AD BC +=+.(1)请帮助小明证明这一结论;(2)根据小明的探究,老师又给出了如下的问题:如图2,分别以Rt ACB 的直角边AC 和斜边AB 为边向外作正ACFG 和正方形ABDE ,连结CE 、BG 、GE .已知4AC =,5AB =,求GE 的长,请你帮助小明解决这一问题.24.(1)如图①,在正方形ABCD 中,AEF ∆的顶点E ,F 分别在BC ,CD 边上,高AG 与正方形的边长相等,求EAF ∠的度数;(2)如图②,在Rt ABD ∆中,90,BAD AD AB ︒∠==,点M ,N 是BD 边上的任意两点,且45MAN ︒∠=,将ABM ∆绕点A 逆时针旋转90度至ADH ∆位置,连接NH ,试判断MN ,ND ,DH 之间的数量关系,并说明理由;(3)在图①中,连接BD 分别交AE ,AF 于点M ,N ,若正方形ABCD 的边长为12,GF=6,BM= 32EG ,MN 的长.25.如图,在平面直角坐标系中,已知▱OABC 的顶点A (10,0)、C (2,4),点D 是OA 的中点,点P 在BC 上由点B 向点C 运动. (1)求点B 的坐标;(2)若点P 运动速度为每秒2个单位长度,点P 运动的时间为t 秒,当四边形PCDA 是平行四边形时,求t 的值;(3)当△ODP 是等腰三角形时,直接写出点P 的坐标.26.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明..)ABCD 中,AB BC ≠,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D . 结论1:'AB C ∆与ABCD 重叠部分的图形是等腰三角形; 结论2:'B DAC .试证明以上结论. (应用与探究)在ABCD 中,已知2BC =,45B ∠=,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D .若以A 、C 、D 、'B 为顶点的四边形是正方形,求AC 的长.(要求画出图形)27.如图,矩形ABCD 中,AB=4,AD=3,∠A 的角平分线交边CD 于点E .点P 从点A 出发沿射线AE 以每秒2个单位长度的速度运动,Q 为AP 的中点,过点Q 作QH ⊥AB 于点H ,在射线AE 的下方作平行四边形PQHM (点M 在点H 的右侧),设P 点运动时间为t 秒.(1)直接写出AQH 的面积(用含t 的代数式表示). (2)当点M 落在BC 边上时,求t 的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的t 的值;若不存在请说明理由(不能添加辅助线). 28.如图,在四边形OABC 是边长为4的正方形点P 为OA 边上任意一点(与点O A 、不重合),连接CP ,过点P 作PM CP ⊥,且PM CP =,过点M 作MN AO ∥,交BO 于点,N 联结BM CN 、,设OP x =.(1)当1x =时,点M 的坐标为( , )(2)设CNMB S y =四形边,求出y 与x 的函数关系式,写出函数的自变量的取值范围. (3)在x 轴正半轴上存在点Q ,使得QMN 是等腰三角形,请直接写出不少于4个符合条件的点Q 的坐标(用x 的式子表示)29.在四边形ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线EF ,GH 分别交边AB 、CD ,AD 、BC 于点E 、F 、G 、H .(1)观察发现:如图①,若四边形ABCD 是正方形,且EF ⊥GH ,易知S △BOE =S △AOG ,又因为S △AOB =14S 四边形ABCD ,所以S 四边形AEOG = S 正方形ABCD ; (2)类比探究:如图②,若四边形ABCD 是矩形,且S 四边形AEOG =14S 矩形ABCD ,若AB =a ,AD =b ,BE =m ,求AG 的长(用含a 、b 、m 的代数式表示);(3)拓展迁移:如图③,若四边形ABCD 是平行四边形,且S 四边形AEOG =14S ▱ABCD ,若AB =3,AD =5,BE =1,则AG = .30.已知,矩形ABCD 中,4,8AB cm BC cm ==,AC 的垂直平分EF 线分别交AD BC 、于点E F 、,垂足为O .(1)如图1,连接AF CE 、,求证:四边形AFCE 为菱形;(2)如图2,动点P Q 、分别从A C 、两点同时出发,沿AFB △和CDE △各边匀速运动一周,即点P 自A F B A →→→停止,点O 自C D E C →→→停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A C P Q 、、、四点为顶点的四边形是平行四边形时,则t =____________.②若点P Q 、的运动路程分别为a b 、 (单位:,0cm ab ≠),已知AC P Q 、、、四点为顶点的四边形是平行四边形,则a 与b 满足的数量关系式为____________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据已知条件易证△ABE ≌△ADF ,根据全等三角形的性质即可判定①②;由正方形的性质就可以得出EC=FC ,就可以得出AC 垂直平分EF ,即可判定③;设EC=FC=x ,由勾股定理和三角函数计算后即可判定④⑤. 【详解】∵四边形ABCD 是正方形,∴AB=BC=CD=AD ,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF 等边三角形, ∴AE=EF=AF ,∠EAF=60°. ∴∠BAE+∠DAF=30°. 在Rt △ABE 和Rt △ADF 中,AE AFAB AD ⎧⎨⎩== , Rt △ABE ≌Rt △ADF (HL ), ∴BE=DF (故①正确). ∠BAE=∠DAF , ∴∠DAF+∠DAF=30°, 即∠DAF=15°(故②正确), ∵BC=CD ,∴BC-BE=CD-DF ,即CE=CF , ∵AE=AF ,∴AC 垂直平分EF .(故③正确). 设EC=FC=x ,由勾股定理,得:,2EF CG FG x ===, ∴EC ≠FG (⑤错误) 在Rt △AEG 中,sin 60sin 602sin 602AG AE EF CG x ︒︒︒===⨯=,AC ∴=,AB ∴=,BE x ∴==,BE DF x ∴+=-≠,(故④错误),综上所述,正确的结论为①②③,共3个, 故选B . 【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,解答本题时运用勾股定理的性质解题的关键.2.B解析:B 【解析】 【分析】根据正方形的性质可得AB AD =,再根据同角的余角相等求出BAE DAF ∠∠=,再根据等角的余角相等求出ABE ADF ∠∠=,然后利用“角边角”证明ABE ≌ADF ;根据全等三角形对应边相等可得AE AF =,判断出AEF 是等腰直角三角形,过点A 作AM EF ⊥于M ,根据等腰直角三角形点的性质可得AM MF =,再根据点P 是AB 的中点得到AP BP =,然后利用“角角边”证明APM 和BPE 全等,根据全等三角形对应边相等可得BE AM =,EP MP =,然后求出PF EP EB =+;根据全等三角形对应边相等求出DF BE AM ==,再根据同角的余角相等求出DAM CDF ∠∠=,然后利用“边角边”证明ADM 和DCF 全等,根据全等三角形对应角相等可得ADF DCF ∠∠=,CFD DMA 90∠∠==;再求出CD CF ≠,判定BCF 不是等边三角形;求出CF FP >,AM DF =,然后求出APF CDF SS <.【详解】在正方形ABCD 中,AB AD =,DAF BAF 90∠∠+=, FA AE ⊥,BAE BAF 90∠∠∴+=,BAE DAF ∠∠∴=,BE DP ⊥,ABE BPE 90∠∠∴+=,又ADF APD 90∠∠+=,BPE APD(∠∠=对顶角相等),ABE ADF ∠∠∴=,在ABE 和ADF 中, BAE DAF AB ADABE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ABE ∴≌()ADF ASA ,故①正确;AE AF ∴=,BE DF =,AEF ∴是等腰直角三角形,过点A 作AM EF ⊥于M ,则AM MF =,点P 是AB 的中点,AP BP ∴=,在APM 和BPE 中,90BPE APD BEP AMP AP BP ∠=∠⎧⎪∠=∠=⎨⎪=⎩,APM ∴≌()BPE AAS ,BE AM ∴=,EP MP =,PF MF PM BE EP ∴=+=+,故②正确;BE DF =,FM AM BE ==,AM DF ∴=,又ADM DAM 90∠∠+=,ADM CDF 90∠∠+=,DAM CDF ∠∠∴=,在ADM 和DCF , AD DC DAM CDF AM DF =⎧⎪∠=∠⎨⎪=⎩,ADM ∴≌()DCF SAS ,CF DM ∴=,ADF DCF ∠∠=,CFD DMA 90∠∠==,故④正确; 在Rt CDF 中,CD CF >,BC CD =,CF BC ∴≠,BCF ∴不是等边三角形,故③错误;CF DM DF FM EM FM EF FP ==+=+=≠,又AM DF =,APF CDF S S ∴<,故⑤错误;综上所述,正确的有①②④,故选B .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,同角或等角度余角相等的性质,三角形的面积,综合性较强,难度较大,熟练掌握正方形的性质是解题的关键,作辅助线利用等腰直角三角形的性质并构造出全等三角形是本题的难点.3.C解析:C【分析】如下图,将平行四边形ABCD 向上平移,得到平行四边形ADEF ,使得BC 与AD 重合,在△BDF 中,利用三角形三边关系可得到x+y 与x -y 的取值范围,从而得到结论.【详解】如下图,将平行四边形ABCD 向上平移,得到平行四边形ADEF ,使得BC 与AD 重合,连接BD ,DF根据题意,设AB=12,BD=x ,DF=y则AF=AB=12,BF=24∴在△BDF 中,BD+FD >BF ,即:x+y >24在△BDF 中,BD -FD <BF ,即:x -y <24满足条件的只有C 选项故选:C【点睛】本题考查三角形三边关系,解题关键是将题干中已知线段和需要求解的线段转化到同一个三角形中去.4.B解析:B【分析】A 、首先利用已知条件根据边角边可以证明△APD ≌△AEB ;B 、利用全等三角形的性质和对顶角相等即可解答;C 、由(1)可得∠BEF =90°,故BE 不垂直于AE 过点B 作BP ⊥AE 延长线于P ,由①得∠AEB =135°所以∠PEB =45°,所以△EPB 是等腰Rt △,于是得到结论;D 、根据勾股定理和三角形的面积公式解答即可.【详解】解:在正方形ABCD 中,AB =AD ,∵AF ⊥AE ,∴∠BAE +∠BAF =90°,又∵∠DAF +∠BAF =∠BAD =90°,∴∠BAE =∠DAF ,在△AFD 和△AEB 中,AE AF BAE DAF AB AD =⎧⎪∠∠⎨⎪=⎩=∴△AFD ≌△AEB (SAS ),故A 正确;∵AE =AF ,AF ⊥AE ,∴△AEF 是等腰直角三角形,∴∠AEF =∠AFE =45°,∴∠AEB =∠AFD =180°−45°=135°,∴∠BEF =135°−45°=90°,∴EB ⊥ED ,故C 正确;∵AE =AF ,∴FE AE =2,在Rt △FBE 中,BE ==∴S △APD +S △APB =S △APE +S △BPE ,=11222⨯1=D 正确;过点B 作BP ⊥AE 交AE 的延长线于P ,∵∠BEP =180°−135°=45°,∴△BEP 是等腰直角三角形,∴BP =2=,即点B 到直线AE ,故B 错误,故选:B .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,勾股定理的应用,综合性较强,难度较大,熟记性质并仔细分析图形,理清图中三角形与角的关系是解题的关键.5.A解析:A【分析】取AD 中点O ,连接OE ,得到△ODE ≌△HDG ,得到OE=HG,当OE ⊥AC 时,OE 有最小值,此时△AOE 是等腰直角三角形,OE=AE ,再根据正方形及勾股定理求出OE ,即可得到GH 的长.【详解】取AD 中点O ,连接OE ,得到△ODE ≌△HDG ,得到OE=HG,当OE ⊥AC 时,OE 有最小值,此时△AOE 是等腰直角三角形,OE=AE ,∵AD=AB=4,∴AO=12AB=2 在Rt △AOE 中,由勾股定理可得OE2+AE2=AO2=4,即2OE2=4解得∴GH的最小值为2故选A.【点睛】本题考查了正方形的性质,根据题意确定E点的位置是解题关键.6.B解析:B【分析】作CE∥BD,交AB的延长线于点E,根据平行四边形的性质得到△ACE中,AE=2AB=24,再根据三角形的三边关系即可得到答案.【详解】解:如图,作CE∥BD,交AB的延长线于点E,∵AB=CD,DC∥AB∴四边形BECD是平行四边形,∴CE=BD,BE=CD=AB,∴在△ACE中,AE=2AB=24<AC+CE,∴四个选项中只有A,B符合条件,但是10,34,24不符合三边关系,故选:B.【点睛】此题考查平行四边形的性质,三角形的三边关系,利用平行线将对角线及边转化为三角形是解题的关键.7.B解析:B【解析】试题分析:由三角函数易得BE,AE长,根据翻折和对边平行可得△AEC1和△CEC1为等边三角形,那么就得到EC长,相加即可.解:连接CC1.在Rt △ABE 中,∠BAE =30°,AB 3∴BE =AB ×tan30°=1,AE =2,∠AEB 1=∠AEB =60°,∵四边形ABCD 是矩形∴AD ∥BC ,∴∠C 1AE =∠AEB =60°,∴△AEC 1为等边三角形,同理△CC 1E 也为等边三角形,∴EC =EC 1=AE =2,∴BC =BE +EC =3,故选B.8.D解析:D【分析】设BC x =,先根据矩形的性质可得90,B AD BC ∠=︒=,再根据折叠的性质可得,,90OA AD x OC BC x COE B ====∠=∠=︒,从而可得OA OC =,又根据菱形的性质可得AE CE =,然后根据三角形全等的判定定理与性质可得90AOE COE ∠=∠=︒,从而可得点,,A O C 共线,由此可得2AC x =,最后在Rt ABC 中,利用勾股定理即可得.【详解】设BC x =,四边形ABCD 是矩形,90,B AD BC x ∴∠=︒==,由折叠的性质得:,,90OA AD x OC BC x COE B ====∠=∠=︒,OA OC x ∴==,四边形AECF 是菱形,AE CE ∴=,在AOE △和COE 中,OA OC AE CE OE OE =⎧⎪=⎨⎪=⎩,()AOE COE SSS ∴≅,90AOE COE ∴∠=∠=︒,即180AOE COE ∠+∠=︒,∴点,,A O C 共线,2AC OA OC x ∴=+=,在Rt ABC 中,222AB BC AC +=,即2223(2)x x +=,解得x =x =即BC =故选:D . 【点睛】本题考查了矩形与菱形的性质、折叠的性质、三角形全等的判定定理与性质、勾股定理等知识点,利用三角形全等的判定定理与性质证出90AOE COE ∠=∠=︒,从而得出点,,A O C 共线是解题关键.9.C解析:C【分析】根据三角形中位线定理求出△A 1B 1C 1的周长,根据计算总结规律,根据规律解答.【详解】根据三角形中位线定理求出△A 1B 1C 1的周长,根据计算结果总结规律,根据规律解答. 解:∵A 1、C 1分别为AB 、AC 的中点,∴A 1C 1=BC =13,同理,A 1B 1=12AC =7,B 1C 1=12AB =12, ∴△A 1B 1C 1的周长=7+12+13=32, ∴△A 1B 1C 1的周长=△ABC 的周长×12, 则△A 2B 2C 2的周长=△A 1B 1C 1的周长×12=△ABC 的周长×(12)2, …… ∴△A 8B 8C 8的周长=△ABC 的周长×(12)8=64×1256=14, 故选:C .【点睛】本题考查三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.10.A解析:A【分析】设矩形ABCD 的面积为S=20cm 2,由O 为矩形ABCD 的对角线的交点,可得平行四边形AOC 1B 底边AB 上的高等于BC 的12,依此类推可得下一个图形的面积是上一个图形的面积的12,然后求解即可.【详解】设矩形ABCD 的面积为S=20cm 2,∵O 为矩形ABCD 的对角线的交点,∴平行四边形AOC 1B 底边AB 上的高等于BC 的12, ∴平行四边形AOC 1B 的面积=12S , ∵平行四边形AOC 1B 的对角线交于点O 1, ∴平行四边形AO 1C 2B 的边AB 上的高等于平行四边形AOC 1B 底边AB 上的高的12, ∴平行四边形AO 1C 2B 的面积=12×12S=22S , ……依此类推,平行四边形AO 4C 5B 的面积=52S =5202=58(cm 2), 故选:A .【点睛】本题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图形的面积是上一个图形的面积的12是解题的关键. 二、填空题11.12或20【分析】根据题意分别画出图形,BC 边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.【详解】解:情况一:当BC 边上的高在平行四边形的内部时,如图1所示:在平行四边形ABCD 中,BC 边上的高为4,AB=5,AC=5在Rt △ACE 中,由勾股定理可知:2222(25)42CE AC AE ,在Rt△ABE中,由勾股定理可知:2222=-=-=,BE AB AE543∴BC=BE+CE=3+2=5,此时平行四边形ABCD的周长等于2×(AB+BC)=2×(5+5)=20;情况二:当BC边上的高在平行四边形的外部时,如图2所示:在平行四边形ABCD中,BC边上的高为AE=4,AB=5,AC=25在Rt△ACE中,由勾股定理可知:2222CE AC AE,(25)42在Rt△ABE中,由勾股定理可知:2222BE AB AE543=-=-=,∴BC=BE-CE=3-2=1,∴平行四边形ABCD的周长为2×(AB+BC)=2×(5+1)=12,综上所述,平行四边形ABCD的周长等于12或20.故答案为:12或20.【点睛】此题主要考查了平行四边形的性质以及勾股定理等知识,分高在平行四边形内部还是外部讨论是解题关键.12.42【分析】首先由对边分别平行可判断四边形ABCD为平行四边形,连接AC和BD,过A点分别作DC 和BC的垂线,垂足分别为F和E,通过证明△ADF≌△ABC来证明四边形ABCD为菱形,从而得到AC与BD相互垂直平分,再利用勾股定理求得BD长度.【详解】解:连接AC和BD,其交点为O,过A点分别作DC和BC的垂线,垂足分别为F和E,∵AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴∠ADF=∠ABE,∵两纸条宽度相同,∴AF=AE,∵90ADF ABE AFD AEB AF AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ADF ≌△ABE ,∴AD=AB ,∴四边形ABCD 为菱形,∴AC 与BD 相互垂直平分,∴BD=22242AB AO -=故本题答案为:42【点睛】本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.13.218cm 【分析】根据正方形的性质可以证明△AEO ≌CFO ,就可以得出S △AEO =S △CFO ,就可以求出△AOD 面积等于正方形面积的14,根据正方形的面积就可以求出结论. 【详解】 解:如图:∵正方形ABCD 的对角线相交于点O ,∴△AEO 与△CFO 关于O 点成中心对称,∴△AEO ≌CFO ,∴S △AEO =S △CFO ,∴S △AOD =S △DEO +S △CFO ,∵对角线长为1cm ,∴S 正方形ABCD =1112⨯⨯=12cm 2, ∴S △AOD =18cm 2, ∴阴影部分的面积为18cm 2.故答案为:18cm 2. 【点睛】 本题考查了正方形的性质的运用,全等三角形的判定及性质的运用正方形的面积及三角形的面积公式的运用,在解答时证明△AEO ≌CFO 是关键.14.201812【分析】根据几何图形特征,先求出1C 、2C 、3C ,根据求出的结果,找出规律,从而得出2020C .【详解】∵点E 是BC 的中点,ED ∥AB ,EF ∥AC∴DE 、EF 是△ABC 的中位线∵等边△ABC 的边长为1∴AD=DE=EF=AF =12 则1C =1422⨯= 同理可求得:2C =1,3C =12 发现规律:规律为依次缩小为原来的12 ∴2020C =201812 故答案为:201812.【点睛】 本题考查找规律和中位线的性质,解题关键是求解出几组数据,根据求解的数据寻找规律.15.【分析】作BE ⊥AD 于E ,BF ⊥CD 于F ,则四边形BEDF 是矩形,证明△ABE ≌△CBF (AAS ),得出BE=BF ,△ABE 的面积=△CBF 的面积,则四边形BEDF 是正方形,四边形ABCD 的面积=正方形BEDF 的面积,求出,即可求得BD 的长.【详解】解:作BE ⊥AD 交DA 延长线于E ,BF ⊥CD 于F ,如图所示:则∠BEA=∠BFC=90°,∵∠ADC=90°,∴四边形BEDF 是矩形,∴∠EBF=90°,∵∠ABC=90°,∴∠EBF=∠ABC=90°,∴∠ABE=∠CBF ,在△ABE 和△CBF 中,BEA BFC ABE CBF AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBF (AAS ),∴BE=BF ,△ABE 的面积=△CBF 的面积,∴四边形BEDF 是正方形,四边形ABCD 的面积=正方形BEDF 的面积,∴BE=DE ,BE 2=10 cm 2,∴10(cm),∴25.故答案为:5【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、矩形的判定与性质等知识;熟练掌握正方形的判定与性质,证明三角形全等是解题的关键.1619【分析】先根据菱形的性质可得OC 垂直平分BD ,从而可得=DP BP ,再根据两点之间线段最短可得EP BP +的最小值为DE ,然后利用等边三角形的判定与性质求出点D 的坐标,最后利用两点之间的距离公式即可得.【详解】如图,连接BP 、DP 、EP 、DE 、BD ,过点D 作DA OB ⊥于点A , (23,0)B ,23OB ∴=四边形ABCD 是菱形,OC ∴垂直平分BD ,23OB OD ==, 点P 是对角线OC 上的点,DP BP ∴=,EP BP EP DP ∴+=+,由两点之间线段最短可知,EP DP +的最小值为DE ,即EP BP +的最小值为DE , ,60OB OD DOB =∠=︒,BOD ∴是等边三角形,DA OB ⊥,132OA OB ∴==,2222(23)(3)3AD OD OA =-=-=, (3,3)D ∴,又(0,1)E -,22(30)(31)19DE ∴=-++=,即EP BP +的最小值为19,故答案为:19.【点睛】本题考查了菱形的性质、等边三角形的判定与性质、两点之间的距离公式等知识点,根据两点之间线段最短得出EP BP +的最小值为DE 是解题关键.17.①②④【分析】①根据平行四边形的性质和等腰三角形的性质即可判断;②延长EF ,交CD 延长线于点M ,首先根据平行四边形的性质证明AEFDFM ≅△△,得出,FE MF AEFM =∠=∠,进而得出90ECD AEC ∠=∠=︒,从而利用直角三角形斜边中线的性质即可判断;③由FE MF =,得出EFC CFM SS =,从而可判断正误; ④设FEC x ∠= ,利用三角形内角和定理分别表示出∠DFE 和∠AEF ,从而判断正误.【详解】①∵点F 是AD 的中点,∴AF FD = .∵在平行四边形ABCD 中,AD =2AB ,//,AD BC AF FD CD ∴==,,DFC FCB DFC DCF ∴∠=∠∠=∠ ,FCB DCF ∴∠=∠,∴∠BCD =2∠DCF ,故①正确;②延长EF ,交CD 延长线于点M ,∵四边形ABCD 是平行四边形,//AB CD ∴,A MDF ∴∠=∠,∵点F 是AD 的中点,∴AF FD = .在AEF 和DFM 中,A FDM AF DFAFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩()AEF DFM ASA ∴≅△△,FE MF AEF M ∴=∠=∠.CE AB ⊥ ,90AEC ∴∠=︒,90ECD AEC ∴∠=∠=︒,12CF EM EF ∴==,故②正确; ③∵FE MF =,∴EFC CFM S S = .CFM CDF MDF S S S =+△△△CDF EFC S S ∴<△△,故③错误;④设FEC x ∠= ,则FCE x ∠=,90DCF DFC x ∴∠=∠=︒- ,1802EFC x ∴∠=︒-,9018022703EFD x x x ∴∠=︒-+︒-=︒- .90AEF x ∠=︒- ,3DFE AEF ∴∠=∠,故④正确;综上所述,正确的有①②④,故答案为:①②④.【点睛】本题主要考查平行四边形的性质,全等三角形的判定及性质,三角形内角和定理,掌握这些性质和定理是解题的关键.18.①②③④【分析】根据正方形的性质和SAS可证明△ABG≌△AEC,然后根据全等三角形的性质即可判断①;设BG、CE相交于点N,AC、BG相交于点K,如图1,根据全等三角形对应角相等可得∠ACE=∠AGB,然后根据三角形的内角和定理可得∠CNG=∠CAG=90°,于是可判断②;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,根据余角的性质即可判断④;利用AAS即可证明△ABH≌△EAP,可得EP=AH,同理可证GQ=AH,从而得到EP =GQ,再利用AAS可证明△EPM≌△GQM,可得EM=GM,从而可判断③,于是可得答案.【详解】解:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,∴∠BAE+∠BAC=∠CAG+∠BAC,即∠CAE=∠BAG,∴△ABG≌△AEC(SAS),∴BG=CE,故①正确;设BG、CE相交于点N,AC、BG相交于点K,如图1,∵△ABG≌△AEC,∴∠ACE=∠AGB,∵∠AKG=∠NKC,∴∠CNG=∠CAG=90°,∴BG⊥CE,故②正确;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,∵AH ⊥BC ,∴∠ABH +∠BAH =90°,∵∠BAE =90°,∴∠EAP +∠BAH =90°,∴∠ABH =∠EAP ,即∠EAM =∠ABC ,故④正确;∵∠AHB =∠P =90°,AB =AE ,∴△ABH ≌△EAP (AAS ),∴EP =AH ,同理可得GQ =AH ,∴EP =GQ ,∵在△EPM 和△GQM 中,90P MQG EMP GMQ EP GQ ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△EPM ≌△GQM (AAS ),∴EM =GM ,∴AM 是△AEG 的中线,故③正确.综上所述,①②③④结论都正确.故答案为:①②③④.【点睛】本题考查了正方形的性质、三角形的内角和定理以及全等三角形的判定和性质,作辅助线构造出全等三角形是难点,熟练掌握全等三角形的判定和性质是关键.19.16或10【分析】等腰三角形一般分情况讨论:(1)当DB'=DC=16;(2)当B'D=B'C 时,作辅助线,构建平行四边形AGHD 和直角三角形EGB',计算EG 和B'G 的长,根据勾股定理可得B'D 的长;【详解】∵四边形ABCD 是矩形,∴DC=AB=16,AD=BC=18.分两种情况讨论:(1)如图2,当DB'=DC=16时,即△CDB'是以DB'为腰的等腰三角形(2)如图3,当B'D=B'C时,过点B'作GH∥AD,分别交AB与CD于点G、H.