电磁炉构造图解
- 格式:doc
- 大小:1.54 MB
- 文档页数:3
最详细电磁炉原理讲解、原理简介电磁炉是应用电磁感应加热原理, 利用电流通过线圈产生磁场, 该磁场的磁力线通过铁质 锅底部的磁条形成闭合回路时会产生无数小涡流, 使铁质锅体的铁分子高速动动产生热量, 然 后加热锅中的食物。
、电磁炉的原理方块图三、电磁炉工作原理说明1. 主回路220V/50Hz熔断平衡1:3000桥式扼流 输入器滤波互感器整流圈电磁线盘IGBT过欠压 检测功率检测 过流保护浪涌检测同步检 测调整反压抑 制驱动回路18V 至风扇5V 到 CPU18V 至驱动至风机至蜂鸣闭环振 荡回路主控 CPU控制面板PWM 输出功率调整IGBT 过热保护炉面温度检测(LC 回路整流回电压 变换锅具材 质检测图中桥整DB1将工频(50HZ)电流变成直流电流,L1为扼流圈,L2是电磁线圈,IGBT由控制电路发出的矩形脉冲驱动,IGBT导通时,流过L2的电流迅速增加。
IGBT截止时,L2、C12发生串联谐振,IGBT的C 极对地产生高压脉冲。
当该脉冲降至为零时,驱动脉冲再次加到IGBT 上使之导通。
上述过程周而复始,最终产生25KHZ左右的主频电磁波,使陶瓷板上放置的铁质锅底感应出涡流并使锅发热。
串联谐振的频率取之L2、C12 的参数。
C11 为电源滤波电容,CNR1为压敏电阻(突波吸收器)。
当AC电源电压因故突然升在时,即瞬间短路,使保险丝迅速熔断,以保护电路。
2. 副电源开关电源式主板共有+5V,+18V两种稳压回路,其中桥式整流后的+18V供IGBT的驱动回路和供主控IC LM339和风扇驱动回路使用,由三端稳压电路稳压后的+5V供主控MCU使用。
3. 冷却风扇主控IC 发出风扇驱动信号(FAN),使风扇持续转动,吸入外冷空气至机体内,再从机体后侧排出热空气,以达到机内散热目的,避免零件因高温工作环境造成损坏故障。
当风扇停转或散热不良,IGBT表贴热敏电阻将超温信号传送到CPU,停止加热,实现保护。
工作原理一.整机方框图:见附页二.原理图(见附页)三.各方框图原理阐述,以上原理图为例说明1).滤波部分:这单元电路包括X滤波电容C1~C3和共模电感L1,此三个元件组成星式滤波器,用以滤除电源线中的杂波和抑制本机的有害杂波通过电源线向电力电源中传导。
这部分电路对于功率不大,要求很低的场合,电路设计合理的电路板可以省略。
2).整流部分:这单元电路包括整流桥DB1,扼流圈L1,高频滤波电容C8,这部分电路的作用就是把交流电整流成直流电,然后经过电容电感的滤波作用,给后级能量转换提供电源。
3).能量转换:这单元电路包括两个IGBT(上桥IG1和下桥IG2),高频吸收电容C5,C6,阻尼电阻R11,R12,谐振电容C7,C9,电磁线圈;其工作原理为:两个IGBT依次导通,让电源电流在电磁线圈中形成交变电流而产生交变磁场,此磁场会对放置在线圈上面的锅具产生强大的感应电流而使锅具自身发热。
两个IGBT的作用就是依次轮流导通而使线圈中产生交变电流,高频吸收电容的作用为吸收IGBT关断时产生的尖峰电压,保护IGBT免受尖峰电压损坏,阻尼电阻的作用是防止高频吸收电容与电磁线圈产生谐振而损坏IGBT,谐振电容的作用是配合电磁线圈工作在谐振状态,完成IGBT的软开关,减少IGBT开关损耗。
1.4).IGBT推动与IGBT过流保护:此单元电路包括IGBT驱动模块U4,U5,及其周边元件IGBT_UCE 电压检测二极管D11、D12,具体请见附页说明书,驱动模块完成对IGBT的驱动和IGBT过流信号的检测。
5):半桥驱动波形发生器:此单元电路包括H_F03A,E18,E19。
此模块主要产生半桥驱动信号,并经OUTA,OUTB输出相互错开的驱动信号,E18的作用用于驱动信号的稳定度滤波,当发生驱动信号抖动厉害或驱动信号不稳定时,检查此电容,E19为内部比较器参考电压滤波,此参考电压为稳定5.1V。
半桥模块各引脚功能如下:1.INA:反馈信号输入A。
精心整理感应灯板按键灯板线控灯板灯板为人机对话窗口。
目前我司控制灯板分为感应灯板、按键灯板、线控灯板三类。
温度传感器(热敏头)为机器炉面温度感温器件,核心元件为热敏电阻,内销一般采用100K±5%,线长180mm规格(AD400002)。
热敏头变压器:电压电流变换,稳压标牌(PVC),适用于按键机型(含线控);触摸感应机型不需标牌,采用的是黑晶一体面板或钢化玻璃板丝印指示功能。