∵四边形ABCD是矩形,∴AB∥CD,∠A=90°又GH∥AD,∴四边形AGHD是平行四边形,又∠A=90°,∴四边形AGHD是矩形,∴AG=DH,∠GHD=90°,即B'H⊥CD,又B'D=B'C,∴DH=HC=18CD=,AG=DH=8,3∵AE=3,∴BE=EB'=AB-AE=16-3=13,EG=AG-AE=8-3=5,在Rt△EGB'中,由勾股定理得:GB′2213512,∴B'H=GH×GB'=18-12=6,在Rt△B'HD中,由勾股定理得:B′D22+=6810综上,DB'的长为16或10.故答案为: 16或10【点睛】本题是四边形的综合题,考查了矩形的性质,勾股定理,等腰三角形一般需要分类讨论.51320【分析】 根据12•BC •AH =12•AB •AC ,可得AH =61313,根据 12AD •BO =12BD •AH ,得OB =61313,再根据BE =2OB =121313,运用勾股定理可得EC . 【详解】设BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∠BAC =90°,AB =2,AC =3,由勾股定理得:BC =13,∵点D 是BC 的中点,∴AD =DC =DB =13, ∵12•BC •AH =12•AB •AC , ∴AH =61313, ∵AE =AB ,DE =DB ,∴点A 在BE 的垂直平分线上,点D 在BE 的垂直平分线上,∴AD 垂直平分线段BE ,∵12AD •BO =12BD •AH , ∴OB =61313, ∴BE =2OB =121313, ∵DE =DB=CD , ∴∠DBE=∠DEB ,∠DEC=∠DCE ,∴∠DEB+∠DEC=12×180°=90°,即:∠BEC=90°, ∴在Rt △BCE 中,EC =22BC BE - =221213(13)()13-=513. 故答案为:513. 【点睛】本题主要考查直角三角形的性质,勾股定理以及翻折的性质,掌握“直角三角形斜边长的中线等于斜边的一半”以及面积法求三角形的高,是解题的关键.三、解答题21.(1)见解析;(2)11【分析】(1)根据题意先证明四边形ABCD 是平行四边形,再由AB=AD 可得平行四边形ABCD 是菱形;(2)根据菱形的性质得出OA 的长,根据直角三角形斜边中线定理得出OE=12AC ,在Rt ACE ∆应用勾股定理即可解答.【详解】(1)证明:∵AB CD ∥,∴OAB DCA ∠=∠,∵AC 为DAB ∠的平分线,∴OAB DAC ∠=∠,∴DCA DAC ∠=∠,∴CD AD AB ==,∵AB CD ∥,∴四边形ABCD 是平行四边形,∵AD AB =,∴ABCD 是菱形;(2)∵四边形ABCD 是菱形∴AO CO =∵CE AB ⊥∴90AEC ∠=︒∴26AC OE ==在Rt ACE ∆中,2211CE AC AE -故答案为(211.【点睛】本题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,熟练掌握菱形的判定与性质是解题的关键.22.(1)证明见解析;(2)能,10;(3)152,理由见解析;【分析】(1)利用题中所给的关系式,列出CD,DF,AE的式子,即可证明.(2)由题意知,四边形AEFD是平行四边形,令AD=DF,求解即可得出t值.(3)由题意可知,当DE∥BC时,△DEF为直角三角形,利用AD+CD=AC的等量关系,代入式子求值即可.【详解】(1)由题意知:三角形CFD是直角三角形∵∠B=90°,∠A=60°∴∠C=30°,CD=2DF,又∵由题意知CD=4t,AE=2t,∴CD=2AE∴AE=DF.(2)能,理由如下;由(1)知AE=DF又∵DF⊥BC,∠B=90°∴AE∥DF∴四边形AEFD是平行四边形.当AD=DF时,平行四边形AEFD是菱形∵AC=60cm,DF=12CD,CD=4t,∴AD=60-4t,DF=2t,∴60-4t=2t∴t=10.(3)当t为152时,△DEF为直角三角形,理由如下;由题意知:四边形AEFD是平行四边形,DF⊥BC,AE∥DF,∴当DE∥BC时,DF⊥DE∴∠FDE=∠DEA=90°在△AED中,∵∠DEA=90°,∠A=60°,AE=2t∴AD=4t,又∵AC=60cm,CD=4t,∴AD+CD=AC,8t=60,∴t=152.即t=152时,∠FDE=∠DEA=90°,△DEF为直角三角形.【点睛】本题主要考查了三角形、平行四边形及菱形的性质,正确掌握三角形、平行四边形及菱形的性质是解题的关键.23.(1)证明见解析;(2)73.【分析】(1)由题意根据勾股定理分别表示出2222,AB CD AD BC ++进行分析求证即可;(2)根据题意连接CG 、BE ,证明△GAB ≌△CAE ,进而得BG ⊥CE ,再根据(1)的结论进行分析即可求出答案.【详解】解:(1)∵AC ⊥BD ,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,222222AD BC AO DO BO CO +=+++,222222AB CD AO BO CO DO +=+++,∴2222AD BC AB CD +=+; (2)连接CG 、BE ,如图2,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC ,即∠GAB=∠CAE ,在△GAB 和△CAE 中,AG AC GAB CAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴△GAB ≌△CAE (SAS ),∴∠ABG=∠AEC ,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE ⊥BG ,由(1)得,2222CG BE CB GE +=+,∵AC=4,AB=5,∴BC=3,2,2,∴222273GE CG BE CB =+-=,。
人教版八年级数学下册《18-1平行四边形》同步达标测试题(附答案)一.选择题(共8小题,满分40分)1.平行四边形不具有的性质是()A.两组对边分别相等B.两组对角分别相等C.对角线互相平分D.两条对角线相等2.在平行四边形ABCD中,∠A:∠B:∠C:∠D可以是()A.2:3:4:5B.3:2:3:2C.2:2:1:1D.2:3:3:2 3.在下列给出的条件中,能判定四边形ABCD为平行四边形的是()A.AB=BC,CD=DA B.AB∥CD,AD=BCC.AB∥CD,∠A=∠C D.∠A=∠B,∠C=∠D4.如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于E,交BA的延长线于F,则AF 的长等于()A.2B.3C.4D.65.如图,过平行四边形ABCD对角线交点O的线段EF,分别交AD,BC于点E,F,当AE=ED 时,△AOE的面积为4,则四边形EFCD的面积是()A.8B.12C.16D.326.如图,△ABC的周长为32,点D、E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为()A.3B.4C.5D.67.如图,平行四边形ABCD中,∠BDC=30°,DC=4,AE⊥BD于E,CF⊥BD于F,且E、F恰好是BD的三等分点,AE、CF的延长线分别交DC、AB于N、M点,那么四边形MENF的面积是()A.B.C.2D.28.如图,在平面直角坐标系中,A(1,0),B(﹣1,3),C(﹣2,﹣1),找一点D,使得以点A,B,C,D 为顶点的四边形是平行四边形,则点D的坐标不可能是()A.(2,4)B.(﹣4,2)C.(0,﹣4)D.(﹣3,2)二.填空题(共8小题,满分40分)9.一个三角形的三条中位线的长分别为3,4,5,则三角形的面积为.10.如图,四边形ABCD中,∠A=90°,AB=2,AD=2,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.11.如图,△ABC中,AB=10,AC=7,AD平分∠BAC,AE是BC边上的中线,过点C作CG⊥AD 于F,交AB于G,连接EF,则线段EF的长为.12.如图,E是直线CD上的一点.已知平行四边形ABCD的面积为50cm2,在△ABE的面积为cm2.13.如图,在平行四边形ABCD中,BE⊥AC,AC=24,BE=5,AD=8,则两平行线AD与BC间的距离是.14.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD =24厘米,△OAB的周长是18厘米,则EF=厘米.15.如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E,若平行四边形ABCD的周长为20,则△CDE的周长为.16.如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s 的速度运动,点F从点B出发沿射线BC以2cm/s的速度运动.如果点E、F同时出发,设运动时间为t(s)当t=s时,以A、C、E、F为顶点四边形是平行四边形.三.解答题(共6小题,满分40分)17.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E.(1)求证:AF=DE;(2)若EF=1,▱ABCD的周长为46,求BC的长.18.如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F(1)求证:AE=CF;(2)求证:四边形AECF是平行四边形.19.如图,四边形ABCD的对角线AC、BD相交于点O,AO=CO,EF过点O且与AD、BC分别相交于点E、F,OE=OF(1)求证:四边形ABCD是平行四边形;(2)连接AF,若EF⊥AC,△ABF周长是15,求四边形ABCD的周长.20.如图,矩形ABCD,AB=5cm,BC=10cm,动点M从点D出发,按折线DCBAD方向以3cm/s 的速度运动,动点N从点D出发,按折线DABCD方向以2cm/s的速度运动.点E在线段BC上,且BE=1cm,若M、N两点同时从点D出发,第一次相遇时停止运动.(1)求经过几秒钟M、N两点停止运动?(2)求点A、E、M、N构成平行四边形时,M、N两点运动的时间;(3)设运动时间为t(s),用含字母t的代数式表示△EMN的面积S(cm2).21.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,AB=5,AD=3,E是AB上的一点,F是AD上的一点,连接EO和FO.(1)当点E为AB中点时,求EO的长度;(2)求线段AO的取值范围;(3)当EO⊥FO时,连接EF.求证:BE+DF>EF.22.在平行四边形ABCD中,E是BC上任意一点,延长AE交DC的延长线与点F.(1)在图 中当CE=CF时,求证:AF是∠BAD的平分线.(2)根据(1)的条件和结论,若∠ABC=90°,G是EF的中点(如图‚),请求出∠BDG 的度数.(3)如图 ,根据(1)的条件和结论,若∠BAD=60°,且FG∥CE,FG=CE,连接DB、DG,求出∠BDG的度数.参考答案一.选择题(共8小题,满分40分)1.解:平行四边形两组对边平行且相等、对角相等、邻角互补、对角线互相平分但不相等,所以A、B、C正确,不符合题意,D错误,符合题意,故选:D.2.解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴B正确,故选:B.3.解:如图所示,根据平行四边形的判定,A、B、D条件均不能判定为平行四边形, C选项中,由于AB∥CD,∠A=∠C,所以∠B=∠D,所以只有C能判定.故选:C.4.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=8,∴∠F=∠FCD,∵CE平分∠BCD,∴∠BCE=∠FCD,∴∠F=∠BCE,∴BF=BC=6,∴AF=BF﹣AB=8﹣6=2;故选:A.5.解:∵ABCD是平行四边形,∴AD∥BC,AD=BC,AO=CO,OB=OD∴∠DAC=∠ACB,∵∠AOE=∠COF∴△COF≌△AOE(ASA)∵S△AOE=4,AE=ED∴S△COF=S△DOE=S△AOE=4,∴S△AOD=8∵AO=CO∴S△COD=S△AOD=8∴S四边形EFCD=S△DOE+S△COD+S△COF=4+8+4=16;故选:C.6.解:∵BQ平分∠ABC,BQ⊥AE,∴∠ABQ=∠EBQ,∵∠ABQ+∠BAQ=90°,∠EBQ+∠BEQ=90°,∴∠BAQ=∠BEQ,∴AB=BE,同理:CA=CD,∴点Q是AE中点,点P是AD中点(三线合一),∴PQ是△ADE的中位线,∵BE+CD=AB+AC=32﹣BC=32﹣12=20,∴DE=BE+CD﹣BC=8,∴PQ=DE=4.故选:B.7.解:∵四边形ABCD是平行四边形,∴AB=DC=4,∵E、F恰好是BD的三等分点,∴DE=EF=BF,∵AE⊥BD于E,CF⊥BD于F,∴AN∥CM,∴AM=BM=AB=2,又∵∠ABD=30°,则在Rt△BFM中,MF=BM=1,BF=,同理:在Rt△DEN中,EN=1,∴EN=MF,∵AE⊥BD,CF⊥BD,∴MF∥EN,∴四边形MENF是平行四边形,∵E、F恰好是BD的三等分点,∴EF=BF=,∴四边形MENF的面积=1×=.故选:B.8.解:如图所示:观察图象可知,满足条件的点D有三个,坐标分别为(2,4)或(﹣4,2)或(0,﹣4),∴点D的坐标不可能是(﹣3,2),故选:D.二.填空题(共8小题,满分40分)9.解:设中位线DE=3,DF=4,EF=5.∵DE是△ABC的中位线,∴BC=2DE=2×3=6.同理:AC=2DF=8,AB=2EF=10.∵62+82=100=102,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,∴S△ABC=AC•BC=×6×8=24.故答案是:24.10.解:连接DN、DB,如图所示:在Rt△DAB中,∠A=90°,AB=2,AD=2,∴BD===4,∵点E,F分别为DM,MN的中点,∴EF是△DMN的中位线,∴EF=DN,由题意得,当点N与点B重合时DN最大,最大值为4,∴EF长度的最大值为2,故答案为:2.11.解:∵AD平分∠BAC,∴∠GAF=∠CAF,∵CG⊥AD,∴∠AFG=∠AFC,在△AGF和△ACF中,,∴△AGF≌△ACF(ASA),∴AG=AC=7,GF=CF,则BG=AB﹣AG=10﹣7=3.又∵BE=CE,∴EF是△BCG的中位线,∴EF=BG=1.5.故答案是:1.5.12.解:根据图形可得:△ABE的面积为平行四边形的面积的一半,又∵▱ABCD的面积为50cm2,∴△ABE的面积为25cm2.故答案为:25.13.解:∵四边形ABCD是平行四边形,∴AD=BC,DC=AB,在△ADC和△CBA中,∴△ADC≌△CBA(SSS),∵AC=24,BE=5,∴S△ACB=×24×5=60,∴S△ADC=60,∴S平行四边形ABCD=120,过B作BF⊥AD,∵AD=8,∴8BF=120,解得:BF=15.故答案为:15.14.解:∵▱ABCD的对角线AC,BD相交于点O,∴点O是AC、BD的中点,∵AC+BD=24厘米,∴OB+0A=12厘米,∵△OAB的周长是18厘米,∴AB=18﹣12=6厘米,∵▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,∴AB=2EF,∴EF=6÷2=3厘米,故答案为:3.15.解:∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵平行四边形ABCD的周长为20,∴BC+CD=10,∵OE⊥BD,∴BE=DE,∴△CDE的周长为:CD+CE+DE=CD+CE+BE=CD+BC=10.故答案为:10.16.解:①当点F在C的左侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BC﹣BF=6﹣2t(cm),∵AG∥BC,∴当AE=CF时,四边形AECF是平行四边形,即t=6﹣2t,解得:t=2;②当点F在C的右侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BF﹣BC=2t﹣6(cm),∵AG∥BC,∴当AE=CF时,四边形AEFC是平行四边形,即t=2t﹣6,解得:t=6;综上可得:当t=2或6s时,以A、C、E、F为顶点四边形是平行四边形.故答案为:2或6.三.解答题(共6小题,满分40分)17.证明:(1)∵四边形ABCD的平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠AFB=∠CBF,∠DEC=∠BCE,∵BF平分∠ABC,CE平分∠BCD,∴∠ABF=∠FBC=∠AFB,∠DCE=∠BCE=∠DEC,∴AB=AF,DC=DE,∴AF=DE;(2)∵▱ABCD的周长为46,∴AD+AB=23,∵EF=1,∴2AB﹣AD=EF=1,∴AB=8,AD=15,∴BC=15.18.(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS),∴AE=CF;(2)证明:∵AE⊥BD,CF⊥BD,∴AE∥CF,∵AE=CF,∴四边形AECF是平行四边形.19.证明:(1)∵AO=CO,OE=OF,∠AOE=∠COF ∴△AOE≌△COF(SAS),∴∠OAE=∠OCF∴AD∥BC,∴∠EDO=∠FBO又∵OE=OF,∠EOD=∠FOB∴△EOD≌△FOB(AAS),∴OB=OD,且OA=OC∴四边形ABCD是平行四边形(2)∵EF⊥AC,AO=CO,∴AF=FC∴AB+BF+AF=AB+BF+FC=15即AB+BC=15∴▱ABCD的周长=2(AB+BC)=15×2=3020.解:(1)∵矩形ABCD中,AB=5cm,BC=10cm,∴M、N两点同时从点D出发,到第一次相遇时共运动了:2(5+10)=30(cm),∴t=30÷(2+3)=6 (s)答:经过6 s两点相遇.(2)由题意知,当点N在AD边上运动,点M在BC边上运动时,点A、E、M、N才可能组成平行四边形,设经过t秒,四点可组成平行四边形,①当构成▱AEMN时,10﹣2t=14﹣3t,解得t=4;②当构成▱AMEN时,10﹣2t=3t﹣14,解得t=4.8;答:当点A、E、M、N构成平行四边形时,M、N两点运动的时间为4s或4.8s.(3)如图(1),当0<t<时,S=S梯形CDNE﹣S△DMN﹣S△CEM=×(2t+9)×5﹣×2t ×3t﹣×9×(5﹣3t)=﹣3t2+t;如图(2),当≤t<时,S=S△EMN=EM•CD=×(14﹣3t)×5=35﹣t;如图(3),当<t≤5时,S=S△EMN=×(3t﹣14)×5=t﹣35;如图(4),当5<t<6时,S=S△EMN=MN•BE=×(30﹣2t﹣3t)×1=15﹣t.21.(1)解:∵四边形ABCD为平行四边形,∴BC=AD=3,OA=OC,∵点E为AB中点,∴OE为△ABC的中位线,∴OE=BC=;(2)解:在△ABC中,∵AB﹣BC<AC<AB+BC,而OA=OC,∴5﹣3<2AO<5+3,∴1<AO<4;(3)证明:延长FO交BC于G点,连接EG,如图,∵四边形ABCD为平行四边形,∴OB=OD,BC∥AD,∴∠OBG=∠ODF,在△OBG和△ODF中,∴△OBG≌△ODF,∴BG=DF,OG=OF,∵EO⊥OF,∴EG=EF,在△BEG中,BE+BG>EG,∴BE+FD>EF.22.(1)证明:如图1,∵CE=CF∴∠CEF=∠F,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC,∴∠F AD=∠FEC,∠BAF=∠F,∴∠BAF=∠F AD,∴AF是∠BAD的平分线;(2)解:如图2,连接CG,BG在平行四边形ABCD中,∠ABC=90°,∴AD=BC,∠BCD=90°,∴∠BCF=180°﹣90°=90°,又∵CE=CF,∴△CEF是等腰直角三角形,即:∠CEF=∠F=45°,由(1)可得:∠F AD=∠CEF=∠F=45°,∴AD=DF=BC,又∵G是EF的中点,∴CG=GF,∠ECG=∠F=45°,∠CGF=90°,在△BGC与△DGF中,,∴△BGC≌△DGF(SAS),∴BG=DG,∠BGC=∠DGF,∴∠BGD=∠CGF=90°∴△BGD是等腰直角三角形,即:∠BDG=45°;(3)解:如图3,延长AB,FG相较于H,连接EG,DH.∴GF∥CE,GF=CE∴四边形EGFC是平行四边形.∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形由(1)可得:AD=DF,CE=CF∴平行四边形EGFC是菱形.平行四边形AHFD是菱形.∵∠BAD=60°∴△AHD、△FHD是等边三角形,即∠ADH=∠FDH=60°,在△BHD与△GFD中,,∴△BHD≌△GFD(SAS),∠BDH=∠GDF,∴∠BDG=60°.。
数学:19.1平行四边形课时练(人教新课标八年级下)课时一平行四边形的性质(一) 一、选择题1.平行四边形的两邻角的角平分线相交所成的角为( ) A.锐角 B.直角 C.钝角 D.不能确定2.平行四边形的周长为24cm ,相邻两边的差为2cm ,则平行四边形的各边长为( ) A.4cm ,4cm ,8cm ,8cm B.5cm ,5cm ,7cm ,7cm C.5.5cm ,5.5cm ,6.5cm ,6.5cm D.3cm ,3cm ,9cm ,9cm3. 如图所示,四边形ABCD 是平行四边形,∠D =120°,∠CAD =32° .则∠ABC 、∠CAB 的度数分别为( )A.28°,120°B.120°,28°C.32°,120°D.120°,32° 4. 在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( )DA.1∶2∶3∶4B.1∶2∶2∶1C.1∶1∶2∶2D.2∶1∶2∶1 5下面的性质中,平行四边形不一定具有的是( )A.对角互补B.邻角互补C.对角相等D.对边相等.6.在□ABCD 中,∠A 的平分线交DC 于E ,若∠DEA=30°,则∠B =( ) A100° B.120° C.135° D.150° 二、填空题7. .如图所示,A ′B ′∥AB ,B ′C ′∥BC ,C ′A ′∥CA ,图中有 个平行四边形8. 已知:平行四边形一边AB =12 cm,它的长是周长的61,则BC =______ cm,CD =______ cm. 9.平行四边形的一组对角度数之和为200°,则平行四边形中较大的角为 . 10.. ABCD 中,若∠A ∶∠B =1∶3,那么∠A =________,∠B =________, ∠C =________,∠D =________.11. 如图所示,,在ABCD 中,对角线AC 、BD 相交于点O ,图中全等三角形共有________对12.如图所示,在ABCD 中,∠B =110°,延长AD 至F ,CD 至E ,连结EF ,则∠E+∠F= 三、解答题13. 在四边形ABCD 中,AB ∥CD ,∠A =∠C ,求证:四边形ABCD 是平行四边形. 14. 在□ABCD 中, ∠A+∠C=160°, , 求∠A,∠C,∠B,∠D 的度数第3题图 第7题图 第11题图 第12题图第14题图15. .如图所示,四边形ABCD 是平行四边形,BD ⊥AD ,求BC ,CD 及OB 的长.16. 如图,在□ABCD 中,E 、F 分别是BC 、AD 上的点,且AE ∥CF ,AE 与CF 相等吗?说明理由.课时一答案:一、1.B ,提示:平行四边形的两邻角的和为180°,所以它们的角平分线的夹角为90°;2.B ,提示:设相邻两边为,,ycm xcm 根据题意得⎩⎨⎧=-=+212y x y x ,解得⎩⎨⎧==57y x ;3. B ,提示:根据平行四边形的性质对角相等得∠D =∠ABC=120°,邻角互补得∠CAB +∠CAD+∠D =180°,则∠CAB =180°-32°-120°=28°;4. D ,提示:根据平行四边形的对角相等,得对角的比值相等故选D ;5.A ;6.B ,由题意得∠A =60°,根据平行四边形的邻角互补,得∠B =180°-60°=120°; 二、7.3个即四边形ABCB ′,C ′BCA ,ABA ′C 都是平行四边形;8.24 ,CD =12;9.100°,提示:先求出对角为100°,另一组对角为80°,所以较大的为100°;10.45°,135°,45°,135°11.4;15.70°,提示:根据平行四边形的对角互补得∠B=∠ADC=110°,则∠FDC=70°,再根据三角形的外角等于其不相邻的两个角的和,故为∠E+∠F=70°;三、13. 证明:∵AB ∥CD ,∴∠A+∠D=180°,又∵∠A =∠C,∴∠C+∠D=180°, ∴AD ∥CB, ∴四边形ABCD 是平行四边形.. 14.解:在□ABCD 中, ∠A =∠C,又∵∠A+∠C=160°∴∠A =∠C=80°∵在□ABCD 中AD ∥CB,∴∠A+∠B=180°, ∴∠B =∠D=180°-∠A=180°-80°=100° 15. 解:∵ABCD ,∴BC =AD =12,CD =AB =13,OB=21BD ∵BD ⊥AD ,∴BD =22AD AB -=221213-=5∴OB =25 16. AE =CF ;证明∵四边形ABCD 为平行四边形,∴AF ∥CE ,又∵AE ∥CF ∴四边形AECF 为平行四边形,AE=CF ;第15题图 第16题图课时二:平行四边形的性质(二)1. 如图所示,如果该平行四边形的一条边长是8,一条对角线长为6,那么它的另一条对角线长x 的取值范围是________.2.如图,□ABCD 中,EF 过对角线的交点O ,AB =4,AD =3,OF =1.3,则四边形BCEF 的周长为( )A.8.3B.9.6C.12.6D.13.63. 如图,在□ABCD 中,对角线AC ,BD 相交于点O ,MN 是过O 点的直线,交BC 于M ,交AD 于N ,BM =2,AN =2.8,求BC 和AD 的长.4.平行四边形的周长为25cm ,对边的距离分别为2cm 、3cm为( )A.15cm 2B.25cm 2C.30cm 2D.50cm 25. 如图所示,已知ABCD 的对角线交于O ,过O 作直线交AB 、CD 的反向延长线于E 、F ,求证:OE =OF .6. 如图所示,在□ABCD 中,O 是对角线AC 、BD 的交点,BE ⊥AC ,DF ⊥AC ,垂足分别为E 、F .那么OE 与OF 是否相等?为什么?7.已知O 为平行四边形ABCD 对角线的交点,△AOB 的面积为1,则平行四边形的面积为( )第1题图第2题图 第3题图 第5题图 第6题图A.1B.2C.3D.48.平行四边形的对角线分别为y x ,,一边长为12,则y x ,的值可能是下列各组数中的( ) A.8与14 B.10与14 C.18与20 D.10与28 9. □ABCD 中,若,6,10,30cm AB cm BC B ===∠ο则□ABCD 的面积是 .10. 如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,∠EAF =45°,且AE+AF =22,则平行四边形ABCD 的周长是 .11.如图所示,已知D 是等腰三角形ABC 底边BC 上的一点,点E ,F 分别在AC,AB 上,且DE ∥AB ,DF ∥AC 求证:DE+DF=AB12. 如图,□ABCD O 为D 的对角线AC 的中点,过点O 作一条直线分别与AB 、CD 交于点M 、N ,•点E 、F 在直线MN 上,且OE=OF .(1)图中共有几对全等三角形,请把它们都写出来; (2)求证:∠MAE=∠NCF .课时二答案:1. 10<x <22,提示:根据三角形的三边关系得11215<<x ,解得2210<<x ;2. B ;3. BC =AD =4.8;4.A ;提示:根据面积法求出邻边的比为3∶2,则邻边为7.5,5,则面积为7.5×2=15cm 2;5. 