客户一般称“面壳+微晶板+标牌”一体配件为“面壳总成”。
面壳+微晶板+标牌压到一起,称为“压胶”。
发热盘采用耐高温铜线。
目前我司疏绕、密绕、中空双环、双层、单层发热盘,常用的有19*24(19股,24圈)、高频21*24、高频40*23等发热盘,2011年主推双层铝线盘(0.35*28*27(上13+下14))。
双层聚能高效发热盘:双层结构,能效提升,双层铝线盘比单层铜线盘能效提升0.7%,散热性能提升,产品质量提升。
雅乐思铝线盘优势:1.成本更低。
铝线盘成本优势保持了市场竞争优势;2.能效更高。
雅乐思双层铝线盘能效提升0.7%,更节能。
3.精心整理双层加热,火力更均匀。
4.工艺更可靠。
雅乐思独创支架结构及绕线方式,层间及线间实现疏绕独特工艺,散热更快,更避免札间短路、上下层短路,造成产品质量隐患;5.研发更成熟。
6.铝线盘热传导系数较铜线小,密度小重量轻。
保险管二极管电源IC可调电阻保险管(保险丝)也称熔断器。
装在电路中保证电路安全运行。
电流异常升到一定高度时,保险管会自身熔断切掉电源,从而保护电路安全运行。
二极管:利用其单向导电性,把方向交替变化的交流电变换成单一方向的脉冲直流电。
可调电阻也叫可变电阻,其电阻值大小可以人为调节,以满足电路的需要。
电源IC:稳压、电压变换、脉宽调制、电量检测与保护、输出大电流,低导通内阻。
CPU:温度控制器。
电源on/off切换控制。
加热火力/定温温度控制。
自动功能控制。
无负载检知及自动关机。
二、无火之灶——电磁灶一、结构图:二、电磁炉的工作原理:电磁炉是采用磁场感应涡流加热原理,它利用电流通过线圈产生磁场,当磁场内之磁力通过含铁质锅底部时,即会产生无数之小涡流,使锅体本身自行高速发热,然后再加热于锅内食物。
爱电磁炉工作时产生的电磁波,完全被线圈底部的屏蔽层和顶板上的含铁质锅所吸收,不会泄漏,对人体健康绝对无危害。
三、电磁炉的特点是:电磁炉的效率比一般的炉子都高,热效率高达90%,炉面无明火,无烟无废气,火力强劲,安全可靠.因为电磁炉是以电磁感应产生电流,利用电流的热效应产生热量,所以不是所有的锅或烹饪器都适用.对于锅的选择,方法很简单,只要锅底能被磁铁吸引的就能用.适合放在电磁炉上的烹饪器有不锈钢锅、不锈钢壶、平底铁锅;不适用的有陶瓷锅、圆底铁锅、耐热玻璃锅、铝锅、铜锅等.四、例析:(1)在用电磁炉加热食物的过程中涉及的物理原理有(回答三个即可):①________________________________.②________________________________.③________________________________.(2)①电磁炉所用的锅不能用陶瓷锅、耐热玻璃锅的原因是____________;②电磁炉所用的锅不能用铝锅、铜锅的原因是________.(3)在锅和电磁炉中间放置一纸板,则电磁炉还能起到加热作用吗?为什么?解析:(1)由题干信息可知,电磁炉的原理是变化的电流形成变化的磁场,变化的磁场使电磁炉上的锅具产生涡流加热食物,故涉及以下三个原理:①电流的磁效应(或电生磁) ②电磁感应现象(或磁生电) ③电流的热效应(或焦耳定律)(2)①电磁炉是电磁感应现象的应用,陶瓷锅、耐热玻璃锅不能产生电磁感应现象,为了更有效加热食物,应选取电热效率高的锅具,铝锅和铜锅电阻率小,电热少,效率低.(3)能起到加热作用.线圈产生的磁场能穿透纸板到达锅底,在锅底产生感应电流,利用电流的热效应加热食物.五、比较:。
一原理简介原理简介电磁炉是应用电磁感应加热原理,利用电流通过线圈产生磁场,该磁场的磁力线通过铁质锅底部的磁条形成闭合回路时会产生无数小涡流,使铁质锅体的铁分子高速运动产生热量,然后加热锅中的食物•、电磁炉的原理方块图三磁炉工作原理说明1、主回路图中整流桥 BI 将工频(50HZ )电压变成脉动直流电压, L1为扼流圈,L2是电磁线圈,IGBT由控制电路发出的矩形脉冲驱动, IGBT 导通时,流过L2的电流迅速增加。
IGBT 截止时,L2、C21发生串联谐振,IGBT 的C 极对地产生高压脉冲。
当该脉冲降至为零时,驱动脉冲再次加到 IGBT 上使之导通。
上述过程周而复始,最终产25KHZ 左右的主频电磁波,使陶瓷板上放置的铁质锅底感应出涡流并使锅发热。
串联谐振的频率取之 L2、C21的参数。