证明:∵ABCD ,∴OA =OC ,DF ∥EB ∴∠E =∠F ,又∵∠EOA =∠FOC ∴△OAE ≌△OCF ,∴OE =OF ;6. OE =OF , 在□ABCD 中,OB=OD ,∵BE ⊥AC ,DF ⊥AC ∴∠BEO =∠DFO ,又∠BOE =∠DOF ,∴△BOE ≌△DOF ,∴OE =OF .7.D ,提示:因为平行四边形的对角线把平行四边形分成面积相等的4个小三角形,所以平行四边形的面积为4;8.C ,提示:根据三角形的两边之和大于第三边,两边之差小于第三第10题图 第11题图边,若y x >,则⎪⎪⎩⎪⎪⎨⎧<->+12221222yx yx ,所以符合条件的y x ,可能是18与20;9.302cm ;10.8;11.证明:∵DE ∥AB ,DF ∥AC∴四边形AEDF 是平行四边形,∴DF=AE ,又∵DE ∥AB ,∴∠B=∠EDC ,又∵AB=AC,∴∠B=∠C ,∴∠C=∠EDC ,∴DE=CE ,∴DF+DE=AE+CE=AC=AB. 12. 解:(1)有4对全等三角形.分别为△AMO ≌△CNO ,△OCF ≌△OAE ,△AME ≌△CNF ,△ABC ≌△CDA . (2)证明:∵OA=OC ,∠1=∠2,OE=OF , ∴△OAE ≌△OCF ,∴∠EAO=∠FCO . 在YABCD 中,AB ∥CD ,∴∠BAO=∠DCO ,∴∠EAM=∠NCF . 课时三平行四边形的判定(一) 一、选择题1.下列条件中不能判定四边形ABCD 为平行四边形的是( ) A.AB=CD,AD=BC B.AB ∥CD ,AB=CD C.AB=CD ,AD ∥BC D. AB ∥CD ,AD ∥BC2.已知:四边形ABCD 中,AD ∥BC ,分别添加下列条件之一:①AB ∥CD ;② AB=CD, ③AD=BC ,④∠A=∠C ,⑤∠B=∠D ,能使四边形ABCD 成为平行四边形的条件的个数是( ) A.4 B.3 C.2 D.13.把两个全等的非等腰三角形拼成平行四边形,可拼成的不同平行四边形的个数为( ) A.1 B.2 C.3 D.44. 在四边形ABCD 中,AC 与BD 相交于点O ,如果只给出条件“AB ∥CD ”,那么还不能判定四边形ABCD 为平行四边形,给出以下六个说法中,正确的说法有( )(1)如果再加上条件“AD ∥BC ”,那么四边形ABCD 一定是平行四边形; (2)如果再加上条件“AB =CD ”,那么四边形ABCD 一定是平行四边形;(3)如果再加上条件“∠DAB =∠DCB ”那么四边形ABCD 一定是平行四边形; (4)如果再加上“BC =AD ”,那么四边形ABCD 一定是平行四边形; (5)如果再加上条件“AO =CO ”,那么四边形ABCD 一定是平行四边形; (6)如果再加上条件“∠DBA =∠CAB ”,那么四边形ABCD 一定是平行四边形. A.3个 B.4个 C.5个 D.6个 二、填空题5.已知:四边形ABCD 中,AD ∥BC ,要使四边形ABCD 为平行四边形, 需要增加条件 .(只需填上一个你认为正确的即可).6.如图所示,ABCD 中,BE ⊥CD,BF ⊥AD,垂足分别为E 、F ,∠EBF=60°AF=3cm ,CE=4.5cm ,则∠C= ,AB= cm ,BC= cm .7.如图所示,在ABCD 中,E,F 分别是对角线BD 上的两点, 且BE=DF ,要证明四边形AECF 是平行四边形,最简单的方法 是根据 来证明.第6题图第7题图8. 将两个全等的不等边三角形拼成平行四边形,可拼成的不同的平行四边形的个数为______. 三、解答题9.已知:如图所示,在ABCD 中,E 、F 分别为AB 、CD 的中点,求证四边形AECF 是平行四边形.10. 如图所示,BD 是ABCD 的对角线,AE ⊥BD 于E ,CF ⊥BD 于F ,求证:四边形AECF 为平行四边形.11. 如图所示,平行四边形ABCD 的对角线A C 、BD 相交于点O,E 、F 是直线AC 上的两点,并且AE=CF,求证:四边形BFDE 是平行四边形.12. 如图,E F ,是平行四边形ABCD 的对角线AC 上的点,CE AF .请你猜想:BE 与DF 有怎样的位置..关系和数量..关系? 并对你的猜想加以证明:课时三答案:一、1.C ;2.B ,提示:AD ∥BC ,添加条件①③④能使四边形ABCD 成为平行四边形;3.C ;4.B ;二、5. AD =BC (或AB ∥CD 或∠A=∠C 或∠B=∠D );6.30°,6,9;7.对角线互相平分;8. 3; 三、9.在ABCD 中,AD=CB,AB=CD,∠D =∠B ,∵E 、F 分别为AB 、CD 的中点,∴DF=BE , 又∵AB ∥CD ,AB=CD ,∴AE=CF ,∴四边形AECF 是平行四边形. 10. 证明:∵ABCD∴AB =CD ,AB ∥CD ∴∠1=∠2AE ⊥BD ,CF ⊥BD第9题图 第10题图 第11题图ABC DE F第12题图∴∠AEB =∠CFD =90°,AE ∥CF ∴△AEB ≌△CFD ,∴AE =CF ∴AECF 为平行四边形11. 证明:∵四边形ABCD 是平行四边形,∴OA=OC,OB=OD又∵AE=CF ,∴OE=OF ∴四边形BFDE 是平行四边形. 12. 猜想:BE DF ∥,BE DF = 证明:证法一:如图第12-1.Q 四边形ABCD 是平行四边形. BC AD ∴= 12∠=∠ 又CE AF =Q BCE DAF ∴△≌△ BE DF ∴= 34∠=∠BE DF ∴∥证法二:如图第12-2.连结BD ,交AC 于点O ,连结DE ,BF . Q 四边形ABCD 是平行四边形 BO OD ∴=,AO CO = 又AF CE =Q AE CF ∴= EO FO ∴=∴四边形BEDF 是平行四边形BE DF ∴∥ 课时四平行四边形的判定(二)1.如图所示,D 、E 、F 为△ABC 的三边中点, 则图中平行四边形有( ) A.1个 B2个 C 3个 D.4个2. D 、E 、F 为△ABC 的三边中点,L 、M 、N 分别是△DEF 三边的中点,若△ABC 的周长为20cm ,则△LMN 的周长是( ) A.15cm B.12cm C.10cm D.5cm3.已知等腰三角形的两条中位线长分别为3和5, 则此等腰三角形的周长为 .4.□ABCD 中,对角线AC 、BD 相交于点O ,E 、F 分别是OB 、OD 的中点,四边形AECF 是_______.5. 如图,DE ∥BC ,AE =EC ,延长DE 到F ,使EF =DE , 连结AF 、FC 、CD ,则图中四边形ADCF 是______.ABCDEF第12-2OAB CDE F 第12-1 2 3 4 1第1题图第5题图6. 如图,在□ABCD 中,点E 是AD 的中点,BE 的延长线与CD 的延长线相交于点F (1)求证:△ABE ≌△DFE ;(2)试连结BD 、AF ,判断四边形ABDF 的形状,并证明你的结论.7. 如图所示,某城市部分街道示意图,AF ∥BC ,EC ⊥BC ,BA ∥DE ,BD ∥AE ,EF=FC ,甲、乙两人同时从B 站乘车到F 站,甲乘1路车,路线是B →A →E →F ,乙乘2路,路线是B →D →C →F ,假设两车速度相同,途中耽误时间相同,那么谁先到达F 站,请说明理由.8. 如图所示,已知AD 与BC 相交于E ,∠1=∠2=∠3,BD=CD ,∠ADB=90°,CH ⊥AB 于H ,CH 交AD 于F . (1)求证:CD ∥AB ; (2)求证:△BDE ≌△ACE ; (3)若O 为AB 中点,求证:OF=12BE .9.. 已知如图:在ABCD 中,延长AB 到E ,延长CD 到F ,使BE =DF ,则线段AC 与EF 是否互相平分?说明理由.第6题图 第7题图 第8题图 第9题图10. 如图所示,□ABCD 的对角线AC 、BD 交于O ,EF 过点O 交AD 于E ,交BC 于F ,G 是OA 的中点,H 是OC 的中点,四边形EGFH 是平行四边形,说明理由.11.如图所示,平行四边形ABCD 中,M 、N 分别为AD 、BC 的中点,连结AN 、DN 、BM 、CM ,且AN 、BM 交于点P ,CM 、DN 交于点Q .四边形MGNP 是平行四边形吗?为什么?课时四答案:1.C;2.D ,提示:根据三角形中位线的性质定理:;21,21DEF LMN ABC DEF L L L L ∆∆∆∆==3.26或22,提示:当两腰上的中位线长为3时,则底边长为6,腰长为10,三角形的周长为26,当两腰上的中位线长为5时,则底边长为10,腰长为6,三角形的周长为22;4.平行四边形 ;5.平行四边形;6.证明:(1)∵ 四边形ABCD 是平行四边形,∴AB ∥CF . ∴∠1=∠2,∠3=∠4 ∵E 是AD 的中点,∴ AE=DE . ∴△ABE ≌△DFE .(2)四边形ABDF 是平行四边形.∵△ABE ≌△DFE ∴AB=DF 又AB ∥CF .∴四边形ABDF 是平行四边形. 7.解:∵BA ∥DE ,BD ∥AE ,∴四边形ABDE 是平行四边形 ∴AB=DE ,BD=AE ,又EF=FC 且AF ∥BC ,EC ⊥BC ,∴DE=DC , ∴EA+AE+EF=BD+DC+CF ,∴二人同时到达F 站.8.证明:(1)∵BD=CD ,∴∠BCD=∠1.∵ ∠l=∠2,∠BCD=∠2.∴CD ∥AB . (2) ∵ CD ∥AB ∴∠CDA=∠3.第10题图第10题图 第11题图∠BCD=∠2=∠3.且BE=AE.且∠CDA=∠BCD.∴DE=CE.在△BDE和△ACE中,DE=CE,∠DEB=∠CEA,BE=AE.∴△BDE≌△ACE (3) ∵△BDE≌△ACE∠4=∠1,∠ACE=∠BDE=90°.∴∠ACH=90°一∠BCH又CH⊥AB,.∴∠2=90°一∠BCH∴∠ACH=∠2=∠1=∠4.AF=CF∵∠AEC=90°一∠4,∠ECF=90°一∠ACH∠ACH=∠4 ∠AEC=∠ECF.CF=EF.∴EF=AFO为AB中点,OF为△ABE的中位线∴OF=12BE9.线段AC与EF互相平分.理由是:∵四边形ABCD是平行四边形.∴AB∥CD,即AE∥CF,AB=CD,∵BE=DF,∴AE=CF∴四边形AECF是平行四边形,∴AC与EF互相平分.10.是平行四边形,△AOE≌△COF.11是平行四边形,四边形AMCN、BMDN是平行四边形.。
《平行四边形》单元测试题时间:100分钟;满分:120分班级:___________姓名:___________学号:___________成绩:___________一.选择题(共10小题,满分30分,每小题3分)1.(3分)如图,在平行四边形ABCD中,∠B=64°,则∠D等于()A.26°B.64°C.32°D.116°2.(3分)如图,在平行四边形ABCD中,下列结论错误的是()A.∠BDC=∠ABD B.∠DAB=∠DCB C.AD=BC D.AC⊥BD3.(3分)菱形的两条对角线的分别为60cm和80cm,那么边长是()A.60cm B.50cm C.40cm D.80cm4.(3分)已知▱ABCD的周长为32cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大4cm,则AD的长是()A.4cm B.6cm C.8cm D.10cm5.(3分)下列语句正确的是()A.对角线互相垂直的四边形是菱形B.有两对邻角互补的四边形为平行四边形C.矩形的对角线相等D.平行四边形是轴对称图形6.(3分)如图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC7.(3分)如图,▱ABCD的对角线AC和BD相交于点O,E为CD边中点,BC=8cm,则OE的长为()A.3cm B.4cm C.5cm D.2cm8.(3分)如图,已知平行四边形ABCD的两条对角线交于平面直角坐标系的原点,点A的坐标为(﹣3,4),则点C的坐标为()A.(﹣3,﹣4)B.(﹣3,4)C.(﹣4,3)D.(3,﹣4)9.(3分)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O.AE垂直平分OB 于点E,则AD的长为()A.4B.3C.5D.510.(3分)如图,在△ABC中,BC=6,E,F分别是AB,AC的中点,动点P在射线EF 上,BP交CE于点D,∠CBP的平分线交CE于点Q,当CQ=CE时,EP+BP的值为()A.6B.9C.12D.18二.填空题(共6小题,满分24分,每小题4分)11.(4分)如图,在矩形ABCD中,已知AB=3,BC=4,则BD=.12.(4分)若边长为2cm的菱形的相邻两内角之比为2:1,则该菱形的面积为13.(4分)已知在平面直角坐标系中,有三点A(﹣2,2),B(1,﹣2),C(5,1).若以A,B,C为顶点的四边形是平行四边形,写出第四个顶点D的坐标.14.(4分)如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=cm.15.(4分)如图,在平面直角坐标系中,O为原点,四边形OABC是矩形,A(﹣10,0),C(0,3),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标是.16.(4分)如图,在正方形ABCD中,对角线AC、BD交于O,E点在BC上,EG⊥OB,EF⊥OC,垂足分别为点G、F,AC=10,则EG+EF=.三.解答题(共9小题,满分66分)17.(6分)如图,在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.求证:四边形AECF是平行四边形.18.(6分)已知:如图,在△ABC中,AB=AC,AD是△ABC的中线,AN为△ABC的外角∠CAM的平分线,CE∥AD,交AN于点E.求证:四边形ADCE是矩形.19.(6分)如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF ∥BC交BE的延长线于F,连接CF,求证:四边形ADCF是菱形.20.(7分)已知四边形ABCD和四边形CEFG都是正方形,且AB>CE,连接BG、DE.求证:(1)BG=DE;(2)BG⊥DE.21.(7分)如图,已知▱ABCD中,E,F分别在边BC,AD上,且BE=DF,AC,EF相交于O,连接AE,CF.(1)求证:AE=CF;(2)若∠FOC=2∠OCE,求证:四边形AECF是矩形.22.(7分)如图,在四边形ABCD中,点E,F是对角线BD上的两点,且BE=DF.(1)如果四边形AECF是平行四边形,求证:四边形ABCD也是平行四边形;(2)如果四边形AECF是菱形,求证:四边形ABCD也是菱形.23.(9分)如图,已知点E是▱ABCD中BC边的中点,连接AE并延长交DC的延长线于点F.(1)连接AC,BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形;(2)在(1)的条件下,若△AFD是等边三角形,且边长为4,求四边形ABFC的面积.24.(9分)如图,AM∥BN,C是BN上一点,BD平分∠ABN且过AC的中点O,交AM于点D,DE⊥BD,交BN于点E.(1)求证:△ADO≌△CBO.(2)求证:四边形ABCD是菱形.(3)若DE=AB=2,求菱形ABCD的面积.25.(9分)如图,等边△ABC的边长为8,动点M从点B出发,沿B→A→C→B的方向以3cm/s的速度运动,动点N从点C出发,沿C→A→B→C方向以2cm/s的速度运动.(1)若动点M、N同时出发,经过几秒钟两点第一次相遇?(2)若动点M、N同时出发,且其中一点到达终点时,另一点即停止运动.那么运动到第几秒钟时,点A、M、N以及△ABC的边上一点D恰能构成一个平行四边形?求出时间t并请指出此时点D的具体位置.《平行四边形》单元测试题解析卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)如图,在平行四边形ABCD中,∠B=64°,则∠D等于()A.26°B.64°C.32°D.116°【分析】平行四边形的对角相等,根据平行四边形的性质即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠B,∵∠B=64°,∴∠D=64°,故选:B.2.(3分)如图,在平行四边形ABCD中,下列结论错误的是()A.∠BDC=∠ABD B.∠DAB=∠DCB C.AD=BC D.AC⊥BD【分析】对角线互相垂直的平行四边形是菱形.故D错误.【解答】解:平行四边形的对角线互相垂直则是菱形;故AC⊥BD是错误的,故选:D.3.(3分)菱形的两条对角线的分别为60cm和80cm,那么边长是()A.60cm B.50cm C.40cm D.80cm【分析】由菱形的性质以及两条对角线长可求出其边长.【解答】解:∵菱形的两条对角线长分别为60cm和80cm,∴该菱形的边长为,故选:B.4.(3分)已知▱ABCD的周长为32cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大4cm,则AD的长是()A.4cm B.6cm C.8cm D.10cm【分析】▱ABCD的周长为32cm,则AB+BC=16;△BOC和△AOB共边OB,且OC=OA,则BC﹣AB=4;从而得到BC的长,且AD=BC;【解答】解:∵▱ABCD的周长为32cm,∴AB+BC=∵△BOC和△AOB共边OB,且平行四边形平分对角线;∴OB=OB,OA=OC;又∵若△BOC的周长比△AOB的周长大4cm,∴BC﹣AB=4联立∴BC=10,AB=6∴AD=BC=10故选:D.5.(3分)下列语句正确的是()A.对角线互相垂直的四边形是菱形B.有两对邻角互补的四边形为平行四边形C.矩形的对角线相等D.平行四边形是轴对称图形【分析】菱形的判定、平行四边形的判定、矩形的性质、平行四边形的性质即可判断;【解答】解:A、错误.对角线互相垂直的四边形不一定是菱形;B、错误.梯形有有两对邻角互补,不是平行四边形;C、正确;D、错误.平行四边形不一定是轴对称图形;故选:C.6.(3分)如图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC【分析】根据平行四边形判定定理进行判断.【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选:D.7.(3分)如图,▱ABCD的对角线AC和BD相交于点O,E为CD边中点,BC=8cm,则OE的长为()A.3cm B.4cm C.5cm D.2cm【分析】先证明OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.【解答】解:∵▱ABCD的对角线AC、BD相交于点O,∴OB=OD,∵点E是CD的中点,∴CE=DE,∴OE是△BCD的中位线,∵BC=8cm,∴OE=BC=4cm.故选:B.8.(3分)如图,已知平行四边形ABCD的两条对角线交于平面直角坐标系的原点,点A的坐标为(﹣3,4),则点C的坐标为()A.(﹣3,﹣4)B.(﹣3,4)C.(﹣4,3)D.(3,﹣4)【分析】根据平行四边形的对角线互相平分,再由对角线的交点为原点,则点A与点C 的坐标关于原点成中心对称,据此可解.【解答】解:∵四边形ABCD为平行四边形∴OA=OC,且点A与点C关于原点成中心对称∵点A的坐标为(﹣3,4),∴点C的坐标为(3,﹣4)故选:D.9.(3分)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O.AE垂直平分OB 于点E,则AD的长为()A.4B.3C.5D.5【分析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB =6,由勾股定理求出AD即可.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD===3;故选:B.10.(3分)如图,在△ABC中,BC=6,E,F分别是AB,AC的中点,动点P在射线EF 上,BP交CE于点D,∠CBP的平分线交CE于点Q,当CQ=CE时,EP+BP的值为()A.6B.9C.12D.18【分析】延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可.【解答】解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴=2,∴EM=2BC=2×6=12,即EP+BP=12.故选:C.二.填空题(共6小题,满分24分,每小题4分)11.(4分)如图,在矩形ABCD中,已知AB=3,BC=4,则BD=5.【分析】根据勾股定理可直接算出BD的长度【解答】解:由勾股定理可知,故答案为5.12.(4分)若边长为2cm的菱形的相邻两内角之比为2:1,则该菱形的面积为2【分析】相邻两内角之比为2:1,则分别为60°和120°,所以120°的对角线将菱形分成两个边长为2cm的等边三角形,从而得到菱形面积.【解答】解:∵菱形的相邻两内角之比为2:1,且这两角之和为180°∴这两角分别为60°和120°,∴120°的对角线将菱形分成两个边长为2cm的等边三角形,∴S=故答案为2.13.(4分)已知在平面直角坐标系中,有三点A(﹣2,2),B(1,﹣2),C(5,1).若以A,B,C为顶点的四边形是平行四边形,写出第四个顶点D的坐标(2,5)或(﹣6,﹣1)或(8,﹣3).【分析】根据平行四边形的判定:两组对边分别平行的四边形是平行四边形结合网格可找出D点位置.【解答】解:如图所示:D的坐标(2,5)或(﹣6,﹣1)或(8,﹣3).故答案为(2,5)或(﹣6,﹣1)或(8,﹣3).14.(4分)如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=3cm.【分析】首先根据在直角三角形中,斜边上的中线等于斜边的一半可得AB=2CD=6cm,再根据中位线的性质可得EF=AB=3cm.【解答】解:∵∠ACB=90°,D为AB中点,∴AB=2CD,∵CD=3cm,∴AB=6cm,∵E、F分别是BC、CA的中点,∴EF=AB=3cm,故答案为:3.15.(4分)如图,在平面直角坐标系中,O为原点,四边形OABC是矩形,A(﹣10,0),C(0,3),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标是(﹣4,3),或(﹣1,3),或(﹣9,3).【分析】先由矩形的性质求出OD=5,分情况讨论:(1)当OP=OD=5时;根据勾股定理求出PC,即可得出结果;(2)当PD=OD=5时;①作PE⊥OA于E,根据勾股定理求出DE,得出PC,即可得出结果;②作PF⊥OA于F,根据勾股定理求出DF,得出PC,即可得出结果.【解答】解:∵A(﹣10,0),C(0,3),∴OA=10,OC=3,∵四边形OABC是矩形,∴BC=OA=10,AB=OC=3,∵D是OA的中点,∴AD=OD=5,分情况讨论:(1)当OP=OD=5时,根据勾股定理得:PC==4,∴点P的坐标为:(﹣4,3);(2)当PD=OD=5时,分两种情况讨论:①如图1所示:作PE⊥OA于E,则∠PED=90°,DE==4,∴PC=OE=5﹣4=1,∴点P的坐标为:(﹣1,3);②如图2所示:作PF⊥OA于F,则DF==4,∴PC=OF=5+4=9,∴点P的坐标为:(﹣9,3);综上所述:点P的坐标为:(﹣4,3),或(﹣1,3),或(﹣9,3);故答案为:(﹣4,3),或(﹣1,3),或(﹣9,3).16.(4分)如图,在正方形ABCD中,对角线AC、BD交于O,E点在BC上,EG⊥OB,EF⊥OC,垂足分别为点G、F,AC=10,则EG+EF=5.【分析】由S△BOE+S△COE=S△BOC即可解决问题.【解答】解:∵四边形ABCD是正方形,AC=10,∴AC⊥BD,BO=OC=5,∵EG⊥OB,EF⊥OC,∴S△BOE+S△COE=S△BOC,∴•BO•EG+•OC•EF=•OB•OC,∴×5×EG+×5×EF=×5×5,∴EG+EF=5.故答案为5.三.解答题(共9小题,满分66分)17.(6分)如图,在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.求证:四边形AECF是平行四边形.【分析】只要证明AF=CE,AF∥CE即可;【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AF=CE,∴四边形AECF是平行四边形.18.(6分)已知:如图,在△ABC中,AB=AC,AD是△ABC的中线,AN为△ABC的外角∠CAM的平分线,CE∥AD,交AN于点E.求证:四边形ADCE是矩形.【分析】由在△ABC中,AB=AC,AD是BC边的中线,可得AD⊥BC,∠BAD=∠CAD,又由AN为△ABC的外角∠CAM的平分线,可得∠DAE=90°,又由CE⊥AN,即可证得:四边形ADCE为矩形.【解答】证明:∵在△ABC中,AB=AC,AD是BC边的中线,∴AD⊥BC,∠BAD=∠CAD,∴∠ADC=90°,∵AN为△ABC的外角∠CAM的平分线,∴∠MAN=∠CAN,∴∠DAE=90°,∵CE∥AD,∴∠AEC=90°,∴四边形ADCE为矩形.19.(6分)如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF ∥BC交BE的延长线于F,连接CF,求证:四边形ADCF是菱形.【分析】根据AAS证△AFE≌△DBE,推出AF=BD.结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF是菱形.【解答】证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形.20.(7分)已知四边形ABCD和四边形CEFG都是正方形,且AB>CE,连接BG、DE.求证:(1)BG=DE;(2)BG⊥DE.【分析】先证∠BCG=∠DCE,再证明△BCG≌△DCE,即可得出结论.【解答】证明:(1)∵四边形ABCD和CEFG为正方形,∴BC=DC,CG=CE,∠BCD=∠GCE=90°,∴∠BCD+∠DCG=∠GCE+∠DCG,即:∠BCG=∠DCE,在△BCG和△DCE中,,∴△BCG≌△DCE(SAS),∴BG=DE,(2)∵△BCG≌△DCE,∴∠GBC=∠EDC,∵∠GBC+∠BOC=90°,∠BOC=∠DOG,∴∠DOG+∠EDC=90°,∴BG⊥DE.21.(7分)如图,已知▱ABCD中,E,F分别在边BC,AD上,且BE=DF,AC,EF相交于O,连接AE,CF.(1)求证:AE=CF;(2)若∠FOC=2∠OCE,求证:四边形AECF是矩形.【分析】(1)只要证明四边形AECF是平行四边形即可解决问题;(2)只要证明AC=EF即可解决问题.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BD,∵BE=DF,∴AF=CE,AF∥EC,∴四边形AECF是平行四边形,∴AE=CF.(2)∵∠FOC=∠OEC+∠OCE=2∠OCE,∴∠OEC=∠OCE,∴OE=OC,∵四边形AECF是平行四边形,∴OA=OC,OE=OF,∴AC=EF,∴四边形AECF是矩形.22.(7分)如图,在四边形ABCD中,点E,F是对角线BD上的两点,且BE=DF.(1)如果四边形AECF是平行四边形,求证:四边形ABCD也是平行四边形;(2)如果四边形AECF是菱形,求证:四边形ABCD也是菱形.【分析】(1)只要证明OA=OC,OB=OD即可解决问题.(2)只要证明四边形ABCD是平行四边形,再证明AC⊥BD即可证明.【解答】证明:(1)连接AC交BD于O.∵四边形AECF是平行四边形,∴OA=OC,OE=OF,∵BE=DF,∴OB=OD,∵OA=OC,∴四边形ABCD是平行四边形.(2)连接AC交BD于O.∵四边形AECF是菱形,∴OA=OC,OE=OF,AC⊥EF,∵BE=DF,∴OB=OD,∵OA=OC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形.23.(9分)如图,已知点E是▱ABCD中BC边的中点,连接AE并延长交DC的延长线于点F.(1)连接AC,BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形;(2)在(1)的条件下,若△AFD是等边三角形,且边长为4,求四边形ABFC的面积.