C5为电源滤波电容。
CNR1为压敏电阻(突波吸收器),当AC 电源电压因故突然升高时,瞬间 短路,使保险丝迅速熔断,以保护电路。
2、副电源开关电源提供有+5V , +18V 两种稳压回路,其中桥式整流后的 比较IC LM339和风扇驱动回路使用,由三端稳压电路稳压后的+ 18V 供IGBT 的驱动回路,同步 +5V 供主控MCU 使用。
IN^007FJDQOOIC43、冷却风扇当电源接通时主控IC 发出风扇驱动信号(FAN ),使风扇持续转动,吸入外冷空气至机体内, 再从机体后侧排出热空气,以达至机内散热目的,避免零件因高温工作环境造成损坏故障。
当风 扇停转或散热不良,IGBT 表贴热敏电阻将超温信号传送到 CPU ,停止加热,实现保护。
通电瞬 间CPU 会发出一个风扇检测信号,以后整机正常运行时CPU 发出风扇驱动信号使其工作。
4、定温控制及过热保护电路感测温度而改变电阻的一随温度变化的电压单位传送至主控 照温度设定值比较而作出运行或停止运行信号5、主控IC ( CPU )主要功能18脚主控IC 主要功能如下:(1) 电源ON/OFF 切换控制 (2) 加热火力/定温温度控制 (3) 各种自动功能的控制 (4) 无负载检知及自动关机 (5) 按键功能输入检知 (6) 机内温升过高保护 (7) 锅具检知 (8) 炉面过热告知 (9) 散热风扇控制 (10)各种面板显示的控制< IGAg>C12 104J该电路主要功能为依据置于陶板下方的热敏电阻(RT1)和IGBT 上的热敏电阻(负温度系数) IC ( CPU ),CPU 经A/D 转换后对TOP^TEMPI IGBTT-TEMP16、负载电流检知电路该电路中T2 (互感器)串接在 DB (桥式整流器)前的线路上,因此 T2二次侧的AC 电压可反映输入电流的变化,此 AC 电压再经D13、D14、D15、D5全波整流为DC 电压,该电压经分压后直 接送CPU 的AD 转换后,CPU 根据转换后的AD 值判断电流大小经软件计算功率并控制PWM 输出大小来控制功率及检知负载7、驱动电路该电路将来自脉宽调整电路输出的脉冲信号放大到足以驱动 IGBT 开启和关闭的信号强度, 输入脉冲宽度愈宽IGBT 开启时间愈长。
最详细电磁炉原理讲解一、原理简介电磁炉是应用电磁感应加热原理,利用电流通过线圈产生磁场,该磁场的磁力线通过铁质锅底部的磁条形成闭合回路时会产生无数小涡流,使铁质锅体的铁分子高速动动产生热量,然后加热锅中的食物。
二、电磁炉的原理方块图三、电磁炉工作原理说明1. 主回路220V/50Hz 输入熔断器平衡 滤波1:3000 互感器桥式 整流 滤波扼流 圈电磁线盘(LC 回路)IGBT功率检测 过流保护浪涌检测 锅具材 质检测同步检 测调整反压抑 制驱动回路闭环振 荡回路IGBT 过热保护PWM 输出 功率调整主控CPU炉面温度检测控制面板至风机 至蜂鸣电压变换整流 回路18V 至风扇5V 到CPU18V 至驱动过欠压 检测图中桥整DB1将工频(50HZ)电流变成直流电流,L1为扼流圈,L2是电磁线圈,IGBT由控制电路发出的矩形脉冲驱动,IGBT导通时,流过L2的电流迅速增加。
IGBT截止时,L2、C12发生串联谐振,IGBT的C极对地产生高压脉冲。
当该脉冲降至为零时,驱动脉冲再次加到IGBT上使之导通。
上述过程周而复始,最终产生25KHZ左右的主频电磁波,使陶瓷板上放置的铁质锅底感应出涡流并使锅发热。
串联谐振的频率取之L2、C12的参数。
C11为电源滤波电容,CNR1为压敏电阻(突波吸收器)。
当AC电源电压因故突然升在时,即瞬间短路,使保险丝迅速熔断,以保护电路。
2.副电源开关电源式主板共有+5V,+18V两种稳压回路,其中桥式整流后的+18V供IGBT的驱动回路和供主控IC LM339和风扇驱动回路使用,由三端稳压电路稳压后的+5V供主控MCU 使用。
3.冷却风扇主控IC发出风扇驱动信号(FAN),使风扇持续转动,吸入外冷空气至机体内,再从机体后侧排出热空气,以达到机内散热目的,避免零件因高温工作环境造成损坏故障。
当风扇停转或散热不良,IGBT表贴热敏电阻将超温信号传送到CPU,停止加热,实现保护。
电磁炉原理图解一、电磁炉系统框图图(1)如图(1)所示高频电磁炉原理方框图。
它是由EMI滤波电路、电源回路、主回路、单片机控制电路和保护电路等单元电路组成。
它的工作原理是,首先将220V交流电转换为直流电压,再通过励磁线圈加到IGBT上,IGBT受驱动信号的控制而导通截止,再励磁线圈中有频率为20KHZ—50KHZ的电流流过,励磁线圈的周围将产生高频磁场,若此时有铁锅至于炉台上在锅底内会有涡流产生,此时涡流克服锅体内阻流动时,将电能转换成热能,作为烹饪的热源如图(2)。
图(2)二、部分电路简要说明1、EMI滤波电路当AC电压加入时,可能会有干扰串入,影响电磁炉工作,加上电磁炉在工作时,本身会产生杂讯及干扰信号会有电源回路而影响到外界的电器装置,故有EMI滤波电路来防止此干扰。
2、主回路如(图1)所示,IGBT是受矩形脉冲驱动的,当IGBT导通时,流过励磁线圈的电流迅速增加,当IGBT截止时,(L/C)回路发生谐振,IGBT的集电极产生脉冲高压,当此高压降至接近0是(励磁线圈中的电流正在反向减小)驱动脉冲再次加到IGBT的基极,使IGBT再次到通。
驱动矩形脉冲信号的宽度决定了电磁炉负荷电流的大小。
3、同步电路同步电路严密监视主回路的工作状况,当IGBT电压下降接近0V时,输出一个触发脉冲强行使IGBT导通,是振荡电路开始下一个周期的震荡。
这样可以避免励磁线圈中的电流瞬间变化太大,保护了关键部件IGBT。
4、振荡电路振荡电路输出矩形脉冲。
正常工作时该矩形脉冲的上升沿时刻受同步电路的强制控制,以确保与主回路LC谐振电路同步,而矩形脉冲的宽度受电流负反馈电路的控制。
5、电流负反馈电路符合电流的反馈信号和单片机输出的PWM信号相比较形成电流负反馈的输出,这样可限制负荷电流不至于过高。
改变PWM的占空比就可以控制负荷电流的大小。
6、过压保护电路该电路严密监视市电上尖峰干扰和IGBT集电极的电压,一旦电压过高立刻关断驱动信号保护关键部件IGBT。
电磁炉的原理方块图电磁炉的原理方块图电磁炉工作原理说明之电路分析1、主回路图中整流桥BI将工频(50HZ)电压变成脉动直流电压,L1为扼流圈,L2是电磁线圈,IGBT由控制电路发出的矩形脉冲驱动,IGBT导通时,流过L2的电流迅速增加。
IGBT截止时,L2、C21发生串联谐振,IGBT的C极对地产生高压脉冲。
当该脉冲降至为零时,驱动脉冲再次加到IGBT上使之导通。
上述过程周而复始,最终产25KHZ左右的主频电磁波,使陶瓷板上放置的铁质锅底感应出涡流并使锅发热。
串联谐振的频率取之L2、C21的参数。
C5为电源滤波电容。
CNR1为压敏电阻(突波吸收器),当AC电源电压因故突然升高时,瞬间短路,使保险丝迅速熔断,以保护电路。
2、副电源开关电源提供有+5V,+18V两种稳压回路,其中桥式整流后的+18V供IGBT 的驱动回路,同步比较IC LM339和风扇驱动回路使用,由三端稳压电路稳压后的+5V供主控MCU使用。
3、冷却风扇当电源接通时主控IC发出风扇驱动信号(FAN),使风扇持续转动,吸入外冷空气至机体内,再从机体后侧排出热空气,以达至机内散热目的,避免零件因高温工作环境造成损坏故障。
当风扇停转或散热不良,IGBT表贴热敏电阻将超温信号传送到CPU,停止加热,实现保护。
通电瞬间CPU会发出一个风扇检测信号,以后整机正常运行时CPU发出风扇驱动信号使其工作。
4、定温控制及过热保护电路该电路主要功能为依据置于陶板下方的热敏电阻(RT1)和IGBT上的热敏电阻(负温度系数)感测温度而改变电阻的一随温度变化的电压单位传送至主控IC(CPU),CPU经A/D转换后对照温度设定值比较而作出运行或停止运行信号。
5、主控IC(CPU)主要功能18脚主控IC主要功能如下:(1)电源ON/OFF切换控制(2)加热火力/定温温度控制(3)各种自动功能的控制(4)无负载检知及自动关机(5)按键功能输入检知(6)机内温升过高保护(7)锅具检知(8)炉面过热告知(9)散热风扇控制(10)各种面板显示的控制6、负载电流检知电路该电路中T2(互感器)串接在DB(桥式整流器)前的线路上,因此T2二次侧的AC电压可反映输入电流的变化,此AC电压再经D13、D14、D15、D5全波整流为DC电压,该电压经分压后直接送CPU的AD转换后,CPU根据转换后的AD值判断电流大小经软件计算功率并控制PWM输出大小来控制功率及检知负载7、驱动电路该电路将来自脉宽调整电路输出的脉冲信号放大到足以驱动IGBT开启和关闭的信号强度,输入脉冲宽度愈宽IGBT开启时间愈长。