【分析】(1)由ABCD为平行四边形,根据平行四边形的对边平行得到AB与DC平行,根据两直线平行内错角相等得到一对角相等,由E为BC的中点,得到两条线段相等,再由对顶角相等,利用ASA可得出三角形ABE与三角形FCE全等;进而得出AB=FC,即可得出四边形ABFC是平行四边形,再由直角三角形的判定方法得出△BFC是直角三角形,即可得出平行四边形ABFC是矩形.(4)由等边三角形的性质得出∠AFC=60°,AF=DF=4,得出CF=CD=2,由矩形的性质得出∠ACF=90°,得出AC=CF=2,即可得出四边形ABFC的面积=AC •CF=4.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AB∥DC,∴∠ABE=∠ECF,又∵E为BC的中点∴BE=CE,在△ABE和△FCE中,,∴△ABE≌△FCE(ASA);∴AE=EF,AB=CF,∴四边形ABFC是平行四边形,∵∠AEC=2∠ABC=∠ABC+∠BAE,∴∠ABC=BAE,∴AE=BE∵AE=EF,BE=CE,∴AF=BC∴平行四边形ABFC是矩形.(2)解:∵△AFD是等边三角形,∴∠AFC=60°,AF=DF=4,∴CF=CD=2,∵四边形ABFC是矩形,∴∠ACF=90°,∴AC=CF=2,∴四边形ABFC的面积=AC•CF=4.24.(9分)如图,AM∥BN,C是BN上一点,BD平分∠ABN且过AC的中点O,交AM于点D,DE⊥BD,交BN于点E.(1)求证:△ADO≌△CBO.(2)求证:四边形ABCD是菱形.(3)若DE=AB=2,求菱形ABCD的面积.【分析】(1)由ASA即可得出结论;(2)先证明四边形ABCD是平行四边形,再证明AD=AB,即可得出结论;(3)由菱形的性质得出AC⊥BD,证明四边形ACED是平行四边形,得出AC=DE=2,AD=EC,由菱形的性质得出EC=CB=AB=2,得出EB=4,由勾股定理得BD═,即可得出答案.【解答】解:(1)证明:∵点O是AC的中点,∴AO=CO,∵AM∥BN,∴∠DAC=∠ACB,在△AOD和△COB中,,∴△ADO≌△CBO(ASA);(2)证明:由(1)得△ADO≌△CBO,∴AD=CB,又∵AM∥BN,∴四边形ABCD是平行四边形,∵AM∥BN,∴∠ADB=∠CBD,∵BD平分∠ABN,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AD=AB,∴平行四边形ABCD是菱形;(3)解:由(2)得四边形ABCD是菱形,∴AC⊥BD,AD=CB,又DE⊥BD,∴AC∥DE,∵AM∥BN,∴四边形ACED是平行四边形,∴AC=DE=2,AD=EC,∴EC=CB,∵四边形ABCD是菱形,∴EC=CB=AB=2,∴EB=4,在Rt△DEB中,由勾股定理得BD==,∴.25.(9分)如图,等边△ABC的边长为8,动点M从点B出发,沿B→A→C→B的方向以3cm/s的速度运动,动点N从点C出发,沿C→A→B→C方向以2cm/s的速度运动.(1)若动点M、N同时出发,经过几秒钟两点第一次相遇?(2)若动点M、N同时出发,且其中一点到达终点时,另一点即停止运动.那么运动到第几秒钟时,点A、M、N以及△ABC的边上一点D恰能构成一个平行四边形?求出时间t并请指出此时点D的具体位置.【分析】(1)设经过t秒钟两点第一次相遇,然后根据点M运动的路程+点N运动的路程=AB+CA列方程求解即可;(2)首先根据题意画出图形:如图②,当0≤t≤时,MC+BN=AN+BN=8;当<t ≤4时,此时A、M、N三点在同一直线上,不能构成平行四边形;4<t时,MB+NC =AN+CN=8;当<t≤8时,△BNM为等边三角形,由BN=BM可求得t的值.【解答】解:(1)由题意得:3t+2t=16,解得:t=;(2)①当0≤t≤时,点M、N、D的位置如图2所示:∵四边形ANDM为平行四边形,∴DM=AN,DM∥AN.∴∠MDC=∠ABC=60°∵△ABC为等腰三角形,∴∠C=60°.∴∠MDC=∠C.∴MD=MC∴MC+BN=AN+BN=8,即:3t+2t=8,t=,此时点D在BC上,且BD=(或CD=),②当<t≤4时,此时A、M、N三点在同一直线上,不能构成平行四边形;③4<t时,点M、N、D的位置如图所1示:∵四边形ANDM为平行四边形,∴DN=AM,AM∥DN.∴∠MDB=∠ACB=60°∵△ABC为等腰三角形,∴∠B=60°.∴∠MDB=∠B.∴MD=MB.∴MB+NC=AN+CN=8,3t﹣8+2t﹣8=8,解得:t=,此时点D在BC上,且BD=(或CD=),④当<t≤8时,点M、N、D的位置如图所3示:则BN=16﹣2t,BM=24﹣3t,由题意可知:△BNM为等边三角形,∴BN=BM,即:2t﹣8=3t﹣16,解得t=8,此时M、N重合,不能构成平行四边形.答:运动了或时,A、M、N、D四点能够成平行四边形,此时点D在BC上,且BD=或.。
人教版八年级下册平行四边形单元测试卷19一、选择题(共10小题;共50分)1. 如图,在矩形中,若添加一个条件可以得到四边形是正方形,则这个条件是A. B. C. D.2. 矩形、菱形、正方形都具有的性质是A. 两条对角线相等B. 两条对角线互相平分C. 两条对角线互相垂直D. 两条对角线分别平分一组对角3. 如图,已知菱形的边长等于,,则对角线的长为A. B. C. D.4. 把四张形状大小完全相同的小长方形(如图①)不重叠地放在一个底面为长方形(长为,宽为)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是A. B. C. D.5. 如图所示,在中,,于点,是的中点,若,则以下结论错误的是A. B. C. D.6. 已知四边形,对角线与交与点,从下列条件中,①;②;③;④,任取其中两个,以下组合能够判定四边形是平行四边形的是A. ①②B. ②③C. ②④D. ①④7. 直角梯形中,,,,,则的长为A. B. C. D.8. 已知在梯形中,,对角线,且,,那么这个梯形中位线的长等于A. B. C. D.9. 如图,顺次连接四边形各中点得四边形,要使四边形为菱形,应添加的条件是A. B. C. D.10. 活动课上,老师让同学们做一个对角线互相垂直的等腰梯形形状的风筝,其面积为,则两条对角线所用的竹条至少需要A. B. C. D.二、填空题(共6小题;共30分)11. 在中,若斜边的长为,则上的中线的长为.12. 已知菱形,请添加一个条件:,使得菱形成为正方形.13. 如图,在平行四边形中,过对角线上一点作,,且,,则.14. 矩形中,,,,分别在,上,且垂直平分.则的长为.15. 如图所示,在平行四边形中,以点为圆心,长为半径画弧交于点,再分别以点,为圆心,大于长为半径画弧,两弧交于一点,连接并延长交于点,连接.,相交于点,若四边形的周长为,,.16. 如图,已知正方形的边长为,延长至点,使,连接交于点,连接并延长与线段交于点,则的长是.三、解答题(共8小题;共104分)17. 如图,在菱形中,,交的延长线于点.求证:.18. 如图,平行四边形的对角线,相交于点,,分别为,的中点.求证:.19. 根据图中所给条件判断四边形是否为平行四边形.20. 已知:如图在平行四边形中点,分别是边,的中点.求证:.21. 如图,在中,,,求证:是的平分线.22. 如图,四边形是直角梯形,,,,,求点,,的坐标及直角梯形的面积.23. 如图,四边形中,,,分别为,的中点,延长,交于,延长,交于.求证:.24. 如图,先将正方形纸片折出折痕,再折叠使其与重合,得折痕,设点与上的点重合,,求的长.答案第一部分1. C2. B3. C4. A 【解析】设小长方形卡片的长为,宽为,,,又,.5. D6. D 【解析】平行四边形的判定方法有①一组对边平行且相等,②两组对边分别平行,③两组对边分别相等,④两组对角相等,⑤对角线互相平分.A:,,不能构成上面种判定中的一种,B:,,不能构成上面种判定的一种,C:,,也不能构成上面种判定中的一种,D:条件:,,可能证明,得到,有一组对边平行且相等的四边形是平行四边形.7. C 【解析】过点作.,,,,.8. C 【解析】如图,过点作,,四边形是平行四边形,,.,,是直角三角形.由勾股定理得,,这个梯形中位线的长为.9. D 【解析】连,,如图,,,,为四边形各中点,,,,,四边形为平行四边形,要使四边形为菱形,则,而,.当和,只能判断四边形为平行四边形,故A,B选项错误;当,只能判断四边形为矩形,故C选项错误;当,可判断四边形为菱形,故D选项正确.故选:D.10. B【解析】如图,过点作的平行线,交的延长线于点.易得,,四边形为平行四边形.可得为等腰直角三角形.所以梯形的面积所以梯形的面积等于等腰直角三角形的面积.故,解得.第二部分11.12. 一个角是直角或者对角线相等均可【解析】有一个角是直角的菱形是正方形,对角线相等的菱形是正方形,可添加:有一个角是直角或对角线相等,使得菱形成为正方形.故答案为:一个角是直角或者对角线相等均可.13.14.【解析】连接.垂直平分,.四边形是矩形,.在中,.又,,,,解得:.15.【解析】四边形是平行四边形,.,四边形是菱形.四边形是菱形,且周长为,.,是等边三角形,,.16.【解析】如图,过点作,交于点.,是的中位线,为的中点.又,,在和中,,,又,是的中位线,为的中点.,,因此.连接,易知,.又,..第三部分17. 四边形是菱形,,,.,四边形是菱形,,,即为的中点,.18. 如图,连接,.四边形是平行四边形,,,又,分别是,的中点,,,,四边形是平行四边形,.19. 四边形是平行四边形,,,,,,.四边形是平行四边形.20. 四边形是平行四边形,,,,点,分别是边,的中点,,,,在和中,,.21. ,,,,,在与中,(),,是的平分线.22. 过点作于点.,,,,,,,故点坐标为,点坐标为,点坐标为,直角梯形的面积为23. 如图,连接,取的中点,连接,.,,为的中位线,,,,同理,,,,,,,..。
一、平行四边形真题与模拟题分类汇编(难题易错题)1.四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H.(1)如图1,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE的位置关系,并加以证明;(2)如图2,在(1)条件下,连接HO,试说明HO平分∠BHG;(3)当点E、F运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出∠BHO的度数.【答案】(1)①证明见解析;②AG⊥BE.理由见解析;(2)证明见解析;(3)∠BHO=45°.【解析】试题分析:(1)①根据正方形的性质得DA=DC,∠ADB=∠CDB=45°,则可根据“SAS”证明△ADG≌△CDG,所以∠DAG=∠DCG;②根据正方形的性质得AB=DC,∠BAD=∠CDA=90°,根据“SAS”证明△ABE≌△DCF,则∠ABE=∠DCF,由于∠DAG=∠DCG,所以∠DAG=∠ABE,然后利用∠DAG+∠BAG=90°得到∠ABE+∠BAG=90°,于是可判断AG⊥BE;(2)如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,证明△AON≌△BOM,可得四边形OMHN为正方形,因此HO平分∠BHG结论成立;(3)如答图2所示,与(1)同理,可以证明AG⊥BE;过点O作OM⊥BE于点M,ON⊥AG于点N,构造全等三角形△AON≌△BOM,从而证明OMHN为正方形,所以HO 平分∠BHG,即∠BHO=45°.试题解析:(1)①∵四边形ABCD为正方形,∴DA=DC,∠ADB=∠CDB=45°,在△ADG和△CDG中,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCG;②AG⊥BE.理由如下:∵四边形ABCD为正方形,∴AB=DC,∠BAD=∠CDA=90°,在△ABE和△DCF中,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,∵∠DAG=∠DCG,∴∠DAG=∠ABE,∵∠DAG+∠BAG=90°,∴∠ABE+∠BAG=90°,∴∠AHB=90°,∴AG⊥BE;(2)由(1)可知AG⊥BE.如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,则四边形OMHN为矩形.∴∠MON=90°,又∵OA⊥OB,∴∠AON=∠BOM.∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°,∴∠OAN=∠OBM.在△AON与△BOM中,∴△AON≌△BOM(AAS).∴OM=ON,∴矩形OMHN为正方形,∴HO平分∠BHG.(3)将图形补充完整,如答图2示,∠BHO=45°.与(1)同理,可以证明AG⊥BE.过点O作OM⊥BE于点M,ON⊥AG于点N,与(2)同理,可以证明△AON≌△BOM,可得OMHN为正方形,所以HO平分∠BHG,∴∠BHO=45°.考点:1、四边形综合题;2、全等三角形的判定与性质;3、正方形的性质2.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(1)如图①,当点D落在BC边上时,求点D的坐标;(2)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证△ADB≌△AOB;②求点H的坐标.(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).【答案】(1)D(1,3);(2)①详见解析;②H(175,3);(3)30334-≤S 30334+【解析】【分析】(1)如图①,在Rt△ACD中求出CD即可解决问题;(2)①根据HL证明即可;②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;(3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;【详解】(1)如图①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD=22=4,AD AC∴BD=BC-CD=1,∴D(1,3).(2)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(1)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=175,∴BH=175,∴H(175,3).(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=12•DE•DK=12×3×(5-342)=303344-,当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=12×D′E′×KD′=12×3×(5+342)=303344+.30334-S30334+【点睛】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.3.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.【答案】(1)见解析;(2)18°.【解析】【分析】(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可;(2)求出∠FDC的度数,根据三角形内角和定理求出∠DCO,根据矩形的性质得出OD=OC,求出∠CDO,即可求出答案.【详解】(1)证明:∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=54°∴∠BDF=∠ODC﹣∠FDC=18°.【点睛】本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.4.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.【答案】(1)、5;(2)、622+;(3)、3212++.【解析】【分析】试题分析:(1)、如图1中,连接OD,在Rt△ODC中,根据OD=22OC CD+计算即可.(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据OC=22OE CE+计算即可.(3)、如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可解决问题.【详解】试题解析:(1)、如图1中,连接OD,∵四边形ABCD是正方形,∴AB=BC=CD=AD=1,∠C=90°在Rt△ODC中,∵∠C=90°,OC=2,CD=1,∴OD=2222215OC CD+=+=(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.∵∠FBE=∠E=∠CFB=90°,∴四边形BECF是矩形,∴BF=CF=12,3在Rt△OCE中,222231122OE CE⎛⎫⎛⎫+=++⎪ ⎪⎪⎝⎭⎝⎭622.(3)、如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.∵FD=FE=DE=1,OF ⊥DE , ∴DH=HE ,OD=OE ,∠DOH=12∠DOE=22.5°, ∵OM=DM , ∴∠MOD=∠MDO=22.5°, ∴∠DMH=∠MDH=45°, ∴DH=HM=12, ∴DM=OM=22, ∵FH=223DF DH -=, ∴OF=OM+MH+FH=2132++=321++. ∴OF 的最大值为321++. 考点:四边形综合题.5.如图1,在△ABC 中,AB =AC ,AD ⊥BC 于D ,分别延长AC 至E ,BC 至F ,且CE =EF ,延长FE 交AD 的延长线于G .(1)求证:AE =EG ;(2)如图2,分别连接BG ,BE ,若BG =BF ,求证:BE =EG ;(3)如图3,取GF 的中点M ,若AB =5,求EM 的长.【答案】(1)证明见解析(2)证明见解析(3)52【解析】【分析】 (1)根据平行线的性质和等腰三角形的三线合一的性质得:∠CAD =∠G ,可得AE =EG ; (2)作辅助线,证明△BEF ≌△GEC (SAS ),可得结论;(3)如图3,作辅助线,构建平行线,证明四边形DMEN 是平行四边形,得EM =DN =12AC ,计算可得结论.【详解】证明:(1)如图1,过E作EH⊥CF于H,∵AD⊥BC,∴EH∥AD,∴∠CEH=∠CAD,∠HEF=∠G,∵CE=EF,∴∠CEH=∠HEF,∴∠CAD=∠G,∴AE=EG;(2)如图2,连接GC,∵AC=BC,AD⊥BC,∴BD=CD,∴AG是BC的垂直平分线,∴GC=GB,∴∠GBF=∠BCG,∵BG=BF,∴GC=BE,∵CE=EF,∴∠CEF=180°﹣2∠F,∵BG=BF,∴∠GBF=180°﹣2∠F,∴∠GBF=∠CEF,∴∠CEF=∠BCG,∵∠BCE =∠CEF+∠F ,∠BCE =∠BCG+∠GCE ,∴∠GCE =∠F ,在△BEF 和△GCE 中,CE GCE F CG BF EF =⎧⎪∠=∠⎨⎪=⎩,∴△BEF ≌△GEC (SAS ),∴BE =EG ;(3)如图3,连接DM ,取AC 的中点N ,连接DN ,由(1)得AE =EG ,∴∠GAE =∠AGE ,在Rt △ACD 中,N 为AC 的中点,∴DN =12AC =AN ,∠DAN =∠ADN , ∴∠ADN =∠AGE ,∴DN ∥GF ,在Rt △GDF 中,M 是FG 的中点, ∴DM =12FG =GM ,∠GDM =∠AGE , ∴∠GDM =∠DAN ,∴DM ∥AE ,∴四边形DMEN 是平行四边形, ∴EM =DN =12AC , ∵AC =AB =5, ∴EM =52. 【点睛】 本题是三角形的综合题,主要考查了全等三角形的判定与性质,直角三角形斜边中线的性质,等腰三角形的性质和判定,平行四边形的性质和判定等知识,解题的关键是作辅助线,并熟练掌握全等三角形的判定方法,特别是第三问,辅助线的作法是关键.6.△ABC 为等边三角形,AF AB =.BCD BDC AEC ∠=∠=∠.(1)求证:四边形ABDF 是菱形.(2)若BD 是ABC ∠的角平分线,连接AD ,找出图中所有的等腰三角形.【答案】(1)证明见解析;(2)图中等腰三角形有△ABC ,△BDC ,△ABD ,△ADF ,△ADC ,△ADE .【解析】【分析】(1)先求证BD ∥AF ,证明四边形ABDF 是平行四边形,再利用有一组邻边相等的平行四边形是菱形即可证明;(2)先利用BD 平分∠ABC ,得到BD 垂直平分线段AC ,进而证明△DAC 是等腰三角形,根据BD ⊥AC,AF ⊥AC ,找到角度之间的关系,证明△DAE 是等腰三角形,进而得到BC =BD =BA =AF =DF ,即可解题,见详解.【详解】(1)如图1中,∵∠BCD =∠BDC ,∴BC =BD ,∵△ABC 是等边三角形,∴AB =BC ,∵AB =AF ,∴BD =AF ,∵∠BDC =∠AEC ,∴BD ∥AF ,∴四边形ABDF 是平行四边形,∵AB =AF ,∴四边形ABDF 是菱形.(2)解:如图2中,∵BA =BC ,BD 平分∠ABC ,∴BD 垂直平分线段AC ,∴DA =DC ,∴△DAC 是等腰三角形,∵AF ∥BD ,BD ⊥AC∴AF ⊥AC ,∴∠EAC =90°,∵∠DAC =∠DCA ,∠DAC +∠DAE =90°,∠DCA +∠AEC =90°,∴∠DAE=∠DEA,∴DA=DE,∴△DAE是等腰三角形,∵BC=BD=BA=AF=DF,∴△BCD,△ABD,△ADF都是等腰三角形,综上所述,图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【点睛】本题考查菱形的判定,等边三角形的性质,等腰三角形的判定等知识,属于中考常考题型,熟练掌握等腰三角形的性质是解题的关键.7.如图,现将平行四边形ABCD沿其对角线AC折叠,使点B落在点B′处.AB′与CD交于点E.(1)求证:△AED≌△CEB′;(2)过点E作EF⊥AC交AB于点F,连接CF,判断四边形AECF的形状并给予证明.【答案】(1)见解析(2)见解析【解析】【分析】(1)由题意可得AD=BC=B'C,∠B=∠D=∠B',且∠AED=∠CEB',利用AAS证明全等,则结论可得;(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根据等腰三角形的性质可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,则可证四边形AECF是菱形.【详解】证明:(1)∵四边形ABCD是平行四边形∴AD=BC,CD∥AB,∠B=∠D∵平行四边形ABCD沿其对角线AC折叠∴BC=B'C,∠B=∠B'∴∠D=∠B',AD=B'C且∠DEA=∠B'EC∴△ADE≌△B'EC(2)四边形AECF是菱形∵△ADE≌△B'EC∴AE=CE∵AE=CE,EF⊥AC∴EF垂直平分AC,∠AEF=∠CEF∴AF=CF∵CD∥AB∴∠CEF=∠EFA且∠AEF=∠CEF∴∠AEF=∠EFA∴AF=AE∴AF=AE=CE=CF∴四边形AECF是菱形【点睛】本题考查了折叠问题,全等三角形的判定和性质,平行四边形的性质,菱形的判定,熟练掌握这些性质和判定是解决问题的关键.8.(1)问题发现:如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为;(2)深入探究:如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;(3)拓展延伸:如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=2,试求EF的长.【答案】(1)NC∥AB;理由见解析;(2)∠ABC=∠ACN;理由见解析;(3)41【解析】分析:(1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN.(2)根据△ABC ,△AMN 为等腰三角形,得到AB :BC=1:1且∠ABC=∠AMN ,根据相似三角形的性质得到AB AC AM AN=,利用等腰三角形的性质得到∠BAC=∠MAN ,根据相似三角形的性质即可得到结论; (3)如图3,连接AB ,AN ,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出BM AB CN AC=,得到BM=2,CM=8,再根据勾股定理即可得到答案. 详解:(1)NC ∥AB ,理由如下:∵△ABC 与△MN 是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN =60°,∴∠BAM=∠CAN ,在△ABM 与△ACN 中, AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩ , ∴△ABM ≌△ACN (SAS ),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN ∥AB ;(2)∠ABC=∠ACN ,理由如下:∵AB AM BC MN==1且∠ABC=∠AMN , ∴△ABC ~△AMN ∴AB AC AM AN=, ∵AB=BC , ∴∠BAC=12(180°﹣∠ABC ), ∵AM=MN∴∠MAN=12(180°﹣∠AMN ), ∵∠ABC=∠AMN ,∴∠BAC=∠MAN ,∴∠BAM=∠CAN ,∴△ABM ~△ACN ,∴∠ABC=∠ACN ;(3)如图3,连接AB ,AN , ∵四边形ADBC ,AMEF 为正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC ﹣∠MAC=∠MAN ﹣∠MAC即∠BAM=∠CAN , ∵2AB AM BC AN ==, ∴AB AC AM AN=, ∴△ABM ~△ACN∴BM AB CN AC =, ∴CN AC BM AB ==cos45°=22, ∴22=, ∴BM=2,∴CM=BC ﹣BM=8,在Rt △AMC , AM=2222108241AC MC +=+=,∴EF=AM=241.点睛:本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.9.如图1,矩形ABCD 中,AB=8,AD=6;点E 是对角线BD 上一动点,连接CE ,作EF ⊥CE 交AB 边于点F ,以CE 和EF 为邻边作矩形CEFG ,作其对角线相交于点H .(1)①如图2,当点F 与点B 重合时,CE= ,CG= ;②如图3,当点E 是BD 中点时,CE= ,CG= ;(2)在图1,连接BG ,当矩形CEFG 随着点E 的运动而变化时,猜想△EBG 的形状?并加以证明;(3)在图1,CG CE的值是否会发生改变?若不变,求出它的值;若改变,说明理由; (4)在图1,设DE 的长为x ,矩形CEFG 的面积为S ,试求S 关于x 的函数关系式,并直接写出x 的取值范围.【答案】(1)245,185 ,5,154 ;(2)△EBG 是直角三角形,理由详见解析;(3)34 ;(4)S=34x 2﹣485x+48(0≤x≤325). 【解析】【分析】(1)①利用面积法求出CE ,再利用勾股定理求出EF 即可;②利用直角三角形斜边中线定理求出CE ,再利用相似三角形的性质求出EF 即可;(2)根据直角三角形的判定方法:如果一个三角形一边上的中线等于这条边的一半,则这个三角形是直角三角形即可判断;(3)只要证明△DCE ∽△BCG ,即可解决问题;(4)利用相似多边形的性质构建函数关系式即可;【详解】(1)①如图2中,在Rt △BAD 中,BD=22AD AB +=10, ∵S △BCD =12•CD•BC=12•BD•CE , ∴CE=245.CG=BE=2224186()=55-. ②如图3中,过点E 作MN ⊥AM 交AB 于N ,交CD 于M .∵DE=BE ,∴CE=12BD=5,∵△CME∽△ENF,∴CM ENCE EF=,∴CG=EF=154,(2)结论:△EBG是直角三角形.理由:如图1中,连接BH.在Rt△BCF中,∵FH=CH,∴BH=FH=CH,∵四边形EFGC是矩形,∴EH=HG=HF=HC,∴BH=EH=HG,∴△EBG是直角三角形.(3)F如图1中,∵HE=HC=HG=HB=HF,∴C、E、F、B、G五点共圆,∵EF=CG,∴∠CBG=∠EBF,∵CD∥AB,∴∠EBF=∠CDE,∴∠CBG=∠CDE,∵∠DCB=∠ECG=90°,∴∠DCE=∠BCG,∴△DCE∽△BCG,∴6384CG BCCE DC===.(4)由(3)可知:34CG CDCE CB==,∴矩形CEFG∽矩形ABCD,∴2264CEFGABCDS CE CES CD==矩形矩形(),∵CE2=(325-x)2+245)2,S矩形ABCD=48,∴S矩形CEFG=34[(325-x)2+(245)2].∴矩形CEFG的面积S=34x2-485x+48(0≤x≤325).【点睛】本题考查相似三角形综合题、矩形的性质、相似三角形的判定和性质、勾股定理、直角三角形的判定和性质、相似多边形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造相似三角形或直角三角形解决问题,属于中考压轴题.10.如图1,若分别以△ABC的AC、BC两边为边向外侧作的四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形.(1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF的面积相等.(2)引申:如果∠C 90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由;(3)运用:如图3,分别以△ABC的三边为边向外侧作的四边形ACDE、BCFG和ABMN为正方形,则称这三个正方形为外展三叶正方形.已知△ABC中,AC=3,BC=4.当∠C=_____°时,图中阴影部分的面积和有最大值是________.【答案】(1)证明见解析;(2)成立,证明见解析;(3)18.【解析】试题分析:(1)因为AC=DC,∠ACB=∠DCF=90°,BC=FC,所以△ABC≌△DFC,从而△ABC与△DFC的面积相等;(2)延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.得到四边形ACDE,BCFG均为正方形,AC=CD,BC=CF,∠ACP=∠DCQ.所以△APC≌△DQC.于是AP=DQ.又因为S△ABC=12BC•AP,S△DFC=12FC•DQ,所以S△ABC=S△DFC;(3)根据(2)得图中阴影部分的面积和是△ABC的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大.所以S阴影部分面积和=3S△ABC=3×1 2×3×4=18.(1)证明:在△ABC与△DFC中,∵{AC DCACB DCFBC FC∠∠===,∴△ABC≌△DFC.∴△ABC与△DFC的面积相等;(2)解:成立.理由如下:如图,延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.∴∠APC=∠DQC=90°.∵四边形ACDE,BCFG均为正方形,∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,∴∠ACP=∠DCQ.∴{APC DQCACP DCQAC CD∠∠∠∠===,△APC≌△DQC(AAS),∴AP=DQ.又∵S△ABC=12BC•AP,S△DFC=12FC•DQ,∴S△ABC=S△DFC;(3)解:根据(2)得图中阴影部分的面积和是△ABC的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,∴当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大.∴S阴影部分面积和=3S△ABC=3×12×3×4=18.考点:四边形综合题。
19.1.2平行四边形的判定5 分钟训练 ( 预习类训练,可用于课前)1.(2010福建晋江模拟,16)不能判断四边形ABCD是平行四边形的是A.AB=CD,AD=BCB.AB=CD,AB∥CDC.AB=CD,AD∥BCD.AB∥CD,AD∥BC()答案 : C2.下列给出的条件中,能判定四边形ABCD是平行四边形的是 ( )A.AB∥CD, AD=BCB.AB=AD, CB=CDC.AB=CD, AD=BCD.∠B=∠C,∠ A=∠D答案 : C3. 如图 , 已知AD∥BC,要使四边形ABCD为平行四边形, 需添加一个条件为______________.答案 : 提示:添加AB∥DC,AD=BC等都可以 .4. 如图 , 在△ ABC中, D、 E 分别是 AB、AC边的中点,且DE=6 cm,则BC=____________.解析:根据三角形的中位线平行于第三边,并且等于第三边的一半,可知BC=2DE=12 cm.答案 : 12 cm10 分钟训练 ( 强化类训练,可用于课中)1. 如图 , 在 ABCD中,对角线 AC、 BD相交于点 O,E、F 是对角线 AC上的两点,当 E、F 满足下列哪个条件时,四边形 DEBF不一定是平行四边形 ( )A.AE=CFB.DE=BFC.∠ADE=∠CBFD.∠AED=∠CFB解析:当 E、F 满足 AE=CF时,由平行四边形的对角线相等知故 OE=OF.可知四边形DEBF是平行四边形 .当 E、 F 满足∠ ADE=∠CBF 时,因为AD∥BC,所以∠ DAE=∠BCF.又 AD=BC,可证出△ ADE≌△ CBF,所以 DE=BF,∠ DEA=∠BFC.故∠ DEF=∠BFE.因此 DE∥BF,可知四边形DEBF是平行四边形 . 类似地可说明答案 : B2. 如图 ,AB DC, DC=EF=10, DE=CF=8,则图中的平行四边形有OB=OD,OA=OC,D 也可以 ._________________ ,理由分别是 _________________、 ____________________.解析:因为 AB DC,根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD是平行四边形;DC=EF,DE=CF,根据两组对边分别相等的四边形是平行四边形可判定四边形CDEF是平行四边形.答案 : 四边形 ABCD,四边形 CDEF 一组对边平行且相等的四边形是平行四边形别相等的四边形是平行四边形3. 如图 ,E 、F 是平行四边形ABCD对角线 BD上的两点,请你添加一个适当的条件使四边形AECF是平行四边形 .两组对边分:__________,解析:根据平行四边形的定义和判定方法可填BE=DF;∠ BAE=∠CDF 等.答案 : BE=DF或∠ BAE=∠CDF 等任何一个均可4.(2010四川攀枝花模拟,12) 如图 ,AD=BC,要使四边形ABCD是平行四边形, 还需补充的一个条件是:___________________________.解析:根据平行四边形的判定定理, 知可填①AD∥BC,②AB=CD,③∠ A+∠B=180°, ④∠ C+∠D=180°等.答案 : 不唯一 , 以上几个均可.5.如图 , 在 ABCD中 , 已知 M和 N 分别是边 AB、DC的中点 , 试说明四边形 BMDN也是平行四边形.答案:证明:∵ABCD,∴AB CD.∵M、 N 是中点 ,∴BM=1AB,DN=1CD.22∴BM DN.∴四边形BMDN也是平行四边形.30 分钟训练 ( 巩固类训练,可用于课后)1. 以不在同一直线上的三个点为顶点作平行四边形最多能作A.4 个B.3个C.2个解析:要求最多能作几个,只要连结起三个顶点后构成三角形,另两边作为平行四边形的邻边作图,即可得出三种.答案 : B( )D.1个分别以其中一边作为对角线,2. 下面给出了四边形ABCD中∠ A、B、∠C、∠D 的度数之比,其中能判定四边形ABCD是∠平行四边形的是( )A.1∶2∶3∶4B.2∶2∶3∶3C.2∶3∶3∶2D.2∶3∶2∶3解析:由两组对角分别相等的四边形是平行四边形易知,要使四边形ABCD是平行四边形需满足∠ A=∠C,∠ B=∠D,因此∠A与∠ C,∠B 与∠D所占的份数分别相等.答案 : D3.九根火柴棒排成如右图形状 , 图中 _______ 个平行四边形 , 你判断的根据是________________.答案:有 3两组对边分别相等的四边形是平行四边形4.已知四边形 ABCD的对角线 AC、 BD相交于点 O,给出下列 5 个条件 : ①AB∥CD;② OA=OC;③AB=CD;④∠ BAD=∠DCB;⑤ AD∥BC.(1) 从以上 5 个条件中任意选取 2 个条件,能推出四边形ABCD是平行四边形的有( 用序号表示):_____________________________;(2) 对由以上 5 个条件中任意选取 2 个条件,不能推出四边形ABCD是平行四边形的,请选取一种情形举出反例说明.解析:本题是条件开放性试题,要使四边形ABCD是平行四边形,从边、角、对角线上考虑共有 5 种判定方法,因此只需将任意两个条件组合加以评砼卸?答案 : (1) ①与②;①与③;①与④;①与⑤;②与⑤;④与⑤(2)③与⑤两个条件不能推出四边形ABCD是平行四边形 .如图, AB=CD且 AD∥BC,而四边形 ABCD不是平行四边形.5.若三条线段的长分别为 20 cm,14 cm,16 cm, 以其中两条为对角线 , 另一条为一边 , 是否可以画平行四边形 ?解析:由平行四边形对角线互相平分, 能否画平行四边形, 应以任两条的一半和第三边为三边,看是否能构成三角形即可.20,16 或 20,14 为对角线 , 另一条为一边可画平行四边形.6. 如图 ,E 、F 是四边形ABCD的对角线 AC上的两点, AF=CE, DF=BE,DF∥BE.求证 :(1) △AFD≌△ CEB;(2)四边形 ABCD是平行四边形 .答案 : 证明: (1) ∵DF∥BE,∴∠ AFD=∠CEB.又∵ AF=CE, DF=BE,∴△ AFD≌△ CEB.(2)由(1) △AFD≌△ CEB 知 AD=BC,∠DAF=∠BCE,∴AD∥BC.∴四边形ABCD是平行四边形 .7. 如图 , 已知 DC∥AB,且 DC=1AB, E 为 AB 的中点 .2(1)求证 : △AED≌△ EBC;(2)观察图形,在不添加辅助线的情况下,除△ EBC外,请再写出两个与△ AED 的面积相等的三角形( 直接写出结果,不要求证明):______________________________.答案 : 证明: (1) ∵E为 AB的中点,∴A E=EB=1AB.21∵DC=AB,DC∥AB,∴AE DC, EB DC.∴四边形AECD和四边形 EBCD都是平行四边形.∴AD=EC, ED=BC.又∵ AE=BE,∴△ AED≌△ EBC.(2)△ACD,△ ACE,△ CDE(写出其中两个三角形即可)8. 如图 , 已知ABCD中 DE⊥AC,BF⊥AC,证明四边形DEBF为平行四边形 .答案 : 证明:在ABCD中,AD=BC,AD∥BC,∴∠ DAC=∠BCA.又∵∠ DEA=∠BFC=90°,∴R t△ADE≌Rt△CBF.∴D E=BF.同理 , 可证 DF=BE.∴四边形DEBF为平行四边形 .9.(2010江苏南京模拟,19)如图,已知ABCD中 ,E 、 F 分别是 AB、 CD的中点 . 求证 :(1)△AFD≌△ CEB;(2)四边形 AECF是平行四边形 .答案 : 证明: (1) 在ABCD中,AD=CB,AB=CD,∠D=∠B.∵E、 F 分别是 AB、 CD的中点 ,1 1∴D F= CD,BE= AB.2 2∴D F=BE.∴△ AFD≌△ CEB.(2) 在ABCD中,AB=CD,AB∥CD.由(1) 得 BE=DF,∴AE=CF.∴四边形AECF是平行四边形 .。
E D C B A DC B A 平行四边形检测一、填空:1.已知ABCD 的对角线AC 与BD 相交于点O ,则图中相等的线段有 。
2.在ABCD 中,∠A=40°,则∠B= ,∠C= , ∠D= . 3. ABCD 中, 对角线AC 与BD 相交于点O ,若AC=20cm,BO=5cm,则OA= cm, BD=____cm.4. ABCD 中, ∠A-∠B=40°,则 ∠C= , ∠D= .5. ABCD 周长44cm,AB 比AD 大2cm,那么AB cm ,AD= cm.6.平行四边行的一组对角和是80°,则它的较大内角的度数是 。
二.选择题1.平行四边形ABCD 中.∠A :∠B :∠C :∠D 的值可以是【 】A .1:2:3:4 B.3:4:4:3 C.3:3:4:4 D.3:4:3:42. 平行四边形一边长6cm, 周长为28cm ,则这条边的邻边长是 【 】A 22cmB 16cmC 11cmD 8cm3. 平行四边形ABCD 的周长为40cm, △ABC 的周长是25cm, 则对角线AC 的长是 【 】A.5cm B. 15cm C . 6cm D . 16cm4. 在平行四边形ABCD 中,DE 平分∠ADC 交BC 于E ,AF ⊥DE 于F ,已知∠DAF=50°,则∠B=【 】 A 50° B 40° C 100° D 80°5.平行四边形两邻边分别为20和16,若两长边间的距离为8,则两短边间距离为【 】A 5 B.10 C.4 D.86.如图右图,AB ∥CD AD ∥BC ,AE ∥BD ,那么图中和△ABD 面积相等三角形的个数(不包括△ABD )为【 】A.1 个B.2个C.3个 D.4个三.解答题1. 在ABCD 中,∠BAC=68°,∠ACB=36°,求∠D 和 ∠BCD 的度数. D CB A 第一题 第二题 选择题第六题 第四题2. 在 ABCD 中,已知AC 、BD 相交于点O ,两条对角线的和为36cm ,CD 的长为6cm, 求△OCD 的周长.3. 已知: ABCD 的周长为28cm, 对角线AC 与BD 的长度比为2:3,△AOB 与△OBC 的周长和为34cm, 求AC 和BD 的长.4、已知:ABCD 的周长是36,DE ⊥AB ,DF ⊥BC 于F ,且DE=4,DF=5,求这个平行四边形的面积 .8.求证:顺次连接一个等腰梯形的各边中点,所得到的四边形是菱形.5.如图,△ABC 中,BD 平分ABC ,DE ∥BC ,EF ∥AC ,观察BE 与CF 的关系,说明你的猜想.6. 已知:如图Rt △ABC 中,∠ACB =90°,CD 为∠ACB 的平分线,DE ⊥BC 于点E ,DF ⊥AC 于点F.求证:四边形CEDF 是正方形.7 AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于点F. 求证:四边形AEDF 是菱形.9.如图,△ABC 中,BD 、CE 是△ABC 的两条高,点F 、M 分别是DE 、BC 的中点.求证:FM ⊥DE.10.如图,点E 、F 分别是正方形ABCD 的边CD 和AD 的中点,BE 和CF 交于点P.求证:AP =AB.B CA D EF11.如图,已知点F 是正方形ABCD 的边BC 的中点,CG 平分∠DCE ,GF ⊥AF.求证:AF=FG .12.菱形周长为40cm ,它的一条对角线长10cm.求菱形的每一个内角的度数.⑵求菱形另一条对角线的长.第五题第十一题第七题第六题 第九题第十七题13.矩形除了具备平行四边形的性质外,还有一些特殊性质:四个角 ,对角线 .14.在矩形ABCD 中,对角线AC 、BD 交于点O ,若100A O B ∠= ,则O A B ∠= .15.已知菱形一个内角120 且平分这个内角的一条对角线长8cm 则这个菱形的周长为 .17.如图把两个大小完全相同的矩形拼成“L ”型图案则F A C ∠= ,F C A ∠= . 18正方形的边长为a ,则它的对角线长 --------,若正方形的对角线长为b ,它的边长为20.顺次连接四边形各边中点,所得的图形是 .顺次连接对角线 的四边形的各边中点所得的图形是矩形.顺次连接对角线 的四边形的各边中点所得的四边形是菱形.顺次连接对角线 的四边形的各边中点所得的四边形是正方形.3.从菱形的钝角顶点,向对角的两边条垂线,垂足恰好在该边的中点,则菱形的内角中钝角的度数是( )A.150B.135C.120D.100 4.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是( )①平行四边形②菱形③等腰梯形④对角线互相垂直的四边形A.①③ B.②③C.③④D.②④5.在平行四边形、菱形、矩形、正方形中,能够找到一个点,使该点到各顶点距离相等的图形是( )A.平行四边形和菱形B.菱形和矩形C.矩形和正方形D.菱形和正方形AB D E FC CD。
平行四边形单元测试(一)(人教版)一、单选题(共10道,每道10分)1.如图,在四边形ABCD中,E,F,G,H分别是AB,BD,CD,AC的中点,要使四边形EFGH 是菱形,则四边形ABCD只需要满足一个条件,是( )A.四边形ABCD是梯形B.四边形ABCD是菱形C.AC=BDD.AD=BC答案:D解题思路:试题难度:三颗星知识点:中点四边形2.如图,在平行四边形ABCD中,AB=6,BC=10,对角线AC⊥AB,点E,F分别是边BC,AD 上的点,且BE=DF.①当AE的长为( )时,四边形AECF是菱形;②当AE的长为( )时,四边形AECF是矩形.A.5;B.6;C.5;D.6;答案:A解题思路:试题难度:三颗星知识点:平行四边形的性质和判定3.如图,点E在矩形ABCD上,若BC=BE=2CD,则∠ECD的度数为( )A.30°B.20°C.15°D.25°答案:C解题思路:试题难度:三颗星知识点:矩形的性质和判定4.如图,在平行四边形ABCD中,∠ABD=30°,AB=4,AE⊥BD于E,CF⊥BD于F,且E,F 恰好是BD的三等分点,M,N分别是AB,CD的中点,那么四边形MENF的面积是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:平行四边形的性质5.如图,在平行四边形ABCD中,P是其内部任意一点,△ABP,△BCP,△CDP,△ADP的面积分别为,,,,则一定成立的是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:平行四边形的性质6.如图所示,P为正方形ABCD内一点,连接PA,PB,过点P作PE⊥CD于点E,且PA=PB=PE.若AB=16,则PA=( )A. B.10 C.8 D.12答案:B解题思路:试题难度:三颗星知识点:正方形的性质7.如图,在菱形ABCD中,∠ABC=120°,F是CD边的中点,AF的延长线交BC的延长线于点E,则直线BF与直线DE所夹的锐角(即∠BMD)的度数为( )A.30°B.40°C.50°D.60°答案:D解题思路:试题难度:三颗星知识点:菱形的性质8.如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于( )A.4B.6C.8D.10答案:C解题思路:试题难度:三颗星知识点:平移的性质9.如图,在矩形ABCD中,点E,F分别在AD,AB上,EF⊥EC,且EF=EC.若DE=2,矩形ABCD的周长为24,则AE的长为( )A.5B.4C.3D.2答案:A解题思路:试题难度:三颗星知识点:矩形的性质10.如图,在矩形ABCD中,AB=1,,AF平分∠DAB,过点C作CE⊥BD于E,延长AF,EC交于点H,有下列结论:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.其中正确的是( )A.②③B.③④C.①②④D.②③④答案:D解题思路:试题难度:三颗星知识点:矩形的性质。
八年级数学《19.1 平行四边形的性质与判定》自测题班级____________姓名____________(本卷满分100分,20120405)一、填一填(每题3分,共30分)1.已知□ABCD的周长为28,AB:BC=3:4,则CD=.2.已知E、F、G、H分别为□ABCD各边的中点,则四边形EFGH为_______________形。
3.在四边形ABCD中,若AB=CD,再添加一个条件为__________,就可以判定四边形ABCD为平行四边形。
4.在□ABCD中,∠A=30°,AB=7 cm,AD=6 cm,则=____________.5.平行四边形的边长等于5和7,这个平行四边形锐角的平分线把长边分成两条线段长____________.6.□ABCD中,周长为20,对角线AC交BD于点O,△OAB比△OBC的周长多4,则边BC=____________.7. 平行四边形邻边长是4 cm和8cm,一边上的高是5 cm,则另一边上的高是____________.8.用边长分别为2,3,4的两个全等三角形拼成四边形,共能拼成_________个为平行四边形。
9.平行四边形两邻边分别是4和6,其中一边上的高是3,则平行四边形的面积是____________.10.一个平行四边形的一边长是8,一条对角线长是6,则它的另一条对角线x的取值范围为________.二、选一选(每题3分,共24分)11.能识别四边形ABCD是平行四边形的题设是()A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD12.点A,B,C,D在同一平面内,从①AB∥CD,②AB=CD,③BC∥AD,④BC=AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有()A.3种B.4种C.5种D.6种13.下列结论正确的是()A.对角线相等且一组对角相等的四边形是平行四边形B.一边长为5cm,两条对角线长分别是4cm和6cm的四边形是平行四边形C.一组对边平行且一组对角相等的四边形是平行四边形D.对角线相等的四边形是平行四边形14.不能判定四边形ABCD是平行四边形的条件是()A.AB=CD,AD=BC B.AB∥CD,AB=CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC15.如图19-1-26,在□ABCD中,E,F分别在BC,AD上,若想使四边形AFCE为平行四边形,须添加一个条件,这个条件可以是()。
人教版平行四边形单元综合模拟测评检测试题一、选择题1.如图,点P 是正方形ABCD 的对角线BD 上一点(点P 不与点B 、D 重合),PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP =EF ;②AP ⊥EF ;③仅有当∠DAP =45°或67.5°时,△APD 是等腰三角形;④∠PFE =∠BAP :⑤22PD =EC .其中有正确有( )个.A .2B .3C .4D .52.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,1BC =,3CE =,H 是AF 的中点,那么CH 的长是( )A .2B .52C .332D .53.如图,菱形ABCD 的边长为4,∠DAB =60°,E 为BC 的中点,在对角线AC 上存在一点P ,使△PBE 的周长最小,则△PBE 的周长的最小值为 ( )A .3B .4C .232D .43+4.如图,已知正方形ABCD 的边长为2,点,E F 在正方形ABCD 内, ,EAB FDC ∆∆都是等边三角形,则EF 的长为( )A .23-B .232-C .31-D .35.如图,将矩形ABCD 沿EF 折叠后点D 与B 重合.若原矩形的长宽之比为3:1,则AE BF的值为( )A .12B .13C .34D .456.如图,在ABCD 中,1234532,,,,AB AD E E E E E =,,依次是CB 上的五个点,并且1122334455CE E E E E E E E E E B =====,在三个结论:(1)33⊥DE AE ;(2)24⊥AE DE ;(3)22AE DE ⊥之中,正确的个数是( )A .0B .1C .2D .37.如图,正方形ABCD 中,点E 是AD 边的中点,BD 、CE 交于点H ,BE 、AH 交于点G ,则下列结论:①AG ⊥BE ;②5:2;③S △BHE =S △CHD ;④∠AHB=∠EHD .其中正确的个数是A .1B .2C .3D .48.如图,长方形ABCD 中,点E 是边CD 的中点,将△ADE 沿AE 折叠得到△AFE ,且点F 在长方形ABCD 内,将AF 延长交边BC 于点G ,若BG=3CG ,则AD AB =( )A .54B .1C .52D .629.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形; ②四边形CDFE 不可能为正方形,③DE 长度的最小值为4; ④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①②③B .①④⑤C .①③④D .③④⑤10.如图,点O 为正方形ABCD 的中心,BE 平分∠DBC 交DC 于点E ,延长BC 到点F ,使FC=EC ,连结DF 交BE 的延长线于点H ,连结OH 交DC 于点G ,连结HC .则以下四个结论中:①OH ∥BF ,②GH=14BC ,③BF=2OD ,④∠CHF=45°.正确结论的个数为( )A .4个B .3个C .2个D .1个二、填空题11.如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为.12.如图,Rt△ABC中,∠C=90°,AC=2,BC=5,点D是BC边上一点且CD=1,点P是线段DB上一动点,连接AP,以AP为斜边在AP的下方作等腰Rt△AOP.当P从点D出发运动至点B停止时,点O的运动路径长为_____.13.已知在矩形ABCD中,3,3,2AB BC==点P在直线BC上,点Q在直线CD上,且,AP PQ⊥当AP PQ=时,AP=________________.14.如图,长方形纸片ABCD中,AB=6 cm,BC=8 cm点E是BC边上一点,连接AE并将△AEB沿AE折叠, 得到△AEB′,以C,E,B′为顶点的三角形是直角三角形时,BE的长为___________cm.15.如图,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以BC为一边作正方形BDEC设正方形的对称中心为O,连接AO,则AO=_____.16.菱形ABCD 的周长为24,∠ABC=60°,以AB 为腰在菱形外作底角为45°的等腰△ABE ,连结AC ,CE ,则△ACE 的面积为___________.17.如图,在矩形ABCD 中,16AB =,18BC =,点E 在边AB 上,点F 是边BC 上不与点B 、C 重合的一个动点,把EBF △沿EF 折叠,点B 落在点B '处.若3AE =,当CDB '是以DB '为腰的等腰三角形时,线段DB '的长为__________.18.如图,矩形ABCD 中,CE CB BE ==,延长BE 交AD 于点M ,延长CE 交AD 于点F ,过点E 作EN BE ⊥,交BA 的延长线于点N ,23FE AN ==,,则BC =_________.19.在菱形ABCD 中,M 是AD 的中点,AB =4,N 是对角线AC 上一动点,△DMN 的周长最小是2+23,则BD 的长为___________.20.如图,有一张长方形纸片ABCD ,4AB =,3AD =.先将长方形纸片ABCD 折叠,使边AD 落在边AB 上,点D 落在点E 处,折痕为AF ;再将AEF ∆沿EF 翻折,AF 与BC 相交于点G ,则FG 的长为___________.三、解答题21.在等边三角形ABC 中,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 的上方作菱形ADEF ,且∠DAF=60°,连接CF .(1)(观察猜想)如图(1),当点D 在线段CB 上时,①BCF ∠= ;②,,BC CD CF 之间数量关系为 .(2)(数学思考):如图(2),当点D 在线段CB 的延长线上时,(1)中两个结论是否仍然成立?请说明理由.(3)(拓展应用):如图(3),当点D 在线段BC 的延长线上时,若6AB =,13CD BC =,请直接写出CF 的长及菱形ADEF 的面积..22.如图1,AC 是平行四边形ABCD 的对角线,E 、H 分别为边BA 和边BC 延长线上的点,连接EH 交AD 、CD 于点F 、G ,且//EH AC .