电磁炉工作原理之电磁炉内部电路大解剖电磁炉的原理方块图电磁炉工作原理说明之电路分析1、主回路图中整流桥BI将工频(50HZ)电压变成脉动直流电压,L1为扼流圈,L2是电磁线圈,IGBT由控制电路发出的矩形脉冲驱动,IGBT导通时,流过L2的电流迅速增加。
IGBT截止时,L2、C21发生串联谐振,IGBT 的C极对地产生高压脉冲。
当该脉冲降至为零时,驱动脉冲再次加到IGBT上使之导通。
上述过程周而复始,最终产25KHZ左右的主频电磁波,使陶瓷板上放置的铁质锅底感应出涡流并使锅发热。
串联谐振的频率取之L2、C21的参数。
C5为电源滤波电容。
CNR1为压敏电阻(突波吸收器),当AC电源电压因故突然升高时,瞬间短路,使保险丝迅速熔断,以保护电路。
2、副电源开关电源提供有+5V,+18V两种稳压回路,其中桥式整流后的+18V 供IGBT的驱动回路,同步比较IC LM339和风扇驱动回路使用,由三端稳压电路稳压后的+5V供主控MCU使用。
3、冷却风扇当电源接通时主控IC发出风扇驱动信号(FAN),使风扇持续转动,吸入外冷空气至机体内,再从机体后侧排出热空气,以达至机内散热目的,避免零件因高温工作环境造成损坏故障。
当风扇停转或散热不良,IGBT表贴热敏电阻将超温信号传送到CPU,停止加热,实现保护。
通电瞬间CPU会发出一个风扇检测信号,以后整机正常运行时CPU发出风扇驱动信号使其工作。
4、定温控制及过热保护电路该电路主要功能为依据置于陶板下方的热敏电阻(RT1)和IGBT 上的热敏电阻(负温度系数)感测温度而改变电阻的一随温度变化的电压单位传送至主控IC(CPU),CPU经A/D转换后对照温度设定值比较而作出运行或停止运行信号。
(TOPAD的意思是把陶板部分的温度由模拟量转化成数子量送到CPU,IGAD的意思是把IGBT部分的温度由模拟量转化成数子量送到CPU)5、主控IC(CPU)主要功能18脚主控IC主要功能如下:(1)电源ON/OFF切换控制(2)加热火力/定温温度控制(3)各种自动功能的控制(4)无负载检知及自动关机(5)按键功能输入检知(6)机内温升过高保护(7)锅具检知(8)炉面过热告知(9)散热风扇控制(10)各种面板显示的控制6、负载电流检知电路该电路中T2(互感器)串接在DB(桥式整流器)前的线路上,因此T2二次侧的AC电压可反映输入电流的变化,此AC电压再经D13、D14、D15、D5全波整流为DC电压,该电压经分压后直接送CPU的AD转换后,CPU根据转换后的AD值判断电流大小经软件计算功率并控制PWM输出大小来控制功率及检知负载7、驱动电路该电路将来自脉宽调整电路输出的脉冲信号放大到足以驱动IGBT开启和关闭的信号强度,输入脉冲宽度愈宽IGBT开启时间愈长。
第四章电磁炉的原理图各功能部分的分析电磁炉主板原理方框图主板分成10大部分:1、主回路的主谐振电路分析2、IGBT驱动电路分析:(推挽式电路,高电平驱动有效)3、电流取样电路4、干扰保护电路5、电压AD取样电路6、同步电路和压控/自激电路7、反压保护与PWM控制电路8、炉面传感器与IGBT热敏电阻取样电路9、风扇控制电路10、开关电源电路一、主回路的主谐振电路分析二、IGBT驱动电路分析:(推挽式电路,高电平驱动有效)作用:保护IGBT可靠导通与关断。
IGBT驱动电压至少需要16V,Q1(PNP管)、Q2(NPN管)组成推挽式驱动电路,它们的工作原理是:1、当输入信号为高电平时,Q2导通,Q1截止,18VDC电压流通,给IGBT的G极提供门极电压,IGBT导通。
线盘开始储能。
2、当输入信号为低电平时,Q2截止,Q1导通,IGBT的G极接地,IGBT关断。
此时线盘感应电压对谐电容放电,形成了LC振荡。
3、R6电阻在三极管截止时,把IGBT的G极残余电压快速拉低。
C11电容作为高频旁路,另外作为平缓驱动电路波形作用,ZD1稳压管,稳定IGBT的G极电压,预防输入电压过高时,损坏IGBT。
在检锅时,如图2.1所示,波形不是很理想,有点变形。
当检到锅工作后,如图2.2所示,控制推挽电路的波形与驱动IGBT波形很相似,功率越大,波形的高电平的宽度越大,B点的波形底部平,原因是LM339控制的一路内部三极管导通接地。
而A点的波形底部比地略高一点。
再回到零电压。
此电路容易出现的问题为上电烧机,为驱动电路输出高电平导致,温升高、瓷片电容有问题。