(1)求证:AEF CGH ∆≅∆(2)若ACD ∆是等腰直角三角形,90ACD ∠=,F 是AD 的中点,8AD =,求BE 的长:(3)在(2)的条件下,连接BD ,如图2,求证:22222()AC BD AB BC +=+23.共顶点的正方形ABCD 与正方形AEFG 中,AB =13,AE =52. (1)如图1,求证:DG =BE ;(2)如图2,连结BF ,以BF 、BC 为一组邻边作平行四边形BCHF .①连结BH ,BG ,求BH BG的值; ②当四边形BCHF 为菱形时,直接写出BH 的长.24.在平面直角坐标中,四边形OCNM 为矩形,如图1,M 点坐标为(m ,0),C 点坐标为(0,n ),已知m ,n 满足550n m -+-=.(1)求m ,n 的值;(2)①如图1,P ,Q 分别为OM ,MN 上一点,若∠PCQ =45°,求证:PQ =OP+NQ ; ②如图2,S ,G ,R ,H 分别为OC ,OM ,MN ,NC 上一点,SR ,HG 交于点D .若∠SDG =135°,55HG =,则RS =______; (3)如图3,在矩形OABC 中,OA =5,OC =3,点F 在边BC 上且OF =OA ,连接AF ,动点P 在线段OF 是(动点P 与O ,F 不重合),动点Q 在线段OA 的延长线上,且AQ =FP ,连接PQ 交AF 于点N ,作PM ⊥AF 于M .试问:当P ,Q 在移动过程中,线段MN 的长度是否发生变化?若不变求出线段MN 的长度;若变化,请说明理由.25.如图,锐角ABC ∆,AB AC =,点D 是边BC 上的一点,以AD 为边作ADE ∆,使AE AD =,EAD BAC ∠=∠.(1)过点E 作//EF DC 交AB 于点F ,连接CF (如图①)①请直接写出EAB ∠与DAC ∠的数量关系;②试判断四边形CDEF 的形状,并证明;(2)若60BAC ∠=,过点C 作//CF DE 交AB 于点F ,连接EF (如图②),那么(1)②中的结论是否任然成立?若成立,请给出证明,若不成立,请说明理由.26.如图,在矩形 ABCD 中, AB =16 , BC =18 ,点 E 在边 AB 上,点 F 是边 BC 上不与点 B 、C 重合的一个动点,把△EBF 沿 EF 折叠,点B 落在点 B' 处.(I)若 AE =0 时,且点 B' 恰好落在 AD 边上,请直接写出 DB' 的长;(II)若 AE =3 时, 且△CDB' 是以 DB' 为腰的等腰三角形,试求 DB' 的长;(III)若AE =8时,且点 B' 落在矩形内部(不含边长),试直接写出 DB' 的取值范围.27.已知E ,F 分别为正方形ABCD 的边BC ,CD 上的点,AF ,DE 相交于点G ,当E ,F 分别为边BC ,CD 的中点时,有:①AF=DE ;②AF ⊥DE 成立.试探究下列问题:(1)如图1,若点E 不是边BC 的中点,F 不是边CD 的中点,且CE=DF ,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E ,F 分别在CB 的延长线和DC 的延长线上,且CE=DF ,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE 和BF ,若点M ,N ,P ,Q 分别为AE ,EF ,FD ,AD 的中点,请判断四边形MNPQ 是“矩形、菱形、正方形”中的哪一种,并证明你的结论.28.如图,在矩形ABCD 中,AD =nAB ,E ,F 分别在AB ,BC 上.(1)若n =1,AF ⊥DE .①如图1,求证:AE =BF ;②如图2,点G 为CB 延长线上一点,DE 的延长线交AG 于H ,若AH =AD ,求证:AE +BG =AG ;(2)如图3,若E 为AB 的中点,∠ADE =∠EDF .则CF BF的值是_____________(结果用含n 的式子表示).29.如图①,在等腰Rt ABC 中,90BAC ∠=,点E 在AC 上(且不与点A 、C 重合),在ABC 的外部作等腰Rt CED ,使90CED ∠=,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .()1请直接写出线段AF ,AE 的数量关系;()2①将CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;②若25AB =,2CE =,在图②的基础上将CED 绕点C 继续逆时针旋转一周的过程中,当平行四边形ABFD 为菱形时,直接写出线段AE 的长度.30.已知:正方形ABCD和等腰直角三角形AEF,AE=AF(AE<AD),连接DE、BF,P是DE的中点,连接AP.将△AEF绕点A逆时针旋转.(1)如图①,当△AEF的顶点E、F恰好分别落在边AB、AD时,则线段AP与线段BF的位置关系为,数量关系为.(2)当△AEF绕点A逆时针旋转到如图②所示位置时,证明:第(1)问中的结论仍然成立.(3)若AB=3,AE=1,则线段AP的取值范围为.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】过P作PG⊥AB于点G,根据正方形对角线的性质及题中的已知条件,证明△AGP≌△FPE 后即可证明①AP=EF;④∠PFE=∠BAP;在此基础上,根据正方形的对角线平分对角的性质,在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,求得2EC,得出⑤正确,即可得出结论.【详解】过P作PG⊥AB于点G,如图所示:∵点P 是正方形ABCD 的对角线BD 上一点,∴GP=EP ,在△GPB 中,∠GBP=45°,∴∠GPB=45°,∴GB=GP ,同理:PE=BE ,∵AB=BC=GF ,∴AG=AB-GB ,FP=GF-GP=AB-GB ,∴AG=PF ,在△AGP 和△FPE 中,90AG PF AGP FPE PG PE ⎧⎪⎨⎪∠∠⎩︒====,∴△AGP ≌△FPE (SAS ),∴AP=EF ,①正确,∠PFE=∠GAP ,∴∠PFE=∠BAP ,④正确;延长AP 到EF 上于一点H ,∴∠PAG=∠PFH ,∵∠APG=∠FPH ,∴∠PHF=∠PGA=90°,∴AP ⊥EF ,②正确,∵点P 是正方形ABCD 的对角线BD 上任意一点,∠ADP=45°,∴当∠PAD=45°或67.5°时,△APD 是等腰三角形,除此之外,△APD 不是等腰三角形,故③正确.∵GF ∥BC ,∴∠DPF=∠DBC ,又∵∠DPF=∠DBC=45°,∴∠PDF=∠DPF=45°,∴PF=EC ,∴在Rt △DPF 中,DP 2=DF 2+PF 2=EC 2+EC 2=2EC 2,∴2EC , 即22PD=EC ,⑤正确.∴其中正确结论的序号是①②③④⑤,共有5个.故选D.【点睛】本题考查了正方形的性质,全等三角形的判定及性质,垂直的判定,等腰三角形的性质,勾股定理的运用.本题难度较大,综合性较强,在解答时要认真审题.2.D解析:D【分析】连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=2,CF=32,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,22AF=AC CF=25,∵H是AF的中点,∴CH=12AF=12×25=5.故选D.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.3.C解析:C【分析】如下图,△BEP的周长=BE+BP+EP,其中BE是定值,只需要BP+PE为最小值即可,过点E 作AC的对称点F,连接FB,则FB就是BP+PE的最小值.【详解】如下图,过点E作AC的对称点F,连接FB,FE,过点B作FE的垂线,交FE的延长线于点G∵菱形ABCD 的边长为4,点E 是BC 的中点∴BE=2∵∠DAB=60°,∴∠FCE=60°∵点F 是点E 关于AC 的对称点∴根据菱形的对称性可知,点F 在DC 的中点上则CF=CE=2∴△CFE 是等边三角形,∴∠FEC=60°,EF=2∴∠BEG=60°∴在Rt △BEG 中,EG=1,3∴FG=1+2=3∴在Rt △BFG 中,()2233+3根据分析可知,BF=PB+PE∴△PBE 的周长32故选:C【点睛】本题考查菱形的性质和利用对称性求最值问题,解题关键是利用对称性,将BP+PE 的长转化为FB 的长. 4.B解析:B【分析】连接,,,FA FB ED ED ,延长FE 交CD 于点G ,延长EF 交AB 于点H ,说明EF 是DFC ∠,AEB ∠的平分线,得出,EG FH 的长度,进而求出EF 的长度.【详解】解:连接,,,FA FB ED ED ,延长FE 交CD 于点G ,延长EF 交AB 于点H , ∵ABE ∆是等边三角形,∴60EAB EBA ∠=∠=︒,∴30DAE CBE ∠=∠=︒,在DAE ∆和CBE ∆中,∵AD BC DAE CBE AE BE =⎧⎪∠=∠⎨⎪=⎩,∴DAE CBE ∆≅∆,∴ED EC =,在EDF ∆和ECF ∆中,∵FD FC EF EF ED EC =⎧⎪=⎨⎪=⎩,∴EDF ECF ∆≅∆,∴DFE CFE ∠=∠∴EF 是DFC ∠的平分线,∴FG 是等边DFC ∆的DFC ∠的平分线,∴FG DC ⊥,∴GE GF EF =-,同理可证:EH AB ⊥,FH EH EF =-,∵,EAB FDC ∆∆都是等边三角形,且边长都等于正方形的边长,∴GF EH =,∴GE FH =,∵FG DC ⊥,EH AB ⊥,∴,,,G E F H 四点共线,且GH AD =,∵正方形ABCD 的边长为2,DFC ∆是等边三角形,∴2DF =,∵FG 是等边DFC ∆的DFC ∠的平分线,∴FG 也是DC 边上的中线,即:1DG GC ==,∴在Rt DFG ∆中,由勾股定理得:222DF DG GF =+,即:2222=1GF +,∴GF =∴2FH =,同理可得:2GE =-,∴((22222EF GE FH =--=--=,故选:B .【点睛】本题目主要考查了正方形的性质,等边三角形的性质,以及全等三角形的判定,利用,,,G E F H四点共线是解决本题的关键.5.D解析:D【分析】根据折叠的性质得到ED′=BE,∠D′EF=∠BEF,根据平行线的性质得到∠D′EF=∠EFB,求得BE=BF,设AD′=BC′=3x,AB=x,根据勾股定理得到BE=53x,于是得到结论.【详解】如图,将矩形ABCD沿EF折叠后点D与B重合,∴ED′=BE,∠D′EF=∠BEF,∵AD′∥BC′,∴∠D′EF=∠EFB,∴∠BEF=∠EFB,∴BE=BF,∵原矩形的长宽之比为3:1,∴设AD′=BC′=3x,AB=x,∴AE=3x−ED′=3x−BE,∵AE2+AB2=BE2,∴(3x−BE)2+x2=BE2,解得:BE=53 x,∴BF=BE=53x,AE=3x−BE=43x∴AEBF=4335xx=45,故选:D .【点睛】本题考查了翻折变换(折叠问题),矩形的性质,等腰三角形的判定和性质,勾股定理,熟练掌握折叠的性质是解题的关键.6.B解析:B【分析】先根据平行四边形性质和等腰三角形性质可得2AE 是BAD ∠的角平分线,4DE 是ADC ∠的角平分线,结论(2)正确.再利用结论(2)可得3390DAE ADE ∠+∠>︒,2290DAE ADE ∠+∠>︒即可判断结论(1)(3)错误,【详解】解:设1122334455CE E E E E E E E E E B m ======,则6BC m =, ABCD ,32AB AD =6AD BC m ∴==,//AD BC ,//AB CD ,4AB CD m ==在2ABE ∆中,24BE m AB ==22AE B BAE ∴∠=∠,//AD BC ,∴22AE B DAE ∠=∠,221=2DAE BAE BAD ∴∠=∠∠, 同理可得:4412ADE CDE ADC ∠==∠∠, //AB CD ,∴180BAD ADC ∠+∠=︒,2490DAE ADE ∴∠+∠=︒42AE DE ∴⊥,故(2)正确;∵32DAE DAE ∠>∠,34ADE ADE ∠>∠,∴3324DAE ADE DAE ADE ∠+∠>∠+∠,即3390DAE ADE ∠+∠>︒,∴390AE D ∠<︒所以3DE 与3AE 不垂直,故(1)不正确;∵,24ADE ADE ∠>∠,∴2224DAE ADE DAE ADE ∠+∠>∠+∠,即2290DAE ADE ∠+∠>︒,∴290AE D ∠<︒故(3)不正确;故选:B .【点睛】本题考查了平行四边形性质,等腰三角形性质,三角形内角和定理等,证明2AE 是BAD ∠的角平分线,4DE 是ADC ∠的角平分线是解题关键.7.D解析:D【分析】首先根据正方形的性质证得△BAE ≌△CDE ,推出∠ABE =∠DCE ,再证△ADH ≌△CDH ,求得∠HAD =∠HCD ,推出∠ABE =∠HAD:求出∠ABE+∠BAG =90°;最后在△AGE 中根据三角形的内角和是180°求得∠AGE =90°即可得到①正确; 因为点E 是AD 边的中点,求出AB= 2AE ,即可求得,故②正确;根据 AD ∥BC ,求出S △BDE =S △CDE ,推出 S △BDE ﹣S △DEH =S △CDE ﹣S △DEH ,即;S △BHE =S △CHD ,故③正确;由∠AHD =∠CHD ,得到邻补角和对顶角相等得到∠AHB =∠EHD ,故④正确【详解】∵四边形ABCD 是正方形,E 是AD 边上的中点,∴AE=DE ,AB=CD ,∠BAD=∠CDA=90°,在△BAE 和△CDE 中∵AE DE BAE CDE AB CDA =⎧⎪∠=∠⎨⎪=⎩∴△BAE ≌△CDE (SAS ),∴∠ABE=∠DCE ,∵四边形ABCD 是正方形,∴AD=DC ,∠ADB=∠CDB=45°,∵在△ADH 和△CDH 中,AD CD ADH CDH DH DH =⎧⎪∠=∠⎨⎪=⎩∴△ADH ≌△CDH (SAS ),∴∠HAD=∠HCD,∵∠ABE=∠DCE∴∠ABE=∠HAD,∵∠BAD=∠BAH+∠DAH=90°,∴∠ABE+∠BAH=90°,∴∠AGB=180°-90°=90°,∴AG⊥BE,故①正确;∵点E是AD边的中点,∴AB= 2AE,∴BE=5 AE∴BE:BC=5:2,故②正确;∵AD∥BC,∴S△BDE=S△CDE,∴S△BDE﹣S△DEH=S△CDE﹣S△DEH,即;S△BHE=S△CHD,故③正确;∵△ADH≌△CDH,∴∠AHD=∠CHD,∴∠AHB=∠CHB,∵∠BHC=∠DHE,∴∠AHB=∠EHD,故④正确;故选:D.【点睛】本题考查了全等三角形的判定与性质和正方形的性质,解题的关键是熟练掌握其性质. 8.B解析:B【解析】【分析】根据中点定义得出DE=CE,再根据折叠的性质得出DE=EF,AF=AD,∠AFE=∠D=90°,从而得出CE=EF,连接EG,利用“HL”证明△ECG≌△EFG,根据全等三角形性质得出CG=FG,设CG=a,则BC=4a,根据长方形性质得出AD=BC=4a,再求出AF=4a,最后求出AG=AF+FG=5a,最后利用勾股定理求出AB,从而进一步得出答案即可.【详解】如图,连接EG,∵点E是CD中点,∴DE=EC ,根据折叠性质可得:AD=AF ,DE=EF ,∠D=∠AFE=90°,∴CE=EF ,在Rt △ECG 与Rt △EFG 中,∵EG=EG ,EC=EF ,∴Rt △ECG ≌Rt △EFG (HL ),∴CG=FG ,设CG=a ,∴BG=3CG=3a , ∴BC=4a , ∴AF=AD=BC=4a . ∴AG=5a . 在Rt △ABG 中, ∴224AB AG BG a =-=, ∴1AD AB=, 故选B.【点睛】本题主要考查了长方形与勾股定理及全等三角形判定和性质的综合运用,熟练掌握相关概念是解题关键,9.B解析:B【分析】①连接CF ,证明△ADF ≌△CEF ,得到△EDF 是等腰直角三角形;②根据中点的性质和直角三角形的性质得到四边形CDFE 是菱形,利用正方形的判定定理进行判断;③当DE 最小时,DF 也最小,利用垂线段的性质求出DF 的最小值,进行计算即可; ④根据△ADF ≌△CEF ,得到S 四边形CEFD =S △AFC ;⑤由③的结论进行计算即可.【详解】①连接CF ,∵△ABC 是等腰直角三角形,且F 是AB 边上的中点,∴∠FCB=∠A=∠B =45°,CF=AF=FB ,∵AD=CE ,∴△ADF≌△CEF,∴EF=DF,∠AFD=∠CFE,∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形,①正确;②当D、E分别为AC、BC中点,即DF、EF分别为Rt△AFC和Rt△BFC斜边上的中线,∴CD=DF=12AC,FE=EC=12BC,∴CD=DF=FE=EC,四边形CDFE是菱形,又∠C=90°,∴四边形CDFE是正方形,②错误;③由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小,当DF⊥AC时,DE最小,此时EF=DF=12BC=4.∴==④∵△ADF≌△CEF,∴S△CEF=S△ADF,∴S四边形CEFD=S△AFC,∴四边形CDFE的面积保持不变,④正确;⑤由③可知当DE最小时,DF也最小,DF的最小值是4,则DE的最小值为当△CEF面积最大时,此时△DEF的面积最小.此时S△CEF=S四边形CEFD-S△DEF=S△AFC-S△DEF=16-8=8,⑤正确;综上,正确的是:①④⑤,故选:B.【点睛】本题考查了正方形的判定、等腰直角三角形的性质、全等三角形的判定和性质,掌握正方形的判定定理、全等三角形的判定定理和性质定理、理解点到直线的距离的概念是解题的关键.10.B解析:B【分析】①只要证明OH是△DBF的中位线即可得出结论;②根据OH是△BFD的中位线,得出GH=12CF,由GH<14BC,可得出结论;③易证得△ODH是等腰三角形,继而证得OD=12 BF;④根据四边形ABCD是正方形,BE是∠DBC的平分线可求出Rt△BCE≌Rt△DCF,再由∠EBC=22.5°即可求出结论.【详解】解:∵EC=CF,∠BCE=∠DCF,BC=DC,∴△BCE≌△DCF,∴∠CBE=∠CDF,∵∠CBE+∠BEC=90°,∠BEC=∠DEH,∴∠DEH+∠CDF=90°,∴∠BHD=∠BHF=90°,∵BH=BH,∠HBD=∠HBF,∴△BHD≌△BHF,∴DH=HF,∵OD=OB∴OH是△DBF的中位线∴OH∥BF;故①正确;∴OH=12BF,∠DOH=∠CBD=45°,∵OH是△BFD的中位线,∴DG=CG=12BC,GH=12CF,∵CE=CF,∴GH=12CF=12CE∵CE<CG=12 BC,∴GH<14BC,故②错误.∵四边形ABCD是正方形,BE是∠DBC的平分线,∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,∵CE=CF,∴Rt△BCE≌Rt△DCF(SAS),∴∠EBC=∠CDF=22.5°,∴∠BFH=90°-∠CDF=90°-22.5°=67.5°,∵OH是△DBF的中位线,CD⊥AF,∴OH是CD的垂直平分线,∴DH=CH,∴∠CDF=∠DCH=22.5°,∴∠HCF=90°-∠DCH=90°-22.5°=67.5°,∴∠CHF=180°-∠HCF-∠BFH=180°-67.5°-67.5°=45°,故④正确;∴∠ODH=∠BDC+∠CDF=67.5°,∴∠OHD=180°-∠ODH-∠DOH=67.5°,∴∠ODH=∠OHD,∴OD=OH=12BF;故③正确.故选:B.【点睛】此题考查了全等三角形的判定和性质、等腰三角形的判定与性质以及正方形的性质.解答此题的关键是作出辅助线,构造等腰直角三角形,利用等腰直角三角形的性质结合角平分线的性质逐步解答.二、填空题11.25【详解】由于点B与点D关于AC对称,所以如果连接DE,交AC于点P,那PE+PB的值最小.在Rt△CDE中,由勾股定理先计算出DE的长度,即为PE+PB的最小值.连接DE,交AC于点P,连接BD.∵点B与点D关于AC对称,∴DE的长即为PE+PB的最小值,∵AB=4,E是BC的中点,∴CE=2,在Rt△CDE中, DE=25.考点:(1)、轴对称-最短路线问题;(3)、正方形的性质.12.2【解析】分析:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,易得四边形OECF为矩形,由△AOP为等腰直角三角形得到OA=OP,∠AOP=90°,则可证明△OAE≌△OPF,所以AE=PF,OE=OF,根据角平分线的性质定理的逆定理得到CO平分∠ACP,从而可判断当P 从点D出发运动至点B停止时,点O的运动路径为一条线段,接着证明CE=12(AC+CP),然后分别计算P点在D点和B点时OC的长,从而计算它们的差即可得到P从点D出发运动至点B停止时,点O的运动路径长.详解:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,∵△AOP为等腰直角三角形,∴OA=OP,∠AOP=90°,易得四边形OECF为矩形,∴∠EOF=90°,CE=CF,∴∠AOE=∠POF,∴△OAE≌△OPF,∴AE=PF,OE=OF,∴CO平分∠ACP,∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,∵AE=PF,即AC-CE=CF-CP,而CE=CF,∴CE=12(AC+CP),∴2CE=22(AC+CP),当AC=2,CP=CD=1时,OC=22×(2+1)=322,当AC=2,CP=CB=5时,OC=2×(2+5)72,∴当P从点D出发运动至点B停止时,点O的运动路径长72-3222.故答案为2点睛:本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.也考查了全等三角形的判定与性质.133223102【分析】根据点P在直线BC上,点Q在直线CD上,分两种情况:1.P、Q点位于线段上;2.P、Q 点位于线段的延长上,再通过三角形全等得出相应的边长,最后根据勾股即可求解.【详解】解:当P 点位于线段BC 上,Q 点位于线段CD 上时:∵四边形ABCD 是矩形,AP PQ ⊥∴∠BAP=∠CPQ ,∠APB=∠PQC∵AP PQ =∴ABP PCQ ≅∴PC=AB=32,BP=BC-PC=3-32=32∴AP=223322+()()=322当P 点位于线段BC 的延长线上,Q 点位于线段CD 的延长线上时:∵四边形ABCD 是矩形,AP PQ ⊥∴∠BAP=∠CPQ ,∠APB=∠PQC∵AP PQ =∴ABP PCQ ≅∴PC=AB=32,BP=BC+PC=3+32=92∴223922+()()31023223102【点睛】 此题主要考查三角形全等的判定及性质、勾股定理,熟练运用判定定理和性质定理是解题的关键.14.3或6【详解】①∠B′EC=90°时,如图1,∠BEB′=90°,由翻折的性质得∠AEB=∠AEB′=12×90°=45°,∴△ABE是等腰直角三角形,∴BE=AB=6cm;②∠EB′C=90°时,如图2,由翻折的性质∠AB′E=∠B=90°,∴A、B′、C在同一直线上,AB′=AB,BE=B′E,由勾股定理得,AC=222268AB BC+=+=10cm,∴B′C=10-6=4cm,设BE=B′E=x,则EC=8-x,在Rt△B′EC中,B′E2+B′C2=EC2,即x2+42=(8-x)2,解得x=3,即BE=3cm,综上所述,BE的长为3或6cm.故答案为3或6.15.72;【分析】连接AO、BO、CO,过O作FO⊥AO,交AB的延长线于F,判定△AOC≌△FOB(ASA),即可得出AO=FO,FB=AC=6,进而得到AF=8+6=14,∠FAO=45°,根据AO=AF×cos45°进行计算即可.【详解】解:连接AO、BO、CO,过O作FO⊥AO,交AB的延长线于F,∵O是正方形DBCE的对称中心,∴BO=CO,∠BOC=90°,∵FO⊥AO,∴∠AOF=90°,∴∠BOC=∠AOF ,即∠AOC+∠BOA=∠FBO+∠BOA ,∴∠AOC=∠FBO ,∵∠BAC=90°,∴在四边形ABOC 中,∠ACO+∠ABO=180°,∵∠FBO+∠ABO=180°,∴∠ACO=∠FBO ,在△AOC 和△FOB 中,AOC FOB AO FOACO FBO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOC ≌△FOB (ASA ),∴AO=FO ,FB=FC=6,∴AF=8+6=14,∠FAO=∠OFA=45°,∴AO=AF×cos45°=14×2=故答案为.【点睛】本题考查了正方形的性质和全等三角形的判定与性质.本题的关键是通过作辅助线来构建全等三角形,然后将已知和所求线段转化到直角三角形中进行计算.16.9或1).【分析】分两种情况画图,利用等腰直角三角形的性质和勾股定理矩形计算即可.【详解】解:①如图1,延长EA 交DC 于点F ,∵菱形ABCD 的周长为24,∴AB=BC=6,∵∠ABC=60°,∴三角形ABC 是等边三角形,∴∠BAC=60°,当EA ⊥BA 时,△ABE 是等腰直角三角形,∴AE=AB=AC=6,∠EAC=90°+60°=150°,∴∠FAC=30°,∵∠ACD=60°,∴∠AFC=90°,∴CF=12AC=3,则△ACE的面积为:12AE×CF=12×6×3=9;②如图2,过点A作AF⊥EC于点F,由①可知:∠EBC=∠EBA+∠ABC=90°+60°=150°,∵AB=BE=BC=6,∴∠BEC=∠BCE=15°,∴∠AEF=45°-15°=30°,∠ACE=60°-15°=45°,∴AF=12AE,AF=CF=22AC=32∵AB=BE=6,∴AE=2∴2236AE AF-=∴EC=EF+FC=3632则△ACE的面积为:12EC×AF=1(3632)329(31)2⨯⨯=.故答案为:9或31).【点睛】本题考查了菱形的性质、等腰三角形的性质、等边三角形的判定与性质,解决本题的关键是掌握菱形的性质.17.16或10【分析】等腰三角形一般分情况讨论:(1)当DB'=DC=16;(2)当B'D=B'C时,作辅助线,构建平行四边形AGHD和直角三角形EGB',计算EG和B'G的长,根据勾股定理可得B'D的长;【详解】∵四边形ABCD是矩形,∴DC=AB=16,AD=BC=18.分两种情况讨论:(1)如图2,当DB'=DC=16时,即△CDB'是以DB'为腰的等腰三角形(2)如图3,当B'D=B'C时,过点B'作GH∥AD,分别交AB与CD于点G、H.∵四边形ABCD是矩形,∴AB∥CD,∠A=90°又GH∥AD,∴四边形AGHD是平行四边形,又∠A=90°,∴四边形AGHD是矩形,∴AG=DH,∠GHD=90°,即B'H⊥CD,又B'D=B'C,∴DH=HC=18CD=,AG=DH=8,3∵AE=3,∴BE=EB'=AB-AE=16-3=13,EG=AG-AE=8-3=5,在Rt△EGB'中,由勾股定理得:GB′2213512,∴B'H=GH×GB'=18-12=6,在Rt△B'HD中,由勾股定理得:B′D22+=6810综上,DB'的长为16或10.故答案为: 16或10【点睛】本题是四边形的综合题,考查了矩形的性质,勾股定理,等腰三角形一般需要分类讨论.18.663【分析】==,得到△FEM是等边三角形,根据含30°直通过四边形ABCD是矩形以及CE CB BE角三角形的性质以及勾股定理得到KM,NK,KE的值,进而得到NE的值,再利用30°直角三角形的性质及勾股定理得到BN,BE即可.【详解】解:如图,设NE交AD于点K,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,∴∠MFE=∠FCB,∠FME=∠EBC==,∵CE CB BE∴△BCE为等边三角形,∴∠BEC=∠ECB=∠EBC=60°,∵∠FEM=∠BEC,∴∠FEM=∠MFE=∠FME=60°,∴△FEM是等边三角形,FM=FE=EM=2,∵EN⊥BE,∴∠NEM=∠NEB=90°,∴∠NKA=∠MKE=30°,∴KM=2EM=4,NK=2AN=6,∴在Rt△KME中,KE=2223-=,KM EM∴NE=NK+KE=6+23,∵∠ABC=90°,∴∠ABE=30°,∴BN=2NE=12+43,∴BE=22663-=+,BN NE∴BC=BE=663,故答案为:663【点睛】本题考查了矩形,等边三角形的性质,以及含30°直角三角形的性质与勾股定理的应用,解题的关键是灵活运用30°直角三角形的性质.19.4【分析】根据题意,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+23,由DM=122AD =,则BM=23,利用勾股定理的逆定理,得到∠AMB=90°,则得到△ABD 为等边三角形,即可得到BD 的长度.