作用:判断有无锅具、恒定电流、稳定调节功率提供反馈输入电流电流互感器T1的次级测得的交流(AC)电压.经D9~D12组成的桥式整流电路整流,EC3电解电容滤波平滑、由电阻R15、RJ41、RJ16分压后,所获得的电流电压送到CPU,该电压越高表示电源输入的电流越大,待机时电流取样基本为零,如图3.1所示,电流越大,A点的电流电压波形幅值越高,B点的取样点就越高,表示功率越大。
电磁炉原理图解一、电磁炉系统框图图(1)如图(1)所示高频电磁炉原理方框图。
它是由EMI滤波电路、电源回路、主回路、单片机控制电路和保护电路等单元电路组成。
它的工作原理是,首先将220V交流电转换为直流电压,再通过励磁线圈加到IGBT上,IGBT受驱动信号的控制而导通截止,再励磁线圈中有频率为20KHZ—50KHZ的电流流过,励磁线圈的周围将产生高频磁场,若此时有铁锅至于炉台上在锅底内会有涡流产生,此时涡流克服锅体内阻流动时,将电能转换成热能,作为烹饪的热源如图(2)。
图(2)二、部分电路简要说明1、EMI滤波电路当AC电压加入时,可能会有干扰串入,影响电磁炉工作,加上电磁炉在工作时,本身会产生杂讯及干扰信号会有电源回路而影响到外界的电器装置,故有EMI滤波电路来防止此干扰。
2、主回路如(图1)所示,IGBT是受矩形脉冲驱动的,当IGBT导通时,流过励磁线圈的电流迅速增加,当IGBT截止时,(L/C)回路发生谐振,IGBT的集电极产生脉冲高压,当此高压降至接近0是(励磁线圈中的电流正在反向减小)驱动脉冲再次加到IGBT的基极,使IGBT再次到通。
驱动矩形脉冲信号的宽度决定了电磁炉负荷电流的大小。
3、同步电路同步电路严密监视主回路的工作状况,当IGBT电压下降接近0V时,输出一个触发脉冲强行使IGBT导通,是振荡电路开始下一个周期的震荡。
这样可以避免励磁线圈中的电流瞬间变化太大,保护了关键部件IGBT。
4、振荡电路振荡电路输出矩形脉冲。
正常工作时该矩形脉冲的上升沿时刻受同步电路的强制控制,以确保与主回路LC谐振电路同步,而矩形脉冲的宽度受电流负反馈电路的控制。
5、电流负反馈电路符合电流的反馈信号和单片机输出的PWM信号相比较形成电流负反馈的输出,这样可限制负荷电流不至于过高。
改变PWM的占空比就可以控制负荷电流的大小。
6、过压保护电路该电路严密监视市电上尖峰干扰和IGBT集电极的电压,一旦电压过高立刻关断驱动信号保护关键部件IGBT。
电磁炉原理图解一、电磁炉系统框图图(1)如图(1)所示高频电磁炉原理方框图。
它是由EMI滤波电路、电源回路、主回路、单片机控制电路和保护电路等单元电路组成。
它的工作原理是,首先将220V交流电转换为直流电压,再通过励磁线圈加到IGBT上,IGBT受驱动信号的控制而导通截止,再励磁线圈中有频率为20KHZ—50KHZ的电流流过,励磁线圈的周围将产生高频磁场,若此时有铁锅至于炉台上在锅底内会有涡流产生,此时涡流克服锅体内阻流动时,将电能转换成热能,作为烹饪的热源如图(2)。
图(2)二、部分电路简要说明1、EMI滤波电路当AC电压加入时,可能会有干扰串入,影响电磁炉工作,加上电磁炉在工作时,本身会产生杂讯及干扰信号会有电源回路而影响到外界的电器装置,故有EMI 滤波电路来防止此干扰。
2、主回路如(图1)所示,IGBT是受矩形脉冲驱动的,当IGBT导通时,流过励磁线圈的电流迅速增加,当IGBT截止时,(L/C)回路发生谐振,IGBT的集电极产生脉冲高压,当此高压降至接近0是(励磁线圈中的电流正在反向减小)驱动脉冲再次加到IGBT的基极,使IGBT再次到通。
驱动矩形脉冲信号的宽度决定了电磁炉负荷电流的大小。
3、同步电路同步电路严密监视主回路的工作状况,当IGBT电压下降接近0V时,输出一个触发脉冲强行使IGBT导通,是振荡电路开始下一个周期的震荡。
这样可以避免励磁线圈中的电流瞬间变化太大,保护了关键部件IGBT。
4、振荡电路振荡电路输出矩形脉冲。
正常工作时该矩形脉冲的上升沿时刻受同步电路的强制控制,以确保与主回路LC谐振电路同步,而矩形脉冲的宽度受电流负反馈电路的控制。
5、电流负反馈电路符合电流的反馈信号和单片机输出的PWM信号相比较形成电流负反馈的输出,这样可限制负荷电流不至于过高。
改变PWM的占空比就可以控制负荷电流的大小。
6、过压保护电路该电路严密监视市电上尖峰干扰和IGBT集电极的电压,一旦电压过高立刻关断驱动信号保护关键部件IGBT。
电磁炉的结构及各部件详解。
一、电磁炉的结构组成:1、外形:上下壳、陶瓷面板、显示面板、锅具等。
2、内部:功率管IGBT(FGA25N120)、整流桥(GBJ2508)、加热线圈(150uH)、谐振电容(0.27uF/1200V)、滤波电容(5uF/400V)、抗干扰电容(2uF/275V)、冷却风扇、NTC热敏电阻(100kΩ)、MCU(单片机)、四电压比较器LM339、驱动管(8050/8550)或驱动芯片TA8316S等组成。
二、电磁炉的工作原理图电磁炉“三电压”:+300V、+5V、+12V(或+18V)三、电磁炉的主要元器 1、IGBT 功率管(绝缘栅双极型晶体管)(FGA25N120ANTD )2、整流桥(GBJ2508)3、谐振电容(0.27uF/1200V)4. +300V滤波电容(5uF/400V)5. 抗干扰电容(2uF/275V)6. 四电压比较器LM339、双电压比较器LM3937. NTC热敏电阻(100K、90K)8. 驱动芯片(TA8316S)、S8050/8550三极管9. 散热风扇(12V/18V)四、电磁炉易损元件(1)保险管(10A)(2)IGBT功率管(FGA25N120ANTD)(3)整流桥(GBJ2508)(4)谐振电容(0.27uF/1200V)(5)+300V滤波电容(5uF/400V)(6)抗干扰电容(2uF/275V)(7)四电压比较器LM339(8)大阻值电阻:240k、330k、470k、680k、820k等(9)驱动芯片(TA8316S)(10)NTC热敏电阻(100K、90K)五、电磁炉常见故障1.通电无任何反应(不通电故障)。
(1)主电路:10A(或15A)保险管烧,整流桥击穿、IGBT击穿、5uF/450V滤波电容损坏、0.27uF/1200V谐振电容。
(2)副电源电路:开关电源芯片VIPer12A(VIPer22A)、FSD200、THX201、13001、限流电阻22Ω/2W等损坏。
图解电磁炉各主要元件名词、符号及功能解析对于很多初学者来说,认识和掌握电磁炉各元器件的名称,符号,以及在电路中的功能,是非常有必要的1,数码管这是在电磁炉控制面板上,显示电压,功率,时间等等信息,有专门的IC驱动。
2,如图所示是蜂鸣器是一个发声元件,开关机,以及电磁炉异常时报警声就是它发出的,很少坏。
3,5uF滤波电容这个元件大名鼎鼎,主要是滤除电源电流中的杂波或毛刺,是电流变得顺滑纯净。
损坏或容量降低都会引起电磁炉工作异常。
4,0.2uF谐振电容这也是一个易损件,它和下面要介绍的励磁线圈共同组成LC振荡电路。
容量降低或损坏,都会造成电磁炉不加热或加热功率变小。
5,电感线圈也是用来滤波的,电感线圈特点是通直阻交。
很多时候和电容配合使用。
6,线圈盘(励磁线圈)也就是励磁线圈,由多股铜线绕制而成,电磁炉中核心元件之一,主要靠他在在铁质锅底产生涡流达到加热的目的。
7,热敏电阻在励磁线圈的中央,上面涂着散热硅胶,和面板接触,感应来自炉面温度,如果炉面温度过高,热敏电阻的阻值发生变化,这时候,电磁炉就会启动过热保护。
8,功率管也就是我们常说的IGBT,核心元件,形象的说,IGBT就是一个开关,不停的开和关,和励磁线圈,0.2uF谐振电容一起组成LC逆变振荡电路。
易损件,常说的炸机就是烧IGBT了,伴随着保险管一块烧。
9,整流桥堆把交流电变成直流电的元件,一般和功率管一起装在一块散热片上,但注意和功率管区别:整流桥有四个脚,两个交流输入脚,一个正,一个负输出脚。
易坏元件之一,烧坏后,整个电磁炉都没电。
10,IC控制芯片芯片种类很多,具体功用也不一样,每种IC都有不同的内部电路图,想要知道其功用,就要知道其引脚定义,可以通过查资料。
11,康铜丝取样电阻这种电阻的阻值小,电流取样用,其实就是一根铜丝。
12,还有LED指示灯,各种电阻,电容,保险管,我就不再这里一一列出了。
这里附一张电磁炉中常见元件代码,图形符号图片,大家可以看看:。
最详细电磁炉原理讲解一、原理简介电磁炉是应用电磁感应加热原理,利用电流通过线圈产生磁场,该磁场的磁力线通过铁质锅底部的磁条形成闭合回路时会产生无数小涡流,使铁质锅体的铁分子高速动动产生热量,然后加热锅中的食物。