【详解】解:如图:连接BD ,BM ,则AC 垂直平分BD ,则BN=DN ,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+3 ∵AD=AB=4,M 是AD 的中点,∴AM=DM=122AD =, ∴BM=3∵2222223)16AM BM AB +=+==,∴△ABM 是直角三角形,即∠AMB=90°;∵BM 是△ABD 的中线,∴△ABD 是等边三角形,∴BD=AB=AD=4.故答案为:4.【点睛】本题考查了菱形的性质,等边三角形的判定和性质,勾股定理的逆定理,以及三线合一定理.解题的关键是熟练掌握所学的知识,正确得到△ABD 是等边三角形.202【解析】【分析】根据折叠的性质可得∠DAF=∠BAF=45°,再由矩形性质可得FC=ED=1,然后由勾股定理求出FG 即可.【详解】由折叠的性质可知,∠DAF=∠BAF=45°,∴AE=AD=3,EB=AB-AD=1,∵四边形EFCB 为矩形,∴FC=BE=1,∵AB ∥FC ,∴∠GFC=∠DAF=45°,∴GC=FC=1,∴FG ===.【点睛】本题考查了折叠变换,矩形的性质是一种对称变换,理解折叠前后图形的大小不变,位置变化,对应边和对应角相等是解决此题的关键.三、解答题21.(1)①120°;② BC =CD +CF ;(2)不成立,见解析;(3)8,【分析】(1)①根据菱形的性质以及等边三角形的性质,推出△ACF ≌△ABD ,根据全等三角形的性质即可得到结论;②根据全等三角形的性质得到CF=BD ,再根据BD+CD=BC ,即可得出CF+CD=BC ;(2)依据△ABD ≌△ACF ,即可得到∠ACF+∠BAC=180°,进而得到AB ∥CF ;依据△ABD ≌△ACF 可得BD=CF ,依据CD-BD=BC ,即可得出CD-CF=BC ;(3)依据≅△△ADB AFC ,即可得到8==+=CF BD BC CD ,利用ABC ∆是等边三角形,AH BC ⊥,可得132===BH HC BC ,即可得出HD 的长度,利用勾股定理即可求出AD 的长度,即可得出结论.【详解】解:(1) 在等边△ABC 中,AB=AC ,∠BAC=∠ACB=∠ABC=60°∴∠BAD+∠DAC=60°在菱形ADEF 中AD=AF∵∠DAF=∠DAC+∠FAC=60°∴∠CAF=∠DAB又∵AC=AB ,AF=AD∴△ACF ≌△ABD∴∠ACF=∠ABD=60°,CF=BD∴∠BCF=∠ACB+∠ACF=120°故答案为:120°②∵BC=BD+CD ,BD=CF∴BD=CF+CD故答案为:BC=CD+CF(2)不成立理由:∵ABC ∆是等边三角形∴60BAC ABC ACB ∠=∠=∠=,AB AC =又∵60DAF ∠=∴BAC BAF DAF BAF ∠-∠=∠-∠∴FAC DAB ∠=∠∵四边形ADEF 是菱形∴AD AF =∴≅△△ADB AFC∴DB FC =,18060120ACF ABD ∠=∠=-=∴1206060BCF ACF ACB ∠=∠-∠=-=∵BC CD BD =-∴BC CD CF =-(3)8=CF ,菱形ADEF 的面积是263∵60BAC DAF ∠=∠=∴BAD CAF ∠=∠又∵AB AC =,AD AF =∴≅△△ADB AFC∴16683CF BD BC CD ==+=+⨯=∴如图,过点A 作AH BC ⊥于点H ,连接FD∵ABC 是等边三角形,AH BC ⊥ ∴116322BH HC BC ===⨯= ∴325HD HC CD =+=+=∵22236927AH AB BH =-=-=∴222725213AD AH DH ++=∴13222132132632AFD ADEF S S ∆==⨯⨯=菱形 【点睛】此题属于四边形综合题,主要考查了全等三角形的判定和性质,菱形的性质,等边三角形的判定和性质的综合运用,利用已知条件判定△DAB ≌△FAC 是解本题的关键.22.(1)证明见解析;(2)62BE =(3)证明见解析.【分析】(1)根据平行四边形的对边平行,结合平行线的性质可证明∠E=∠CGH ,∠H=∠AFE ,再证明四边形ACGE 是平行四边形即可证明AE=CG ,由此可利用“AAS”可证明全等; (2)证明△AEF ≌△DGF (AAS )可得△DGF ≌△CGH ,所以可得12AEDG CG CD ,再结合等腰直角三角形的性质即可求得CD ,由此可得结论;(3)利用等腰直角三角形的性质和平行四边形的性质结合勾股定理分别把22AC BD +和22AB BC +用2CD 表示即可得出结论. 【详解】解:(1)证明:∵四边形ABCD 为平行四边形,∴AB//CD ,AD//BC ,∴∠E=∠EGD ,∠H=∠DFG ,∵∠CGH=∠EGD ,∠DFG=∠AFE ,∴∠E=∠CGH ,∠H=∠AFE ,∵//EH AC ,AB//CD ,∴四边形ACGE 是平行四边形,∴AE=CG ,∴△AEF ≌△CGH (AAS );(2)∵四边形ABCD 为平行四边形,∴AB//CD ,AB=CD ,∴∠E=∠EGD ,∠D=∠EAF ,∵F 是AD 的中点,∴AF=FD ,∴△AEF ≌△DGF (AAS );由(1)得△AEF ≌△CGH (AAS ); ∴△DGF ≌△CGH,∴12AE DG CG CD , ∵ACD ∆是等腰直角三角形,90ACD ∠=,8AD =, ∴2422AB CD AD ,∴AE =∴BE AB BE =+=(3)如下图,∵四边形ABCD 为平行四边形,∴CD=AB ,AD=BC ,AC=2OC ,BD=2OD ,∵ACD ∆是等腰直角三角形,90ACD ∠=,AC=CD ,∴222222244()AC BD AC OD AC OC CD ++++==2222222(2)446AC A OC CD AC D C CD C ++=++==,且222222223CD AD CD AC CD C AB BC D =+=+++=,∴22222()AC BD AB BC +=+【点睛】本题考查平行四边形的性质和判定,勾股定理,全等三角形的性质和判定,等腰直角三角形的性质.(1)中解题关键是利用证明四边形ACGE 是平行四边形证明AE=CG ;(2)得出DG CG =是解题关键;(3)中能正确识图,完成线段之间的代换是解题关键.23.(1)证明见解析;(2)①2BH BG =②BH 的长为2或2. 【分析】(1)证()DAG BAE SAS △≌△,即可得出结论;(2)①连接GH ,延长HF 交AB 于N ,设AB 与EF 的交点为M ,证()GAB GFH SAS △≌△,得GH GB =,GHF GBA ∠=∠,证GHB ∆为等腰直角三角形,即得结论;②分两种情况,证出点B 、E 、G 在一条直线上,求出210AF EG AE ===,则5OA OG OE ===,由勾股定理求出12OB =,求出BG ,即可得出答案.【详解】(1)∵四边形ABCD 和四边形AEFG 是正方形,∴AD =AB =CB ,AG =AE ,∠DAB =∠GCE =90°,∴∠DAB ﹣∠GAF =∠GCE ﹣∠GAF ,即∠DAG =∠BAE ,在△DAG 和△BAE 中,AD AE DAG BAE AG AE =⎧⎪∠=∠⎨⎪=⎩,。
念书破万卷下笔若有神1.(人教版. 八下 . 平行四边形.18.1 ) 3.在□ABCD 中,∠A、∠ B 的度数之比为5∶ 4,则∠C 等于()A.60 °B.80°C.100°D.120 °考点:平行四边形邻角互补,对角相等专题:几何剖析:平行四边形邻角互补,因此∠解答:设∠ A、∠ B 分别为 5x,4xA、∠ B 之和为180°。
因此∠ A+∠B=180°5x+4x=180 °180°∠ A=100°、∠ B=80°∠ C= ∠ A=100°应选 C.评论:平行四边形邻角互补,对角相等。
2. (人教版 . 八下 . 平行四边形 .18.1 )如图,AD =3, OF =1.3,则四边形BCEF 的周长为(□ABCD)中, EF 过对角线的交点O, AB=4 ,考点:平行四边形对角线相互均分专题:几何剖析:平行四边形对角线相互均分,因此 OF=OE=1.3.BF=DE, 因此 CE+BF=CD=4 解答:由于平行四边形对角线相互均分因此OF=OE=1.3, .BF=DE则四边形 BCEF 的周长为 =BC+BF+EF+CE= BC+DE+EF+CE=12.6应选 C评论:平行四边形对角线相互均分。
3.(人教版 . 八下 . 平行四边形 .18.1 )平行四边行的两条对角线把它分红全等三角形的对数是()A.2B.4C.6D.8考点:平行四边形对角线相互均分专题:几何剖析:平行四边形对角线相互均分解答:如图A BOD C共四对全等三角形,分别是应选 B评论:平行四边形对角线相互均分,在用全等三角形的判断证明。
4. (人教版 . 八下 . 平行四边形 .18.1 )□ ABCD 的周长为 36 cm, AB= 5BC,则较长边的长7为()A.15 cmB.7.5 cmC.21 cmD.10.5 cm 考点:平行四边形两组对边分别相等专题:几何剖析:平行四边形两组对边分别相等,□ ABCD 的周长为36 cm ,因此 AB+BC=18. 解答 : □ ABCD 的周长为 36 cm因此 AB+BC=18.又由于5 AB= BC7因此 AB=7.5 ,BC=10.5故较长边为 10.5cm应选 D评论:平行四边形两组对边分别相等。
人教版平行四边形单元达标测试题一、选择题1.如图,将一个矩形纸片ABCD 折叠,使点B 与点D 重合,若3,9,AB BC ==则折痕EF 的长度为( )A .3B .23C .10D .31022.如图,E 是边长为2的正方形ABCD 的对角线AC 上一点,且AE AB =,F 为BE 上任意一点,FG AC 于点G ,FH AB ⊥于点H ,则FG FH +的值是( )A .22B .2C .2D .13.如图,正方形ABCD 的边长为1,顺次连接正方形ABCD 四边的中点得到第一个正方形1111D C B A ,又顺次连接正方形1111D C B A 四边中点得到第二个正方形2222A B C D ,……,以此类推,则第六个正方形6666A B C D 的面积是( )A .164B .116C .132D .184.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点P 是AD 边上的一个动点,过点P 分别作PE ⊥AC 于点E ,PF ⊥BD 于点F.若AB =3,BC =4,则PE +PF 的值为( )A .10B .9.6C .4.8D .2.45.如图,在正方形ABCD 中,点E ,F 分别在BC 和CD 上,过点A 作GA AE ⊥,CD 的延长线交AG 于点G ,BE DF EF +=,若30DAF ∠=︒,则BAE ∠的度数为( )A .15°B .20°C .25°D .30°6.如图,一张长方形纸片的长4=AD ,宽1AB =,点E 在边AD 上,点F 在边BC 上,将四边形ABFE 沿着EF 折叠后,点B 落在边AD 的中点G 处,则EG 等于( )A 3B .3C .178D .547.如图,在Rt ABC 中,90ACB ∠=︒,分别以AB ,AC ,BC 为边,在AB 的同侧作正方形ABHI ,ACFG ,BCED .若图中两块阴影部分的面积分别记为1S ,2S ,则对1S ,2S 的大小判断正确的是( )A .12S S >B .12S SC .12S S <D .无法确定8.如图,在平行四边形ABCD 中,过点A 作AG BC ⊥于G ,作AH CD ⊥于H ,且45GAH ∠=︒,2AG =,3AH =,则平行四边形的面积是( )A .62B .122C .6D .12 9.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( )A .2.8B .22C .2.4D .3.510.如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为( )A .0.5B .2.5C 2D .1二、填空题11.如图,ABC ∆是边长为1的等边三角形,取BC 边中点E ,作//ED AB ,//EF AC ,得到四边形EDAF ,它的周长记作1C ;取BE 中点1E ,作11//E D FB ,11//E F EF ,得到四边形111E D FF ,它的周长记作2C .照此规律作下去,则2020C =______.12.如图,四边形ABCD 是菱形,∠DAB =48°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO =_____度.13.如图,四边形纸片ABCD 中,AB BC =, 90ABC ADC ∠=∠=︒.若该纸片的面积为10 cm 2,则对角线BD =______cm .14.在锐角三角形ABC 中,AH 是边BC 的高,分别以AB ,AC 为边向外作正方形ABDE 和正方形ACFG ,连接CE ,BG 和EG ,EG 与HA 的延长线交于点M ,下列结论:①BG=CE ;②BG ⊥CE ;③AM 是△AEG 的中线;④∠EAM=∠ABC .其中正确的是_________.15.如图,菱形ABCD 的边长是4,60ABC ∠=︒,点E ,F 分别是AB ,BC 边上的动点(不与点A ,B ,C 重合),且BE BF =,若//EG BC ,//FG AB ,EG 与FG 相交于点G ,当ADG 为等腰三角形时,BE 的长为________.16.如图,▱ABCD 中,∠DAB =30°,AB =6,BC =2,P 为边CD 上的一动点,则2PB+ PD 的最小值等于______.17.如图,点E 、F 分别在平行四边形ABCD 边BC 和AD 上(E 、F 都不与两端点重合),连结AE 、DE 、BF 、CF ,其中AE 和BF 交于点G ,DE 和CF 交于点H .令AF n BC=,EC m BC=.若m n =,则图中有_______个平行四边形(不添加别的辅助线);若1m n +=,且四边形ABCD 的面积为28,则四边形FGEH 的面积为_______.18.如图,长方形ABCD 中AB =2,BC =4,正方形AEFG 的边长为1.正方形AEFG 绕点A 旋转的过程中,线段CF 的长的最小值为_____.19.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,AB =OB ,E 为AC 上一点,BE 平分∠ABO ,EF ⊥BC 于点F ,∠CAD =45°,EF 交BD 于点P ,BP =5,则BC 的长为_______.20.如图所示,已知AB = 6,点C ,D 在线段AB 上,AC =DB = 1,P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G ,当点P 从点C 运动到点D 时,则点G 移动路径的长是_________.三、解答题21.在数学的学习中,有很多典型的基本图形.(1)如图①,ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为D 、E .试说明ABD CAE ≌;(2)如图②,ABC 中,90BAC ∠=︒,AB AC =,点D 、A 、F 在同一条直线上,BD DF ⊥,3AD =,4BD =.则菱形AEFC 面积为______.(3)如图③,分别以Rt ABC 的直角边AC 、AB 向外作正方形ACDE 和正方形ABFG ,连接EG ,AH 是ABC 的高,延长HA 交EG 于点I ,若6AB =,8AC =,求AI 的长度.22.如图,矩形OBCD 中,OB =5,OD =3,以O 为原点建立平面直角坐标系,点B ,点D 分别在x 轴,y 轴上,点C 在第一象限内,若平面内有一动点P ,且满足S △POB =13S 矩形OBCD ,问:(1)当点P 在矩形的对角线OC 上,求点P 的坐标;(2)当点P 到O ,B 两点的距离之和PO +PB 取最小值时,求点P 的坐标.23.如图1,在正方形ABCD 中,点M 、N 分别在边BC 、CD 上,AM 、AN 分别交BD 于点P 、Q ,连接CQ 、MQ .且CQ MQ =.(1)求证:QAB QMC ∠=∠(2)求证:90AQM ∠=︒(3)如图2,连接MN ,当2BM =,3CN =,求AMN 的面积图1 图224.如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .(1)求证:四边形BCEF 是平行四边形;(2)若∠DEF =90°,DE =8,EF =6,当AF 为 时,四边形BCEF 是菱形.25.如图,四边形ABCD 是边长为3的正方形,点E 在边AD 所在的直线上,连接CE ,以CE 为边,作正方形CEFG (点C 、E 、F 、G 按逆时针排列),连接BF.(1)如图1,当点E 与点D 重合时,BF 的长为 ;(2)如图2,当点E 在线段AD 上时,若AE=1,求BF 的长;(提示:过点F 作BC 的垂线,交BC 的延长线于点M ,交AD 的延长线于点N.)(3)当点E 在直线AD 上时,若AE=4,请直接写出BF 的长.26.在矩形ABCD 中,BE 平分∠ABC 交CD 边于点E .点F 在BC 边上,且FE⊥AE.(1)如图1,①∠BEC=_________°;②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图2,FH∥CD 交AD 于点H ,交BE 于点M .NH∥BE,NB∥HE,连接NE .若AB=4,AH=2,求NE 的长.27.问题背景若两个等腰三角形有公共底边,则称这两个等腰三角形的顶角的顶点关于这条底边互为顶针点;若再满足两个顶角的和是180°,则称这两个顶点关于这条底边互为勾股顶针点. 如图1,四边形ABCD 中,BC 是一条对角线,AB AC =,DB DC =,则点A 与点D 关于BC 互为顶针点;若再满足180A D +=︒∠∠,则点A 与点D 关于BC 互为勾股顶针点.初步思考(1)如图2,在ABC 中,AB AC =,30ABC ∠=︒,D 、E 为ABC 外两点,EB EC =,45EBC ∠=︒,DBC △为等边三角形.①点A 与点______关于BC 互为顶针点;②点D 与点______关于BC 互为勾股顶针点,并说明理由.实践操作(2)在长方形ABCD 中,8AB =,10AD =.①如图3,点E 在AB 边上,点F 在AD 边上,请用圆规和无刻度的直尺作出点E 、F ,使得点E 与点C 关于BF 互为勾股顶针点.(不写作法,保留作图痕迹)思维探究②如图4,点E 是直线AB 上的动点,点P 是平面内一点,点E 与点C 关于BP 互为勾股顶针点,直线CP 与直线AD 交于点F .在点E 运动过程中,线段BE 与线段AF 的长度是否会相等?若相等,请直接写出AE 的长;若不相等,请说明理由.28.如图①,在ABC 中,AB AC =,过AB 上一点D 作//DE AC 交BC 于点E ,以E 为顶点,ED 为一边,作DEF A ∠=∠,另一边EF 交AC 于点F .(1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,ADEF 的形状为 ;(3)延长图①中的DE 到点,G 使,EG DE =连接,,,AE AG FG 得到图②,若,AD AG =判断四边形AEGF 的形状,并说明理由.29.如图①,在等腰Rt ABC 中,90BAC ∠=,点E 在AC 上(且不与点A 、C 重合),在ABC 的外部作等腰Rt CED ,使90CED ∠=,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .()1请直接写出线段AF ,AE 的数量关系;()2①将CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;②若25AB =,2CE =,在图②的基础上将CED 绕点C 继续逆时针旋转一周的过程中,当平行四边形ABFD 为菱形时,直接写出线段AE 的长度.30.如图,ABCD 的对角线,AC BD 相交于点,,6,10O AB AC AB cm BC cm ⊥==,点P 从点A 出发,沿AD 方向以每秒1cm 的速度向终点D 运动,连接PO ,并延长交BC 于点Q .设点P 的运动时间为t 秒.(1)求BQ 的长(用含t 的代数式表示);(2)当四边形ABQP 是平行四边形时,求t 的值;(3)当325t =时,点O 是否在线段AP 的垂直平分线上?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设AE x =,根据勾股定理得到AE ,进而得出BE 的长,再证明5BF BE ==,根据EG AB =,求出GF 的长,最后在运用勾股定理即可得到EF .【详解】解:过E 作EG BC ⊥于G ,设AE x =,则9DE BE x ==-,在Rt ABE △中,222AB AE BE +=,2223(9)x x ∴+=-解得4x =,4AE ∴=,945BE DE ∴==-=,DEF BFE ∠=∠,DEF BEF ∠=∠,BFE BEF ∴∠=∠,5BF BE ∴==,1GF ∴=,Rt EFG ∴中,22223110EF EG GF =+=+=即EF 10,故选:C .【点睛】本题主要考查了折叠问题,矩形的性质以及勾股定理的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解题时注意方程思想的运用.2.B解析:B【分析】过点E 作EM ⊥AB ,连接AF ,先求出EM ,由S △ABE =12AB•EM =12AE•GF+12AB•FH ,可得FG+FH=EM ,则FG+FH 的值可求.【详解】解:如图,过点E 作EM ⊥AB ,连接AF ,∵四边形ABCD 是正方形,∴∠ACB=45°, ∴△AEM 是等腰直角三角形,∵AB=AE=2,∴222224AM EM EM AE +===∴EM 2,∵S △ABE =S △AEF +S △ABF ,∴S △ABE =12AB•EM =12AE•GF+12AB•FH , ∴2;故选:B .【点睛】本题考查了正方形的性质,等腰直角三角形的性质,运用面积法得出线段的和差关系是解题的关键.3.A解析:A【分析】计算前三个正方形的面积从而得出一般规律求解.【详解】顺次连接正方形ABCD 四边的中点得到第一个正方形1111D C B A则正方形1111D C B A 的面积为11122⨯=正方形2222A B C D 的面积为111224⨯= 正方形3333A B C D 的面积为11112228⨯⨯= 正方形n n n n A B C D 的面积为11()22n n= 根据规律可得,第六个正方形6666A B C D 的面积为66111()2264== 【点睛】 本题考查了特殊正方形中的面积计算,解题的关键在于找出规律,根据规律求解.4.D解析:D【分析】连接OP ,由矩形ABCD 的可求OA=OD=52 ,最后由S △AOD =S △AOP +S △DOP 即可解答. 【详解】解:如图:连接OP∵矩形ABCD ,AB =3,BC =4∴S 矩形ABCD =AB×BC=12, OA=OC,OB=OD,AC=BD,225AC =AB +BC = ∴S △AOD =14S 矩形ABCD =3,OA=OD=52∴S △AOD =S △AOP +S △DOP =()111532222OA PE OD PF PE PF +=⨯+= ∴PE+PF=2.4故答案为D .【点睛】本题考查了矩形的性质,正确的做出辅助线和运用数形结合思想是解答本题的关键..5.A解析:A【分析】根据已知条件先证明△ABE ≌△ADG ,得到AE=AG ,再证明△AEF ≌△AGF ,得到EAF GAF ∠=∠,根据30DAF ∠=︒,设BAE ∠=x,利用GA AE ⊥得到方程求出x 即可求解.【详解】在正方形ABCD 中,AB=AD,90ABE ADG BAD ∠=∠=∠=︒∵GA AE ⊥∴90EAD DAG ∠+∠=︒又90EAD BAE ∠+∠=︒∴DAG BAE ∠∠=∴△ABE ≌△ADG (ASA )∴AE=AG ,BE=DG,∵BE DF EF +=∴BE DF DG DF EF +=+=∴EF=GF∴△AEF ≌△AGF (SSS )∴EAF GAF ∠=∠∵30DAF ∠=︒,设BAE ∠=x,∴EAF GAF ∠=∠=x+30°∵GA AE ⊥∴90EAF GAF ∠+∠=︒故x+30°+ x+30°=90°解得x=15°故选A .【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知正方形的性质及全等三角形的判定定理.6.D解析:D【分析】连接BE ,根据折叠的性质证明△ABE ≌△A GE ',得到BE=EG ,根据点G 是AD 的中点,AD=4得到AE=2-EG=2-BE ,再根据勾股定理即可求出BE 得到EG.【详解】连接BE ,由折叠得:AE A E '=,A A '∠=∠=90°,AB A G '=,∴△ABE ≌△A GE ',∴BE=EG,∵点G 是AD 的中点,AD=4,∴AG=2,即AE+EG=2,∴AE=2-EG=2-BE ,在Rt △ABE 中,222BE AE AB =+,∴ 222(2)1BE BE =-+,∴EG=5BE 4=, 故选:D.【点睛】此题考查折叠的性质,勾股定理,三角形全等的判定及性质,利用折叠证明三角形全等,目的是证得EG=BE ,由此利用勾股定理解题.7.B解析:B【分析】连接EH ,过点H 作HK ⊥BF 于点K ,令AE 与BH 交于点J ,HL 与BF 交于点L ,根据已知条件易证△BHK ≌△ABC ,继而由全等三角形的性质得S △BHK =S △ABC ,BC =HK ,∠ABC =∠BHK ,再由全等三角形的判定可得△BCJ ≌△HKL ,进而可得S 1=S △BHK =S △ABC ,由正方形的性质和全等三角形的判定可知△ABC ≌△AIG ,继而可得S △ABC =S △AIG =S 2,等量代换即可求解.【详解】解:连接EH ,过点H 作HK ⊥BF 于点K ,令AE 与BH 交于点J ,HL 与BF 交于点L , 由题意可知:四边形BCED 是正方形,四边形ACFG 是正方形,四边形ABHI 是正方形,∠ACB =90°∴∠CEH =∠ECK =90° ,CE =BC∵∠BKH =90°,∴四边形CEHK 是矩形,∴ CE =HK又∠HBK +∠ABC =90°, ∠BAC +∠ABC =90°∴∠HBK =∠BAC∴△BHK ≌△ABC (AAS )∴S △BHK =S △ABC ,BC =HK ,∠ABC =∠BHK ,∵∠ABC +∠CBJ =90°,∠BHK +∠KHL =90°∴∠CBJ =∠KHL∴△BCJ ≌△HKL (ASA )∴S △BCJ =S △HKL ,∴S 1=S △BHK =S △ABC ,∵四边形ACFG 是正方形,四边形ABHI 是正方形,∴AB =AI ,AC =AG ,∠G =∠ACB =90°∴△ABC ≌△AIG (SAS )∴S △ABC =S △AIG =S 2,即S 1=S 2故选:B【点睛】本题主要考查正方形的性质,全等三角形的判定及其性质,解题的关键是熟练掌握正方形的性质及全等三角形的判定方法.8.A解析:A【分析】设B x ∠=,先根据平行四边形的性质可得,180,D B x BAD x AB CD ∠=∠=∠=︒-=,再根据直角三角形的两锐角互余、角的和差可得45x =︒,然后根据等腰直角三角形的判定与性质、勾股定理可得22AB =22CD =,最后利用平行四边形的面积公式即可得.【详解】设B x ∠=,四边形ABCD 是平行四边形,,180180,D B x BAD B x AB CD ∴∠=∠=∠=︒-∠=︒-=,,AG BC AH CD ⊥⊥,9090,9090BAG B x DAH D x ∴∠=︒-∠=︒-∠=︒-∠=︒-,又180,45BAG DAH BAD GAH x GAH ∠+︒-∠+∠=∠∠=︒=,909100458x x x ︒-+︒-=∴︒+︒-,解得45x =︒,即45B ∠=︒,Rt ABG∴是等腰直角三角形,22∴===+=,BG AG AB AG BG2,22∴=,22CD∴平行四边形ABCD的面积是32262AH CD⋅=⨯=,故选:A.