二、电磁炉的原理方块图三、电磁炉工作原理说明220V/50Hz输入熔断器平衡滤波1:3000互感器桥式整流扼流圈电磁线盘(LC回路)IGBT功率检测浪涌检测锅具材质检测同步检测调整反压抑制驱动回路闭环振荡回路IGBT过热保护PWM输出主控CPU炉面温度检测控制面板至风机至蜂鸣电压变换整流18V至风扇5V到CPU18V至驱动过欠压检测1.主回路图中桥整DB1将工频(50HZ)电流变成直流电流,L1为扼流圈,L2是电磁线圈,IGBT 由控制电路发出的矩形脉冲驱动,IGBT导通时,流过L2的电流迅速增加。
IGBT截止时,L2、C12发生串联谐振,IGBT的C极对地产生高压脉冲。
当该脉冲降至为零时,驱动脉冲再次加到IGBT上使之导通。
上述过程周而复始,最终产生25KHZ左右的主频电磁波,使陶瓷板上放置的铁质锅底感应出涡流并使锅发热。
串联谐振的频率取之L2、C12的参数。
C11为电源滤波电容,CNR1为压敏电阻(突波吸收器)。
当AC电源电压因故突然升在时,即瞬间短路,使保险丝迅速熔断,以保护电路。
2.副电源开关电源式主板共有+5V,+18V两种稳压回路,其中桥式整流后的+18V供IGBT的驱动回路和供主控IC LM339和风扇驱动回路使用,由三端稳压电路稳压后的+5V供主控MCU 使用。
3.冷却风扇主控IC发出风扇驱动信号(FAN),使风扇持续转动,吸入外冷空气至机体内,再从机体后侧排出热空气,以达到机内散热目的,避免零件因高温工作环境造成损坏故障。
当风扇停转或散热不良,IGBT表贴热敏电阻将超温信号传送到CPU,停止加热,实现保护。
通电瞬间CPU 会发出一个风扇检测信号,以后整机正常运行时CPU发出风扇驱动信号使其工作。
感应灯板按键灯板线控灯板灯板为人机对话窗口。
目前我司控制灯板分为感应灯板、按键灯板、线控灯板三类。
温度传感器(热敏头)为机器炉面温度感温器件,核心元件为热敏电阻,内销一般采用100K±5%,线长180mm规格(AD400002)。
热敏头变压器:电压电流变换,稳压标牌(PVC),适用于按键机型(含线控);触摸感应机型不需标牌,采用的是黑晶一体面板或钢化玻璃板丝印指示功能。
客户一般称“面壳+微晶板+标牌”一体配件为“面壳总成”。
面壳+微晶板+标牌压到一起,称为“压胶”。
发热盘采用耐高温铜线。
目前我司疏绕、密绕、中空双环、双层、单层发热盘,常用的有19*24(19股,24圈)、高频21*24、高频40*23等发热盘,2011年主推双层铝线盘(0.35*28*27(上13+下14))。
双层聚能高效发热盘:双层结构,能效提升,双层铝线盘比单层铜线盘能效提升0.7%,散热性能提升,产品质量提升。
雅乐思铝线盘优势: 1.成本更低。
铝线盘成本优势保持了市场竞争优势;2.能效更高。
雅乐思双层铝线盘能效提升0.7%,更节能。
3.双层加热,火力更均匀。
4.工艺更可靠。
雅乐思独创支架结构及绕线方式,层间及线间实现疏绕独特工艺,散热更快,更避免札间短路、上下层短路,造成产品质量隐患;5.研发更成熟。
6.铝线盘热传导系数较铜线小,密度小重量轻。
保险管二极管电源IC 可调电阻
保险管(保险丝)也称熔断器。
装在电路中保证电路安全运行。
电流异常升到一定高度时,保险管会自身熔断切掉电源,从而保护电路安全运行。
二极管:利用其单向导电性,把方向交替变化的交流电变换成单一方向的脉冲直流电。
可调电阻也叫可变电阻,其电阻值大小可以人为调节,以满足电路的需要。
电源IC:稳压、电压变换、脉宽调制、电量检测与保护、输出大电流,低导通内阻。
CPU:温度控制器。
电源on/off切换控制。
加热火力/定温温度控制。
自动功能控制。
无负载检知及自动关机。
按键功能输入检知。
机内温升过高保护。
锅具检知。
炉面过热告知。
散热风扇控制。
瓷片电容:信号耦合作用。
针座:用于小电流量检测及电容量检测、高压量检测、R/F量检测、I/O点量检测。
三极管:控制电流的大小,可将电流放大,还有稳压作用。
三极管电解电容IGBT
电解电容特点:单位体积的电容量非常大,比其它种类的电容大几十到数百倍。
组成材料都是普通工业材料,比如铝,成本较低。
IGBT(功率管):绝缘三双极型功率管,应用于交流电机、变频器、开关电源、照明电路、牵引传动等领域。
整流桥(桥堆):整流桥是将四个二极管封装在一个壳内,通过二极管的单向导通功能,把交流电转换成单向的直流脉动电压。
1.整流桥
2.散热片
3.接线柱
4.蜂鸣器(用于发警报声)
控制面板---控制盒底板---底座盖电源板---主板控制板---灯板压力阀芯---排气管蟑螂盖内放入樟脑丸防蟑螂。