【点睛】本题考查了平行四边形的性质、直角三角形的两锐角互余、等腰直角三角形的判定与性质、勾股定理等知识点,熟练掌握平行四边形的性质是解题关键.9.B解析:B【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH的长.【详解】解:如图,延长BG交CH于点E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG2+BG2=AB2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG和△CDH中,AB=CD=10AG=CH=8BG=DH=6∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG和△BCE中,∵∠1=∠3,AB=BC,∠2=∠4,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在Rt△GHE中,22222222GH GE HE=+=+=,故选:B.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为直角三角形且能够求出两条直角边的长是解题的关键.10.B解析:B【分析】由题意分析可知,点F为主动点,G为从动点,所以以点E为旋转中心构造全等关系,得到点G的运动轨迹,之后通过垂线段最短构造直角三角形获得CG最小值.【详解】由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动,如图,将ΔEFB绕点E旋转60°,使EF与EG重合,得到ΔEFB≅ΔEHG,从而可知ΔEBH为等边三角形,点G在垂直于HE的直线HN上,如图,作CM⊥HN,则CM即为CG的最小值,作EP⊥CM,可知四边形HEPM为矩形,则1351=2.5222CM MP CP HE EC=+=+=+=.故选B.【点睛】本题考查了线段极值问题,构造图形计算,是极值问题中比较典型的类型.分清主动点和从动点,通过旋转构造全等,从而判断出点G 的运动轨迹,是解本题的关键.二、填空题11.201812【分析】根据几何图形特征,先求出1C 、2C 、3C ,根据求出的结果,找出规律,从而得出2020C .【详解】∵点E 是BC 的中点,ED ∥AB ,EF ∥AC∴DE 、EF 是△ABC 的中位线∵等边△ABC 的边长为1∴AD=DE=EF=AF =12 则1C =1422⨯= 同理可求得:2C =1,3C =12发现规律:规律为依次缩小为原来的12 ∴2020C =201812 故答案为:201812.【点睛】 本题考查找规律和中位线的性质,解题关键是求解出几组数据,根据求解的数据寻找规律.12.24【分析】由菱形的性质可得OD =OB ,∠COD =90°,由直角三角形的斜边中线等于斜边的一半,可得OH =12BD =OB ,可得∠OHB =∠OBH ,由余角的性质可得∠DHO =∠DCO ,即可求解. 【详解】 【解答】解:∵四边形ABCD 是菱形,∴OD =OB ,∠COD =90°,∠DAB =∠DCB =48°,∵DH ⊥AB ,∴OH =12BD =OB , ∴∠OHB =∠OBH ,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO=1 2∠DCB=24°,故答案为:24.【点睛】本题考查了菱形的性质,直角三角形斜边中线的性质,余角的性质,是几何综合题,判断出OH是BD的一半,和∠DHO=∠DCO是解决本题的关键.13.25【分析】作BE⊥AD于E,BF⊥CD于F,则四边形BEDF是矩形,证明△ABE≌△CBF(AAS),得出BE=BF,△ABE的面积=△CBF的面积,则四边形BEDF是正方形,四边形ABCD的面积=正方形BEDF的面积,求出BE=10,即可求得BD的长.【详解】解:作BE⊥AD交DA延长线于E,BF⊥CD于F,如图所示:则∠BEA=∠BFC=90°,∵∠ADC=90°,∴四边形BEDF是矩形,∴∠EBF=90°,∵∠ABC=90°,∴∠EBF=∠ABC=90°,∴∠ABE=∠CBF,在△ABE和△CBF中,BEA BFCABE CBFAB CB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CBF(AAS),∴BE=BF,△ABE的面积=△CBF的面积,∴四边形BEDF是正方形,四边形ABCD的面积=正方形BEDF的面积,∴BE=DE,BE2=10 cm2,∴BE=10(cm),∴BD=2BE=25(cm).故答案为:25.【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、矩形的判定与性质等知识;熟练掌握正方形的判定与性质,证明三角形全等是解题的关键.14.①②③④【分析】根据正方形的性质和SAS可证明△ABG≌△AEC,然后根据全等三角形的性质即可判断①;设BG、CE相交于点N,AC、BG相交于点K,如图1,根据全等三角形对应角相等可得∠ACE=∠AGB,然后根据三角形的内角和定理可得∠CNG=∠CAG=90°,于是可判断②;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,根据余角的性质即可判断④;利用AAS即可证明△ABH≌△EAP,可得EP=AH,同理可证GQ=AH,从而得到EP =GQ,再利用AAS可证明△EPM≌△GQM,可得EM=GM,从而可判断③,于是可得答案.【详解】解:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,∴∠BAE+∠BAC=∠CAG+∠BAC,即∠CAE=∠BAG,∴△ABG≌△AEC(SAS),∴BG=CE,故①正确;设BG、CE相交于点N,AC、BG相交于点K,如图1,∵△ABG≌△AEC,∴∠ACE=∠AGB,∵∠AKG=∠NKC,∴∠CNG=∠CAG=90°,∴BG⊥CE,故②正确;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,∵AH ⊥BC ,∴∠ABH +∠BAH =90°,∵∠BAE =90°,∴∠EAP +∠BAH =90°,∴∠ABH =∠EAP ,即∠EAM =∠ABC ,故④正确;∵∠AHB =∠P =90°,AB =AE ,∴△ABH ≌△EAP (AAS ),∴EP =AH ,同理可得GQ =AH ,∴EP =GQ ,∵在△EPM 和△GQM 中,90P MQG EMP GMQ EP GQ ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△EPM ≌△GQM (AAS ),∴EM =GM ,∴AM 是△AEG 的中线,故③正确.综上所述,①②③④结论都正确.故答案为:①②③④.【点睛】本题考查了正方形的性质、三角形的内角和定理以及全等三角形的判定和性质,作辅助线构造出全等三角形是难点,熟练掌握全等三角形的判定和性质是关键.15.83或4433 【分析】 连接AC 交BD 于O ,由菱形的性质可得AB=BC=4,∠ABD=30°,AC ⊥BD ,BO=DO ,AO=CO ,可证四边形BEGF 是菱形,可得∠ABG=30°,可得点B ,点G ,点D 三点共线,由直角三角形性质可求3AC=4,分两种情况讨论,利用等腰三角形的性质可求解.【详解】如图,连接AC 交BD 于O ,∵菱形ABCD 的边长是4,∠ABC=60°,∴AB=BC=4,∠ABD=30°,AC ⊥BD ,BO=DO ,AO=CO ,∵EG ∥BC ,FG ∥AB ,∴四边形BEGF 是平行四边形,又∵BE=BF ,∴四边形BEGF 是菱形,∴∠ABG=30°,∴点B ,点G ,点D 三点共线,∵AC ⊥BD ,∠ABD=30°,∴AO=12AB=2,22224223AB AO --= ∴BD=3AC=4,同理可求3BE ,即3, 若AD=DG'=4时,∴BG'=BD-DG'=434,∴BE'4344343-==; 若AG''=G''D 时,过点G''作G''H ⊥AD 于H ,∴AH=HD=2,∵∠ADB=30°,G''H ⊥AD ,∴DG''=2HG'',∵222HD HG''DG''+=,解得:HG''33=,DG''=2HG''433=, ∴BG''=BD-DG''=438343-= ∴BE''=83, 综上所述:BE 为83或434- 【点睛】本题考查了菱形的性质,含30度角的直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.16.6【分析】过点P 作PE ⊥AD 交AD 的延长线于点E ,根据四边形ABCD 是平行四边形,得到 AB ∥CD ,推出PE=12PD ,由此得到当PB+PE 最小时2PB+ PD 有最小值,此时P 、B 、E 三点在同一条直线上,利用∠DAB =30°,∠AEP=90°,AB=6求出PB+PE 的最小值=12AB=3,得到2PB+ PD 的最小值等于6.【详解】过点P 作PE ⊥AD 交AD 的延长线于点E ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠EDC=∠DAB =30°,∴PE=12PD , ∵2PB+ PD=2(PB+12PD )=2(PB+PE), ∴当PB+PE 最小时2PB+ PD 有最小值,此时P 、B 、E 三点在同一条直线上,∵∠DAB =30°,∠AEP=90°,AB=6,∴PB+PE 的最小值=12AB=3, ∴2PB+ PD 的最小值等于6,故答案为:6.【点睛】此题考查平行四边形的性质,直角三角形含30°角的问题,动点问题,将线段2PB+PD 转化为三点共线的形式是解题的关键.17.7【分析】①若m n =,则AF EC =,先根据平行四边形的性质得出//,AD BC AD BC =,再根据平行四边形的判定(一组对边平行且相等或两组对边分别平行)即可得;②先根据平行四边形的性质与判定得出四边形ABEF 、四边形CDFE 都是平行四边形,从而可得11,44EFG ABEF EFH CDFE S S S S ∆∆==,再根据28ABCD ABEF CDFE S S S =+= 和1144EFG EFH ABEF CDFE FGEH S S S S S ∆∆=+=+四边形即可得出答案.【详解】 四边形ABCD 是平行四边形//,AD BC AD BC ∴=,,AF EC n m BC BCm n === AF EC ∴=AD AF BC EC ∴-=-,即DF BE =∴四边形AECF 、四边形BEDF 都是平行四边形//,//AE CF BF DE ∴∴四边形EGFH 是平行四边形综上,图中共有4个平行四边形如图,连接EF1,,AF EC n m BC B n Cm ==+= AF EC BC AD ∴+==AF DF AD +=EC DF ∴=AF BE ∴=∴四边形ABEF 、四边形CDFE 都是平行四边形 11,44EFG ABEF EFH CDFE S S S S ∆∆∴== 28ABCD ABEF CDFE S S S =+=1144EFG EFH ABEF CDFE FGEH S S S S S ∆∆∴=+=+四边形1()4ABEF CDFE S S =+12874=⨯= 故答案为:4;7.【点睛】本题考查了平行四边形的判定与性质,熟记平行四边形的判定与性质是解题关键.18.25﹣2【分析】连接AF,CF,AC,利用勾股定理求出AC、AF,再根据三角形的三边关系得到当点A,F,C在同一直线上时,CF的长最小,最小值为25﹣2.【详解】解:如图,连接AF,CF,AC,∵长方形ABCD中AB=2,BC=4,正方形AEFG的边长为1,∴AC=25,AF=2,∵AF+CF≥AC,∴CF≥AC﹣AF,∴当点A,F,C在同一直线上时,CF的长最小,最小值为25﹣2,故答案为:25﹣2.【点睛】此题考查矩形的性质,正方形的性质,勾股定理,三角形的三边关系.19.4【分析】过点E作EM∥AD,由△ABO是等腰三角形,根据三线合一可知点E是AO的中点,可证得EM=12AD=12BC,根据已知可求得∠CEF=∠ECF=45°,从而得∠BEF=45°,△BEF为等腰直角三角形,可得BF=EF=FC=12BC,因此可证明△BFP≌△MEP(AAS),则EP=FP=12FC,在Rt △BFP 中,利用勾股定理可求得x ,即得答案.【详解】过点E 作EM ∥AD ,交BD 于M ,设EM=x ,∵AB=OB ,BE 平分∠ABO ,∴△ABO 是等腰三角形,点E 是AO 的中点,BE ⊥AO ,∠BEO=90°,∴EM 是△AOD 的中位线,又∵ABCD 是平行四边形,∴BC=AD=2EM=2x ,∵EF ⊥BC , ∠CAD=45°,AD ∥BC ,∴∠BCA=∠CAD=45°,∠EFC=90°,∴△EFC 为等腰直角三角形,∴EF=FC ,∠FEC=45°,∴∠BEF=90°-∠FEC=45°,则△BEF 为等腰直角三角形,∴BF=EF=FC=12BC=x , ∵EM ∥BF ,∴∠EMP=∠FBP ,∠PEM=∠PFB=90°,EM=BF ,则△BFP ≌△MEP (ASA ),∴EP=FP=12EF=12FC=12x , ∴在Rt △BFP 中,222BP BF PF =+,即:2221(5)()2x x =+,解得:2x =,∴BC=2x =4,故答案为:4.【点睛】考查了平行四边形的性质,等腰三角形的性质,三线合一的应用,平行线的性质,全等三角形的判定和性质,利用勾股定理求三角形边长,熟记图形的性质定理是解题的关键. 20.2【分析】分别延长AE,BF交于点H,易证四边形EPFH为平行四边形,得出点G为PH的中点,则G的运动轨迹为△HCD的中位线MN,再求出CD的长度,运用中位线的性质求出MN的长度即可.【详解】解:如图,分别延长AE,BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE∴四边形EPFH为平行四边形,∴EF与HP互相平分,∵点G为EF的中点,∴点G为PH的中点,即在P运动的过程中,G始终为PH的中点,∴G的运动轨迹为△HCD的中位线MN,∵CD=6-1-1=4,∴MN=12CD=2,∴点G移动路径的长是2,故答案为:2.【点睛】本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G的运动轨迹为△HCD的中位线MN.三、解答题21.(1)见解析;(2)24;(3)5AI .【分析】(1)证∠BDA=∠CEA=90°,∠CAE=∠ABD,由AAS证明△ABD≌△CAE即可;(2)连接CE,交AF于O,由菱形的性质得∠COA=∠ADB=90°,同(1)得△ABD≌△CAO(AAS),得OC=AD=3,OA=BD=4,由三角形面积公式求出S△AOC=6,即可得出答案;(3)过E 作EM ⊥HI 的延长线于M ,过点G 作GN ⊥HI 于N ,同(1)得△ACH ≌△EAM (AAS ),△ABH ≌△GAN (AAS ),得EM =AH =GN ,证△EMI ≌△GNI (AAS ),得EI =GI ,证∠EAG =90°,由勾股定理求出EG =10,再由直角三角形的性质即可得出答案.【详解】(1)证明:∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD在△ABD 和△CAE 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△CAE (AAS );(2)解:连接CE ,交AF 于O ,如图②所示:∵四边形AEFC 是菱形,∴CE ⊥AF ,∴∠COA =∠ADB =90°,同(1)得:△ABD ≌△CAO (AAS ),∴OC =AD =3,OA =BD =4,∴S △AOC =12OA •OC =12×4×3=6, ∴S 菱形AEFC =4S △AOC =4×6=24,故答案为:24;(3)解:过E 作EM ⊥HI 的延长线于M ,过点G 作GN ⊥HI 于N ,如图③所示: ∴∠EMI =∠GNI =90°,∵四边形ACDE 和四边形ABFG 都是正方形,∴∠CAE =∠BAG =90°,AC =AE =8,AB =AG =6,同(1)得:△ACH ≌△EAM (AAS ),△ABH ≌△GAN (AAS ),∴EM =AH =GN ,在△EMI 和△GNI 中,EIM GIH EMI GNI EM GN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EMI ≌△GNI (AAS ),∴EI =GI ,∴I 是EG 的中点,∵∠CAE =∠BAG =∠BAC =90°,∴∠EAG =90°,在Rt △EAG 中, EG =22AE AG +=2286+=10, ∵I 是EG 的中点,∴AI =12EG =12×10=5.【点睛】本题是四边形综合题目,考查了正方形的性质、菱形的性质、等腰直角三角形的性质、全等三角形的判定与性质、直角三角形斜边上的中线性质、勾股定理、三角形面积等知识;本题综合性强,熟练掌握正方形的性质和菱形的性质,证明三角形全等是解题的关键.22.(1)P (103,2);(2)(52,2)或(﹣52,2) 【分析】(1)根据已知条件得到C (5,3),设直线OC 的解析式为y =kx ,求得直线OC 的解析式为y =35x ,设P (m ,35m ),根据S △POB =13S 矩形OBCD ,列方程即可得到结论; (2)设点P 的纵坐标为h ,得到点P 在直线y =2或y =﹣2的直线上,作B 关于直线y =2的对称点E ,则点E 的坐标为(5,4),连接OE 交直线y =2于P ,则此时PO +PB 的值最小,设直线OE 的解析式为y =nx ,于是得到结论.【详解】(1)如图:∵矩形OBCD中,OB=5,OD=3,∴C(5,3),设直线OC的解析式为y=kx,∴3=5k,∴k=35,∴直线OC的解析式为y=35 x,∵点P在矩形的对角线OC上,∴设P(m,35 m),∵S△POB=13S矩形OBCD,∴12⨯5×35m=13⨯3×5,∴m=103,∴P(103,2);(2)∵S△POB=13S矩形OBCD,∴设点P的纵坐标为h,∴12h×5=133⨯⨯5,∴h=2,∴点P在直线y=2或y=﹣2上,作B关于直线y=2的对称点E,则点E的坐标为(5,4),连接OE交直线y=2于P,则此时PO+PB的值最小,设直线OE的解析式为y=nx,∴4=5n,∴n=45,∴直线OE的解析式为y=45 x,当y=2时,x=52,∴P(52,2),同理,点P在直线y=﹣2上,P(52,﹣2),∴点P的坐标为(52,2)或(﹣52,2).【点睛】本题考查了轴对称——最短路线问题,矩形的性质,待定系数法求函数的解析式,正确的找到点P在位置是解题的关键.23.(1)见解析(2)见解析(3)15【分析】(1)根据四边形ABCD是正方形,得到∠QBA=∠QBC,进而可得△QBA≌ △QBC,∠QAB=∠QCB,再根据CQ=MQ,得到∠QCB=∠QMC,即可求证;(2)根据∠QAB=∠QMC,∠QMC+∠QMB=180°,得到∠QAB+∠QMB=180°,在四边形QABM中,∠QAB+∠QMB+∠ABM+∠AQM=360°可得∠ABM+∠AQM=180°,再根据∠ABM=90°即可求解;(3)设正方形ABCD的边长为a,延长ND至点H,使DH=BM=2,证得△ADH≌△ABM,得到∠DAH=∠BAM,且AH=AM,由(2)知,△QAM是等腰直角三角形,易得∠NAM=∠NAH,进而得到△NAM≌ △NAH,在Rt△MNC中,利用勾股定理得到6a ,即可求解.【详解】解:(1)∵四边形ABCD是正方形∴∠QBA =∠QBC在△QBA 和△QBC 中BA BC QBA QBC QB QB =⎧⎪∠=∠⎨⎪=⎩∴△QBA ≌ △QBC (SAS )∴∠QAB =∠QCB又∵CQ =MQ∴∠QCB =∠QMC∴∠QAB =∠QMC (2)∵∠QAB =∠QMC又∵∠QMC +∠QMB =180°∴∠QAB +∠QMB =180°在四边形QABM 中∠QAB +∠QMB +∠ABM +∠AQM =360°∴∠ABM +∠AQM =180°而∠ABM =90°∴∠AQM =90°(3)设正方形ABCD 的边长为a ,则2MC a =-,3ND a =-延长ND 至点H ,使DH =BM =2易证△ADH ≌ △ABM∴∠DAH =∠BAM ,且AH =AM由(2)知,△QAM 是等腰直角三角形∴∠QAM =45°∴∠DAN +∠BAM =45°∴∠DAN +∠DAH =45°即∠NAH =45°∴∠NAM =∠NAH∴△NAM ≌ △NAH (SAS )∴NM =NH =()321a a -+=-在Rt △MNC 中,222MN MC NC =+∴()()222123a a -=-+∴6a = ∴11651522AMN AHN S S AD NH ==⋅=⨯⨯=【点睛】此题主要考查正方形的性质、全等三角形的判断和性质、四边形的内角和、等腰直角三角形的性质及勾股定理,灵活运用性质是解题关键.24.(1)详见解析;(2)145. 【分析】(1)由AB =DE ,∠A =∠D ,AF =DC ,易证得△ABC ≌DEF (SAS ),即可得BC =EF ,且BC ∥EF ,即可判定四边形BCEF 是平行四边形;(2)由四边形BCEF 是平行四边形,可得当BE ⊥CF 时,四边形BCEF 是菱形,所以连接BE ,交CF 与点G ,由三角形DEF 的面积求出EG 的长,根据勾股定理求出FG 的长,则可求出答案.【详解】(1)证明:∵AF =DC ,∴AC =DF ,在△ABC 和△DEF 中, AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ),∴BC =EF ,∠ACB =∠DFE ,∴BC ∥EF ,∴四边形BCEF 是平行四边形;(2)如图,连接BE ,交CF 于点G ,∵四边形BCEF是平行四边形,∴当BE⊥CF时,四边形BCEF是菱形,∵∠DEF=90°,DE=8,EF=6,∴DF222286DE EF+=+10,∴S△DEF1122EG DF EF DE =⋅=⋅,∴EG6824105⨯==,∴FG=CG22222418655 EF EG⎛⎫=-=-=⎪⎝⎭,∴AF=CD=DF﹣2FG=10﹣365=145.故答案为:145.【点睛】本题考查了全等三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及勾股定理等知识.熟练掌握平行四边形的判定与性质是解题的关键.25.(1)35241;(353101或【分析】(1)利用勾股定理即可求出.(2)过点F作FH⊥AD交AD于的延长线于点H,作FM⊥AB于点M,证出ECD FEH∆∆≌,进而求得MF,BM的长,再利用勾股定理,即可求得.(3)分两种情况讨论,同(2)证得三角形全等,再利用勾股定理即可求得.【详解】(1)由勾股定理得:22223635BF AB AF=+=+=(2)过点F作FH⊥AD交AD于的延长线于点H,作FM⊥AB于点M,如图2所示:则FM=AH ,AM=FH∵四边形CEFG 是正方形 ∴EC=EF,∠FEC=90° ∴∠DEC+∠FEH=90°,又∵四边形ABCD 是正方形 ∴∠ADC=90° ∴∠DEC+∠ECD=90°,∴∠ECD=∠FEH 又∵∠EDC=∠FHE=90°,∴ECD FEH ∆∆≌ ∴FH=ED EH=CD=3∵AD=3,AE=1,ED=AD-AE=3-1=2,∴FH=ED=2∴MF=AH=1+3=4,MB=FH+CD=2+3=5在Rt △BFM 中,BF=22225441BM MF +=+=(3)分两种情况:①当点E 在边AD 的左侧时,过点F 作FM ⊥BC 交BC 的反向延长线于点M ,交DE 于点N.如图3所示:同(2)得:ENF DEC ∆≅∆∴EN=CD=3,FN=ED=7∵AE=4∴AN=AE-EN=4-3=1∴MB=AN=1 FM=FN+NM=7+3=10在Rt FMB ∆中由勾股定理得:2222101101FB FM MB =++= ②当点E 在边AD 的右侧时,过点F 作FN ⊥AD 交AD 的延长线于点N ,交BC 延长线于M ,如图4所示:。
C 2 C 1 C 3 C 4 第十九章平行四边形测验卷
班级 学号 姓名
一、选择题:
1.下列说法正确的是( ).
(A )有两组对边分别平行的图形是平行四边形 (B )平行四边形的对角线相等
(C )平行四边形的对角互补,邻角相等 (D )平行四边形的对边平等且相等
2. □ABCD 中,如果∠B=100°,那么∠A、∠D 的值分别是 ( ) (A )∠A=80°,∠D=100° (B )∠A=100°,∠D=80° (C )∠B=80°,∠D=80° (D )∠A=100°,∠D=100°
3.如图,□ABCD 中,对角线AC ,BD 相交于点O ,将△AOD 平移至△BEC 的位置,则图中与OA 相等的其它线段有( ).
(A)1条 (B)2条 (C) 3条 (D) 4条
4.如图,点D 、E 、F 分别是AB 、BC 、CA 边的中点,则图中的平行四边形一共有( ).
(A)1个 (B)2个 (C)3个 (D)4个
5.平行四边形的两条对角线为6和10,则其中一条边x 的取值范围为( ).
(A )4<x<6 (B )2<x<8 (C )0<x<10 (D )0<x<6 6.矩形具有而平行四边形不具有的性质是( ) A.对角线互相平分 B.邻角互补 C.对角线相等 D.对角相等
7.三角形三条中位线的长分别为3、4、5,则此三角形的面积为 ( ). (A)12 (B)24 (C)36 (D)48
8. 若□ABCD 的周长为28,△ABC 的周长为17cm ,则AC 的长为 ( ) (A )11cm (B ) 5.5cm (C )4cm (D )3cm
9. 在给定的条件中,能作出平行四边形的是 ( ) (A )以60cm 为对角线,20cm 、34cm 为两条邻边 (B )以20cm 、36cm 为对角线,22cm 为一条边 (C )以6cm 为一条对角线,3cm 、10cm 为两条邻边 (D )以6cm 、10cm 为对角线,8cm 为一条边
10. 在平行四边形ABCD 中,点1A ,2A ,3A ,4A 和1C ,2C ,3C ,4C 分别是AB 和CD 的五等分点,点1B ,2B 和1D ,2D 分别是BC 和DA 的三等分点,已知四边形4242A B C D 的面积为1,则平行四边形ABCD 的面积为( )
A .2
B .35
C .5
3 D .15
二、填空题
11. 如图,在平行四边形ABCD中,DB=CD,∠C=70°,AE⊥BD于点E,∠DAE的度数为.
12.已知O是平行四边形ABCD的对角线交点,AC=24cm,BD=38cm,AD=28cm,•则△AOD•的周长是________.
13.在□ABCD中,AC⊥BD,相交于O,AC=6,BD=8,则AB=________,BC= _________.
14.已知平行四边形的面积是144cm2,相邻两边上的高分别为8cm和9cm,则这个平行四边形的周长为________.
15.如图,E、F是□ABCD对角线BD上的两点,请你添加一个适当的条件:,使四
边形AECF是平行四边形.
16.如图,矩形ABCD中,AB=3,BC=4,如果将该矩形沿对角线BD
折叠,那么图中阴影部分的面积是___________________.
三、解答题
17.如图,□ABCD中,BD⊥AB,AB=12cm,AC=26cm,求AD、BD长.
18.如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.
求证:(1)⊿AFD≌⊿CEB.
(2)四边形ABCD是平行四边形.
19.如图,矩形ABCD的对角线相交于点O,OF⊥BC,CE⊥BD,OE∶BE=1∶3,OF=4,求∠ADB的度数和BD的长.
20.如图,在平行四边形ABCD中,AE、BF、CF、DE分别为∠DAB、∠ABC、∠BCD、∠CDA的平分线.(1)试猜想EF与AB的位置关系,并证明你的结论.(2)EF,AB,AD的数量关系并证明你的结论。
E。